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EFFICIENT SEQUENTIAL EXPERIMENTAL DESIGN FOR

SURROGATE MODELING OF NESTED CODES

Sophie Marque-Pucheu1,2,*, Guillaume Perrin1

and Josselin Garnier3

Abstract. In this paper we consider two nested computer codes, with the first code output as
one of the second code inputs. A predictor of this nested code is obtained by coupling the Gaussian
predictors of the two codes. This predictor is non Gaussian and computing its statistical moments can be
cumbersome. Sequential designs aiming at improving the accuracy of the nested predictor are proposed.
One of the criteria allows to choose which code to launch by taking into account the computational
costs of the two codes. Finally, two adaptations of the non Gaussian predictor are proposed in order
to compute the prediction mean and variance rapidly or exactly.
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1. Introduction

Thanks to computing power increase, the certification and the design of complex systems rely more and
more on simulation. To this end, predictive codes are needed, which have generally to be evaluated at a large
number of input points. When the computational cost of these codes is high, surrogate models are introduced
to emulate their responses. A lot of industrial issues involve multi-physics phenomena, which can be associated
with a series of computer codes. However, when these code networks are used for optimization, uncertainty
quantification, or risk analysis purposes, they are generally considered as a single code. In that case, all the
inputs characterizing the system of interest are gathered in a single input vector, and little attention is paid to
the potential intermediate results. When trying to emulate such code networks, this is clearly sub-optimal, as
much information is lost in the statistical learning, so that too many evaluations of each code are likely to be
required to get a satisfying prediction precision.

In this paper, we focus on the case of two nested computer codes, where the output of the first code is one
of the inputs of the second code. We assume that these two computer codes are deterministic, but expensive to
evaluate. To predict the value of this nested code at an unobserved point, a Bayesian formalism [30] is adopted
in the following. Each computer code is a priori modeled by a Gaussian process, and the idea is to identify the
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posterior distribution of the combination of these two processes given a limited number of evaluations of the
two codes. The Gaussian process hypothesis is widely used in computer experiments [5, 17–19, 23, 29, 31, 32],
as it allows a very good trade-off between error control, complexity, and efficiency. The two main issues of this
approach, also called Kriging, concern the choice of the statistical properties of the Gaussian processes that are
used, and the choice of the points where to evaluate the codes. When a single computer code is considered,
several methods exist to add one new point or a batch of new points sequentially to an already existing Design
of Experiments. Depending on the purpose, optimization or reconstruction of the objective function on its whole
input set, the criteria are based on the mean, variance or covariance of the predictor [4, 7, 9, 31, 32]. Given
that our aim is to predict the output of the nested code on its whole input set, sequential designs based on
a reduction of the integrated prediction variance (IMSE) are an appropriate choice. In the case of a single
code, the variance expression can be explicitly derived under mild restrictive conditions on the mean and the
covariance of the prior Gaussian distribution.

The adaptation of these selection criteria to the case of two nested codes is not direct. Indeed, the combination
of two Gaussian processes is not Gaussian, so that the prediction variance is much more complicated to estimate.
The challenges posed by the composition of two Gaussian processes have been studied in the Deep Gaussian
processes literature and the proposed methods are based on the Monte-Carlo computation of the likelihood of the
nested Gaussian processes [24] or on the computation of a lower bound of this likelihood [8]. The composition of
Gaussian processes can also be used in the multi-fidelity framework [24]. This framework enables to use several
levels of convergence of a simulator (for example in a finite element model a coarse mesh corresponds to the
low fidelity simulator and the finer mesh corresponds to the high fidelity simulator) and therefore to have a
trade-off between accuracy and computation time [17, 20, 21, 28, 35].

Moreover, if the two codes can be launched separately, the selection criterion has also to indicate which one of
the two codes to launch. The sequential designs are based on the prediction variance, which has to be computed
in a large number of points. To reduce the computational cost associated with these computations, we propose
several adaptations of the Gaussian Process formalism to the nested case. These adaptations make it possible
to compute the two first statistical moments of the code output predictor exactly or quickly. Then, original
sequential selection criteria are introduced, which try to exploit as much as possible the nested structure of the
studied codes. In particular, these criteria are able to integrate the fact that the computational costs associated
with the evaluation of each code can be different.

The outline of this paper is the following. Section 2 presents the theoretical framework of the Gaussian
process-based surrogate models, its generalization to the nested case, and introduces two selection criteria
based on the prediction variance to reduce the prediction uncertainty sequentially. Section 3 introduces a series
of simplifications to allow a quick computation of the prediction variance. In section 4, the presented methods
are applied to two examples.

The technical proofs of the results presented in the following sections are given in the appendix.

2. Surrogate modeling for two nested computer codes

2.1. Notations

In this paper, the following notations will be adopted:

• d
“ denotes the equality in distribution.

• x, y correspond to scalars.
• x,y correspond to vectors.
• X,Y correspond to matrices.
• The entries of a vector x are denoted by pxqi, whereas the entries of a matrix X are denoted by pXqij .

• XT denotes the transpose of a matrix X.
• N px,Xq corresponds to the multidimensional Gaussian distribution, whose mean vector and covariance

matrix are respectively given by x and X.
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• GPpm, kq corresponds to the distribution of a Gaussian process whose mean function is m, and whose
covariance function is k.

• E r¨s and V r¨s are the mathematical expectation and the variance respectively.
• For all real-valued functions y and z that are square integrable on X, p¨, ¨qX and }¨}X denote respectively

the classical scalar product and norm in the space of square integrable real-valued functions on X:

py, zqX :“

ż

X
ypxqzpxqdx, }y}

2
X :“ py, yqX. (2.1)

2.2. General framework

Let S be a system that is characterized by a vector of input parameters, xnest P Xnest. Let ynest : Xnest Ñ R
be a deterministic mapping that is used to analyze the studied system. In this paper, we focus on the case where
the function xnest ÞÑ ynestpxnestq can be modeled by two nested codes. Two quantities of interest, y1 and y2, are
thus introduced to characterize these two codes, which are supposed to be two real-valued continuous functions
on their respective definition domains X1 and Rˆ X2. Given these two functions, the nested code is defined as
follows:

x1 P X1 Ñ

x2 P X2

y1px1q P R

Œ

Õ
ynestpxnestq :“ y2py1px1q,x2q P R, (2.2)

where xnest :“ px1,x2q P Xnest “ X1 ˆ X2. The sets X1 and X2 are moreover supposed to be two compact
subsets of Rd1 and Rd2 respectively, where d1 and d2 are two positive integers. In theory, the definition domains
may be unbounded, but the reduction to compact sets enables the square integrability of ynest on Xnest.

Given a limited number of evaluations of y1 and y2, the objective is to accurately predict ynest on the whole
input set.

2.3. Gaussian process-based surrogate models

2.3.1. Background

The Gaussian process regression (GPR), or Kriging, is a technique that is widely used to replace an expensive
computer code by a surrogate model, that is to say a fast to evaluate mathematical function. The GPR is based
on the assumption that the two code outputs, y1 and y2, can be seen as the sample paths of two stochastic
processes, Y1 and Y2, which are supposed to be Gaussian for the sake of tractability:

Yi „ GPpµi, Ciq, i P t1, 2u, (2.3)

where for all 1 ď i ď 2, µi and Ci denote respectively the mean and the covariance functions of Yi.

Let x̄obs
1 :“

´

x
p1q
1 , . . . ,x

pN1q

1

¯

be N1 elements of X1 and x̄obs
2 :“

´´

ϕ
p1q
1 ,x

p1q
2

¯

, . . . , pϕ
pN2q

1 ,x
pN2q

2 q

¯

be N2

elements of Rˆ X2. Denoting by

yobs
1 :“ py1px

p1q
1 q, . . . , y1px

pN1q

1 qq, yobs
2 :“ py2pϕ

p1q
1 ,x

p1q
2 q, . . . , y2pϕ

pN2q

1 ,x
pN2q

2 qq, (2.4)

the vectors that gather the evaluations of y1 and y2 at these points, it can be shown that:

Y c
i :“ Yi | y

obs
i „ GPpµc

i , C
c
i q, (2.5)

and the detailed expressions of the conditioned mean functions, µc
i , and the conditioned covariance functions,

Cc
i are presented in equations (2.10) and (2.12) for the “Universal Kriging” framework. For further details on

these expressions in the other frameworks, the interested reader may refer to [31, 32].
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The relevance of the Gaussian process predictor strongly depends on the definitions of µi and Ci. When the
only information about yi is a finite set of evaluations, these functions are generally chosen in general parametric
families. In this paper, functions Ci are chosen in the Gaussian and Matérn-5/2 classes (see [32, 33] for further
details about classical parametric expressions for Ci).

The Gaussian class defines a parametric family of covariance functions that can be written in the form:

Ki

´

x̄i, x̄
1

i

¯

“ exp

ˆ

´d
´

x̄i, x̄
1

i

¯2
˙

, (2.6)

where d
´

x̄i, x̄
1

i

¯

“

›

›

›
diag p`iq

´1
´

x̄i ´ x̄
1

i

¯
›

›

›
, diag p`iq denotes a square matrix whose diagonal is equal to the

vector `i of correlation lengths and }¨} is the Euclidian norm.
Regarding the Matérn kernel, we consider the radial Matérn kernel, obtained by substituting the (weighted)

Euclidean distance into the 1-dimensional Matérn kernel, and not the tensor product kernel obtained by mul-

tiplication of 1-dimensional kernels. So the covariance functions of the Matérn
5

2
class can be written in the

form:

Ki

´

x̄i, x̄
1

i

¯

“

ˆ

1`
?

5d
´

x̄i, x̄
1

i

¯

`
5

3
d
´

x̄i, x̄
1

i

¯2
˙

exp
´

´
?

5d
´

x̄i, x̄
1

i

¯¯

. (2.7)

Linear representations are considered for the mean functions:

µi “ h
T
i βi, (2.8)

where hi is a given Mi-dimensional vector of functions (see [27] for further details on the choice of the basis
functions). In the following, the framework of the “Universal Kriging” is adopted, which consists in:

• assuming an (improper) uniform distribution for βi,
• conditioning all the results by an estimator of the hyper-parameters that characterize the covariance

functions Ci (obtained by cross-validation, as explained below),
• integrating over βi the conditioned distribution of Yi.

In that case, the distribution of Y c
i , which is defined by equation (2.5), is Gaussian, and its statistical moments

can explicitly be derived (see [4, 6, 15, 27, 31]).
If we denote by

pβi :“
”

hi

`

x̄obs
i

˘ `

Ci

`

x̄obs
i , x̄obs

i

˘˘´1
hi

`

x̄obs
i

˘T
ı´1

hi

`

x̄obs
i

˘ `

Ci

`

x̄obs
i , x̄obs

i

˘˘´1
yobs
i , (2.9)

the posterior mean of the parameters, the prediction mean and variance can be written:

µc
i px̄iq “ hi px̄iq

T
pβi ` Ci

`

x̄i, x̄
obs
i

˘ `

Ci

`

x̄obs
i , x̄obs

i

˘˘´1
”

yobs
i ´ hi

`

x̄obs
i

˘T
pβi

ı

, (2.10)

and:

pσc
i px̄iqq

2
“ Cc

i px̄i, x̄iq , (2.11)

Cc
i

´

x̄i, x̄
1

i

¯

“ Ci

´

x̄i, x̄
1

i

¯

´ Ci

`

x̄i, x̄
obs
i

˘ `

Ci

`

x̄obs
i , x̄obs

i

˘˘´1
Ci

´

x̄obs
i , x̄

1

i

¯

`

”

hi px̄iq
T
´ Ci

`

x̄i, x̄
obs
i

˘ `

Ci

`

x̄obs
i , x̄obs

i

˘˘´1
hi

`

x̄obs
i

˘T
ı

ˆ

”

hi

`

x̄obs
i

˘ `

Ci

`

x̄obs
i , x̄obs

i

˘˘´1
hi

`

x̄obs
i

˘T
ı´1

ˆ

”

hi

´

x̄
1

i

¯

´ hi

`

x̄obs
i

˘ `

Ci

`

x̄obs
i , x̄obs

i

˘˘´1
Ci

´

x̄obs
i , x̄

1

i

¯ı

, (2.12)
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where:

x̄i :“

#

x1 if i “ 1,

pϕ1,x2q if i “ 2.
(2.13)

In this paper, the hyperparameters of the covariance functions are estimated for each set of observations by
maximizing the Leave-One-Out log predictive probability (see [29], chap. 5, and [1, 2]).

2.3.2. Coupling the surrogate models of the two codes

According to equation (2.2), the nested code, xnest ÞÑ ynestpxnestq, can thus be seen as a particular realization
of the conditioned process Y c

nest, so that for all px1,x2q P X1 ˆ X2,

Y c
nestpx1,x2q :“ Y c

2 pY
c
1 px1q,x2q. (2.14)

Under this Gaussian formalism, the best prediction of ynest at any unobserved point xnest “ px1,x2q in X1 ˆ

X2 is given by the mean value of Y c
nestpx1,x2q, whereas its variance can be used to characterize the confidence

in the prediction. As explained in Introduction, there is no reason for Y c
nest to be Gaussian, but according

to Proposition 2.1, the first- and second-order moments can be obtained by computing two one-dimensional
integrals with respect to a Gaussian measure.

Proposition 2.1. For all px1,x2q P X1 ˆ X2, if ξ „ N p0, 1q, then:

E rY c
nestpx1,x2qs “ E rµc

2pµ
c
1px1q ` σ

c
1px1qξ,x2qs , (2.15)

E
”

pY c
nestpx1,x2qq

2
ı

“ E

«

tµc
2pµ

c
1px1q ` σ

c
1px1qξ,x2qu

2

` tσc
2pµ

c
1px1q ` σ

c
1px1qξ,x2qu

2

ff

. (2.16)

The computation of these moments can be done by quadrature rules or by Monte-Carlo methods ([3]).
However, the computation time can be expensive, especially if the moments have to be computed at a large
number of points.

Note that the proposed predictor for ynest can be built using observations of y1 or y2 alone and not only
observations of ynest. It can take into account the partial information. If the two codes can be launched separately,
this property will be particularly useful for the sequential enrichment of the initial design of experiments, since
the variance of Y c

nest can be reduced by evaluating y1 or y2 alone.

2.4. Sequential designs for the improvement of Gaussian process predictors

The relevance of the predictor Y c
nest strongly depends on the space filling properties of the sets gathering

the inputs of the available observations of y1 and y2, which are generally called Designs of Experiments (DoE).
Space-filling Latin hypercube sampling (LHS) or quasi-Monte-Carlo sampling are generally chosen to define
such a priori DoE [10, 11, 26]. The relevance of the predictor can then be improved by adding new points to an

already existing DoE, as the higher the values of N1 and N2, the more chance there is for }E rY c
nests ´ ynest}

2
Xnest

to be small.
In the case of a single code, the existing selection criteria are based on the prediction variance [4, 13, 31, 32],

the prediction mean [16] or both [9] or the covariance between the observations [31, 32] and depend on the goal
of the experiments: optimization, reconstruction of the objective function on its whole input domain.

In this paper the objective is to predict the output of the nested code on its whole input domain. So, a
stepwise uncertainty reduction (SUR) [7] strategy is adopted in order to define criteria to add a new point. The
proposed criteria are based on a minimization of the IMSE (integral of the prediction variance over the input
domain) or on a maximization of the reduction of IMSE per unit of computational time. Some criteria that
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enable to take into account the different costs of several computer codes exist, for example in the multi-fidelity
framework [34] or multi-objective constraints [25], but their adaptation to the case of two nested codes is not
direct.

The use of IMSE is simplified by some properties of the Gaussian processes. Indeed, if Z is a Gaussian process
that is indexed by x in X, the variance of the conditioned random variable Zpxq | Zpxnewq, where x and xnew

are any elements of X, does not depend on the (unknown) value of Zpxnewq. So this variance can be denoted by
abuse of notation V rZpxq | xnews. To minimize the global uncertainty over Z at a reduced computational cost,
a natural approach would consist in searching the value of xnew so that

ż

X
V rZpxq | xnewsdx (2.17)

is minimal (under the condition that this integral exists).
In the nested case, we also have to choose to which code to add a new observation point. To this end, let

τ1 and τ2 be the numerical costs (in CPU time for instance) that are associated with the evaluations of y1

and y2 respectively. For the sake of simplicity, we assume that these numerical costs are independent on the
value of the input parameters, and that they are a priori known. Two selection criteria are eventually proposed
to optimize the relevance of the predictor of the nested code output sequentially. To simplify the reading, the
following notation is proposed:

prxi, rXiq :“

$

’

&

’

%

px˚1 ,X1q if i “ 1,

ppϕ˚1 ,x
˚
2 q , µ

c
1 pX1q ˆ X2q if i “ 2,

ppx˚1 ,x
˚
2 q,X1 ˆ X2q if i “ 3,

(2.18)

where x˚1 P X1, ϕ˚1 P µ
c
1 pX1q and x˚2 P X2 and we denote by VpY c

nestpxnestq|rxiq the variance of Y c
nestpxnestq under

the hypothesis that the code(s) corresponding to the new point rxi is (are) evaluated at this point (in practice,
we remind that these code evaluations are not required for the estimation of this variance). This variance can
be defined as:

VpY c
nestpxnestq|rxiq :“

#

VpY2 pY1 px1q ,x2q |y
obs
1 ,yobs

2 , yi prxiqq, i P t1, 2u,

VpY2 pY1 px1q ,x2q |y
obs
1 ,yobs

2 , ynest prxiqq, i “ 3,
(2.19)

with xnest :“ px1,x2q.

• First, the chained I-optimal criterion selects the best point in X1 ˆX2 to minimize the integrated variance of
the predictor of the nested code:

rxnew
3 “ argmin

rx3PrX3

ż

Xnest

VpY c
nestpxnestq|rx3qdxnest. (2.20)

Such a criterion is a priori adapted to the case where it is not possible to run independently the codes 1 and
2.
• Secondly, the best I-optimal criterion selects the best among the candidates in X1 and X2 in order to maximize

the decrease per unit of computational cost of the integrated prediction variance of the nested code:

pinew, rxnew
inewq “ argmax

rxiPrXi, iPt1,2u

1

τi
ˆ

ż

Xnest

rV pY c
nestpxnestqq ´ V pY c

nestpxnestq|rxiqsdxnest. (2.21)

In that case, the difference in the computational costs is taken into account, and a linear expected improvement
per unit of computational cost is assumed for the sake of simplicity.
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For each new observation of the first code, the hyperparameters of the covariance function C1 are re-estimated.
In the same way, for each new observation of the second code, the hyperparameters of the covariance function
C2 are re-estimated.

An initial set of observations is necessary to estimate the hyperparameters of the covariance functions C1 and
C2 and therefore to compute the prediction variance and the proposed sequential design criteria. This initial
set will be chosen as a maximin LHS design on Xnest.

3. Fast computation of the prediction variance

As explained in Section 2.4, choosing the position of the new point requires to compute the value of
VarpY c

nestpxnestq|rxiq for each potential value of rxi in rXi and for a grid or a sample of xnest used in a quadrature
formula or an empirical average to approximate the integral in xnest of equations (2.21) and (2.20).

For a given xnest, the variance is theoretically given by equations (2.15) and (2.16). If a quadrature rule or a
Monte Carlo approach is used to approximate the variance, then the optimization procedure becomes pro-
hibitively expensive from the computational point of view. To circumvent this problem, we present in this
section several approaches to make the computation of VarpY c

nestpxnestq|rxiq explicit, and therefore extremely
fast to compute.

3.1. Explicit derivation of the two first statistical moments of the nested code predictor

Lemma 3.1. If X „ N pµ, σ2q and g px, a, b, cq :“ xa exp
`

bx` cx2
˘

, pa, b, cq P NˆR2, then, under the condition
that 1´ 2cσ2 ą 0, the mean of g pX, a, b, cq can be computed analytically, and its expression is given by equation
(B.1).

Lemma 3.2. If g px, a, b, cq :“ xa exp
`

bx` cx2
˘

, pa, b, cq P N ˆ R2, then g px, ai, bi, ciq g px, aj , bj , cjq “
g px, ai ` aj , bi ` bj , ci ` cjq, pai, bi, ciq P Nˆ R2 and paj , bj , cjq P Nˆ R2.

Proposition 3.3. Using the notations of the Universal Kriging framework that is introduced in Section 2.3, if:

1. for 1 ď k ďM2 the mean function ph2qk is of the form:

ph2 pϕ1,x2qk “ mkpx2q ϕ
ak
1 , (3.1)

where mk is a deterministic function from X2 to R and ak P N,
2. the covariance function C2 is squared exponential, i.e. an element of the Gaussian class,

then the conditional moments of order 1 and 2 of Y c
nestpx1,x2q, which are defined by equations (2.15) and (2.16)

can be calculated analytically using Lemmas 3.1 and 3.2. Moreover, the expression of the first order moment is
given by equations (D.5) and (B.1) and the expression of the second order moment is given by equations (D.8)
and (B.1).

In other words, if the prior of the Gaussian process modeling the function y2 has a trend which is a polynomial
of ϕ1, with coefficients as functions of x2, and a covariance function of the Gaussian class, then the moments
of order 1 and 2 of the coupling of the predictors of the two codes can be computed explicitly.

In particular, if the process associated with y2 has a constant or zero mean and a squared exponential (i.e.
Gaussian) covariance, then the mean and the variance of the coupling of the predictors of y1 and y2 can be
computed analytically.

However the use of a Gaussian covariance function is based on the assumption of infinite differentiability of
the second code. This assumption is not necessarily verified.

Besides, the method cannot be applied to the case of more than two codes. Indeed, in the case of three codes,
the coupling of the Gaussian predictors of the two first codes is no longer Gaussian. Even if the Gaussian process
modeling the third code has a Gaussian covariance and a polynomial trend with respect to the output of the
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second code, the analytical method cannot be applied because the predictor of the output of the chain of the
two first codes is not Gaussian.

3.2. Linearized approach

In the cases where the conditions for Proposition 3.3 are not fulfilled (or if more than two codes are consid-
ered), another approach is proposed in this section, which is based on a linearization of the process modeling
the nested code. Indeed, for i P t1, 2u, let εci be the Gaussian process so that:

Y c
i “ µc

i ` ε
c
i . (3.2)

By construction, εci is the residual prediction uncertainty once Yi has been conditioned by Ni evaluations
of yi. We remind that the two Gaussian processes Yi are statistically independent, so Y c

i and therefore εci are
statistically independent. Under the condition that N1 is large enough for Y c

1 being a reliable statistical model
for y1, then εc1 is small.

Proposition 3.4. If:

1. the predictor of a nested computer code can be written Y c
nestpx1,x2q :“ Y c

2 pY
c
1 px1q,x2q, where Y c

i are
independent Gaussian processes which can be written as Y c

i “ µc
i ` ε

c
i , where εci „ GP p0, Cc

i q , i P t1, 2u,
2. and εc1 is small enough for the linearization to be valid,

then the predictor of the nested computer code can be defined as a Gaussian process with the following mean and
covariance functions:

cµc
nest px1,x2q “ µc

2pµ
c
1px1q,x2q, (3.3)

Cc
nestppx1,x2q, px

1
1,x

1
2qq “ Cc

2ppµ
c
1px1q,x2q, pµ

c
1px

1
1q,x

1
2qq

`
Bµc

2

Bϕ1
pµc

1px1q,x2q
Bµc

2

Bϕ1
pµc

1px
1
1q,x

1
2qC

c
1px1,x

1
1q, (3.4)

where µc
i , i P 1, 2 is given by equation (2.10) and Cc

i , i P 1, 2 is given by equation (2.12) and
Bµc

2

Bϕ1
pµc

1px1q,x2q

is given by equation (E.5).
It can also be written Y c

nest “ µc
nest ` ε

c
nest with:

εcnest px1,x2q “
Bµc

2

Bϕ1
pµc

1px1q,x2qε
c
1px1q ` ε

c
2pµ

c
1px1q,x2q. (3.5)

Corollary 3.5. In the framework of Universal Kriging for Y c
1 and Y c

2 with explicit basis functions hi and

covariance functions Ci, i P t1, 2u, if the derivatives
Bh2

Bϕ1
pϕ1,x2q and

BC2

Bϕ1

`

pϕ1,x2q , x̄
obs
2

˘

can be computed

explicitly, then the predictor of the nested computer code can be defined, thanks to a linearization, as a Gaussian
process with explicit mean and covariance functions. In particular, if the covariance function C2 is in the

Matérn
5

2
or Gaussian class, the derivative

BC2

Bϕ1

`

pϕ1,x2q , x̄
obs
2

˘

can be computed analytically, and the associated

expressions are given in equations (F.5) and (F.8).

Corollary 3.6. According to equations (3.5), (2.21) and (2.20), if the predictor of the nested code is obtained
with the linearized method, then, thanks to the independence between εc1 and εc2, the selection criteria of the
sequential designs can be written:
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• for the chained I-optimal design:

pxnew
1 ,xnew

2 q “ argmin
px˚1 ,x˚2 qPX1ˆX2

ż

Xnest

˜

ˆ

Bµc
2

Bϕ1
pµc

1px1q,x2q

˙2

V rεc1px1q|x
˚
1 s`V rεc2pµc

1px1q,x2q|µ
c
1px

˚
1 q,x

˚
2 s

¸

ˆdx1dx2, (3.6)

where
Bµc

2

Bϕ1
pµc

1px1q,x2q is given by equation (E.5),

for the best I-optimal design:

pinew,xnew
i q “ argmax

rxiPrXi, iPt1,2u

1

τi
Vi px̃iq , (3.7)

where:

V1 px̃1q “

ż

Xnest

ˆ

Bµc
2

Bϕ1
pµc

1px1q,x2q

˙2

pV rεc1px1qs ´ V rεc1px1q|x̃1sqdx1dx2, (3.8)

V2 px̃2q “

ż

Xnest

pV rεc2pµc
1px1q,x2qs ´ V rεc2pµc

1px1q,x2q|x̃2sqdx1dx2. (3.9)

Hence, thanks to the proposed linearization, and the fact that the conditional distribution of a Gaussian
process is still Gaussian with updated first and second order moments, the variance of Y c

nestpxnestq and the

one of Y c
nestpxnestq|rxi can be explicitly computed for all pxnest, rxiq in Xnest ˆ rXi. Under the condition that the

linearization is valid, this approach can be applied to configurations with more than two nested codes.
However it can be inferred from equation (3.4) that the variance depends on yobs

1 through µc
1 and yobs

2 through
µc

2. To circumvent this problem for the computation of the forward variance in the sequential designs, we assume

that for a candidate x̃1, µc
1 corresponds to E

“

Y1|y
obs
1

‰

and by abuse of notation, that pσc
1q

2
“ Cc

1 corresponds to

V
“

Y1|x̄
obs
1 , x̃1

‰

. In the same way, for a candidate x̃2, we assume that µc
2 corresponds to E

“

Y2|y
obs
2

‰

and by abuse

of notation, that pσc
2q

2
“ Cc

2 corresponds to V
“

Y2|x̄
obs
2 , x̃2

‰

. So, by doing this, we suppose that the estimate of

yi px̃iq can be replaced by its prediction mean E
“

Yi px̃iq |y
obs
i

‰

, in accordance with the Kriging Believer strategy
proposed in [12].

4. Applications

In this section, the proposed methods are applied to two examples: an analytical one-dimensional one and a
multidimensional one.

In particular, the linearized method of Proposition 3.4 is compared with the analytical method of
Proposition 3.3 in terms of prediction accuracy. The interest of the linearized method in terms of computation
time is shown.

The linearized method is compared with the so-called blind box method. The blind box method corresponds
to the case where the nested computer code is considered as a single computer code. In that case, only the inputs
xnest and the output ynest are taken into account and a Gaussian process regression of this single computer code
is done. The intermediary information ϕ1 is not considered. The Gaussian process Ybb can therefore be defined
as follows (see also [27]):

Ybb „ GP

ˆ

h2

´

h1 px1q
T
β˚1 ,x2

¯T

β˚2 `
Bh2

Bϕ1

´

h1 px1q
T
β˚1 ,x2

¯T

β˚2h1 px1q
T `

β1 ´ β
˚
1

˘

, Cbb

˙

, (4.1)
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where
`

β˚1 ,β
˚
2

˘

“ argmin
pβ1,β2q

N
ř

i“1

«

y2

´

y1

´

x
piq
1

¯

,x
piq
2

¯

´ h2

ˆ

h1

´

x
piq
1

¯T

β1,x
piq
2

˙T

β2

ff2

, N “ N1 “ N2 and Cbb is

a stationary covariance function chosen in a parametric family. In order to make the comparison between the
blind box and the other methods easier, the mean function is defined as a linearization of the coupling of the
mean functions used in the linearized method.

Finally, the performances of the sequential designs are compared with a space filling design (maximin LHS)
on Xnest.

4.1. Characteristics of the examples

4.1.1. Analytical example

In the analytical example, the properties of the mean functions of the Gaussian processes and of the codes
are:

h1 px1q “

»

—

–

1

x1

x2
1

fi

ffi

fl

, β1 “

»

–

´2
0.25

0.0625

fi

fl , y1 px1q “ h1 px1q
T
β1 ´ 0.25 cos p2πx1q , (4.2)

h2 pϕ1q “

»

—

—

—

–

1

ϕ1

ϕ2
1

ϕ3
1

fi

ffi

ffi

ffi

fl

, β2 “

»

—

—

–

6
´5
´2
1

fi

ffi

ffi

fl

, y2 pϕ1q “ h2 pϕ1q
T
β2 ´ 0.25 cos p2πϕ1q , (4.3)

where x1 P r´7, 7s. In this example X2 “ θ.
In the analytical example, the covariance functions are squared exponential (i.e. Gaussian). This implies that

the Gaussian processes associated with the codes are mean square infinitely differentiable. This enables to apply
Propositions 3.3 and 3.4 to this example.

4.1.2. Hydrodynamic example

In this example, the coupling of two computer codes is considered. The objective is to determine the impact
point of a conical projectile.

The first code computes the drag coefficient of a cone divided by the height of the cone. Its inputs are the

height and the half-angle of the cone, so the dimension of x1 is 2 and x1 P

” π

36
,
π

4

ı

ˆ r0.2, 2s.

The second code computes the range of the ballistic trajectory of a cone. Its inputs are the output of the
first code, associated with ϕ1, and the initial velocity and angle of the ballistic trajectory of the cone, gathered

in x2. The dimension of x2 is therefore 2 and x2 P r1500, 3000s ˆ

„

π

12
,

7π

36



.

Figure 1 illustrates the two codes inputs and outputs.
Figure 2 presents, for each code, the scatter plots of the variations of the output with respect to the most

sensitive components of their inputs. The inputs correspond to a set of 20 points drawn according to a maximin
LHS design on Xnest. These figures enable to propose a basis of functions for the prior mean of the processes
associated with the two codes.

For the first code, the scatter plots highlight a linear variation with respect to px1q1 and a multiplicative
inverse variation with respect to px1q2, so the proposed basis functions are:

h1 px1q “

ˆ

1 , px1q1 ,
1

px1q2

˙T

. (4.4)
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Figure 1. Hydrodynamic example: inputs and outputs of the two codes.

For the second code, only a multiplicative inverse variation with respect to ϕ1 is evident, so the proposed
basis functions are:

h2 pϕ1,x2q “

ˆ

1

max pϕ1, ϕ1min
q
, 1 , 1

˙T

. (4.5)

The denominator has a lower bound ϕ1min
in order to avoid any inversion problem around zero. ϕ1min

is set to
the small arbitrary value 0.1.

The image plot Figure 2c represents the UK prediction mean of the first code, obtained with the proposed
basis functions. The predicted value of y1 for the maximum value of px1q1 and the minimum value of px1q2 is
high compared with the values of the observations. So the first code has been evaluated at this input point and
gives the value of 3.4, which is consistent with the prediction. This illustrates the relevance of the proposed basis,
that is used to extrapolate the prediction at a point with no observations around. The image plot Figure 2e
represents the UK prediction mean of the second code, obtained with the proposed basis at a value of 0.5 for
ϕ1.

In the hydrodynamic example, the covariance functions are Matérn 5
2 . This enables to perform the

linearization of Proposition 3.4 and Corollary 3.5.
In both examples, the covariance functions include a non-zero nugget term (see [13] for further details), that

means that they can be written as:

Ci

´

x̄i, x̄
1

i

¯

“ σ2
i

”

Ki

´

x̄i, x̄
1

i

¯

` gδx̄i“x̄
1

i

ı

, (4.6)

where σi P R`, Ki is chosen in a parametric family (Gaussian or Matérn 5
2 ), g is the nugget term whose value is

10´6, and δ is the Kronecker delta function. This non-zero nugget term is used for reasons of numerical stability.

4.2. Prediction performance for a given set of observations

A set of validation observations is available. Let x
p1q
nest . . .x

pNnestq

nest be Nnest elements of Xnest.
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Figure 2. Hydrodynamic example: variation of the outputs y1 and y2 of the two codes with
respect to the most sensitive components of their inputs x1 and x2 for a set of 20 input points
drawn according to a maximin LHS design on Xnest. The image plots present the UK prediction
(conditional mean of the GP) of y1 and y2 for the same set of observations.

Denoting by ynest

´

x
p1q
nest

¯

. . . ynest

´

x
pNnestq

nest

¯

the evaluations of the nested code at these points, the performance

criterion of the nested predictor mean, also called error on the mean can be defined as:

Error on the mean “

Nnest
ř

i“1

´

ynest

´

x
piq
nest

¯

´ pynest

´

x
piq
nest

¯¯2

Nnest
ř

i“1

˜

ynest

´

x
piq
nest

¯

´
1

Nnest

Nnest
ř

j“1

ynest

´

x
pjq
nest

¯

¸2 , (4.7)

where pynest denotes a prediction of the nested code, which can be obtained with the analytical, linearized or
blind-box method.

For both examples, the validation set of 150 points is drawn according to a maximin LHS on Xnest.
Figure 3 presents, for the analytical example, an example of the prediction mean and 95% prediction interval

computed with the linearized and the blind box methods. The two predictors are built with the same set of 20
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Figure 3. Analytical example: Predictors of the nested code obtained with the linearized and
the blind box methods. The set of 20 observations is drawn according to a maximin LHS on
Xnest. Actual values shown by a continuous line, the prediction mean by a dotted line and the
95% prediction interval by a grey area.

Figure 4. Comparison of the prediction mean accuracy for the blind box and the linearized
(Prop. 3.4) methods, and, in the case of a Gaussian covariance function, the analytical method
(Prop. 3.3). The curves correspond to the median of 50 draws of maximin LHS designs on
X1 ˆ X2 of increasing size.

observation points drawn according to a maximin LHS design on Xnest. It can be seen that, in the blind box
method, the magnitude of the prediction interval is the same across the input domain and depends only on
the distance to the observation points. The prediction interval is too big in the area with small variations and
too small in the area with larger variations. On the contrary, the fact of taking into account the intermediary
observations (linearized method here) enables to better take into account the non-stationarity of the variations
of the nested code output.
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Figure 5. Analytical example: an example of the predictors Y c
1 , Y c

2 and Y c
nest. The black

line represents the real values of y1, y2 and ynest, the grey area, the 95% prediction interval
and the grey dotted line, the prediction mean. The mean and prediction interval of Y c

nest are
computed thanks to the linearized method. The vertical lines of the two left plots represent the
observations of the two codes, which are drawn according to LHS designs on X1 and µc

1 pX1q of
sizes 7 and 8. The number of observations is not the same for each code.

Figure 4 presents the error on the mean with the blind box and the linearized methods for both examples,
and the analytical method for the analytical example. For all methods, the predictors are built with the same
learning sets drawn according to maximin LHS designs on Xnest of increasing size.

The left figure, corresponding to the analytical example, shows the similar accuracies of the prediction mean
computed with the analytical and linearized methods proposed in Propositions 3.3 and 3.4.

For both examples, the precision of the prediction mean is better with the linearized method than with the
blind box method, showing the interest of taking into account the intermediary information.

The results show that the analytical and linearized methods lead to the same prediction mean accuracy. As
a reminder, the analytical method require the infinite differentiability of the second code. This assumption is
correct for the analytical example but not necessarily for the hydrodynamic example. The linearized method
require the prediction error of the first code to be small enough for the linearization to be valid. Since the
prediction error of the first code can be reduced thanks to a sequential enrichment of the initial design, the
required assumption of the analytical method is stronger than the one of the linearized method.

Consequently, the linearized method will be used in the remainder of the numerical applications.

4.3. Performances of the sequential designs

Figure 5 shows an example of the prediction mean and 95% prediction interval of the predictors Y c
1 , Y c

2 and
Y c

nest. The predictors Y c
1 and Y c

2 are not built with the same number of observations, so the predictor Y c
nest is

built with a different number of observations of the codes 1 and 2. The fact that the number of observations of
the two codes can be different will be useful for the sequential designs. Moreover the estimation of the prediction
variance of the nested code is accurate, and that will also be useful for the choice of the new observation point
in the sequential designs.

4.3.1. With identical computational costs for both codes

Figure 6 presents the error on the mean of the linearized predictor for the proposed sequential designs and
maximin LHS designs of increasing size. The initial designs of the sequential strategies are the same maximin
LHS designs on Xnest with 10 points for the analytical example and 20 points for the hydrodynamic example.
That is why the initial point of the three curves is the same on both line plots. The cost of the two codes are
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Figure 6. Comparison of the prediction mean accuracy of the linearized predictor with the
maximin LHS design on Xnest and the sequential designs applied to the two examples. In the
hydrodynamic example, the two curves representing the sequential designs are almost super-
imposed. The initial designs are the same for the three curves, with a size of 10 points for the
analytical example and 20 points for the hydrodynamical example. The draw of the maximin
LHS design on Xnest is repeated 50 times and the curves present the median of the associated
results. The costs of the two codes are assumed to be the same.

considered to be the same, that means τ1 “ τ2 “ 1. The figure shows the relevance of the proposed sequential
designs for improving the prediction mean of the linearized nested predictor, compared with the maximin LHS
designs on Xnest.

In the analytical example, the best I-optimal sequential design enables to obtain the most accurate predic-
tion mean at a given computational cost. In the hydrodynamic example, in the first 10 iterations, the best
I-optimal design outperforms the chained I-optimal design. After this initial stage, the best I-optimal design
calls alternately code 1 and code 2 and becomes equivalent to the chained I-optimal design.

Figure 7 shows to which of the two codes the new observations points are added for the best I-optimal
sequential design. In both examples new observation points of the first code are first added.

It seems that the uncertainty propagated from the first code into the second code is predominant at the
beginning. The best I-optimal sequential design aims therefore at reducing this uncertainty by first adding new
observation points of the first code. Then new observations of both codes are added.

4.3.2. With different computational costs

Figure 8 shows the prediction mean accuracy with the best I-optimal sequential design when the costs of the
two codes are different. Two cases are presented. The first one corresponds to the case where the cost associated
with the first code is twice the one associated with the second code, that means τ1 “ 2 and τ2 “ 1, the second
corresponds to the case where the cost associated with the second code is twice the one associated with the first
code, that means τ1 “ 1 and τ2 “ 2.

It can be seen that for both examples, the prediction accuracy at a given total computational cost is better
when the cost of the first code is lower, that means when more observation points of the first code can be added
for the same computational budget. These results are consistent with those of figure 7.
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Figure 7. Comparison of the number of evaluations of each code in the case of a sequential
best I-optimal design applied to both examples. The curves correspond to the median of 50
draws of the initial design. The costs of the two codes are assumed to be the same.

Figure 8. Performances of the best I-optimal sequential design in terms of prediction mean
accuracy with different computational costs for the two codes. 1:2 Ø τ1 “ 1 and τ2 “ 2, 2:1
Ø τ1 “ 2 and τ2 “ 1. The curves correspond to the median of 50 draws of the initial maximin
LHS design on Xnest. The initial designs are the same for the two curves corresponding to each
example and contain 15 observations and 30 observations on both codes for the analytical and
the hydrodynamical example.

5. Conclusions and future work

In this paper the Gaussian process formalism is adapted to the case of two nested computer codes.
Two methods to compute quickly the mean and variance of the nested code predictor have been proposed.

The first one, called “analytical” computes the exact value of the two first moments of the predictor. But it
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cannot be applied to the coupling of more than two codes. The second one, called “linearized”, enables to obtain
a Gaussian predictor of the nested code, with mean and variance that can be instantly computed. The approach
could be generalized to the coupling of more than two codes.

Both proposed methods take into account the intermediary information, that means the output of the first
code. A comparison with the reference method, called “blind box”, is made. In this method a Gaussian process
regression of the block of the two codes is made without considering the intermediary observations. The numerical
examples illustrate the interest of taking into account the intermediary information in terms of prediction mean
accuracy.

Moreover, two sequential designs are proposed in order to improve the prediction accuracy of the nested
predictor. The first one, the “chained” I-optimal sequential design, corresponds to the case where the two codes
cannot be launched separately. The second one, the “best” I-optimal sequential design, allows to choose to which
of the two codes to add a new observation point and to take into account the different computational costs of
the two codes.

The numerical applications show the interest of the sequential designs compared with a space-filling design
(maximin LHS). Furthermore, they illustrate the advantage, in terms of prediction mean accuracy, of choosing
to which code to add a new observation point compared with simply adding new observation points of the
nested code. The results show an amplification of the uncertainties in the chain of codes, leading to the addition
of observation points of the first code firstly in the best I-optimal sequential design. It can be assumed that this
should be similar with the coupling of more than two codes. In other words, the uncertainty of the beginning
of the chain should be reduced as a priority.

This paper has been focused on the case of two nested codes with a scalar intermediary variable. Considering
the case of a functional intermediary variable seems promising for future work.

Appendix A. Proof of Proposition 2.1

According to equation (2.5):

Y c
i pxiq

d
“ µc

i pxiq ` σ
c
i pxiq ξi, ξi „ N p0, 1q, i P t1, 2u,

where ξ1 and ξ2 are independent according to the independence of the initial processes Y1 and Y2 and the fact
that Y c

i :“ Yi|y
obs
i .

Therefore the process modeling the nested code can be written:

Y c
nestpx1,x2q “ Y c

2 pY
c
1 px1q,x2q

“ µc
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2q ` σ

c
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2q ξ2.

Given the independence of ξ1 and ξ2 and the fact that E pξ2q “ 0, it can be inferred that the first moment of
Y c

nest can be written:

E pY c
nestpx1,x2qq “ E pµc

2 pµ
c
1 px1q ` σ

c
1 px1q ξ1,x2qq .

By noting that:

•

pY c
nestpx1,x2qq

2
“ pY c

2 pY
c
1 px1q,x2qq

2

“ pµc
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2q ` σ

c
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2q ξ2q

2

“ pµc
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2qq

2
` pσc

2 pµ
c
1 px1q ` σ

c
1 px1q ξ1,x2qq

2
ξ2
2

`2µc
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2qσ

c
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2q ξ2,
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• ξ1 and ξ2 are independent,
• E pξ2q “ 0 and E

`

ξ2
2

˘

“ 1,

the second moment of Y c
nest can be written:

E
´

pY c
2 pY

c
1 px1q,x2qq

2
¯

“ E

«

pµc
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2qq

2

`pσc
2 pµ

c
1 px1q ` σ

c
1 px1q ξ1,x2qq

2

ff

.

Appendix B. Proof of Lemma 3.1

If X „ N pµ, σ2q and g px, a, b, cq :“ xa exp
“

bx` cx2
‰

, then the mean of g px, a, b, cq is equal to:

E rg pX, a, b, cqs “
ż

R
g px, a, b, cq

1

σ
?

2π
exp

˜

´
1

2

ˆ

x´ µ

σ

˙2
¸

dx.

It can be rewritten:

E rg pX, a, b, cqs “

ż

R
xa exp

`

bx` cx2
˘ 1

σ
?

2π
exp

˜

´
1

2

ˆ

x´ µ

σ

˙2
¸

dx

“ exp

˜

´
1

2σ2

˜

`

σ2b` µ
˘2

2cσ2 ´ 1
` µ2

¸¸

ż

R
xa

1

σ
?

2π
exp

˜

´
1

2

1´ 2cσ2

σ2

ˆ

x´
σ2b` µ

1´ 2cσ2

˙2
¸

dx

“ exp

˜

´
1

2σ2

˜

`

σ2b` µ
˘2

2cσ2 ´ 1
` µ2

¸¸

1
?

1´ 2cσ2
E
“

Xa
g

‰

,

where Xg „ N
ˆ

σ2b` µ

1´ 2cσ2
,

σ2

1´ 2cσ2

˙

, under the condition that 1´ 2cσ2 ą 0.

Moreover, for Y „ N
`

µY , σ
2
Y

˘

, any moment of order k, k P N, of Y can be computed analytically [22]:

E
“

Y k
‰

“

t k
2 u
ÿ

i“0

ˆ

k

2i

˙

µk´2i
Y

p2iq!

2ii!
σ2i
Y .

Hence, given that all the moments of a Gaussian variable can be computed analytically, the mean
E rg pX, a, b, cqs can be computed analytically, and its expression is:

E rg pX, a, b, cqs “ exp

˜

´
1

2σ2

˜

`

σ2b` µ
˘2

2cσ2 ´ 1
` µ2

¸¸

1
?

1´ 2cσ2

t a
2 u
ÿ

i“0

ˆ

a

2i

˙ˆ

σ2b` µ

1´ 2cσ2

˙a´2i
p2iq!

2ii!

ˆ

σ2

1´ 2cσ2

˙i

.

(B.1)

Appendix C. Proof of Lemma 3.2

We have:

g px, ai, bi, ciq g px, aj , bj , cjq “ xaixaj exp
`

bix` cix
2 ` bjx` cjx

2
˘

“ xai`aj exp
`

pbi ` bjqx` pci ` cjqx
2
˘

“ g px, ai ` aj , bi ` bj , ci ` cjq .
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Appendix D. Proof of Proposition 3.3

D.1 First moment

In the framework of Universal Kriging, according to equation (2.10) the conditional mean function of the
process modeling the second code can be written:

µc
2 pϕ1,x2q “ h2 pϕ1,x2q

T
pβ2 ` C2

`

pϕ1,x2q , x̄
obs
2

˘

vc

“
M2
ř

i“1

ph2 pϕ1,x2qqi

´

pβ2

¯

i
`

N1
ř

i“1

C2

´

pϕ1,x2q ,
´

ϕ
piq
1 ,x

piq
2

¯¯

pvcqi

“ p1q ` p2q,

(D.1)

where ϕ1 „ N
´

µc
1, pσ

c
1q

2
¯

, and

vc “
`

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
”

yobs
2 ´ h2

`

x̄obs
2

˘T
pβ2

ı

. (D.2)

According to the assumptions of Proposition 3.3 the mean basis functions h2 can be written:

ph2 pϕ1,x2qqi “ mipx2q g pϕ1, ai, 0, 0q ,

with mi deterministic functions and g px, a, b, cq :“ xa exp
`

bx` cx2
˘

, pa, b, cq P Nˆ R2.
In the same way, the covariance function C2 is in the Gaussian class, so according to equation (2.6), it can

be written:

C2

´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯

“ σ2
2k

ˆ

ϕ1 ´ ϕ
1
1

`ϕ1

˙ d2
ź

i“1

k

ˆ

px2qi ´ px
1
2qi

`i

˙

,

with k : x ÞÑ exp
`

´x2
˘

. So, one can write that:

C2

´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯

“ k

ˆ

ϕ1 ´ ϕ
1
1

`ϕ1

˙

`
`

x2 ´ x
1
2

˘

,

C2

´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯

“ exp

˜

´

ˆ

ϕ11
`ϕ1

˙2
¸

g

ˆ

ϕ1, 0,
2ϕ11
`2ϕ1

,
´1

`2ϕ1

˙

`
`

x2 ´ x
1
2

˘

, (D.3)

where ` is a deterministic function defined by:

`
`

x2 ´ x
1
2

˘

“ σ2
2

d2
ź

i“1

exp

˜

´

ˆ

px2qi ´ px
1
2qi

`i

˙2
¸

, (D.4)

with `i, 1 ď i ď d2 the correlation lengths associated with x2.
So the terms p1q and p2q of the equation (D.1) can be written:

p1q “
M2
ř

i“1

g pϕ1, ai, 0, 0q mipx2q

´

pβ2

¯

i
,

p2q “
N1
ř

i“1

pvcqi `
´

x2 ´ x
piq
2

¯

exp

¨

˝´

˜

ϕ
piq
1

`ϕ1

¸2
˛

‚g

˜

ϕ1, 0,
2ϕ
piq
1

`2ϕ1

,
´1

`2ϕ1

¸

.
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According to the fact that mi and ` are deterministic functions, pβ2, vc, x
piq
2 and x2 deterministic vectors,

and ϕ
piq
1 deterministic real numbers, then:

E rp1qs “
M2
ÿ

i“1

E rg pϕ1, ai, 0, 0qs mipx2q

´

pβ2

¯

i
,

E rp2qs “
N1
ÿ

i“1

pvcqi `
´

x2 ´ x
piq
2

¯

exp

¨

˝´

˜

ϕ
piq
1

`ϕ1

¸2
˛

‚E

«

g

˜

ϕ1, 0,
2ϕ
piq
1

`2ϕ1

,
´1

`2ϕ1

¸ff

.

According to Lemma 3.1, and the fact that 1´2

ˆ

´1

`2ϕ1

˙

σ2 ą 0, the means E rp1qs and E rp2qs can be calculated

analytically, and consequently, the mean E rµc
2 pϕ1,x2qs can be calculated analytically, and its expression is:

E rµc
2 pϕ1,x2qs “

M2
ř

i“1

E rg pϕ1, ai, 0, 0qs mipx2q

´

pβ2

¯

i

`
N1
ř

i“1

pvcqi `
´

x2 ´ x
piq
2

¯

exp

¨

˝´

˜

ϕ
piq
1

`ϕ1

¸2
˛

‚E

«

g

˜

ϕ1, 0,
2ϕ
piq
1

`2ϕ1

,
´1

`2ϕ1

¸ff

,

(D.5)

where vc is defined by equation (D.2), ` px2 ´ x
1
2q is defined by equation (D.4), `ϕ1

is the correlation length

associated with ϕ1 and pβ2 is given by equation (2.9).

D.2 Second moment

From equation (2.10) and (2.12), we have:

µc
2 pϕ1,x2q “ h2 pϕ1,x2q

T
pβ2 ` C2

`

pϕ1,x2q , x̄
obs
2

˘

vc,

and:

pσc
2 pϕ1,x2qq

2
“ C2 ppϕ1,x2q , pϕ1,x2qq ´ C2

`

pϕ1,x2q , x̄
obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
C2

`

x̄obs
2 , pϕ1,x2q

˘

`

”

h2 pϕ1,x2q
T
´ C2

`

pϕ1,x2q , x̄
obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
h2

`

x̄obs
2

˘T
ı

ˆ

”

h2

`

x̄obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
h2

`

x̄obs
2

˘T
ı´1

ˆ

”

h2 pϕ1,x2q ´ h2

`

x̄obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
C2

`

x̄obs
2 , pϕ1,x2q

˘

ı

,

Hence, it can be written that:

pµc
2 pϕ1,x2qq

2
` pσc

2 pϕ1,x2qq
2
“ σ2

2 ` h2 pϕ1,x2q
T
Ahh2 pϕ1,x2q

l jh n

(1)

`C2

`

pϕ1,x2q , x̄
obs
2

˘

Ac C2

`

x̄obs
2 , pϕ1,x2q

˘

l jh n

(2)

`C2

`

pϕ1,x2q , x̄
obs
2

˘

Ach h2 pϕ1,x2q
l jh n

(3)

,

(D.6)



EFFICIENT SEQUENTIAL EXPERIMENTAL DESIGN FOR SURROGATE MODELING OF NESTED CODES 265

where:

Ah “ pβ2
pβ
T

2 `

´

h2

`

x̄obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
h2

`

x̄obs
2

˘T
¯´1

,

Ac “ vcv
T
c ´

`

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
`
`

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
h2

`

x̄obs
2

˘T

ˆ

”

h2

`

x̄obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
h2

`

x̄obs
2

˘T
ı´1

h2

`

x̄obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
,

Ach “ 2vcpβ
T

2 ´ 2
`

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
h2

`

x̄obs
2

˘T
”

h2

`

x̄obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
h2

`

x̄obs
2

˘T
ı´1

.

(D.7)

According to the assumptions of Proposition 3.3 and to Lemma 3.2, the terms p1q, p2q and p3q of the
equation (D.6) can be rewritten:

p1q “
M2
ř

i“1

M2
ř

j“1

pAhqij ph2 pϕ1,x2qqi ph2 pϕ1,x2qqj “
M2
ř

i“1

M2
ř

j“1

pAhqij mi px2qmj px2q g pϕ1, ai, 0, 0q g pϕ1, aj , 0, 0q

“
M2
ř

i“1

M2
ř

j“1

pAhqij mi px2qmj px2q g pϕ1, ai ` aj , 0, 0q ,

p2q “
N1
ř

i“1

N1
ř

j“1

pAcqij C2

´

pϕ1,x2q ,
´

ϕ
piq
1 ,x

piq
2

¯¯

C2

´

pϕ1,x2q ,
´

ϕ
pjq
1 ,x

pjq
2

¯¯

“
N1
ř

i“1

N1
ř

j“1

pAcqij `
´

x2 ´ x
piq
2

¯

`
´

x2 ´ x
pjq
2

¯

exp

¨

˚

˝

´

´

ϕ
piq
1

¯2

`

´

ϕ
pjq
1

¯2

`2ϕ1

˛

‹

‚

g

˜

ϕ1, 0,
2ϕ
piq
1

`2ϕ1

,
´1

`2ϕ1

¸

ˆ g

˜

ϕ1, 0,
2ϕ
pjq
1

`2ϕ1

,
´1

`2ϕ1

¸

“
N1
ř

i“1

N1
ř

j“1

pAcqij `
´

x2 ´ x
piq
2

¯

`
´

x2 ´ x
pjq
2

¯

exp

¨

˚

˝

´

´

ϕ
piq
1

¯2

`

´

ϕ
pjq
1

¯2

`2ϕ1

˛

‹

‚

g

˜

ϕ1, 0, 2
ϕ
piq
1 ` ϕ

pjq
1

`2ϕ1

,
´2

`2ϕ1

¸

,

p3q “
N1
ř

i“1

M2
ř

j“1

pAchqij C2

´

pϕ1,x2q ,
´

ϕ
piq
1 ,x

piq
2

¯¯

ph2 pϕ1,x2qqj

“
N1
ř

i“1

M2
ř

j“1

pAchqij `
´

x2 ´ x
piq
2

¯

exp

¨

˝´

˜

ϕ
piq
1

`ϕ1

¸2
˛

‚mj px2q g

˜

ϕ1, 0,
2ϕ
piq
1

`2ϕ1

,
´1

`2ϕ1

¸

g pϕ1, aj , 0, 0q

“
N1
ř

i“1

M2
ř

j“1

pAchqij `
´

x2 ´ x
piq
2

¯

exp

¨

˝´

˜

ϕ
piq
1

`ϕ1

¸2
˛

‚mj px2q g

˜

ϕ1, aj ,
2ϕ
piq
1

`2ϕ1

,
´1

`2ϕ1

¸

.

According to the fact that mi and ` are deterministic functions, x2 and x
piq
2 deterministic vectors, Ah, Ac

and Ach deterministic matrices, and ϕ
piq
1 and `ϕ1

deterministic real numbers, it can be written:

E rp1qs “
M2
ÿ

i“1

M2
ÿ

j“1

pAhqij mi px2qmj px2qE rg pϕ1, ai ` aj , 0, 0qs ,
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E rp2qs “
N1
ř

i“1

N1
ř

j“1

pAcqij `
´

x2 ´ x
piq
2

¯

`
´

x2 ´ x
pjq
2

¯

exp

¨

˚

˝

´

´

ϕ
piq
1

¯2

`

´

ϕ
pjq
1

¯2

`2ϕ1

˛

‹

‚

ˆE

«

g

˜

ϕ1, 0, 2
ϕ
piq
1 ` ϕ

pjq
1

`2ϕ1

,
´2

`2ϕ1

¸ff

,

E rp3qs “
N1
ÿ

i“1

M2
ÿ

j“1

pAchqij `
´

x2 ´ x
piq
2

¯

exp

¨

˝´

˜

ϕ
piq
1

`ϕ1

¸2
˛

‚mj px2qE

«

g

˜

ϕ1, aj ,
2ϕ
piq
1

`2ϕ1

,
´1

`2ϕ1

¸ff

.

Hence, according to the Lemma 3.1, the mean E rp1qs can be computed analytically. In the same way, according

to the Lemma 3.1, and the fact that 1´4

ˆ

´1

`2ϕ1

˙

pσq2 ą 0 and 1´2

ˆ

´1

`2ϕ1

˙

pσq2 ą 0, the means E rp2qs and E rp3qs

can be calculated analytically. Consequently, the mean E
”

pµc
2 pϕ1,x2qq

2
` pσc

2 pϕ1,x2qq
2
ı

can be calculated

analytically, and its expression is:

E
”

pµc
2 pϕ1,x2qq

2
` pσc

2 pϕ1,x2qq
2
ı

“ σ2
2 `

M2
ř

i“1

M2
ř

j“1

pAhqij mi px2qmj px2qE rg pϕ1, ai ` aj , 0, 0qs

`
N1
ř

i“1

N1
ř

j“1

pAcqij `
´

x2 ´ x
piq
2

¯

`
´

x2 ´ x
pjq
2

¯

exp

¨

˚

˝

´

´

ϕ
piq
1

¯2

`

´

ϕ
pjq
1

¯2

`2ϕ1

˛

‹

‚

E

«

g

˜

ϕ1, 0, 2
ϕ
piq
1 ` ϕ

pjq
1

`2ϕ1

,
´2

`2ϕ1

¸ff

`
N1
ř

i“1

M2
ř

j“1

pAchqij `
´

x2 ´ x
piq
2

¯

mj px2q exp

¨

˝´

˜

ϕ
piq
1

`ϕ1

¸2
˛

‚E

«

g

˜

ϕ1, aj ,
2ϕ
piq
1

`2ϕ1

,
´1

`2ϕ1

¸ff

,

(D.8)
where Ah, Ac and Ach are defined in equation (D.7), vc is defined in equation (D.2), ` px2 ´ x

1
2q is defined

by equation (D.4), `ϕ1
is the correlation length associated with ϕ1 and pβ2 is given by equation (2.9).

From the two previous paragraphs and Proposition 2.1, it can be inferred that, if verifying the assumptions
of Proposition 3.3, then the first and the second moments of Y c

nestpx1,x2q can be calculated analytically.

Appendix E. Proof of Proposition 3.4

If Y c
nestpx1,x2q “ Y c

2 pY
c
1 px1q,x2q where Y c

i “ µc
i ` ε

c
i , ε

c
i „ GP p0, Cc

i q , i P t1, 2u, then, if εc1 is small enough,
the process Y c

nestpx1,x2q can be linearized:

Y c
nestpx1,x2q “ µc

2pµ
c
1px1q ` ε

c
1px1q,x2q ` ε

c
2pµ

c
1px1q ` ε

c
1px1q,x2q,

« µc
2pµ

c
1px1q,x2q `

Bµc
2

Bϕ1
pµc

1px1q,x2qε
c
1px1q ` ε

c
2pµ

c
1px1q,x2q.

So it can be written:

Y c
nestpx1,x2q « µc

nest ` ε
c
nestpµ

c
1px1q,x2q, (E.1)

with

µc
nest px1,x2q “ µc

2pµ
c
1px1q,x2q, (E.2)
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and

εcnest “
Bµc

2

Bϕ1
pµc

1px1q,x2qε
c
1px1q ` ε

c
2pµ

c
1px1q,x2q. (E.3)

εc1 and εc2 are independent centred Gaussian processes, so εcnest is a centred Gaussian process, whose covariance
function, Cc

nest, is given by:

Cc
nestppx1,x2q, px

1
1,x

1
2qq “ Cc

2ppµ
c
1px1q,x2q, pµ

c
1px

1
1q,x

1
2qq

`
Bµc

2

Bϕ1
ppµc

1px1q,x2qq
Bµc

2

Bϕ1

`

pµc
1px

1
1q,x

1
2q
˘

Cc
1px1,x

1
1q. (E.4)

From Eqs (E.1), (E.2), (E.3) and (E.5), it can be inferred that the predictor of the nested code can be defined
as a Gaussian process with mean µc

nest defined by equation (E.2), and covariance function Cc
nest defined by

equation (E.5).
Moreover, it can be inferred from equation (2.10):

Bµc
2

Bϕ1
pϕ1,x2q “

ˆ

Bh2

Bϕ1
pϕ1,x2q

˙T

pβ2 `
BCc

2

Bϕ1

`

pϕ1,x2q , x̄
obs
2

˘ `

C2

`

x̄obs
2 , x̄obs

2

˘˘´1
”

yobs
2 ´ h2

`

x̄obs
2

˘T
pβ2

ı

. (E.5)

Appendix F. Proof of Corollary 3.5

F.1 Explicit mean

According to equation (2.10), if hi and Ci can be computed explicitly, then µc
i can be computed explicitly.

Therefore, according to equation (3.4), the mean of the Gaussian linearized predictor can be computed explicitly.

F.2 Explicit variance

According to equation (2.12), if hi and Ci can be computed explicitly, then Cc
i can be computed explicitly.

According to equation (E.5), if h2, C2 and the derivatives
Bh2

Bϕ1
pϕ1,x2q and

BC2

Bϕ1

`

pϕ1,x2q , x̄
obs
2

˘

can be

computed explicitly, then the derivative of µc
2 with respect to ϕ1 can be computed explicitly.

Therefore, according to equation (3.4), the variance of the Gaussian linearized predictor can be computed
explicitly.

Hence it can be inferred that, if hi and Ci and the derivatives
Bh2

Bϕ1
pϕ1,x2q and

BC2

Bϕ1

`

pϕ1,x2q , x̄
obs
2

˘

can be

computed explicitly, then the mean and the variance of the Gaussian linearized predictor of the nested code can
be computed explicitly.

Moreover, the derivative
BC2

Bϕ1

`

pϕ1,x2q , x̄
obs
2

˘

can be computed explicitly if C2 is in the Gaussian or Matérn

5

2
class, and the associated explicit formulas are given in what follows.



268 S. MARQUE-PUCHEU ET AL.

F.3 Matérn class

If we denote by:

δ “ d
´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯

“

g

f

f

f

e

´

ϕ1 ´ ϕ
1

1

¯2

`2ϕ1

`

d2
ÿ

i“1

ppx2qi ´ px2qiq
2

`2i
,

(F.1)

then, according to equation (2.7), the Matérn kernel can be rewritten:

K 5
2
pδq “

ˆ

1`
?

5δ `
5

3
δ2

˙

exp
´

´
?

5δ
¯

. (F.2)

Moreover, we have:

Bδ

Bϕ1
“
ϕ1 ´ ϕ

1

1

`2ϕ1

1

δ
, (F.3)

and

BK 5
2

Bδ
pδq “ exp

`

´
?

5δ
˘

„

´
?

5

ˆ

1`
?

5δ `
5

3
δ2

˙

`
?

5`
10

3
δ



“ exp
`

´
?

5δ
˘

„

´5δ ´
?

5
5

3
δ2 `

10

3
δ



“ ´
5

3
δ
`

1`
?

5δ
˘

exp
`

´
?

5δ
˘

,

(F.4)

By noting that in the case of a Matérn
5

2
kernel:

BC2

Bϕ1
“
BK 5

2

Bδ

Bδ

Bϕ1
,

the derivative of C2 with respect to ϕ1 is:

BC2

Bϕ1

´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯

“ ´
5

3

ϕ1 ´ ϕ
1

1

`2ϕ1

”

1`
?

5 d
´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯ı

exp
”

´
?

5 d
´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯ı

.

(F.5)

F.4 Gaussian class

According to equation (2.6), the Gaussian kernel can be rewritten:

KGauss pδq “ exp
`

´δ2
˘

. (F.6)

Hence, we have:
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BKGauss

Bδ
pδq “ ´2δ exp

`

´δ2
˘

. (F.7)

By noting that, in the case of a Gaussian kernel:

BC2

Bϕ1
“
BKGauss

Bδ

Bδ

Bϕ1
,

the derivative of C2 with respect to ϕ1 is:

BC2

Bϕ1

´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯

“ ´2
ϕ1 ´ ϕ

1

1

`2ϕ1

exp

„

´d
´

pϕ1,x2q ,
´

ϕ
1

1,x
1

2

¯¯2


. (F.8)
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