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STRONGLY FULLY POLYNOMIAL TIME APPROXIMATION SCHEME
FOR THE WEIGHTED COMPLETION TIME MINIMIZATION PROBLEM

ON TWO-PARALLEL CAPACITATED MACHINES ∗
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Abstract. We consider the total weighted completion time minimization for the two-parallel capac-
itated machines scheduling problem. In this problem, one of the machines can process jobs until a
certain time T1 after which it is no longer available. The other machine is continuously available for
performing jobs at any time. We prove the existence of a strongly Fully Polynomial Time Approxima-
tion Scheme (FPTAS) for the studied problem, which extends the results for the unweighted version
(see [I. Kacem, Y. Lanuel and M. Sahnoune, Strongly Fully Polynomial Time Approximation Scheme
for the two-parallel capacitated machines scheduling problem, Int. J. Plann. Sched. 1 (2011) 32–41]).
Our FPTAS is based on the simplification of a dynamic programming algorithm. Moreover, we present
a set of numerical experiments and we discuss the results.
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1. Introduction

Motivated by important real and industrial applications, the problems of scheduling with non-availability con-
straints have been a challenging subject for many research teams from different fields (Computer Science, Oper-
ational Research, Logistics . . . ). Such applications include especially maintenance activities and non-availability
of resources. Different classes of these problems have been recently studied in the literature. Various approaches
have been proposed (for instance, the reader is invited to consult the state-of-the-art paper by [17]). In this
context, this paper is devoted to study a specific model related to this class of scheduling problems. Indeed, we
consider the total weighted completion time minimization for the two-parallel capacitated machines scheduling
problem. In this problem, one of the machines can process jobs until a certain time T1 after which it is no longer
available. To the best of our knowledge, the weighted version of the problem studied in this paper has not been
addressed in previous references. That is why this paper is a good attempt to study this problem and examine
the existence of a strongly Fully Polynomial Time Approximation Scheme (FPTAS) for the above problem.

Keywords. Scheduling, parallel machine, approximation.

∗ The short version of this work has been presented at the 8th IFAC Conference on Manufacturing Modelling, Management
and Control MIM 2016, Troyes, France, 28-30 June 2016.
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Table 1. Summary of results.

Problem Result Reference

2, h1,∞||∑wjCj FPTAS: O(|I |3n3/ε2) Woeginger [19]
2, h1,∞||∑wjCj FPTAS: O(n4 log log n + n4/ε2) Xu [20]
2, h1,∞||∑Cj FPTAS: O(n3/ε2) Kacem et al. [5]

2, h1,∞||∑wjCj FPTAS: O(n3/ε2) this paper

More precisely, the considered problem consists in scheduling n jobs on two parallel machines where one of
these machines is not available after time T1. The other machine is continuously available for processing jobs at
any time. The objective is to elaborate a feasible schedule by minimizing the total weighted completion time.
The problem can be denoted as 2, h1,∞||wjCj , where h1,∞ denotes the non-availability constraint of the first
machine. Given the aim of this paper, we recall some related works on the unweighted version of the studied
problem. In [14], Lee and Liman elaborated a 3/2-approximation algorithm. In [15], Liao et al. introduced
some upper and lower bounds and proposed a branch-and-bound procedure for the same problem. It is worth-
noting that other general approximation methods can be used to elaborate an FPTAS for close problems (for
example, see Kellerer and Strusevich [11], Kovalyov and Kubiak [13], Woeginger[19]). Despite these interesting
methods, the time complexity will not be strongly polynomial without adapted upper and lower bounds for
the approximate values of some variables used in these algorithms. In contrast to the technique by Woeginger
[19], the introduction of these bounds leads to a reduced time complexity. Recently, Kacem et al. [5] proposed
an FPTAS that can be implemented in a strongly polynomial time for the unweighted case (2, h1,∞||Cj). The
unconstrained version of the problem (2||wjCj) has been studied by [16] who established the existence of an
FPTAS with a strongly polynomial time.

To summarize, Table 1 compares the results of our paper to the best recent ones of the literature and it shows
the interest of our approach.

Remarks: the value |I| mentioned in Table 1 in the time complexity obtained by applying Woeginger’s
approach [19] represents the input size. In our case, it can be bounded by O(n log maxj{pj, wj}). It is worthy to
note that from the dynamic programming described in Section 3, we can establish that Woeginger’s approach
can leads to the existence of an FPTAS of O(|I|3n3/ε2) time (see [19] for more detail). Moreover, the formulation
of the considered problem can be reduced to an instance of the symmetric quadratic knapsack problem for which
Kellerer and Strusevich [11] established an FPTAS, improved later by Xu [20] with the complexity mentioned
in Table 1 (O(n4 log log n + n4/ε2)).

The paper is organized as follows. In Section 2, the problem formulation is presented. Then, a dynamic
programming algorithm is described in Section 3. The proposed FPTAS for the total weighted completion time
minimization problem is discussed in Section 4. Section 5 is devoted to present the numerical experiments and
to discuss the results. Finally, Section 6 is a conclusion in which some perspectives are introduced.

2. Weighted completion time minimization on capacitated two-parallel

machines

The problem consists in scheduling n jobs on two-parallel machines, with the aim of minimizing the total
weighted completion time (i.e., the total weighted flow-time since all the jobs are ready for processing at time 0).
The first machine is only available for a given period of time [0, T1] (i.e., after T1 it can no longer process any
job). This parameter T1 is known in advance. The second machine is continuously available. Every machine
can process at most one job at a time. Every job j is characterized by a processing time pj and a weight wj .
Without loss of generality, we consider that all data are integers and that jobs are indexed according to the
WSPT rule:

p1/w1 ≤ p2/w2 ≤ . . . ≤ pn/wn (2.1)
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Figure 1. Example illustration.

Due to the dominance of the WSPT rule, an optimal solution is composed of two subsets (one subset for each
machine) of jobs scheduled in nondecreasing order of their indexes (see [18]). In Figure 1, we present a feasible
schedule for a 7-job instance characterized by the following data: p1 = 1, w1 = 2, p2 = 2, w2 = 3, p3 = 3,
w3 = 3, p4 = 4, w4 = 4, p5 = 4, w5 = 3, p6 = 5, w6 = 3, p7 = 5, w7 = 2 and T1 = 10.

In the remainder of the paper, we denote by Q the studied problem, by F∗(Q) the minimal sum of the weighted
completion times for problem Q and by FS(Q) the sum of the completion times of schedule S for problem Q.
Some necessary standard definitions related to the approximation field are recalled for self-consistency:

Definition 2.1. A ρ-approximation algorithm for a problem of minimizing an objective function ϕ is an algo-
rithm such that for every instance π of the problem it gives a solution Sπ verifying ϕ(Sπ)/ϕ(OPTπ) ≤ ρ where
OPTπ is the optimal solution of π. Moreover, ρ is called the worst-case bound of the above algorithm.

Definition 2.2. A class of (1+ε)-approximation algorithms represents an FPTAS, if its running time is bounded
by a polynomial function in 1/ε and the instance size for every ε > 0. It is well-known that an FPTAS is the
best possible result for an NP-hard problem unless P = NP.

Definition 2.3. A class of (1 + ε)-approximation algorithms is a PTAS (Polynomial Time Approximation
Scheme), if its running time is a polynomial function in the instance size and an arbitrary function in 1/ε for
every ε > 0.

Proposition 2.4. If
∑n

j=1 pj ≤ 2T1, then problem (Q) has an FPTAS with a strongly polynomial time.

Proof. We relax the non-availability constraint (i.e., we assume that the first machine is continuously available).
Then, the relaxed problem has an FPTAS of a strongly polynomial time according to [16]. Let σ1 be the obtained
schedule by applying such an FPTAS for the relaxed problem, B′

1 be the completion time of the last job scheduled
on the first machine and B′

2 denote the completion time of the last job scheduled on the second machine. By
assumption we know that B′

1 + B′
2 ≤ 2T1. Therefore, either B′

1 ≤ T1 or B′
2 ≤ T1 must hold. If B′

1 ≤ T1, then
σ1 is also a (1+ε)-approximation for the original problem Q. If B′

2 ≤ T1, then by swapping the two machines, a
(1+ε)-approximation schedule σ′

1 is obtained such that σ′
1 is also feasible for the original problem Q. Thus, the

proposition is established. �

Based on Proposition 2.4, we limit our investigation to the case where

n∑
j=1

pj > 2T1 (2.2)
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3. Dynamic programming procedure

In this section, we show that the studied problem can be optimally solved by applying the following standard
dynamic programming procedure B. Such a procedure needs n + 1 iterations in which it creates some sets of
states. At every iteration k, a set Uk composed of states is generated (0 ≤ k ≤ n). Each state [t, f ] in Uk is
associated to a feasible schedule for the first k jobs. Variable t denotes the completion time of the last job
scheduled on the first machine before T1 and f is the total weighted completion time of the corresponding
schedule. The following algorithm describes the proposed method:

Algorithm B

(i). U0 := {[0, 0]}.
(ii). For k ∈ {1, 2, . . . , n},

Initialize Uk := ∅

For each state [t, f ] in Uk−1:
1) Add state

[
t, f + wk

(∑k
j=1 pj − t

)]
to Uk (i.e., job k is performed on M2)

2) Add state [t + pk, f + wk (t + pk)] to Uk if t + pk ≤ T1 (i.e., job k is performed on M1)
Remove Uk−1

(iii). F∗ (Q) := min {f | [t, f ] ∈ Un}.

As an illustration of this dynamic programming algorithm, Table 2 depicts the generated states when we apply
this method to the instance previously mentioned for the first 4 iterations.

It is worthy to note that the time complexity of this algorithm can be bounded by O(nT1Z) where Z is
an upper bound (on the optimal weighted completion time) obtained by Heuristic H (described in the next
section). This complexity can be reduced to O(nT1) if at every iteration k in the algorithm, we only keep for
t one state [t, f ] with the smallest value of f . By applying this reduction to the example in Table 2, we obtain
the results in Table 3.

Table 2. Illustration of Algorithm B.

k Uk

0 {[0, 0]}
1 {[1, 2]; [0, 2]}
2 {[3, 11]; [1, 8]; [2, 8]; [0, 11]}
3

{[6, 29]; [3, 20]; [4, 20]; [1, 23];
[5, 23]; [2, 20]; [3, 20]; [0, 29]}

Table 3. Illustration of Algorithm B after reduction.

k Uk

0 {[0, 0]}
1 {[1, 2]; [0, 2]}
2 {[3, 11]; [1, 8]; [2, 8]; [0, 11]}
3

{[6, 29]; [3, 20]; [4, 20]; [1, 23];
[5, 23]; [2, 20]; [0, 29]}
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4. FPTAS

4.1. Principle

In this section, we describe the different steps of the proposed FPTAS for solving the studied problem in a
strongly polynomial time. Our method extends the one proposed by [5] by using the simplification of the state
space generated by Algorithm B.

The FPTAS starts by applying a simple heuristic H to get a feasible schedule in O(n log(n)) time. This
heuristic consists in processing all the jobs on the second available machine according to the WSPT order.
By comparing FH(Q) to the optimal solution of the relaxation in which the first machine is continuously
available, and according to the well-known lower bound (introduced in [1] by Eastman), we can deduce that
F∗(Q) � FH(Q)

2 + 1
4

∑n
j=1 wjpj. Thus, the following inequality holds:

FH(Q)
F∗(Q)

≤ 2 (4.1)

The second step of the proposed FPTAS consists in simplifying Algorithm B with the aim of decreasing the
running time. The general technique of modifying the execution of an exact algorithm to design FPTAS, was
initially proposed by Ibarra and Kim [3] for solving the knapsack problem. It is noteworthy that during the last
decades various scheduling problems have been studied by using such a technique. A sample of these papers
includes Gens and Levner [2], Kacem [4–6], Kacem and Kellerer [7], Kacem and Mahjoub [8], Kacem and
Haouari [9], Sahni [16], Kovalyov and Kubiak [12], Kellerer and Strusevich [10] and Woeginger [19].

Let us consider an arbitrary ε > 0 and let us define

q =
⌈

4n

ε

⌉
, (4.2)

δ1 =
FH (Q)

q
(4.3)

and

δ2,k =
min

{
T1,
∑k

j=1 pj

}
q

∀k = 1, 2, . . . n. (4.4)

The interval [0,FH(Q)] is divided into q subintervals of equal-length δ1. These subintervals are denoted
I1
r = [(r − 1)δ1, rδ1]1≤r≤q. Moreover, we divide interval [0, min{T1,

∑k
j=1 pj}] into q subintervals I2

s,k =
[(s − 1)δ2,k, sδ2,k]1≤s≤q of equal length δ2,k at every iteration k. As a consequence, Algorithm B′

ε will cre-
ate a reduced set Ũk instead of sets Uk at every iteration k. This reduction step is illustrated in Figure 2. The
resulted FPTAS can be summarized in the following algorithm:

Algorithm B′
ε

(i). Ũ0 := {[0, 0]}.
(ii). For k ∈ {1, 2, 3, . . . , n},

Initialize Ũk := ∅

For every state [t, f ] in Ũk−1:
1) Add state

[
t, f + wk(

∑k
j=1 pj − t)

]
to Ũk

2) Add state [t + pk, f + wk (t + pk)] to Ũk if t + pk ≤ T1

Remove Ũk−1

Let [t, f ]r,s be the state in Ũk, which verifies: f ∈ I1
r and t ∈ I2

s,k with the smallest possible value t (ties
are broken by choosing the state of the smallest f).
Update Ũk :=

{
[t, f ]r,s |1 ≤ r ≤ q, 1 ≤ s ≤ q

}
.
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Figure 2. Illustration of the reduction step.

(iii). FB′
ε
(Q) := min

{
f | [t, f ] ∈ Ũn

}
.

Note that the added step in Algorithm B′
ε with respect to Algorithm B is to reduce the state space and to

ensure at the same time the feasibility of solutions by respecting the capacity constraint on the first machine.
A careful comparison of the two algorithms B and B′

ε leads to the following theorem.

Theorem 4.1. Algorithm B′
ε is an FPTAS and it can be executed in O(n3/ε2) time.

4.2. Proof of Theorem 4.1

The proof is based on the two following lemmas.

Lemma 4.2. Algorithm B′
ε can be executed in O(n3/ε2) time.

Proof. Heuristic H can be computed in O(n log(n)) time. From the construction of Algorithm B′
ε, at each

iteration k (k ∈ {1, 2, . . . , n}) we have |Uk| ≤ (((4n)/ε) + 1)2. Hence, we can establish that
∑n

k=1 |Uk| ≤
n(((4n)/ε) + 1)2. In conclusion, the algorithm can be implemented in O(n log(n) + n3/ε2) time. �

Lemma 4.3. Let ηk =
∑k

h=1 δ2,h. For every state [t, f ] ∈ Ũk (k ∈ {0, 1, . . . , n}), Algorithm B′
ε creates at least

one state [t̃, f̃ ] ∈ Ũk verifying the following conditions:

t̃ ≤ t,

and

f̃ ≤ f + kδ1 +
k∑

z=1

wzηz .

Proof. We prove the result by induction. For k = 0, Ũk = Uk and the lemma is obvious. Let us assume the result
holds until level k−1 and let us prove it for level k. Consider a state [t, f ] ∈ Uk. Two cases can be distinguished:

1st Case. [t, f ] = [t′, f ′ + wk(
∑k

j=1 pj − t′)] where [t′, f ′] ∈ Uk−1.
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State [t′, f ′] belongs to Uk−1. This implies the existence of [t̃′, f̃ ′] ∈ Ũk−1 such that t̃′ ≤ t′, and f̃ ′ ≤ f ′ + (k −
1)δ1 +

∑k−1
z=1 wzηz . Hence, the construction of state [t̃′, f̃ ′ + wk(

∑k
j=1 pj − t̃′)] is considered at iteration k. Such

a state can be eliminated and replaced by an approximate one [θ1, θ2] such that

θ1 ≤ t̃′ ≤ t′ = t

and

θ2 ≤ f̃ ′ + wk

⎛⎝ k∑
j=1

pj − t̃′

⎞⎠+ δ1

≤ f ′ + (k − 1) δ1 +
k−1∑
z=1

wzηz + wk

⎛⎝ k∑
j=1

pj − t̃′

⎞⎠+ δ1

≤ f ′ + kδ1 +
k−1∑
z=1

wzηz + wk

⎛⎝ k∑
j=1

pj − t̃′

⎞⎠
= f ′ + kδ1 +

k−1∑
z=1

wzηz + wk

⎛⎝ k∑
j=1

pj − t̃′

⎞⎠+ wk (t′ − t′)

= f ′ + kδ1 + wk

⎛⎝ k∑
j=1

pj − t′

⎞⎠+ wk

(
t′ − t̃′

)
+

k−1∑
z=1

wzηz

= f + kδ1 + wk

(
t′ − t̃′

)
+

k−1∑
z=1

wzηz

It is easy to see by induction that t′ − t̃′ ≤∑k
h=1 δ2,h = ηk. Then, θ2 ≤ f + kδ1 +

∑k
z=1 wzηz. Hence, [θ1, θ2] is

an approximate state verifying the two conditions.

2nd Case. [t, f ] = [t′ + pk, f ′ + wk (t′ + pk)] where [t′, f ′] ∈ Uk−1.

State [t′, f ′] belongs to Uk−1. This implies the existence of [t̃′, f̃ ′] ∈ Ũk−1 such that t̃′ ≤ t′ and f̃ ′ ≤ f ′ + (k −
1)δ1 +

∑k−1
z=1 wzηz. Hence, the construction of state [t̃′ + pk, f̃ ′ + wk(t̃′ + pk)] is considered at iteration k. Such

a state can be eliminated and replaced by an approximate one (θ′1, θ
′
2) such that

θ′1 ≤ t̃′ + pk ≤ t′ + pk = t (4.5)

and

θ′2 ≤ f̃ ′ + wk

(
t̃′ + pk

)
+ δ1

≤ f ′ + (k − 1) δ1 +
k−1∑
z=1

wzηz + wk

(
t̃′ + pk

)
+ δ1

≤ f ′ + (k − 1) δ1 +
k−1∑
z=1

wzηz + wk (t′ + pk) + δ1

= f ′ + wk (t′ + pk) + kδ1 +
k−1∑
z=1

wzηz

= f + kδ1 +
k−1∑
z=1

wzηz < f + kδ1 +
k∑

z=1

wzηz .
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Hence, [θ′1, θ′2] is an approximate state verifying the two conditions.
In the two cases, the lemma holds. �

The complexity of B′
ε is strongly polynomial (see Lem. 4.2). Let [t∗, f∗] be a state from Un associated to

an optimal solution. Thus, by recalling Lemma 4.3, we can deduce that there exists in Ũn a state[t̃, f̃ ], which
respects the following condition:

f̃ ≤ f∗ + nδ1 +
n∑

z=1

wzηz (4.6)

Thus, the following inequality can be established:

f̃ = F∗ (Q) + n
FH (Q)

q
+

n∑
z=1

wz

z∑
h=1

δ2,h

≤ F∗ (Q) + n
FH (Q)⌈

4n
ε

⌉ +
n∑

z=1

wz

z∑
h=1

min
{
T1,
∑h

j=1 pj

}
⌈

4n
ε

⌉
< F∗ (Q) + ε

FH (Q)
4

+
ε

4n

n∑
z=1

wz

z∑
h=1

h∑
j=1

pj

< F∗ (Q) + ε
F∗ (Q)

2
+

ε

4n
w1 (p1) +

ε

4n
w2 (p1 + (p1 + p2))

+
ε

4n
w3 (p1 + (p1 + p2) + (p1 + p2 + p3)) + . . .

+
ε

4n
wn(p1 + (p1 + p2) + (p1 + p2 + p3) + . . .

+ (p1 + p2 + . . . + pn))

By using the definition of the WSPT order, we deduce the following relation:

f̃ ≤ F∗ (Q) + ε
F∗ (Q)

2
+

ε

4n
w1 (p1) +

ε

4n
w2 (2p1 + p2) +

ε

4n
w3 (3p1 + 2p2 + 1.p3) + . . .

+
ε

4n
wn (n.p1 + (n − 1).p2 + (n − 2).p3 + . . . + 1.pn)

Thus, it can be established that:

f̃ ≤ F∗ (Q) + ε
F∗ (Q)

2
+

ε

4n
(n.

(
n∑

z=1

wz

)
p1 + (n − 1).

(
n∑

z=2

wz

)
p2

+ (n − 2).

(
n∑

z=3

wz

)
p3 + . . . + 1.wn.pn) < F∗ (Q) + ε

F∗ (Q)
2

+
ε

4

((
n∑

z=1

wz

)
p1 +

(
n∑

z=2

wz

)
p2 +

(
n∑

z=3

wz

)
p3 + . . . + wn.pn

)

Since FH(Q) = (
∑n

z=1 wz)p1 + (
∑n

z=2 wz)p2 + . . . + wn.pn, therefore,

f̃ ≤ (1 + ε)F∗ (Q) .

Finally, we know that FB′
ε
(Q) ≤ f̃ , which leads to the fact that B′

ε generates (1 + ε)−schedule in a strongly
polynomial time, which demonstrates the result.
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Table 4. Experimental results for the first series.

n Time(DP) Time(FPTAS) F(DP) F(FPTAS) Speed Ratio Gap in %

20 0,0076 0,004 70 584,7 70 649,6 1,9 0,0919

30 0,0239 0,017 158 445,4 158 563,5 1,41 0,0745

40 0,0415 0,0338 29 1474,6 291 678,9 1,23 0,0701

50 0,071 0,061 472 205,6 472 515,8 1,16 0,0657

60 0,1006 0,0935 629 800,9 630 121,8 1,08 0,051

70 0,1489 0,144 845 684,7 846 026,5 1,03 0,0404

80 0,1966 0,198 1 141 700,8 1 142 184,6 0,99 0,0424

90 0,2367 0,2394 1 398 167,7 1 398 684 0,99 0,0369

100 0,2993 0,3048 1 834 911,3 1 835 604,8 0,98 0,0378

110 0,3473 0,3597 2 111 960,5 2 11 2703,4 0,97 0,0352

120 0,4433 0,4716 2 710 292,8 2 711 164,8 0,94 0,0322

130 0,5096 0,5446 2 998 650,4 2 999 510,2 0,94 0,0287

140 0,5946 0,642 3 496 842,5 34 97 851,8 0,93 0,0289

150 0,7043 0,7547 4 070 917,6 4 071 961,5 0,93 0,0256

160 0,7529 0,8227 4302416,9 4 303 540,5 0,92 0,0261

170 0,9084 1,0038 5 273 864 5 275 155,8 0,9 0,0245

180 1,0008 1,1176 5 631 711,3 5 632 977,5 0,9 0,0225

190 1,1156 1,2398 6 373 485,6 6 374 882,3 0,9 0,0219

200 1,2636 1,4154 7 298 691,4 7 300 156,6 0,89 0,0201

210 1,3368 1,5215 7 308 466,7 7309821,5 0,88 0,0185

220 1,4774 1,7005 8 216 537,1 8 217 961,3 0,87 0,0173

230 1,6061 1,8619 9 020 383,3 9 022 003 0,86 0,018

240 1,8074 2,0775 10 652 215,3 10 654 080,8 0,87 0,0175

250 1,8937 2,2056 10 847 259,3 10 848 888,5 0,86 0,015

260 2,1408 2,505 12 173 502,2 12 175 779,6 0,85 0,0187

270 2,1557 2,4978 12 307 261,2 12 309 162,3 0,86 0,0154

280 2,373 2,833 13 337 482,2 13 339 352,6 0,84 0,014

290 2,6094 3,0881 14 243 862,5 14 246 333,7 0,84 0,0173

300 2,8445 3,4073 15 834 329,2 15 836 925 0,83 0,0164

5. Numerical experiments

In this section, we provide the computational results used to evaluate the performance of the different methods
presented above. The tests were carried out on a DELL precision PC, with a processor Intel Core i7- 2820QM
CPU @2.30 GHz, in the Windows Seven environment. The following paragraphs describe our data-generation
methods, the results obtained and our analysis of these experiments.

5.1. First set of instances

For the first data generation, the value of ε was fixed to 1/3. For a fixed number of jobs (n), ten instances
were randomly generated, such that pi ∈ [1, 600] and wi ∈ [1, 10] according to a discrete uniform distribution.
For each instance, the value of T1 was equal to n ∗ ε ∗ 300 (the value 300 in the last formula is an estimation
of the average processing time). Table 4 summarizes the results obtained for this set of instances. It contains
the following average data: the number of jobs (n) in the first column, the computation time spent by the DP
method in the second column, the computation time spent by the FPTAS in the third column, the objective
function F provided by the DP in the fourth column, the objective function provided by the FPTAS in the fifth
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Table 5. Experimental results for the second series.

n Time(DP) Time(FPTAS) F(DP) F(FPTAS) Speed Ratio Gap in %

20 0,2841 0,0061 4 176 886,1 4 180 397,7 46,57 0,08

30 1,5962 0,0295 9 878 249,1 9 889 467,6 54,11 0,11

40 3,4158 0,0947 15 696 162 15 709 708,9 36,07 0,09

50 5,7226 0,1836 25 056 162 25 078 680,8 31,17 0,09

60 8,308 0,3769 33 648 607,8 33 673 812,6 22,04 0,07

70 11,3333 0,6282 44 129 663,6 44 163 547,1 18,04 0,08

80 14,4667 0,9033 58 842 972,4 58 881 010,4 16,02 0,06

90 19,7863 1,6256 76 604 596,3 76 648 250,5 12,17 0,06

100 24,3176 2,2916 92 656 766,5 92 703 310,8 10,61 0,05

110 27,8984 3,1483 10 4613 739,4 104 668 570,5 8,86 0,05

120 34,4835 3,9207 140 582 827,3 140 653 581,5 8,8 0,05

130 39,239 5,4096 15 366 8598,1 153 739 534,2 7,25 0,05

140 44,1368 7,367 164 976 826,7 165 046 577,2 5,99 0,04

150 49,71 8,9107 191 247 017,2 191 329 646,5 5,58 0,04

160 58,9598 10,8687 235 203 359,7 235 289 619,7 5,42 0,04

170 69,9335 14,0521 276 033 634 276 132 604,1 4,98 0,04

180 77,1604 17,1239 314 180 202,9 314 299 012,4 4,51 0,04

190 83,9298 20,4455 328 874 514,7 328 980 712 4,11 0,03

200 88,0746 24,2299 335 153 282,1 335 259 939,9 3,63 0,03

210 101,0347 29,0111 384 124 791,3 384 253 595,5 3,48 0,03

220 116,4357 36,6883 436 599 988 436 736 941,2 3,17 0,03

230 123,1874 39,7522 475 430 330,2 475 568 636 3,1 0,03

240 132,1277 45,9577 497 762 270,9 497 885 687,6 2,87 0,02

250 147,4051 54,0778 567 895 532,9 568 033 449,2 2,73 0,02

260 156,2205 57,9278 603 780 360,3 603 944 179,8 2,7 0,03

270 170,8563 70,7101 644 494 744,9 644 657 787,6 2,42 0,03

280 183,4643 78,844 709 629 799,1 709 798 088,3 2,33 0,02

290 195,8565 82,4432 774 105 555,4 774 295 067 2,38 0,02

300 226,8268 107,7673 825 770 473,7 825 959 046,5 2,1 0,02

column, the speed ratio by comparing the DP method and the FPTAS in the sixth column and the relative gap
of the same methods in the last seventh column.

For this first set of instances it is easy to observe the effectiveness of the DP method compared to the FPTAS.
Moreover, we can notice globally that the quality is more or less equivalent between the two methods. This gives
the advantage to the DP method thanks to its exact solution. Finally, we can notice that when the number of
jobs increases, the FPTAS yields results closer to the optimal solutions.

5.2. Second set of instances

For the second data generation, the value of ε was fixed to 1/3. For a fixed number of jobs (n), ten instances
were randomly generated, such that pi ∈ [1, 300 000] and wi ∈ [1, 10] according to a discrete uniform distribution.
For each instance, the value of T1 was equal to n ∗ ε ∗ 1500. Table 5 summarizes the results obtained for this set
of instances (with the same parameters as in Tab. 4).

In this set of instances we clearly did the choice of the large processing times. According to the obtained
results, we can clearly conclude that the FPTAS is very efficient for this set of instances. Here, we have evidence
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that the approximate solutions yielded by the FPTAS are very close to the optimum. Moreover, the average
computation time is more interesting than for the DP method. Finally, as for the first set of instances, we can
notice that the FPTAS has an excellent average solution quality and when the number of jobs increases, such
a quality increases.

To conclude, the two sets of instances show clearly the interest of the FPTAS and its complementarity to the
DP method for a part of possible instances.

6. Conclusion

In this paper, we study the total weighted completion time minimization for the two-parallel capacitated
machines scheduling problem. In this problem, one of the machines can process jobs until a certain time T1

after which it is no longer available. The other machine is continuously available for processing jobs at every
time. In this paper, we prove the existence of a strongly FPTAS. Such an FPTAS is based on the simplification
of a dynamic programming algorithm. The result represents an extension of a previous FPTAS proposed to
solve the unweighted version by [5]. Moreover, we presented a set of numerical experiments and we discussed
the results. One of the important results is the fact that the FPTAS is an effective alternative for instances
where the processing times and the availability period length are large, which leads to limit the effectiveness of
the dynamic programming algorithm in this case. It is worthy to note that the dynamic programming algorithm
remains an efficient method for solving instances with moderate values of processing times and availability
period length.

As a possible extension of this work, we hope to improve our results for the studied problem (i.e., to decrease
the time complexity). The elaboration of more effective approximation algorithms by combining the proposed
technique with other methods (in particular the one proposed by [13]) seems to be also an interesting perspective.
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