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ON THE BICKEL–ROSENBLATT TEST OF GOODNESS-OF-FIT FOR

THE RESIDUALS OF AUTOREGRESSIVE PROCESSES

Agnès Lagnoux1,*, Thi Mong Ngoc Nguyen2 and Frédéric Pröıa3

Abstract. We investigate in this paper a Bickel–Rosenblatt test of goodness-of-fit for the density
of the noise in an autoregressive model. Since the seminal work of Bickel and Rosenblatt, it is well-
known that the integrated squared error of the Parzen–Rosenblatt density estimator, once correctly
renormalized, is asymptotically Gaussian for independent and identically distributed (i.i.d.) sequences.
We show that the result still holds when the statistic is built from the residuals of general stable and
explosive autoregressive processes. In the univariate unstable case, we prove that the result holds when
the unit root is located at −1 whereas we give further results when the unit root is located at 1. In
particular, we establish that except for some particular asymmetric kernels leading to a non-Gaussian
limiting distribution and a slower convergence, the statistic has the same order of magnitude. We also
study some common unstable cases, like the integrated seasonal process. Finally, we build a goodness-
of-fit Bickel–Rosenblatt test for the true density of the noise together with its empirical properties on
the basis of a simulation study.
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1. Introduction and motivations

For independent and identically distributed (i.i.d.) sequences of random variables, there is a wide range of
goodness-of-fit statistical procedures in connection with the underlying true distribution. Among many others,
one can think about the Kolmogorov–Smirnov test, the Cramér–von Mises criterion, the Pearson’s chi-squared
test, or more specific ones like the whole class of normality tests. Most of them have become of frequent practical
use and directly implemented on the set of residuals of regression models. For such applications the independence
hypothesis is irrelevant, especially for time series where lagged dependent variables are included. Thus, the
crucial issue that naturally arises consists in having an overview of their sensitivity facing some weakened
assumptions. This paper focuses on such a generalization for the Bickel–Rosenblatt statistic, introduced by the
eponymous statisticians [3] in 1973, who first established its asymptotic normality and gave their names to
the associated testing procedure. The statistic is closely related to the L2 distance on the real line between the
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Parzen–Rosenblatt kernel density estimator and a parametric distribution (or a smoothed version of it). Namely
it takes the form of ∫

R

(
f̂n(x)− f(x)

)2
a(x) dx

with notation that we will detail in the sequel. Some improvements are of interest for us. First, Takahata and
Yoshihara [22] in 1987 and later Neumann and Paparoditis [15] in 2000 extended the result to weakly dependent
sequences (with mixing or absolute regularity conditions). As they noticed, these assumptions are satisfied by
several processes of the time series literature. Then, Lee and Na [13] showed in 2002 that it also holds for the
residuals of an autoregressive process of order 1 as soon as it contains no unit root (we will explain precisely
this fact in the paper). Such a study leads to a goodness-of-fit test for the distribution of the innovations of
the process. Bachmann and Dette [1] went further in 2005 by putting the results obtained by Lee and Na into
practice. Their study also enables to get an asymptotic normality of the correctly renormalized statistic under
some fixed alternatives. Even if it is not directly related to our subject, we also mention the work of Horváth
and Zitikis [11] in 2004, providing some results on goodness-of-fit tests in Lr norm (for any r greater than 1)
for the residuals of first-order autoregressive processes.

The goal of this paper is two-fold. First and mainly, we generalize the results of Lee and Na to autoregressive
processes of order p (p > 1) while refining the set of hypotheses and discussing on the effect of unit roots on
the statistic of interest. Second, a goodness-of-fit test is derived as a corollary together with a short empirical
study so as to get an overview of its capabilities. From a theoretical point of view, this is always a challenging
target to extend well-known first-order results to more general cases, and it is even more difficult to deal with
unit roots in a time series context. Moreover, autoregressive models are still widespread in applied fields like
econometrics, mathematical finance, weather and energy forecasting, engineering, etc. Thus to provide some
advances in the study of autoregressive processes, in terms of inference, prediction, statistical significance, or,
in our case, goodness-of-fit, was our first motivation.

On finite samples, it has been observed that the Gaussian behavior is difficult to reach and that, instead, an
asymmetry occurs for dependent frameworks (see, e.g., Valeinis and Locmelis [23]). In the simulation study, we
will use the configurations suggested in this previous paper, and that of Fan [9] and Ghosh and Huang [10] to
try to minimize this effect. In the end of this section, we introduce the context of our study and present both
notation and vocabulary used in the sequel. Moreover, we recall the well-known asymptotic behavior of the
Bickel–Rosenblatt statistic for i.i.d. random variables. Section 3 is dedicated to our results that are proved in
Appendix B. To sum up, we establish the asymptotic behavior of the Bickel–Rosenblatt statistic based on the
residuals of stable and explosive autoregressive processes of order p (p > 0). In addition, we also prove results
related to common unstable autoregressions, like the random walks and the seasonally integrated processes.
Finally, we give some considerations when dealing with general unstable processes or mixed processes. For
example, the unstable ARIMA(p − 1,1,0) process would deserve a particular attention due to its widespread
use in the econometric field. In Section 4, we build a goodness-of-fit test and discuss some empirical bases. The
Appendix A is devoted to an overview of existing results on the least-squares estimation of the autoregressive
parameter, depending on the roots of its characteristic polynomial, since it is of crucial interest in our proofs.

To start with, let us consider an autoregressive process of order p (AR(p)) defined by

Xt = θ1Xt−1 + . . .+ θpXt−p + εt (1.1)

for any t > 1 or equivalently, in a compact form, by

Xt = θTΦt−1 + εt

where θ = (θ1, . . . , θp)
T is a vector parameter, Φ0 is an arbitrary initial random vector, Φt = (Xt, . . . , Xt−p+1)T

and (εt) is a strong white noise having a finite positive variance σ2 and a marginal density f (positive on the
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real line). The corresponding characteristic polynomial is defined, for all z ∈ C, by

Θ(z) = 1− θ1 z − . . .− θp zp (1.2)

and the companion matrix associated with Θ (see, e.g., [8], Sect. 4.1.2) is given by

Cθ =


θ1 θ2 . . . θp−1 θp
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 . (1.3)

It follows that the process may also be written as

Φt = Cθ Φt−1 + Et (1.4)

where Et = (εt, 0, . . . , 0)T is a p-dimensional noise. It is well-known that the stability of this p-dimensional
process is closely related to the eigenvalues of the companion matrix that we will denote and arrange like

ρ(Cθ) = |λ1| > |λ2| > . . . > |λp|.

In particular, according to ([8], Def. 2.3.17), the process is said to be stable when |λ1| < 1, purely explosive
when |λp| > 1 and purely unstable when |λ1| = |λp| = 1. Among the purely unstable processes of interest, let
us mention the seasonal model admitting the complex s-th roots of unity as solutions of its autoregressive
polynomial Θ(z) = 1 − zs for a season s ∈ N\{0, 1}. In the paper, this model will be shortened as seasonal
unstable of order p = s, it satisfies θ1 = . . . = θs−1 = 0 and θs = 1. In a general way, it is easy to see that
det(Cθ) = (−1)p+1 θp so that Cθ is invertible as soon as θp 6= 0 (which will be one of our hypotheses when
p > 0). In addition, a simple calculation shows that

det(Cθ − λ Ip) = (−λ)p Θ(λ−1)

which implies (since Θ(0) 6= 0) that each zero of Θ is the inverse of an eigenvalue of Cθ. Consequently, the
stability of the process may be expressed in the paper through the eigenvalues of Cθ as well as through the
zeroes of Θ. We will also consider that

zp Θ(z−1) = zp − θ1 zp−1 − . . .− θp

is the minimal polynomial of Cθ (which, in the terminology of [8], means that the process is regular). Now,
assume that X−p+1, . . . , X0, X1, . . . , Xn are observable (for n� p) and let

θ̂n =

(
n∑
t=1

Φt−1ΦTt−1

)−1 n∑
t=1

Φt−1Xt (1.5)

be the least-squares estimator of θ (for p > 0). The associated residual process is

ε̂t = Xt − θ̂ Tn Φt−1 (1.6)
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for all 1 6 t 6 n, or simply ε̂t = Xt when p = 0. Hereafter, K is a kernel and (hn) is a bandwidth. That is, K is
a non-negative function satisfying∫

R
K(x) dx = 1,

∫
R
K2(x) dx < +∞ and

∫
R
x2 K(x) dx < +∞,

and (hn) is a positive sequence decreasing to 0. The so-called Parzen–Rosenblatt estimator [16, 18] of the density
f is given, for all x ∈ R, by

f̂n(x) =
1

nhn

n∑
t=1

K
(
x− ε̂t
hn

)
. (1.7)

The local and global behaviors of this empirical density have been well studied in the literature. However, for
a goodness-of-fit test, we focus on the global fitness of f̂n to f on the whole real line. From this viewpoint, we
consider the Bickel–Rosenblatt statistic that we define as

T̂n = nhn

∫
R

(
f̂n(x)− (Khn

∗ f)(x)
)2
a(x) dx (1.8)

where Khn
= h−1n K(·/hn), a is a positive piecewise continuous integrable function and ∗ denotes the convolution

operator, i.e. (g ∗ h)(x) =
∫
R g(x− u)h(u) du. A statistic of probably greater interest and easier to interpret is

T̃n = nhn

∫
R

(
f̂n(x)− f(x)

)2
a(x) dx. (1.9)

Bickel and Rosenblatt show in [3] that under appropriate conditions, if Tn is the statistic given in (1.8) built on
the strong white noise (εt) instead of the residuals, then, as n tends to infinity,

Tn − µ√
hn

D−→ N (0, τ2) (1.10)

where the centering term is

µ =

∫
R
f(s) a(s) ds

∫
R
K2(s) ds (1.11)

and the asymptotic variance is given by

τ2 = 2

∫
R
f 2(s) a2(s) ds

∫
R

(∫
R
K(t)K(t+ s) dt

)2
ds. (1.12)

The aforementioned conditions are summarized in ([10], Sect. 2), they come from the original work of Bickel and
Rosenblatt later improved by Rosenblatt [19]. In addition to some technical assumptions that will be recalled
in (H0) and similarly to the results in [13], notice that the results hold

• either if K is bounded and has a compact support and the bandwidth is given by hn = h0 n
−κ with

0 < κ < 1;
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• or if K is a continuous and positive kernel defined on R, the bandwidth is given by hn = h0 n
−κ with

0 < κ < 1/4 and∫
|x|> 3

|x|3/2 (ln ln |x|)1/2 |K′(x)|dx < +∞ and

∫
R
(K′(x))2 dx < +∞.

We can find in later references (like [22], [15] or [1]) some alternative proofs of the asymptotic normality (1.10)
with a(x) = 1 and appropriate assumptions. However, in this paper, we keep a as an integrable function in order
to follow the original framework of Bickel and Rosenblatt. Fortunately, it also makes the calculations easier and
remains appropriate for applications since it is always possible to define a compact support including any mass
of a given density f0 to be tested, as it will be done in Section 3.

Notation. It is convenient to have short expressions for terms that converge in probability to zero. In the
whole study, the notation oP(1) (resp. OP(1)) stands for a sequence of random variables that converges to zero
in probability (resp. is bounded in probability) as n→∞.

2. The Bickel–Rosenblatt statistic

In this section, we derive the limiting distribution of the test statistics T̂n and T̃n given by (1.8) and (1.9),
based on the residuals in the stable, some unstable and purely explosive cases.

2.1. Assumptions

For the whole study, we make the following assumptions.

(H0) The strong white noise (εt) has a bounded density f which is positive, twice differentiable, and the second
derivative f ′′ is itself bounded. The weighting function a is positive, piecewise continuous and integrable.
The kernel K is bounded, continuous on its support. The kernel K and the bandwidth (hn) are chosen so
that
• either (a) K is bounded and has a compact support and the bandwidth is given by hn = h0 n

−κ with
0 < κ < 1;

• or (b) K is continuous and positive kernel defined on R, the bandwidth is given by hn = h0 n
−κ with

0 < κ < 1/4 and∫
|x|> 3

|x|3/2 (ln ln |x|)1/2 |K′(x)|dx < +∞ and

∫
R
(K′(x))2 dx < +∞.

Some additional hypotheses are given below, not simultaneously needed.

(H1) The kernel K is such that K′′′ exists and is bounded on its support,∫
R

{
|K′(x)|+ |K′′(x)|

}
dx < +∞,

∫
R

(K′′(x))2 dx < +∞,∫
R
|xK′(x)|dx < +∞ and

∫
R
x2 |K′(x)|dx < +∞.

(H2) The kernel K satisfies ∫
R
|K(x+ δ)−K(x)|dx 6 B δ

for some B > 0 and all δ > 0.
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(H3) For some α > 0, the bandwidth (hn) satisfies

lim
n→+∞

nhαn = +∞.

(H4) For some β > 0, the bandwidth (hn) satisfies

lim
n→+∞

nhβn = 0.

(H5) The noise (εt) and the initial vector Φ0 have a finite moment of order ν > 0.

Notice that ∫
R
|K′(x)|dx < +∞

is a sufficient condition to get (H2).

2.2. Asymptotic behaviors

Theorem 2.1 (Stable case). In the stable case (|λ1| < 1), assume that (H0), (H3) with α = 4, and (H5) with
ν = 4 hold. Then, as n tends to infinity,

T̂n − µ√
hn

D−→ N (0, τ2)

where µ and τ2 are given in (1.11) and (1.12), respectively. In addition, the result is still valid for T̃n if (H4)
with β = 9/2 holds.

Proof. See Section B.1.

Remark 2.2. Theorem 2.1 holds for hn = h0 n
−κ as soon as 2/9 < κ < 1/4. A standard choice may be

hn = h0 n
−1/4+ε for a small ε > 0.

Theorem 2.3 (Purely explosive case). In the purely explosive case (|λp| > 1), assume that (H0), (H2), (H3)
with α = 1 and (H5) with ν = 2 + γ hold, for some γ > 0. Then, as n tends to infinity,

T̂n − µ√
hn

D−→ N (0, τ2)

where µ and τ2 are given in (1.11) and (1.12), respectively. In addition, the result is still valid for T̃n if (H4)
with β = 9/2 holds.

Proof. See Section B.2.

Remark 2.4. Hence by (H0), Theorem 2.3 holds for hn = h0 n
−κ as soon as 2/9 < κ < 1 if K has a compact

support (the usual bandwidth hn = h0 n
−1/4 is thus appropriate) or as soon as 2/9 < κ < 1/4 for a kernel

positive on R. In that case, a standard choice may be hn = h0 n
−1/4+ε for a small ε > 0.

We now investigate the asymptotic behavior of the statistics for some unstable cases. We establish in particular
that the analysis of [13] is only partially true.
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Proposition 2.5 (Purely unstable case). In the unstable case for p = 1 (λ = ±1), assume that (H0), (H1),
(H3) with α = 4, and (H5) with ν = 4 hold. If λ = −1 then, as n tends to infinity,

T̂n − µ√
hn

D−→ N (0, τ2)

where µ and τ2 are given in (1.11) and (1.12), respectively. If λ = 1 and
∫
R K′(s) ds = 0 then

T̂n − µ√
hn

= OP(1).

The results are still valid for T̃n if (H4) with β = 9/2 holds. Finally, if λ = 1 and
∫
R K′(s) ds 6= 0 then, as n

tends to infinity,

hn(T̂n − µ)
D−→ σ2

(
1
2 (W 2(1)− 1)∫ 1

0
W 2(u) du

∫ 1

0

W (u) du

)2∫
R
f2(s) a(s) ds

(∫
R
K′(s) ds

)2
where (W (t), t ∈ [0, 1]) is a standard Wiener process.

In the seasonal case with p = s, we also reach

T̂n − µ√
hn

= OP(1)

or

hn(T̂n − µ)
D−→ σ2

(
S(Ws)

T H(Ws)
)2∫

R
f2(s) a(s) ds

(∫
R
K′(s) ds

)2
depending on whether

∫
R K′(s) ds = 0 or

∫
R K′(s) ds 6= 0, respectively, where S(Ws) is defined in Proposition

A.6, H(Ws) will be clarified in the proof and (Ws(t), t ∈ [0, 1]) is a standard Wiener process of dimension s.

Proof. See Section B.3.

Remark 2.6. This last result needs some observations.

• Proposition 2.5 holds for hn = h0 n
−κ as soon as 2/9 < κ < 1/4 and λ = −1. A standard choice may be

hn = h0 n
−1/4+ε for a small ε > 0.

• One can observe that the value of
∫
R K′(s) ds is crucial to deal with the unstable case. In fact, all usual

kernels are even, leading to
∫
R K′(s) ds = 0. On simulations, the unstable case gives results similar to

the stable and explosive ones, except for some very particular asymmetric kernels having different bound
values that we can build to violate the aforementioned natural condition. In that case, the convergence is
slower as we can see from the result of Proposition 2.5, and the limiting distribution is not Gaussian.

• At the end of the associated proof, we show that, for λ = 1 and a choice of kernel such that
∫
R K′(s) ds 6= 0,

we also need
∫
R sK(s) ds = 0 to translate the result from T̂n to T̃n under (H4) with β = 6. In this case,

the result holds for hn = h0 n
−κ as soon as 1/6 < κ < 1/4.

• In ([14], Thm. 3.2), Lee and Wei had already noticed that only the unit roots located at 1 affect the
residual empirical process defined, for 0 6 u 6 1, by

Ĥn(u) =
1√
n

n∑
t=1

(
1{F (ε̂t)6u} − u

)
,
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where F is the cumulative distribution function of the noise. Our result is consistent with that fact since
one may rewrite T̂n in terms of Ĥn as

T̂n = nhn

∫
R

(
1

hn
√
n

∫
R
K
(
x− s
hn

)
dĤn(F (s))

) 2

a(x) dx.

Thus, Ĥn appearing as the only stochastic part of the statistic, it is not surprising that, similarly, only
the unit roots located at 1 affect our results.

Remark 2.7 (Beyond the results of Lee and Na). We conclude this section by a short comparison with the
results of Lee and Na [13]. The set of hypotheses is refined but in the stable and explosive cases, the proofs follow
similar strategies to extend their results from first-order (p = 1) to general autoregressive processes (p > 1) and
to the more natural unsmoothed statistic (1.9). However a substantial improvement lies in the unstable case,
since this work is not only a matter of generalization of the known results, but also a matter of correction of
them. In particular, we have established that the negative unit root, although behind instability, does not play
any role. In addition, for a positive unit root, we have shown that the rate h−1n is not systematic but only
reached at the cost of the unrealistic hypotheses

∫
R K′(s) ds = 0, and in this case we have provided the limiting

distribution. Otherwise the order of magnitude of the statistic remains h
1/2
n even if the limiting distribution (if

it exists) is not still established.

The authors of [11] mentioned that the statistic has a rate of n1/2 h
(1−1/r)/2
n when built on the residuals of

first-order autoregressive processes, for a goodness-of-fit test based on the Lr norm (which indeed corresponds to
Bickel–Rosenblatt for r = 2). Even if it is hardly comparable since it relies on the sample cumulative distribution
and not on any density estimation, let us also recall that the Kolmogorov–Smirnov test, probably the most
famous and popular non-parametric test of goodness-of-fit, is associated with an L∞ norm and has a rate of√
n. The generalization of this work to these norms could also be valuable, by way of comparison.
To conclude this part, we draw the reader’s attention to the fact that the purely unstable case is not fully

treated. The general results may be a challenging study due to the phenomenon of compensation arising through
unit roots different from 1. Lemma B.8 at the end of the Appendix B is not used as part of this paper but may
be a trail for future studies. It illustrates the compensation via the fact that (

∑t
k=1Xk) is of the same order as

(Xt) in a purely unstable process having no unit root located at 1. Mixed models (|λ1| > 1 and |λp| 6 1) should
lead to similar reasonings, they also have to be handled to definitively lift the veil on the Bickel–Rosenblatt
statistic for the residuals of autoregressive processes. As a priority, it seems that unstable ARIMA(p − 1,1,0)
processes would deserve close investigations due to their widespread use in the econometric field. The difficulty
arising here is that the estimator converges at the slow rate of stability while the process grows at the fast rate
of instability: a compensation will be needed. Another technical improvement that would require an adjustment
of the proofs, and probably a strengthening of the hypotheses on K and f , could be the extension of the results
to the weighting function a(x) = 1. The goodness-of-fit test could then be implemented on the whole real line
and not only on a part of it, however big it is, as it will be the case in the next section.

3. A goodness-of-fit Bickel–Rosenblatt test

Our objective is now to derive a goodness-of-fit testing procedure from the results established in the previous
section. First, one can notice that the choice of

a(x) =

{
1/f(x) for x ∈ [−δ ; δ]
0 for x /∈ [−δ ; δ]
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for any δ > 0 leads to the simplifications

T̃n = nhn

∫ δ

−δ

(
f̂n(x)− f(x)

)2
f(x)

dx, µ = 2 δ

∫
R
K2(s) ds

and

τ2 = 4 δ

∫
R

(∫
R
K(t)K(t+ s) dt

)2
ds.

Bickel and Rosenblatt [3] suggested a similar choice for the weight function a, with [0 ; 1] for compact support.
Nevertheless, it seems more reasonable to work on a symmetric interval in order to test for the density of
a random noise. In addition, µ and τ2 become independent of f , which will be useful to build a statistical
procedure based on f . For a couple of densities f and f0 such that f0 does not cancel on [−δ ; δ], let us define

∆δ(f, f0) =

∫ δ

−δ

(
f(x)− f0(x)

)2
f0(x)

dx. (3.1)

Hence, ∆δ(f, f0) = 0 means that f and f0 coincide almost everywhere on [−δ ; δ], and everywhere under our
usual continuity hypotheses on the densities. On the contrary, ∆δ(f, f0) > 0 means that there exists an interval
I ⊆ [−δ ; δ] with non-empty interior on which f and f0 differ. Accordingly, let

H0 : “∆δ(f, f0) = 0” vs. H1 : “∆δ(f, f0) > 0”.

The natural test statistic is therefore given by

Z̃ 0
n =

T̃ 0
n − µ
τ
√
hn

(3.2)

where T̃ 0
n is the statistic T̃n reminded above built using f0 instead of f .

Proposition 3.1 (A goodness-of-fit test). Consider the set of residuals from one of the following AR(p) models:

• a stable process with p > 0, under the hypotheses of Theorem 2.1,
• an explosive process with p > 1, under the hypotheses of Theorem 2.3,
• an unstable process with p = 1 and λ = −1, under the hypotheses of Proposition 2.5.

Then, under H0 : “∆δ(f, f0) = 0” where f0 is a continuous density which does not cancel on [−δ ; δ] for some
δ > 0,

Z̃ 0
n

D−→ N (0, 1).

In addition, under H1 : “∆δ(f, f0) > 0”,

Z̃ 0
n

P−→ +∞.

Proof. The proof is immediate using our previous results. The consistency under H1 is reached using the fact
that

Z̃ 0
n =

T̃n − µ
τ
√
hn

+
T̃ 0
n − T̃n
τ
√
hn

.
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Table 1. Empirical level of the test under H0, for the configurations described above. We used
n ∈ {50, 100, 500} and 1000 replications.

K N (0, 1) U([−1 ; 1])

n 50 100 500 50 100 500
h0 0.10 0.14 0.14 0.20 0.25 0.32
M0 0.051 0.049 0.049 0.052 0.048 0.048
M1 0.059 0.051 0.047 0.058 0.050 0.050
M2 0.055 0.046 0.051 0.044 0.046 0.051
M3 0.054 0.054 0.047 0.059 0.051 0.048
M4 0.048 0.051 0.047 0.050 0.045 0.050
M5 0.049 0.047 0.058∗ 0.046 0.049 0.054∗

* Simulations that needed more than one numerical trial, due to the explosive nature of the process and the large value of n.

For any level 0 < α < 1, we reject H0 as soon as

Z̃ 0
n > u1−α

where u1−α stands for the (1 − α)-quantile of the N (0, 1) distribution. For our simulations, we focus on a
normality test (probably the most useful in regression, for goodness-of-fit). We have trusted the observations of
[10], [9] or [23]. In particular, only theN (0, 1) and the U([−1 ; 1]) kernels are used, with obviously

∫
R K′(s) ds = 0.

The bandwidth is hn = h0 n
−1/4+ε for ε = 10−3 where h0 is calibrated to reach an empirical level close to α = 5%

for the neutral model (p = 0), and the true distribution of the noise is N (0, 1). We shall note at this point that,
despite appearances, the choice of κ is not crucial for our study. Indeed, for the moderate values of n that
we consider, h0 plays a more important role. That is the reason why we choose κ in the restricted area of
validity (2/9 < κ < 1/4) and why we focus first on h0. The selection of the hyperparameter δ will be described
thereafter. We only give an overview of the results in Table 1 for some typical models:

• M0 – neutral model (p = 0),
• M1 – stable model (p = 3, θ1 = −1/12, θ2 = 5/24, θ3 = 1/24),
• M2 – stable but almost unstable model (p = 1, θ1 = 99/100),
• M3 – unstable model with negative unit root (p = 1, θ1 = −1),
• M4 – unstable model with positive unit root (p = 1, θ1 = 1),
• M5 – explosive model (p = 2, θ1 = 0, θ2 = 121/100).

For model M4, it is important to note that Proposition 3.1 may not hold. Nevertheless, we know by virtue
of Proposition 2.5 that the statistic has the same order of magnitude, thus it seemed interesting to look at
its empirical behavior in comparison with the other models (and we observe that it reacts as well). Now we
turn to the frequency of rejection of H0 when f0 is not the true distribution, for the configuration n = 100 and
the N (0, 1) kernel. First of all, we are going to discuss on the hyperparameter δ that has to be non-arbitrary.
A natural choice relies on the quantiles of the distribution that we test to guarantee that a sufficient mass is
covered by the statistic. As the simulations below will emphasize, at least 95% seems relevant and accordingly,
we let

δ = max(−q0(0.025), q0(0.975))

where q0 is the quantile function of f0, which takes the simplified form δ = q0(0.975) whenever the distribution
is both centered and symmetrical. The latter situation is generally preferred since we deal with the noise of
a regression model, but for example in our simulations we also need the general one for N (m, 1). Among the
alternatives N (m, 1) and N (0, σ2), we pick two control models that will be N (0.5, 1) and N (0, 0.3), chosen to
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Figure 1. Frequency of rejection of the test for n = 100, K = N (0, 1), h0 = 0.14 and 1000 repli-
cations, depending on δ on the abscissa. The darkened areas are the 95% confidence intervals.
The alternatives are N (0.5, 1) on the left, and N (0, 0.3) on the right.

Figure 2. Frequency of rejection of the test for n = 100, K = N (0, 1), h0 = 0.14 and 1000
replications. The alternative f0 are N (m, 1) for some m ∈ [−1 ; 1] with true value m = 0.
Results obtained from M0, M1 and M2 are in the top (from left to right), results obtained from
M3, M4 and M5 are in the bottom (from left to right). The dotted line in red corresponds to
the Kolmogorov–Smirnov test and the darkened areas are the 95% confidence intervals.

be the closest distributions for which our procedure is able to reach a maximal frequency of rejection under
this configuration (see Figs. 2 and 3). Figure 1 is an illustration of the percentage of rejection (together with its
95% confidence interval) of H0 while we make δ increase, for the neutral model M0. The corresponding values
δ ≈ 2.46 and δ ≈ 1.07 that we suggest to use respectively for these examples seem therefore suitable.
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Figure 3. Frequency of rejection of the test for n = 100, K = N (0, 1), h0 = 0.14 and 1000
replications. The alternative f0 are N (0, σ2) for some σ2 ∈ [0.2 ; 3.5] with true value σ2 = 1.
Results obtained from M0, M1 and M2 are in the top (from left to right), results obtained from
M3, M4 and M5 are in the bottom (from left to right). The dotted line in red corresponds to
the Kolmogorov–Smirnov test and the darkened areas are the 95% confidence intervals.

Using this choice of δ, we represent in Figures 2 and 3 below the percentage of rejection of H0 against the
aforementioned N (m, 1) and N (0, σ2) alternatives for f0, for different values of the parameters, to investigate
the sensitivity towards location and scale. We also make experiments in Figure 4 with different distributions as
alternatives (choosing f0 as the Student, uniform, Laplace and Cauchy distributions, respectively). First of all,
the main observation is that all models give very similar results (all curves are almost superimposed) even if n
is not so large. That corroborates the results of the paper: residuals from stable, explosive or some (univariate)
unstable models satisfy the Bickel–Rosenblatt original convergence. Our procedure is roughly equivalent to
the Kolmogorov–Smirnov one to test for location or scale in the Gaussian family (in fact it seems to be less
powerful for location and slightly more powerful for scale). However, it appears that our procedure better
managed to discriminate some alternatives with close but different distributions. The objective of the paper
is mainly theoretical and of course, a much more extensive study is needed to give any permanent conclusion
about the comparison (sensitivity in n, h0, κ, K, δ, role of the true distribution of (εt), etc.). Also, we must
not underestimate the difficulty to proceed to the numerical integrations required for the statistic, and the very
likely improvements that may stem from in-depth applied studies.

Remark 3.2. In the unstable case with p = 1 and a positive unit root (namely, the random walk), and a kernel
satisfying

∫
R K′(s) ds 6= 0, even if it is of lesser statistical interest, it is also possible to exploit Proposition 2.5

to derive a statistical procedure. Indeed, let

σ2
0 =

∫
R
s2 f0(s) ds and F0 =

∫ δ

−δ
f0(s) ds
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Figure 4. Frequency of rejection of the test for n = 100, K = N (0, 1), h0 = 0.14 and 1000
replications. The alternative f0 are from left to right the Student t(1), t(2), t(5) distributions,
the uniform U([−2 ; 2]) distribution, the centered Laplace L(1), L(1.5) and L(2) distributions
and the centered Cauchy C(1) distribution. Results obtained from M0, . . ., M5 are superimposed
as blue crosses. The red circles correspond to the Kolmogorov–Smirnov test for M0.

with an adjustment of σ2
0 if f0 is not centered. Then, we can choose

Z̃ 0
n =

hn
(
T̃ 0
n − µ

)
σ0
√
F0

∫
R K′(s) ds

and compare it with the quantiles associated with the distribution of

Z =

(
1
2 (W 2(1)− 1)∫ 1

0
W 2(u) du

∫ 1

0

W (u) du

)2

.

Appendix A. Intermediate results

We recall some (already known) preliminary results related to the behavior of (Xt), depending on the eigen-
values of Cθ and, in each case, the asymptotic behavior of the least-squares estimator. In the sequel, we assume
that Φ0 shares the same assumptions of moments as (εt). We only focus on results that will be useful in our
proofs.
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A.1 Asymptotic behavior of the process

Proposition A.1 (Stable case). Assume that (εt) is a strong white noise such that, for some ν > 1, E[|ε1|ν ] is
finite. If (Xt) satisfies (1.1) and is stable (that is |λ1| < 1 or, equivalently, Θ(z) 6= 0 for all |z| 6 1), then as n
tends to infinity,

n∑
t=1

|Xt|ν = O(n) a.s. and sup
16 t6n

|Xt| = o(n1/ν) a.s.

In addition if ν > 2, then

n∑
t=1

Φt = OP(
√
n).

Proof. See ([2], Lem. A.2) and ([17], Lem. B.2). The last result is deduced from the invariance principle of ([7],
Thm. 1), since (Xt) is (asymptotically) stationary in this case. Indeed, we clearly have

1√
n

n∑
t=1

Φt =
1√
n

n∑
t=1

Φ∗t +
1√
n

( n∑
t=1

C t
θ

)
(Φ0 − Φ∗0)

where (Φ∗t ) is the (second-order) stationary version of the process for ν > 2. We conclude that (Φt) and (Φ∗t )
share the same invariance principle (with rate

√
n), since ρ(Cθ) < 1.

Proposition A.2 (Purely explosive case). Assume that (εt) is a strong white noise having a finite variance σ2.
If (Xt) satisfies (1.1)–(1.4) and is purely explosive (that is |λp| > 1 or, equivalently, Θ(z) 6= 0 for all |z| > 1),
then

lim
n→+∞

C−nθ Φn = Φ0 +

∞∑
k=1

C−kθ Ek = Z a.s.

and

lim
n→+∞

C−nθ

(
n∑
t=1

Φt−1ΦTt−1

)
(C−nθ )T =

∞∑
k=1

C−kθ Z ZT (C−kθ )T = G a.s.

In addition, G is (a.s.) positive definite.

Proof. See ([12], Thm. 2).

Proposition A.3 (Purely unstable case). Assume that (εt) is a strong white noise having a finite variance σ2.
If (Xt) satisfies (1.1)–(1.4) with p = 1 and is unstable (that is |λ| = 1 or, equivalently, Θ(z) 6= 0 for all |z| 6= 1),
then for k ∈ N,

n∑
t=1

X2 k
t = OP(nk+1) and |Xn| = OP(n1/2). (A.1)

In addition,

n∑
t=1

Xt =

{
OP(n3/2) for λ = 1
OP(n1/2) for λ = −1.

(A.2)
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If (Xt) satisfies (1.1)–(1.4) with p = s and is seasonal unstable (that is θ1 = . . . = θs−1 = 0 and θs = 1), then
(A.1) and (A.2) hold with λ = θs = 1.

Proof. These results are detailed in Lemma B.4 and then proved.

A.2 Asymptotic behavior of the least-squares estimator

In this subsection, (εt) is supposed to have a finite moment of order 2 + γ, for some γ > 0. The consistency
results have been established in ([12], Thm. 1), while the weak convergences are proved in [5], ([21], Thm. 2)
and ([6], Thm. 3.5.1) respectively.

Proposition A.4 (Stable case). In the stable case (|λ1| < 1), the least-squares estimator θ̂n of θ is strongly
consistent. In addition,

√
n
(
θ̂n − θ

)
D−→ N

(
0, σ2 Γ−1p

)
where Γp is the p× p asymptotic covariance matrix of (Xt).

Proposition A.5 (Purely explosive case). In the purely explosive case (|λp| > 1), the least-squares estimator

θ̂n of θ is strongly consistent. In addition,

Cnθ

(
θ̂n − θ

)
D−→ U

where U is a nondegenerate random vector given in (1.8)–(1.9)–(1.10) of [21].

Proposition A.6 (Purely unstable case). In the purely unstable case (|λ1| = |λp| = 1), the least-squares

estimator θ̂n of θ is strongly consistent. In the univariate case (p = 1), we have in addition

n
(
θ̂n − θ

)
D−→ sgn(θ)

1
2 (W 2(1)− 1)∫ 1

0
W 2(u) du

where (W (t), t ∈ [0, 1]) is a standard Wiener process and sgn(θ) stands for the sign of θ. In the seasonal case
(p = s), since Θ(z) = 0 is an equation admitting the complex s–th roots of unity as solutions,

n
(
θ̂n − θ

)
D−→ S(Ws)

where S(Ws) is a functional of a standard Wiener process (Ws(t), t ∈ [0, 1]) of dimension s that can be explicitly
determined following ([6], Thm. 3.5.1).

Appendix B. Proofs of the main results

In this section, we prove our results.

B.1 Stable case – Proof of Theorem 2.1

We consider the case where the kernel satisfies hypothesis (H1). The difference between the statistics can be
expressed like

T̂n − Tn = nhn

∫
R

(
f̂n(x)− fn(x)

)2
a(x) dx+Rn (B.1)
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with

Rn = 2nhn

∫
R

(
f̂n(x)− fn(x)

)(
fn(x)− (Khn

∗ f)(x)
)
a(x) dx

and fn is the analog of f̂n defined in (1.7) where the residuals ε̂ have been replaced by the strong white noise ε.
Recall that Tn has been defined before (1.10). Now we follow an idea illustrated in the proof of ([11], Thm. 1.1)
and in that of ([13], Thm. 2.1), which consists in using Taylor expansion to get, for all 1 6 t 6 n,

K
(
x− ε̂t
hn

)
−K

(
x− εt
hn

)
=
εt − ε̂t
hn

K′
(
x− εt
hn

)
+

(εt − ε̂t)2

2h2n
K′′ (∆tx)

where

∆tx =
x− εt + ζ(εt − ε̂t)

hn

for some 0 < ζ < 1. Note that

εt − ε̂t =
(
θ̂n − θ

)T
Φt−1 =

〈
θ̂n − θ,Φt−1

〉
and obviously that ∣∣∣〈θ̂n − θ,Φt−1〉∣∣∣ 6 ‖θ̂n − θ‖ ‖Φt−1‖.
On the one hand, we consider the first term (say, In) of the right-hand side of (B.1) that can be bounded like

In = nhn

∫
R

{
1

nhn

n∑
t=1

(
K
(
x− ε̂t
hn

)
−K

(
x− εt
hn

))}2

a(x) dx

6
2

nh3n

∫
R

{
n∑
t=1

〈θ̂n − θ,Φt−1〉K′
(
x− εt
hn

)}2

a(x) dx

+
1

2nh5n

∫
R

{
n∑
t=1

〈θ̂n − θ,Φt−1〉2 K′′ (∆tx)

}2

a(x) dx. (B.2)

At this step, we need two technical lemmas.

Lemma B.1. We have

I1,n =

∫
R

{
n∑
t=1

〈θ̂n − θ,Φt−1〉K′
(
x− εt
hn

)}2

a(x) dx = OP(hn).

Proof. One clearly has

I1,n 6 2

{∫
R

(
n∑
t=1

〈θ̂n − θ,Φt−1〉 vt(x)

)2

a(x) dx
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+

∫
R

(
n∑
t=1

〈θ̂n − θ,Φt−1〉 e(x)

)2

a(x) dx

}
= 2 (J1,n + J2,n) (B.3)

where

vt(x) = K′
(
x− εt
hn

)
− E

[
K′
(
x− ε1
hn

)]
and e(x) = E

[
K′
(
x− ε1
hn

)]
.

Now let us consider J1,n and J2,n. First,

J1,n 6 ‖ θ̂n − θ‖2
∫
R

∥∥∥∥ n∑
t=1

Φt−1 vt(x)

∥∥∥∥2a(x) dx

= ‖θ̂n − θ‖2
p∑
i=1

∫
R

(
n∑
t=1

Xt−i vt(x)

)2

a(x) dx. (B.4)

Let i ∈ {1, . . . , p}. Then,

E

∫
R

(
n∑
t=1

Xt−i vt(x)

)2

a(x) dx

 =

∫
R
E

( n∑
t=1

Xt−i vt(x)

)2
 a(x) dx

=

∫
R

n∑
t=1

E
[
X 2
t−i
]
E
[
v 2
t (x)

]
a(x) dx

=

n∑
t=1

E
[
X 2
t−i
] ∫

R
E
[
v 2
t (x)

]
a(x) dx.

But, under our assumptions, we recall that E[X 2
n ] = O(1) from the asymptotic stationarity of the process and

∫
R
E
[
v 2
t (x)

]
a(x) dx 6

∫
R
E

[(
K′
(
x− ε1
hn

))2]
a(x) dx

= hn

∫
R

(K′(z))2
∫
R
f(x− hn z) a(x) dxdz = O(hn)

since Var(Z) 6 E[Z2] for some random variable Z and by (H0) and (H1). Thus J1,n = OP(hn) via
Proposition A.4. Then, by a direct calculation,

J2,n =

((
θ̂n − θ

)T n∑
t=1

Φt−1

)2 ∫
R
e 2(x) a(x) dx

= h2n

((
θ̂n − θ

)T n∑
t=1

Φt−1

)2 ∫
R

(∫
R
K′(z) f(x− hn z) dz

)2
a(x) dx. (B.5)

Using Proposition A.1, it follows that J2,n = OP(h2n).
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Lemma B.2. We have

I2,n =

∫
R

{
n∑
t=1

〈
θ̂n − θ,Φt−1

〉2
K′′ (∆tx)

}2

a(x) dx = OP

(
h2n +

1

nh2n

)
.

Proof. We directly get

I2,n 6 ‖θ̂n − θ‖4
∫
R

{
n∑
t=1

‖Φt−1‖2 K′′ (∆tx)

}2

a(x) dx

6 3 ‖θ̂n − θ‖4
(∫

R

{
n∑
t=1

‖Φt−1‖2
(
K′′ (∆tx)−K′′

(
x− εt
hn

))}2

a(x) dx

+

∫
R

{
n∑
t=1

‖Φt−1‖2
(
K′′
(
x− εt
hn

)
− E

[
K′′
(
x− ε1
hn

)])}2

a(x) dx

+

∫
R

{
n∑
t=1

‖Φt−1‖2 E
[
K′′
(
x− ε1
hn

)]}2

a(x) dx

)

= 3 ‖θ̂n − θ‖4 (K1,n +K2,n +K3,n). (B.6)

From the mean value theorem, under our hypotheses,

K′′ (∆tx)−K′′
(
x− εt
hn

)
= K′′

(
x− εt + ζ(εt − ε̂t)

hn

)
−K′′

(
x− εt
hn

)
=
ζ(εt − ε̂t)

hn
K′′′
(
x− εt + ξ ζ(εt − ε̂t)

hn

)
for some 0 < ζ, ξ < 1. We deduce that∣∣∣∣K′′ (∆tx)−K′′

(
x− εt
hn

)∣∣∣∣ 6 |εt − ε̂t|hn

∣∣∣∣K′′′(x− εt + ξ ζ(εt − ε̂t)
hn

)∣∣∣∣ .
Consequently, since K′′′ is bounded,

K1,n 6
C

h2n

(
n∑
t=1

‖Φt−1‖2 |εt − ε̂t|

)2

6
C

h2n

n∑
t=1

‖Φt−1‖4
n∑
t=1

(εt − ε̂t)2

6
C

h2n
‖θ̂n − θ‖2

n∑
t=1

‖Φt−1‖4
n∑
t=1

‖Φt−1‖2 (B.7)

for some constants. Then, K1,n = OP(nh−2n ) as soon as we suppose that (εt) has a finite moment of order ν = 4
(by virtue of Prop. A.1). Now we proceed as for J1,n to get

E[K2,n] 6
n∑
t=1

E
[
‖Φt−1‖4

] ∫
R
E

[
K′′
(
x− ε1
hn

)2]
a(x) dx
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= hn

n∑
t=1

E
[
‖Φt−1‖4

] ∫
R
(K′′(z))2

∫
R
f(x− hn z) a(x) dx dz = O(nhn) (B.8)

which shows K2,n = OP(nhn), since E
[
X 4
n

]
= O(1) under the hypotheses of stability and fourth-order moments.

Finally,

K3,n 6 h2n

∫
R

(∫
R
|K′′(z)| f(x− hn z) dz

)2

a(x) dx

(
n∑
t=1

‖Φt−1‖2
)2

6 C h2n

(
n∑
t=1

‖Φt−1‖2
)2

= OP(n2 h2n) (B.9)

for a constant C. Whence we deduce that I2,n = OP(h2n + n−1h−2n ).

We are now ready to conclude the proof of Theorem 2.1. If we come back to In in (B.2), then the combination
of Lemmas B.1 and B.2 leads to

In√
hn

= OP

(
1

nh
5/2
n

+
1

nh
7/2
n

+
1

n2 h
15/2
n

)
= oP(1) (B.10)

as soon as nh
15/4
n → +∞. Now by Cauchy–Schwarz inequality,

|Rn|√
hn
6 2

√
In Tn
hn

= OP

(√
In
hn

)
= oP(1) (B.11)

from the previous reasoning, the asymptotic normality (1.10) and assumption (H3) with α = 4. It follows from
(B.1), (B.10) and (B.11) that

T̂n − µ√
hn

=
Tn − µ√

hn
+ oP(1)

which ends the first part of the proof. The second part makes use of a result of Bickel and Rosenblatt [3]. Indeed,
denote by T̄n the statistic given in (1.9) built on the strong white noise (εt) instead of the residuals. They
show that

|Tn − T̄n|√
hn

= oP(1) (B.12)

as soon as nh
9/2
n → 0. A similar calculation leads to

T̃n = In + T̄n + R̄n

where

R̄n = 2nhn

∫
R

(
f̂n(x)− fn(x)

) (
fn(x)− f(x)

)
a(x) dx.
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We deduce that

|T̃n − T̄n|√
hn

6
In√
hn

+
|R̄n|√
hn

= OP

(√
In
hn

)
= oP(1)

as soon as T̄n satisfies the original Bickel–Rosenblatt convergence and (B.10) and (B.11) hold, that is nh
9/2
n → 0

and nh4n → +∞. It only remains to note that

|T̂n − T̃n|√
hn

6
|T̂n − Tn|√

hn
+
|Tn − T̄n|√

hn
+
|T̄n − T̃n|√

hn
,

each term being oP(1). The proof of Theorem 2.1 is now complete.

B.2 Purely explosive case – Proof of Theorem 2.3

Let In be the first term of the right-hand side of (B.1), like in the previous proof, and note that

In = nhn

∫
R

(
f̂n(x)− fn(x)

)2
a(x) dx 6 2 (In,1 + In,2), (B.13)

where for an arbitrary rate that we set to v 2
n = ln(nhn),

In,1 =
1

nhn

∫
R


n−[vn]∑
t=1

(
K
(
x− ε̂t
hn

)
−K

(
x− εt
hn

))
2

a(x) dx,

In,2 =
1

nhn

∫
R


n∑

t=n−[vn]+1

(
K
(
x− ε̂t
hn

)
−K

(
x− εt
hn

))
2

a(x) dx.

Under our hypotheses, this choice of (vn) ensures

lim
n→+∞

vn = +∞ and lim
n→+∞

v 2
n

n
√
hn

= 0. (B.14)

Let us look at In,1. By Cauchy–Schwarz,

In,1 6
n− [vn]

nhn

∫
R

n−[vn]∑
t=1

[
K
(
x− ε̂t
hn

)
−K

(
x− εt
hn

)]2
a(x) dx

6
2 ‖K‖∞ (n− [vn])

nhn

∫
R

n−[vn]∑
t=1

∣∣∣∣K(x− ε̂thn

)
−K

(
x− εt
hn

)∣∣∣∣ a(x) dx

6
2 ‖a‖∞ ‖K‖∞ (n− [vn])

n

∫
R

n−[vn]∑
t=1

∣∣∣∣K(u+
εt − ε̂t
hn

)
−K(u)

∣∣∣∣ du

6
2B ‖a‖∞ ‖K‖∞ (n− [vn])

nhn

n−[vn]∑
t=1

|εt − ε̂t|
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=
2B ‖a‖∞ ‖K‖∞ (n− [vn])

nhn

n−[vn]∑
t=1

∣∣(θ̂n − θ)T Φt−1
∣∣

=
2B ‖a‖∞ ‖K‖∞ (n− [vn])

nhn

n−[vn]∑
t=1

∣∣(θ̂n − θ)T Cnθ C−[vn]θ C
−n+[vn]
θ Φt−1

∣∣.
Here, we recall that |λp| > 1. Consequently, ρ(C−1θ ) = 1/|λp| < 1. It follows that there exists a matrix norm
‖ · ‖∗ = sup(| · u|∗ ; u ∈ Cp, |u|∗ = 1) satisfying ‖C−1θ ‖∗ < 1 (see e.g. [8], Prop. 2.3.15), and a constant k∗ such
that, with C∗ = 2B k∗ ‖a‖∞ ‖K‖∞, we obtain

In,1 6
C∗ (n− [vn])

nhn

n−[vn]∑
t=1

∣∣(θ̂n − θ)T Cnθ ∣∣∗ ∣∣C−[vn]θ C
−n+[vn]
θ Φt−1

∣∣
∗

6
C∗ (n− [vn])

nhn

∣∣(θ̂n − θ)T Cnθ ∣∣∗ ‖C−1θ ‖[vn]∗

n−[vn]∑
t=1

∣∣C−n+[vn]
θ Φt−1

∣∣
∗

6
C∗ (n− [vn])

nhn

∣∣(θ̂n − θ)T Cnθ ∣∣∗ ‖C−1θ ‖[vn]∗ sup
06 t6n−[vn]−1

∣∣C−tθ Φt
∣∣
∗

n−[vn]∑
`=1

‖C−1θ ‖
`
∗.

But Proposition A.2 ensures that supt |C−tθ Φt|∗ is a.s. bounded for a sufficiently large n, and we also have

(θ̂n − θ)T Cnθ =

(
n∑
t=1

ΦTt−1 εt

)
(C−nθ )T (Cnθ )T

(
n∑
t=1

Φt−1ΦTt−1

)−1
Cnθ

=

n∑
t=1

(
C−nθ Φt−1 εt

)T
G−1n

where

Gn = C−nθ

(
n∑
t=1

Φt−1ΦTt−1

)
(C−nθ )T .

We deduce that, for some constant k∗,

∣∣(θ̂n − θ)T Cnθ ∣∣∗ 6 k∗ ε]n ‖G−1n ‖∗ sup
06 t6n−1

∣∣(C−tθ Φt)
T
∣∣
∗

n∑
`=1

‖C−1θ ‖
`
∗

where ([8], Cor. 1.3.21) shows that ε]n = supt |εt| = o(
√
n) a.s. under our conditions of moments on (εt).

Proposition A.2 and the fact that ‖C−1θ ‖∗ < 1 lead to

In,1 = o

(
n− [vn]√
nhn

R [vn]

)
a.s. (B.15)
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for some 0 < R < 1. Let us now turn to In,2 for which the same strategy gives

I2,n 6
[vn]

nhn

n∑
t=n−[vn]+1

∫
R

[
K
(
x− ε̂t
hn

)
−K

(
x− εt
hn

)]2
a(x) dx

6
2 [vn]

nhn

n∑
t=n−[vn]+1

∫
R

[
K2

(
x− ε̂t
hn

)
+ K2

(
x− εt
hn

)]
a(x) dx

6
4 ‖a‖∞ [vn]

n

n∑
t=n−[vn]+1

∫
R
K2(u) du

=
4 ‖a‖∞ [vn]2

n

∫
R
K2(u) du.

Thus,

In,2 = O

(
[vn]2

n

)
a.s. (B.16)

Finally, from (B.1), (B.15) and (B.16), we have

In = O

(
n− [vn]√
nhn

R [vn] +
[vn]2

n

)
= o
(√

hn

)
a.s. (B.17)

for some 0 < R < 1, as a consequence of the properties of (vn) in (B.14). The cross term Rn is treated in the
same way as in the proof of Theorem (2.1). Indeed, since our choice of (vn) also ensures that In = o(hn) a.s.,
the same reasoning leads to the conclusion. It follows from (B.13) and (B.17) that

T̂n − µ√
hn

=
Tn − µ√

hn
+ o(1) a.s.

which ends the first part of the proof. The second part merely consists in noting that (B.12) still holds. The
proof of Theorem 2.3 is now complete.

B.3 Unstable case – Proof of Propositions A.3 and 2.5

In this proof, the notation =⇒ refers to the weak convergence of sequences of random elements in D([0, 1]),
the space of right continuous functions on [0, 1] having left-hand limits, equipped with the Skorokhod topology
(see Billingsley [4]). One can find in Thm. 2.7 of the same reference the statement and the proof of the continuous
mapping theorem. In Lemmas B.4 and B.8 below, (Yn)n>1 is a sequence of random variables satisfying, for some
δ > 0,

1

nδ

∑
t∈P[n·]

Yt =⇒ LP(·) and
1

nδ

[n·]∑
t=1

(−1)[n·]−t Yt =⇒ Λ(·) (B.18)

where LP and Λ are random paths in D([0, 1]) and where P[n·] stands either for {1, . . . , [n·]} or for the sets of
even/odd integers in {1, . . . , [n·]}. We use the convention

∑
∅ = 0 and the notation [x] to designate the integer

part of any x > 0.
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Remark B.3. The first convergence obviously holds for a strong white noise having a finite variance and
δ = 1/2, via Donsker theorem ([4], Thm. 8.2). In this case, LP is a Wiener process and P[n·] changes its
variance (half as many terms leads to a doubled variance). If the distribution is symmetric, then Λ ≡ LP for
P[n·] = {1, . . . , [n·]}, whereas an invariance principle for stationary processes (see, e.g., ([7], Thm. 1) enables to
identify Λ in the nonsymmetric case.

Lemma B.4 (Univariate unstable case). Let X0 = 0 and, for 1 6 t 6 n, consider

Xt = θXt−1 + Yt, θ = ±1,

where (Yt) satisfies (B.18). Then,

n∑
t=1

Xt =

{
OP(nδ+1) for θ = 1
OP(nδ) for θ = −1

and, in both cases, for k ∈ N,

n∑
t=1

X 2k
t = OP(n2kδ+1).

Proof. Let θ = 1. Then,

1

nδ+1

n∑
t=1

Xt =
1

n

n∑
t=1

1

nδ

t∑
s=1

Ys

=

n∑
t=1

∫ t+1
n

t
n

1

nδ

[nu]∑
s=1

Ys du
D−→

∫ 1

0

L(u) du

from the continuous mapping theorem, where L ≡ LP for P[n·] = {1, . . . , [n·]}. Following the same lines,

1

n2kδ+1

n∑
t=1

X 2k
t =

1

n

n∑
t=1

(
1

nδ

t∑
s=1

Ys

)2k

=

n∑
t=1

∫ t+1
n

t
n

 1

nδ

[nu]∑
s=1

Ys

2k

du
D−→

∫ 1

0

L2k(u) du.

Now let θ = −1. Then,

n∑
t=1

Xt =
∑
t∈Pn

Yt

where Pn ⊂ {1, . . . , n} is the set of even integers (resp. odd integers) between 1 and n, for an even (resp. odd)
n. Then we conclude to the first result. Finally,

1

n2kδ+1

n∑
t=1

X 2k
t =

1

n

n∑
t=1

(
1

nδ

t∑
s=1

(−1)t−s Ys

)2k
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=

n∑
t=1

∫ t+1
n

t
n

 1

nδ

[nu]∑
s=1

(−1)[nu]−s Ys

2k

du
D−→

∫ 1

0

Λ2k(u) du.

Proof of Proposition A.3 – Seasonal case. Let X−s+1 = . . . = X0 = 0 and Sk = {` ∈ {1, . . . , n}, `[s] = k},
for k ∈ {0, . . . , s− 1}, the notation `[s] referring to the remainder of the Euclidean division of ` by s. Then the
subsets Sk form a partition of {1, . . . , n}, the path (X1, . . . , Xn) is made of s uncorrelated random walks and
Donsker theorem directly gives the OP(

√
n) rate for |Xn|. In addition,

n∑
t=1

X a
t =

s−1∑
k=0

∑
t∈Sk

X a
t

so that, for a ∈ {1, 2, 4}, the results follow from Lemma B.4. �

We now turn to the proof of Proposition 2.5. Following the idea of [13], we make once again the decomposition

T̂n − µ√
hn

=
In√
hn

+
Rn√
hn

+
Tn − µ√

hn
(B.19)

where µ is the centering term (1.11) of the statistic, In is given in (B.2), Tn is the original Bickel-Rosenblatt
statistic and Rn is the cross term in (B.1) such that

|Rn|√
hn

= OP

(√
In
hn

)
(B.20)

as we have seen earlier. Going on with the decomposition of In in (B.2) and using the same notation, we establish
the two following lemmas. In all the sequel, the case p = s refers to the seasonal process θ1 = . . . = θs−1 = 0
and θs = 1.

Lemma B.5. When p = 1 or p = s, Lemma B.2 still holds in the unstable case.

Proof. First, with p = 1 and θ = ±1, we note that

E[X2
n] =

∑
16 t,s6n

θ 2n−t−s E[εt εs] = O(n)

and

E[X4
n] =

∑
16 t,s,u,v6n

θ 4n−t−s−u−v E[εt εs εu εv] = O(n2)

under our assumptions on the noise, and the same results obviously hold for p = s where Xn still has a random
walk behavior. Thus, K2,n in (B.8) is OP(n3 hn). Lemma B.4 and the second part of Proposition A.3 also give

n∑
t=1

X2
t = OP(n2) and

n∑
t=1

X4
t = OP(n3)
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and, accordingly with Proposition A.6, K1,n in (B.7) is OP(n3 h−2n ) and K3,n in (B.9) is OP(n4 h2n). Finally,
(B.6) concludes the proof.

Lemma B.6. Let p = 1. Then, Lemma B.1 holds for λ = θ = −1. On the contrary, for λ = θ = 1 and∫
R K′(s) ds 6= 0,

I1,n = OP(nh2n)

whereas for
∫
R K′(s) ds = 0,

I1,n = OP(nh4n).

The last two results also hold for p = s.

Proof. On the one hand, let θ = −1. The reasoning of (B.4) shows that J1,n is still OP(hn), using Proposition
A.6 and E[X2

n] = O(n). From Lemma B.4, we know that

n∑
t=1

Xt = OP(
√
n).

Then, J2,n in (B.5) must be OP(n−1 h2n) and I1,n = OP(hn). On the other hand, we have to investigate the case
where θ = 1. Since E[X2

n] does not depend on θ, J1,n has exactly the same behavior. For a better readability,
let

Ln =

∫
R

(∫
R
K′(z) f(x− hn z) dz

)2
a(x) dx.

Under our assumptions, it is easy to see that

lim
n→+∞

Ln =

(∫
R
f2(s) a(s) ds

)(∫
R
K′(s) ds

)2
(B.21)

as soon as
∫
R K′(s) ds 6= 0, and that

lim
n→+∞

Ln
h2n

=

(∫
R
f ′(s)2 a(s) ds

)(∫
R
sK′(s) ds

)2
(B.22)

as soon as
∫
R K′(s) ds = 0. Lemma B.4 also gives

n∑
t=1

Xt = OP(n3/2)

which shows that J2,n is OP(nh2n) or OP(nh4n), depending on
∫
R K′(s) ds. The latter reasoning still applies

for p = s, via the second part of Proposition A.3. The proof is achieved using (B.3) and the hypotheses of
Proposition 2.5.

The combination of Lemmas B.5 and B.6 is sufficient to establish that

T̂n − µ√
hn

D−→ N (0, τ2)
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holds for θ = −1, despite the instability, and replacing T̂n by T̃n is possible without disturbing the asymptotic

normality, as a consequence of (B.12) for nh
9/2
n → 0. When θ = 1 or p = s and

∫
R K′(s) ds = 0, Lemmas B.5

and B.6 show that In = OP(hn) = oP(
√
hn). It follows from (B.19) and (B.20) that

|Rn|√
hn

= OP(1)

which unfortunately prevents us from concluding to the Bickel–Rosenblatt convergence in this case. However,
we still have the order of magnitude

T̂n − µ√
hn

= OP(1) and
T̃n − µ√

hn
= OP(1).

Finally for
∫
R K′(s) ds 6= 0, the same lines also imply, together with (B.19), Lemmas B.5 and B.6 and the

asymptotic normality (1.10), that

hn(T̂n − µ) = OP(1).

It remains to study the asymptotic behavior of the correctly renormalized statistic using the explicit expression
of J2,n in (B.5). From the proof of Lemma B.4, Proposition A.6 and the continuous mapping theorem, we get
for the univariate unstable case with θ = 1,

(
n (θ̂n − θ)

)2( 1

n3/2

n∑
t=1

Xt−1

)2

D−→ σ2

(
1
2 (W 2(1)− 1)∫ 1

0
W 2(u) du

∫ 1

0

W (u) du

)2

where (W (t), t ∈ [0, 1]) is a standard Wiener process. Now for the seasonal case, reusing the same notation as
above,

1

n3/2

n∑
t=1

Xt =

s−1∑
k=0

1

n3/2

∑
t∈Sk

Xt
D−→ σ

s−1∑
k=0

∫ 1
s

0

W (k+1)
s (u) du (B.23)

where W
(i)
s stands for the i-th component of the standard Wiener process (Ws(t), t ∈ [0, 1]) of dimension s,

since the path can be seen as the concatenation of s uncorrelated random walks. Using the Cramèr–Wold and
the continuous mapping theorems, it follows that

(
n
(
θ̂n − θ

)T 1

n3/2

n∑
t=1

Φt−1

)2

D−→ σ2
(
S(Ws)

T H(Ws)
)2

with the notation of Proposition A.6, where H(Ws) is a random vector of size s containing the limit variable
(B.23) on each component. The proof is then ended using the limiting behavior of Ln. The proof of Theorem
2.5 is now complete.

Remark B.7. To go beyond, note that for θ = 1 and
∫
R K′(s) ds 6= 0, we get

hn |T̂n − T̃n| 6 2hn

√
T̂n Un + hn Un
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where

Un = nhn

∫
R

(
(Khn

∗ f)(x)− f(x)
)2
a(x) dx.

A straightforward calculation shows that Un = O(nh3n) if
∫
R sK(s) ds 6= 0 whereas Un = O(nh5n) if∫

R sK(s) ds = 0. In the second case, T̂n may be replaced by T̃n as soon as nh6n → 0. But it the first case,
one needs nh4n → 0 which contradicts (H3) with α = 4.

This last lemma is not used as part of this paper, but it may be a trail for future studies. It is related to the
conclusion of Section 2 and illustrates the phenomenon of compensation in purely unstable processes.

Lemma B.8. Let X−1 = X0 = 0 and, for 1 6 t 6 n, consider

Xt = 2 cos(ω)Xt−1 −Xt−2 + Yt, 0 6 ω 6 π,

where (Yt) satisfies (B.18). Then,

n∑
t=1

Xt =

{
OP(nδ+2) for ω = 0
OP(nδ) for 0 < ω 6 π.

Moreover, if the process is generated by

Xt = Xt−2 + Yt,

then

n∑
t=1

Xt = OP(nδ+1).

Proof. For ω = 0, let Zt = Xt −Xt−1. Then, Zt − Zt−1 = Yt and from Lemma B.4,

n∑
t=1

Zt = OP(nδ+1).

A second application of Lemma B.4 gives the result. If 0 < ω 6 π, we obtain

2 (1− cos(ω))

nδ

n∑
t=1

Xt =
Xn−1 + (1− 2 cos(ω))Xn

nδ
+

1

nδ

n∑
t=1

Yt.

In the last case, let Zt = Xt −Xt−1 and note that Zt = −Zt−1 + Yt. Then, Lemma B.4 gives

n∑
t=1

Zt = OP(nδ).

We conclude by applying again Lemma B.4 to Xt = Xt−1 + Zt.

Remark B.9. In the previous lemma, ω = 0 corresponds to the unit roots {1, 1} in an AR(2) process generated
by (Yt) whereas 0 < ω 6 π corresponds to the unit roots {eiω, e−iω}, including {−1,−1} for ω = π. The last
case corresponds to the unit roots {−1, 1}, in other words this is the seasonal model for s = 2.
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