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LAMN PROPERTY FOR THE DRIFT AND VOLATILITY

PARAMETERS OF A SDE DRIVEN BY A STABLE LÉVY PROCESS

Emmanuelle Clément1,*, Arnaud Gloter2 and Huong Nguyen3

Abstract. This work focuses on the local asymptotic mixed normality (LAMN) property from high
frequency observations, of a continuous time process solution of a stochastic differential equation driven
by a truncated α-stable process with index α ∈ (0, 2). The process is observed on the fixed time interval
[0,1] and the parameters appear in both the drift coefficient and scale coefficient. This extends the
results of Clément and Gloter [Stoch. Process. Appl. 125 (2015) 2316–2352] where the index α ∈ (1, 2)
and the parameter appears only in the drift coefficient. We compute the asymptotic Fisher information
and find that the rate in the LAMN property depends on the behavior of the Lévy measure near zero.
The proof relies on the small time asymptotic behavior of the transition density of the process obtained
in Clément et al. [Preprint HAL-01410989v2 (2017)].
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1. Introduction

Modeling with pure jump Lévy processes plays an important role in many fields, especially in mathematical
finance (see for example [3, 16, 20]) and parametric inference for such processes is a currently active subject.

In this paper, we are concerned with parametric estimation of a stochastic differential equation driven by
a pure jump Lévy process, from high-frequency observations on a fixed observation time. More precisely we
consider the statistical experiment (Rn,Bn, (Pβn)β∈Θ⊂R2) corresponding to the observation of a Lévy driven

stochastic equation at discrete times (Xβ
i
n

)1≤i≤n, solution of

Xβ
t = x0 +

∫ t

0

b(Xβ
s , θ)ds+ σLt, t ∈ [0, 1],

where (Lt)t∈[0,1] is a truncated α-stable process with exponent α ∈ (0, 2) and β = (θ, σ)T ∈ R × (0,∞) is an
unknown parameter to be estimated. We prove in this work that the local asymptotic mixed normality property
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(LAMN) holds for the parameter β. The LAMN property has been introduced by Jeganathan [14, 15] to extend
to the markovian case the LAN property introduced in the pioneer works by Lecam and Hájek (see [10, 21]) in
the i.i.d. case. This property permits in particular to identify the optimal estimation rate for the parameters θ
and σ and the asymptotic Fisher information.

Parametric inference and LAN property for pure jump Lévy processes based on high frequency observations
have been investigated in several papers, see for example Aı̈t-Sahalia and Jacod [1, 2], Kawai and Masuda
[17, 18], Masuda [22]. In particular, in [22], the LAN property is established and estimators are proposed for
the parameters (θ, σ, α) in the model Xt = θt+ σLαt , where (Lαt ) is an α-stable process. Aı̈t-Sahalia and Jacod
[1, 2] considered the model Xt = σLαt + θYt where (Yt) is a Lévy process, independent of (Lαt ) and dominated
by (Lαt ). More recently, Ivanenko, Kulik and Masuda [12] proved the LAN property for the parameter (θ, σ) in
the model Xt = θt + σZt + Ut, where Z is a locally α-stable process and U is an independent and less active
process. In all these works, the increments (X i

n
−X i−1

n
)1≤i≤n are independent and the transition density of

the discrete time process (X i
n

)1≤i≤n is almost explicit. Extensions to stochastic equations driven by pure jump
Lévy processes are not immediate and require a different approach since the transition density of the Markov
chain (X i

n
)1≤i≤n is unknown. Moreover they involve a random asymptotic Fisher information and lead to the

LAMN property. Concerning the parametric estimation of a stochastic differential equation driven by a pure
jump Lévy process from high frequency observations on a fixed observation time, we can mention the recent
paper by Masuda [23] where some estimators of the parameters (θ, σ) are proposed for the general equation

Xt = x0 +

∫ t

0

b(Xs, θ)ds+

∫ t

0

c(Xs−, σ)dLs,

where L is a locally α-stable process, with α ∈ [1, 2). However in that case the asymptotic efficiency of the
estimators is not yet establish and to our knowledge, the only result in that direction is given in Clément and
Gloter [5], where the LAMN property is proved for the estimation of the drift parameter θ for the process
solution of (2.1) (with σ = 1), in the case α ∈ (1, 2). They show that the LAMN property is satisfied with

rate rn = n
1
2−

1
α and information Iθ =

∫ 1

0
∂θb(X

β
s , θ)

2ds
∫
R
ϕ′α(u)2

ϕα(u) du, where ϕα is the density of the standard

α-stable distribution with characteristic function u 7→ e−C(α)|u|α .
Based on the main ideas of [5] and using the results of [6], we extend in the present paper these results to

α ∈ (0, 2) and prove that the LAMN property holds for the parameters (θ, σ) with rate rn =

(
n

1
2−

1
α 0

0 n−
1
2

)

and information matrix I =

(
I11 0

0 I22

)
where I11 = 1

σ2 Iθ and I22 = 1
σ2

∫
R

(ϕα(u)+uϕ′α(u))
2

ϕα(u) du. The proof is

mainly based on the L2-regularity property of the transition density (see Jeganathan [14]) and on Malliavin
calculus (see for example Gobet [8] for the use of Malliavin calculus in the case of a diffusion process). The L2-
regularity property is established here by using the asymptotic behavior of the density of the process solution
of (2.1) in small time as well as its derivative with respect to the parameter, given in [6] and based on the
Malliavin calculus for jump processes developed by Bichteler et al. [4]. It also requires a careful study of the
asymptotic behavior of the information matrix based on one observation of the process, this is the subject of
Section 3. This paper contains also an independent and interesting result stating a continuity property with
respect to the conditioning variable in a conditional expectation (see Prop. 6.8).

This paper is organized as follows. The main results (asymptotic expansion of the log-likelihood function and
LAMN property) are stated in Section 2. Section 3 studies the asymptotic behavior of the Fisher information

matrix based on the observation of Xβ
1
n

(as n goes to infinity). The proof of the main results are given in

Section 4 and Section 5. Finally, Section 6 contains some additional technical proof required to establish the
results of Section 3.
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2. Main results

We consider the process (Xβ
t )t∈[0,1] solution to

Xβ
t = x0 +

∫ t

0

b(Xβ
s , θ)ds+ σLt t ∈ [0, 1], (2.1)

where (Lt)t∈[0,1] is a pure jump Lévy process defined on some probability space (Ω,A,P) and we are interested

in the statistical properties of the process (Xβ
t ), based on the discrete time observations (Xβ

i/n)i=0,...n. We

assume that the following assumptions are fulfilled.
H1:

(a) The function b has bounded derivatives up to order five with respect to both variables.

(bi) The Lévy process (Lt)t∈[0,1] is given by Lt =
∫ t

0

∫
[−1,1]

z{µ(ds, dz) − υ(ds,dz)} +
∫ t

0

∫
[−1,1]c

zµ(ds,dz)

where µ is a Poisson random measure, with compensator υ(dt, dz) = dt× F (z)dz where F (z) is given on
R by F (z) = 1

|z|α+1 1|z|6=0τ(z), α ∈ (0, 2). We assume that τ is a non negative smooth function equal to 1

on [−1,1], vanishing on [−2, 2]c such that 0 ≤ τ ≤ 1.

(bii) We assume that ∀p ≥ 1,
∫
R

∣∣∣ τ ′(u)
τ(u)

∣∣∣p τ(u)du <∞,
∫
R

∣∣∣ τ ′′(u)
τ(u)

∣∣∣p τ(u)du <∞.

These assumptions are sufficient to ensure that (2.1) has an unique solution belonging to Lp,∀p ≥ 1, and that

Xβ
t admits a density, for t > 0 (see [24]). Moreover, it is proved in [6] that this density is differentiable with

respect to β.

Remark 2.1. Our assumptions on the Lévy measure F are quite restrictive and reduce the generality of
our results but simplify the proofs which nevertheless remain still technical. There are mainly two important
properties required on the Lévy measure in our approach. First, since our method is based on Malliavin calculus,
the Lp−bounds for the tails of the Lévy process are crucial to ensure that our process belongs to the Malliavin
space. Secondly, the stable behavior of the Lévy measure around zero is also required to make the rescaled
process (n1/αLt/n) close to the α-stable process (Lαt ). The introduction of the truncation function τ permits
to address both issues and to avoid more technical proofs. In particular it permits to ensure that the process
(n1/αLt/n) has no jump of size larger than 2n1/α and consequently makes easier the control of the asymptotic
behavior of the Malliavin weights (mainly studied in [6]). Moreover the exact stable behavior of the Lévy measure
around zero (τ = 1) gives the equality between the rescaled process (n1/αLt/n) and the α-stable process (Lαt ),
and also the equality of the corresponding Poisson measures, on a set An whose complementary has small
probability (P(Acn) ≤ C/n, see Lem. 3.3). This property is repeatedly used in our proofs (see for example the
proof of Thm. 2.5) and is also essential to study the limit of the Malliavin weights in [6].

However, since the information matrix obtained in the LAMN property (established in Cor. 2.6) does not
depend on the function τ , this suggests that the same result probably holds for a more general Lévy measure
even with no integrability conditions on the large jumps and that the truncation or integrability assumptions
should only be introduced in the proof sections. To that end, a possible extension of our paper (and also of [6])
could be to replace τ by a more general function g such that g(0) = 1 and satisfying (bii), but up to now we do
not know how to obtain the key results established in [6] in this more general context.

Before stating our main results, we introduce some notations which are used throughout this paper. For a
vector h ∈ R2, hT denotes the transpose of h, and |h| denotes the euclidean norm. For a function f defined on
R×R2 depending on both variables (x, β), here β = (θ, σ)T ∈ R× (0,+∞), we denote by f ′ the derivative of f
with respect to the variable x, by ∂θf the derivative of f with respect to the parameter θ, by ∂σf the derivative

of f with respect to the parameter σ, and ∇βf =

(
∂θf

∂σf

)
.
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We denote by pβi/n(x, y) the transition density of the homogeneous Markov chain (Xβ
i/n)i=0,...n, by (Fi/n)i

the σ-field such that Fi/n = σ(Xβ
s , s ≤ i/n) = σ(Ls, s ≤ i/n) and by Pβn the law of the vector (Xβ

1
n

, ..., Xβ
1 ) on

Rn.
Our first result is an asymptotic expansion of the log-likelihood ratio.

Theorem 2.2. We assume that H1 holds. Let rn =

(
n

1
2−

1
α 0

0 n−
1
2

)
, then for every h ∈ R2

log
dPβ+rnh

n

dPβn
(Xβ

1
n

, ..., Xβ
1 ) = hTJn(β)

1
2Nn(β)− 1

2
hTJn(β)h+ oP(1), (2.2)

with

Jn(β) = rn

n−1∑
i=0

E
[
ξi,n(β)ξTi,n(β)|Fi/n

]
rn,

Nn(β) = Jn(β)
−1
2 rn

n−1∑
i=0

ξi,n(β),

ξi,n(β) =


∂θp

β
1
n

pβ1
n

(
Xβ

i
n

, Xβ
i+1
n

)
∂σp

β
1
n

pβ1
n

(
Xβ

i
n

, Xβ
i+1
n

)
 .

We can precise the asymptotic behavior of Jn(β) and Nn(β). Let ϕα be the density of Lα1 , where (Lα1 ) is a
centered α-stable Lévy process whose Lévy measure is dz

|z|1+α 1|z|6=0. We define the following quantity which will

be the random asymptotic information of the statistical model:

I(β) =

(
I11 0

0 I22

)
(2.3)

where

I11 =
1

σ2

∫ 1

0

∂θb(X
β
s , θ)

2ds×
∫
R

ϕ′α(u)2

ϕα(u)
du, I22 =

1

σ2
×
∫
R

(ϕα(u) + uϕ′α(u))
2

ϕα(u)
du.

Remark 2.3.

i) From [2, 12], we know that the parameter θ of the process Xθ
t = θt+Lt is estimated with rate n

1
2−

1
α and

Fisher information
∫
R
ϕ′α(u)2

ϕα(u) du and that the parameter σ of the process Xσ
t = σLt is estimated with the

usual rate n−1/2 and Fisher information
∫
R

(ϕα(u)+uϕ′α(u))
2

ϕα(u) du.

ii) It is worth to notice that the information does not depend on the truncation function τ , but depends on
α through the Fisher information of the translated α-stable process and multiplicative α-stable process.

Theorem 2.4. With the notations and assumptions of Theorem 2.2, the following convergences hold:

Jn(β)
n→∞−−−−→ I(β) in probability, (2.4)
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∀ε > 0,

n−1∑
i=0

E
[
|rnξi,n(β)|21{|rnξi,n(β)|≥ε}

] n→∞−−−−→ 0. (2.5)

Theorem 2.5. We have the convergence in law

Jn(β)
1
2Nn(β) = rn

n−1∑
i=0

ξi,n(β)⇒ N (0, I(β)) (2.6)

where the limit variable is conditionally Gaussian and the convergence is stable with respect to the σ-field
σ(Ls, s ≤ 1).

The stable convergence in law (2.6) and the convergence in probability (2.4) yield the convergence in law of
the couple (Jn(β), Nn(β)):

(Jn(β), Nn(β))⇒ (I(β), N),

where N is a standard Gaussian variable independent of I(β). As a consequence of the asymptotic expansion
given in Theorem 2.2 and the preceding limit theorems, we deduce the LAMN property.

Corollary 2.6. The family (Pβn) satisfies the LAMN property with rate rn =

(
n

1
2−

1
α 0

0 n−
1
2

)
, and information

I(β) given by (2.3).

The rate of estimation of the drift parameter depends on α : when α tends to 2, the rate is extremely low,
however, when α goes to zero, it becomes high, especially for α < 1 where it is faster than the usual one n−1/2.
On the other hand, the rate of estimation of the volatility parameter σ is n−1/2 and does not depend on α.

Before proceeding to the proof of these results, we discuss some extensions of our model that are not addressed
in this paper.

• The Malliavin calculus used in this paper allows to consider the more general process

Xβ
t = x0 +

∫ t

0

b(Xβ
s , θ)ds+

∫ t

0

c(Xβ
s−, σ)dLs,

and based on the results given in [4] the Malliavin operators have explicit expressions. But the difficulty
relies on the control of the Malliavin weights. Although explicit, these weights contain a lot of cumbersome
terms especially the iterated weights involving the derivatives of the process with respect to the parameters
θ and σ. These iterated weights (and their asymptotic behavior) are crucial to obtain the asymptotic
behavior of the derivative of the transition density in small time (see [6]). The restriction to a constant
coefficient c, assumed in this paper, permits to handle all these terms successfully. The theoretically
possible extension to a general coefficient is still open.

• Unlike the papers [1, 2, 12], our model does not contain an additional noise. Based on the structure of an
additive model, the key point in these papers is that the density of the observed process can be written
explicitly as a convolution between the Lévy process and the additional noise. Since we are dealing with a
stochastic equation, this approach does not work anymore in our case and the introduction of an additional
noise complicates significantly our model study.

• In contrast to the diffusion or jump-diffusion case, the interesting particularity of a pure jump process
is that we can estimate the drift coefficient observing the process on a fixed time period [0, T ]. It is
important to stress that the estimation of θ is impossible without letting T go to infinity if (Lt) has a
Brownian component. This is why we focus in this paper on the estimation of (θ, σ) from high frequency
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observations on the time interval [0, 1]. The long time estimation problem (nhn → ∞, where n is the
number of observations and hn the step between two consecutive observations) is also an interesting
problem, but substantially different, that can certainly be treated with our methodology under ergodicity
assumptions.

The remainder of the paper is devoted to the proofs of the main theorems above. The first step of our
approach consists in studying the asymptotic Fisher information matrix by using Malliavin calculus techniques.

3. The asymptotic Fisher information matrix in small time

3.1. The asymptotic properties of the Fisher information matrix

Our main concern in this section is to study the asymptotic properties of the Fisher information carried by
the observation of the random variable Xβ

1/n. We recall the definition of the Fisher information matrix:

In,β,x0 =

(
In,β,x0

11 In,β,x0

12

In,β,x0

12 In,β,x0

22

)
(3.1)

where

In,β,x0

11 = E


∂θpβ1n (x0, X

β
1/n)

pβ1
n

(x0, X
β
1/n)

2
 , In,β,x0

12 = E

∂θpβ1n (x0, X
β
1/n)

pβ1
n

(x0, X
β
1/n)

∂σp
β
1
n

(x0, X
β
1/n)

pβ1
n

(x0, X
β
1/n)

 ,

and In,β,x0

22 = E

(∂σp
β
1
n

(x0,X
β
1/n

)

pβ1
n

(x0,X
β
1/n

)

)2
 .

The following proposition gives the asymptotic behavior of the Fisher information based on the observation
of the random variable Xβ

1/n as 1
n tends to zero.

Theorem 3.1. Let (βn) be a sequence such that βn
n→∞−−−−→ β, Q ⊂ R × (0,∞) a compact set and rn =(

n
1
2−

1
α 0

0 n−
1
2

)
then

i) nrnIn,βn,x0rn
n→∞−−−−→

 1
σ2 ∂θb(x0, θ)

2
∫
R
ϕ′α(u)2

ϕα(u) du 0

0 1
σ2

∫
R

[ϕα(u)+uϕ′α(u)]
2

ϕα(u) du


and this convergence is uniform with respect to x0.

ii) ∀p ≥ 1, supn,β∈Q,x0
E

∣∣∣∣∣n1/2rn
∇βpβ1

n

(x0,X
β
1
n

)

pβ1
n

(x0,X
β
1
n

)

∣∣∣∣∣
p

<∞.

As a consequence of ii) with p = 2, we deduce immediately supn,β∈Q,x0
n2−2/αIn,β,x0

11 < ∞,

supn,β∈Q,x0
In,β,x0

22 <∞ and from Cauchy-Schwarz inequality supn,β∈Q,x0
n1−1/αIn,β,x0

12 <∞.

Remark 3.2. From Theorem 3.1, we see that the Fisher information contained in one observation is of magni-
tude n−1r−2

n and the Fisher information based on n observations is of magnitude r−2
n . This is consistent with

the fact that rn is the rate in the LAMN property stated in Corollary 2.6.

The rest of this section is devoted to the proof of Theorem 3.1.
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3.2. Proof of Theorem 3.1

The proof of Theorem 3.1 relies on a representation of the score function using Malliavin calculus initiated
by Gobet (see [8, 9]) and adapted to our context in [6].

This representation is established after a rescaling that we describe in the next subsection.

3.2.1. Rescaling and representation of the score function using Malliavin calculus

We consider µe(dt, dz,du) a Poisson measure on [0,∞) × R × [0, 1] with compensating measure
υe(dt, dz,du) = dt1|z|6=0

dz
|z|1+α du and for n ≥ 1, we define the Poisson random measure µ(n) by

∀A ⊂ [0,∞)× R, µ(n)(A) =

∫
[0,∞)

∫
R

∫
[0,1]

1A(t, z)1{u≤τ( z

n1/α
)}µ

e(dt,dz,du).

We note that the compensator of µ(n)(dt, dz) is υ(n)(dt,dz) = dt× τ( z
n1/α )1|z|6=0

dz
|z|1+α := dt× Fn(z)dz and the

compensated Poisson random measure by µ̃(n)(dt, dz) = µ(n)(dt, dz)− υ(n)(dt,dz).
We define the process (Lnt ) by:

Lnt =

∫ t

0

∫
[−n1/α,n1/α]

zµ̃(n)(ds,dz) +

∫ t

0

∫
[−n1/α,n1/α]c

zµ(n)(ds,dz). (3.2)

We observe that the process (Lt/n) (recall H1(bi)) equals in law ( 1
n1/αL

n
t ) since the associated Poisson measures

have the same compensator. Moreover, when n grows, we can show that the process (Lnt ) converges almost
surely to an α-stable process defined by

Lαt =

∫ t

0

∫
[−1,1]

zµ̃(ds,dz) +

∫ t

0

∫
[−1,1]c

zµ(ds,dz), (3.3)

where µ is the Poisson random measure defined by,

∀A ⊂ [0,∞)× R, µ(A) =

∫
[0,∞)

∫
R

∫
[0,1]

1A(t, z)µe(dt, dz,du).

The compensator of µ(dt,dz) is υ(dt, dz) = dt× 1|z|6=0
dz
|z|1+α and we denote the compensated Poisson random

measure by µ̃(dt,dz) = µ(dt, dz)− υ(dt,dz).
It is important to note that Ln and the α-stable process Lα are defined on the same probability space (this

property is crucial in our method to study the convergence of the Fisher information In,β,x0). The connection
between Ln and Lα is given more clearly by the following lemma.

Lemma 3.3 (Lem. 3.1 in [6]). On the event An =
{
µ({(t, z)|0 ≤ t ≤ 1, |z| ≥ n1/α}) = 0

}
, we have

µ(n) = µ, Lnt = Lαt ,

and P (An) = 1 +O(1/n).
Furthermore, let (fn)n∈N and f be measurable functions from Ω × [0, 1] × R to R such that there exists C

with P(C) = 1 and ∀ω ∈ C, ∀s ∈ [0, 1],∀|z| > 1 fn(ω, s, z)
n→∞−−−−→ f(ω, s, z). Then∫ 1

0

∫
|z|>1

fn(ω, s, z)µ(n)(ds,dz)
n→∞−−−−→
a.s.

∫ 1

0

∫
|z|>1

f(ω, s, z)µ(ds,dz).
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Moreover, we have supt∈[0,1] |Lnt − Lαt |
n→∞−−−−→
a.s

0.

We now consider the process (Y
n,β,x0

t ) solution to the equation

Y
n,β,x0

t = x0 +
1

n

∫ t

0

b(Y
n,β,x0

s , θ)ds+
σ

n1/α
Lnt t ∈ [0, 1]. (3.4)

From the construction of Ln, (Xβ
t
n

)t∈[0,1] equals in law (Y
n,β,x0

t )t∈[0,1]. Let qn,β,x0 be the density of Y
n,β,x0

1 then

the connection between the densities of Xβ
1
n

and Y
n,β,x0

1 is given by

pβ1/n(x0, x) = qn,β,x0(x). (3.5)

We remark also that (Y
n,β,x0

t )t admits derivatives with respect to the parameters θ and σ, denoted by (∂θY
β
t )t

and (∂σY
β
t )t, respectively. With these notations, we have the following representation.

Proposition 3.4 (Thm. 6.2 in [6]). Let qn,β,x0 be the density of Y
n,β,x0

1 then we have the representation of the
logarithmic derivative of the density as a conditional expectation:

∇βpβ1
n

pβ1
n

(x0, u) =
∇βqn,β,x0

qn,β,x0
(u) =

 ∂θq
n,β,x0

qn,β,x0
(u)

∂σq
n,β,x0

qn,β,x0
(u)

 = E(H
Y
n,β,x0
1

(∇βY
n,β,x0

1 )|Y n,β,x0

1 = u) (3.6)

with

H
Y
n,β,x0
1

(∇βY
n,β,x0

1 ) =

HY n,β,x01
(∂θY

n,β,x0

1 )

H
Y
n,β,x0
1

(∂σY
n,β,x0

1 )

 .

The Malliavin weight H
Y
n,β,x0
1

(∇βY
n,β,x0

1 ) depends on the derivatives of Y
n,β,x0

1 with respect to θ and σ

and on Malliavin operators. Its explicit expression will be given in Section 6 (see (6.11)) after some recalling on
Malliavin calculus.

3.2.2. Intermediate lemmas

In this section, we study the convergence of the Malliavin weight appearing in the representation of the score
function. The limit of this Malliavin weight brings out an other weight denoted by HLα(1) (given explicitly in
(6.16)) that permits to represent ϕ′α/ϕα, where ϕα is the density of Lα1 , as an expectation. This representation
is not immediate since Lα1 does not belong to the domain of our Malliavin operators (see Sect. 6).

Lemma 3.5. We have the representation

ϕ′α(u)

ϕα(u)
= −E [HLα(1)|Lα1 = u] . (3.7)

The connection between the weights H
Y
n,β,x0
1

(∇βY
n,β,x0

1 ) and HLα(1) is established in the next lemmas. The

first lemma shows the convergence of the normalized iterated Malliavin weight H
Y
n,β,x0
1

(∇βY
n,β,x0

1 ).
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Lemma 3.6. Let (βn)n≥1 be a sequence such that βn
n→∞−−−−→ β. Then, the following convergence holds uniformly

with respect to x0

n1/2rnHY n,βn,x01
(∇βY

n,βn,x0

1 ) =

n1−1/αH
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )

H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )

 n→∞−−−−−→
Lp,∀p≥1

(
1
σ∂θb(x0, θ)HLα(1)
1
σ (Lα1HLα(1)− 1)

)
, (3.8)

where Lα1 is defined by (3.3). Moreover, for any compact subset Q ⊂ R× (0,∞),

∀p ≥ 1, sup
n,β∈Q,x0

E
∣∣∣n1/2rnHY n,β,x01

(∇βY
n,β,x0

1 )
∣∣∣p <∞.

The next two lemmas are related to a continuity property with respect to the conditioning variable, in a
conditional expectation.

Lemma 3.7. Let (βn)n≥1 be a sequence such that βn
n→∞−−−−→ β. Then, the following convergence holds uniformly

with respect to x0.

i) n2−2/αE[E[H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]2]
n→∞−−−−→ 1

σ2 [∂θb(x0, θ)]
2 E
[
E[HLα(1)|Lα1 ]2

]
,

ii) E[E[H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]2]
n→∞−−−−→ 1

σ2E
[
E[Lα1HLα(1)− 1|Lα1 ]2

]
,

Lemma 3.8. Let (βn)n≥1 be a sequence such that βn
n→∞−−−−→ β. Then, the following convergence holds uniformly

with respect to x0,

n1−1/αE[E[H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]E[H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]]

n→∞−−−−→ 1

σ2
E [E[HLα(1)|Lα1 ]E[Lα1HLα(1)− 1|Lα1 ]] . (3.9)

The proofs of the above lemmas are very technical. They are postponed to Section 6. Admitting these
intermediate results, we can proceed to the proof of Theorem 3.1.

3.2.3. Proof of Theorem 3.1

Proof. i) We need to prove that for (βn) a sequence such that βn
n→∞−−−−→ β and rn =

(
n

1
2−

1
α 0

0 n−
1
2

)
we have

nrnIn,βn,x0rn
n→∞−−−−→

 1
σ2 ∂θb(x0, θ)

2
∫
R
ϕ′α(u)2

ϕα(u) du 0

0 1
σ2

∫
R

[ϕα(u)+uϕ′α(u)]
2

ϕα(u) du


and that this convergence is uniform with respect to x0.

Since nrnIn,βn,x0rn =

(
n2− 2

α In,βn,x0

11 n1− 1
α In,βn,x0

12

n1− 1
α In,βn,x0

12 In,βn,x0

22

)
, the proof of the above convergence reduces to prove

the convergence of each entries of the matrix.
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Convergence of n2−2/αIn,βn,x0

11 . From (3.6) in Proposition 3.4, we have

n2−2/αIn,βn,x0

11 = n2−2/αE
[
E
[
H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1

]2]
n→∞−−−−→ 1

σ2
∂θb(x0, θ)

2E
[
E [HLα(1)|Lα1 ]

2
]
, uniformly with respect to x0, from Lemma 3.7 i),

=
1

σ2
∂θb(x0, θ)

2E
[
ϕ′α(Lα1 )2

ϕα(Lα1 )2

]
from (3.7) in Lemma 3.5.

Convergence of In,βn,x0

22 . We remark that from the representation (3.7), we can deduce the following
representation

ϕα(u) + uϕ′α(u)

ϕα(u)
= −uE [(HLα(1)) |Lα1 = u] + 1 = −E [(Lα1HLα(1)− 1) |Lα1 = u] . (3.10)

Furthermore, combining (3.6) and Lemma 3.7 ii), we have

In,βn,x0

22 = E
[
E
[
H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1

]2]
,

n→∞−−−−→ 1

σ2
E
[
E [(Lα1HLα(1)− 1) |Lα1 ]

2
]
, uniformly with respect to x0,

=
1

σ2
E

[
(ϕα(Lα1 ) + Lα1ϕ

′
α(Lα1 ))

2

ϕα(Lα1 )2

]
from (3.10).

Convergence of n1−1/αIn,βn,x0

12 . We first recall the expression for the Fisher information

In,βn,x0

12 = E

∂θpβn1n (x0, X
βn
1/n)

pβn1
n

(x0, X
βn
1/n)

∂σp
βn
1
n

(x0, X
βn
1/n)

pβn1
n

(x0, X
βn
1/n)

 ,
then from (3.6) in Proposition 3.4 and Lemma 3.8 we have

n1−1/αIn,βn,x0

12 = n1−1/αE[E[H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]E[H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]]

n→∞−−−−→ 1

σ2
E [E[HLα(1)|Lα1 ]E[Lα1HLα(1)− 1|Lα1 ]] . (3.11)

On the other hand, from (3.7) and (3.10) we get

ϕ′α(Lα1 )

ϕα(Lα1 )

(
ϕα(Lα1 ) + Lα1ϕ

′
α(Lα1 )

ϕα(Lα1 )

)
= E [HLα(1)|Lα1 ]E [(Lα1HLα(1)− 1) |Lα1 ] . (3.12)

Combining (3.11) with (3.12) gives

n1−1/αIn,βn,x0

12
n→∞−−−−→ 1

σ2

∫
R

ϕ′α(u) [ϕα(u) + uϕ′α(u)]

ϕα(u)
du =

1

σ2

∫
R
ϕ′α(u)du+

1

σ2

∫
R

u (ϕ′α(u))
2

ϕα(u)
du = 0, (3.13)

where we used the fact that ϕα is a symmetric function, and that the functions under the integral are odd. This
completes the proof of part i).
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ii) Using (3.6) in Proposition 3.4 again and Jensen’s inequality, we get:

E

∣∣∣∣∣∣n1/2rn
∇βpβ1

n

(x0, X
β
1
n

)

pβ1
n

(x0, X
β
1
n

)

∣∣∣∣∣∣
p

≤ E|n1/2rnHY n,β,x01
(∇βY

n,β,x0

1 )|p,

and the result follows from Lemma 3.6.
This achieves the proof of Theorem 3.1.

4. Proof of the asymptotic expansion of the likelihood
(Thms. 2.2–2.4)

The aim of this section is to prove the asymptotic expansion of the log-likelihood function, stated in
Theorem 2.2 as well as the convergence given in Theorem 2.4. The proof of Theorem 2.2 is based essentially
on the L2-regularity property of the transition density pβ1/n(x, y). From Jeganathan’s article [14], the following

four conditions A1–A4 are sufficient to get the expansion (2.2) of Theorem 2.2.

We recall the notation ξi,n(β) =


∂θp

β
1
n

pβ1
n

(
Xβ

i
n

, Xβ
i+1
n

)
∂σp

β
1
n

pβ1
n

(
Xβ

i
n

, Xβ
i+1
n

)
 and we denote χn(β, x, y) =


∂θp

β
1
n

(x,y)

pβ1
n

(x,y)1/2

∂σp
β
1
n

(x,y)

pβ1
n

(x,y)1/2

.

A1. L2-regularity

n∑
j=1

E

[∫
R

{
pβ+rnh

1
n

(
Xβ

j−1
n

, y
)1/2

− pβ1
n

(
Xβ

j−1
n

, y
)1/2

− 1

2
hT rnχn(β,Xβ

j−1
n

, y)

}2

dy

]
n→∞−−−−→ 0.

A2.

Jn(β) = rn

n−1∑
i=0

E
[
ξi,n(β)ξTi,n(β)|Fi/n

]
rn

n→∞−−−−→ I(β) (> 0 a.e.), in probability.

A3.

∀ε > 0,

n−1∑
i=0

E
[
|rnξi,n(β)|21{|rnξi,n(β)|≥ε}

] n→∞−−−−→ 0.

A4.

sup
n

n∑
i=0

E(
∣∣rnξi,n(β)ξi,n(β)T rn

∣∣) ≤ C, for a strictly positive constant C.

The condition A1 is proved in Section 4.1 and A2 and A3 are proved in Section 4.2. The condition A4 is
immediate from Theorem 3.1 ii) since

nE(rnξi,n(β)ξi,n(β)T rn) = E

n2− 2
α I

n,β,Xβ
i/n

11 n1− 1
α I

n,β,Xβ
i/n

12

n1− 1
α I

n,β,Xβ
i/n

12 I
n,β,Xβ

i/n

22

 .



LAMN PROPERTY FOR THE DRIFT AND VOLATILITY PARAMETERS 147

Note that these conditions do not imply the stable convergence in law (2.6) since in our framework the
filtration (F i

n
)i does not satisfy the ”nested condition” (see Thm. 3.2 in [11]). The proof of the stable convergence

in law will be given in Section 5.

4.1. Proof of the condition A1 (the L2-regularity condition)

Following [5], the crucial point of the proof is the asymptotic behavior of the transition density of Xβ
t

established in [6] and recalled below.

Theorem 4.1 (Thm. 2.1 in [6]). We assume that H1 holds. Let (ςn,θ,x0

t ) be the solution to the ordinary
differential equation

ςn,θ,x0

t = x0 +
1

n

∫ t

0

b(ςn,θ,x0
s , θ)ds t ∈ [0, 1]. (4.1)

Let (βn)n≥1 be a sequence such that βn
n→∞−−−−→ β then for all (x0, u) ∈ R2,

i) σn
n1/α p

βn
1
n

(x0,
uσn
n1/α + ςn,θn,x0

1 )
n→∞−−−−→ ϕα(u),

ii) supu∈R supn
σn
n1/α p

βn
1
n

(x0,
uσn
n1/α + ςn,θn,x0

1 ) <∞,

where ϕα is the density of Lα1 , a centered α-stable Lévy process.

Theorem 4.2 (Thm. 2.2 in [6]). Under the assumptions of Theorem 4.1,

i)
σ2
n

n
2
α
−1
∂θp

βn
1
n

(x0,
uσn
n1/α + ςn,θn,x0

1 )
n→∞−−−−→ −∂θb(x0, θ)× ϕ′α(u),

σ2
n

n1/α ∂σp
βn
1
n

(x0,
uσn
n1/α + ςn,θn,x0

1 )
n→∞−−−−→ −ϕα(u)− uϕ′α(u),

ii) supu∈R supn

∣∣∣∣ σ2
n

n
2
α
−1
∂θp

βn
1
n

(x0,
uσn
n1/α + ςn,θn,x0

1 )

∣∣∣∣ <∞,
supu∈R supn

∣∣∣ σ2
n

n1/α ∂σp
βn
1
n

(x0,
uσn
n1/α + ςn,θn,x0

1 )
∣∣∣ <∞.

Proof of A1. By the change of variable y = uσ
n1/α + ς

n,θ,Xβj−1
n

1 proving A1 is equivalent to show:

1

n

n∑
j=1

∫
R
E
[{
fn(Xβ

j−1
n

, u)− gn(Xβ
j−1
n

, u)
}2
]

du
n→∞−−−−→ 0, (4.2)

where

fn(x, u) =
√
σn1/2−1/2α

[
pβ+rnh

1
n

(
x,

uσ

n1/α
+ ςn,θ,x1

)1/2

− pβ1
n

(
x,

uσ

n1/α
+ ςn,θ,x1

)1/2
]
,

gn(x, u) =

√
σ

2
n1/2−1/2α(rnh)Tχn

(
β, x,

uσ

n1/α
+ ςn,θ,x1

)
.

Following the proof of Proposition 8 in [5], the next three properties are sufficient to prove (4.2).

1. There exists a function f such that,

∀x, u, fn(x, u)
n→∞−−−−→ f(x, u),

gn(x, u)
n→∞−−−−→ f(x, u).

(4.3)
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2. We have for all x,

lim sup
n

∫
R
fn(x, u)2du ≤

∫
R
f(x, u)2du,

lim sup
n

∫
R
gn(x, u)2du ≤

∫
R
f(x, u)2du.

(4.4)

3. We have

sup
x,n

∫
R
fn(x, u)2du <∞,

sup
x,n

∫
R
gn(x, u)2du <∞.

(4.5)

We now need to check the validity of the conditions (4.3)–(4.5).
We start with the proof of the condition (4.3).

We recall that rn =

(
n

1
2−

1
α 0

0 n−
1
2

)
and h = (h1, h2)T ∈ R2 then by a simple computation we have,

gn(x, u) =

√
σ

2
n1− 3

2αh1

∂θp
β
1
n

(
x, uσ

n1/α + ςn,θ,x1

)
pβ1
n

(
x, uσ

n1/α + ςn,θ,x1

)1/2
+

√
σ

2
n
−1
2α h2

∂σp
β
1
n

(
x, uσ

n1/α + ςn,θ,x1

)
pβ1
n

(
x, uσ

n1/α + ςn,θ,x1

)1/2
.

From Theorems 4.1 and 4.2, we see that

gn(x, u)
n→∞−−−−→ f(x, u) := −h1

2σ
∂θb(x, θ)

ϕ′α(u)

ϕα(u)1/2
− h2

2σ

(ϕα(u) + uϕ′α(u))

ϕα(u)1/2
.

Let mt = pβ+rnht
1
n

(
x, uσ

n1/α + ςn,θ,x1

)
, t ∈ [0, 1], then we can rewrite fn(x, u) as

fn(x, u) =
√
σn1/2−1/2α

[
m

1/2
1 −m1/2

0

]
.

Using the mean value theorem, we get for some s(x, u) ∈ (0, 1)

fn(x, u) =

√
σ

2
n1/2−1/2α

m′s(x,u)
√
ms(x,u)

=

√
σ

2
n1/2−1/2α(rnh)T

∇βpβn1
n

(
x, uσ

n1/α + ςn,θ,x1

)
pβn1
n

(
x, uσ

n1/α + ςn,θ,x1

)1/2
,

where βn = β + rns(x, u)h.

From Theorems 4.1 and 4.2, we also get that fn(x, u)
n→∞−−−−→ f(x, u).

Now we prove the condition (4.4).
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We have

∫
R
gn(x, u)2du =

σh2
1

4
n2−3/α

∫
R

∂θp
β
1
n

(
x, uσ

n1/α + ςn,θ,x1

)2

pβ1
n

(
x, uσ

n1/α + ςn,θ,x1

) du+
σh2

2

4
n−1/α

∫
R

∂σp
β
1
n

(
x, uσ

n1/α + ςn,θ,x1

)2

pβ1
n

(
x, uσ

n1/α + ςn,θ,x1

) du

+
σh1h2

2
n1−2/α

∫
R

∂θp
β
1
n

(
x, uσ

n1/α + ςn,θ,x1

)
pβ1
n

(
x, uσ

n1/α + ςn,θ,x1

)1/2

∂σp
β
1
n

(
x, uσ

n1/α + ςn,θ,x1

)
pβ1
n

(
x, uσ

n1/α + ςn,θ,x1

)1/2
du. (4.6)

From Theorem 3.1, we get ∫
R
gn(x, u)2du

n→∞−−−−→
∫
R
f(x, u)2du, ∀x. (4.7)

Using

fn(x, u) =

√
σ

2
n1/2−1/2α

∫ 1

0

(rnh)T
∇βpβ+rnhs

1
n

(
x, uσ

n1/α + ςn,θ,x1

)
pβ+rnhs

1
n

(
x, uσ

n1/α + ςn,θ,x1

)1/2
ds,

we write:∫
R
fn(x, u)2du = ||fn(x, .)||22 =

σn1−1/α

4

∣∣∣∣∣∣∣∣ ∫ 1

0

(rnh)T
∇βpβ+rnhs1

n

(
x, σ .

n1/α + ςn,θ,x1

)
pβ+rnhs1
n

(
x, σ .

n1/α + ςn,θ,x1

)1/2 ds

∣∣∣∣∣∣∣∣2
2

≤ σn1−1/α

4

∫ 1

0

∣∣∣∣∣∣∣∣(rnh)T
∇βpβ+rnhs1

n

(
x, σ .

n1/α + ςn,θ,x1

)
pβ+rnhs1
n

(
x, σ .

n1/α + ςn,θ,x1

)1/2 ∣∣∣∣∣∣∣∣
2

ds


2

=
σn1−1/α

4

∫ 1

0

∣∣∣∣∣∣∣∣n 1
2
−1
α h1

∂θp
β+rnhs
1
n

(
x, σ .

n1/α +ςn,θ,x1

)
pβ+rnhs1
n

(
x, σ .

n1/α +ςn,θ,x1

)1/2 +n
−1
2 h2

∂σp
β+rnhs
1
n

(
x, σ .

n1/α +ςn,θ,x1

)
pβ+rnhs1
n

(
x, σ .

n1/α +ςn,θ,x1

)1/2 ∣∣∣∣∣∣∣∣
2

ds


2

=
σn1−1/α

4
[

∫ 1

0

(

∫
R
n1− 2

α h2
1

∂θp
β+srnh
1
n

(
x, uσ

n1/α +ςn,θ,x1

)2
pβ+srnh1
n

(
x, uσ

n1/α +ςn,θ,x1

) du+

∫
R
n−1h2

2

∂σp
β+srnh
1
n

(
x, uσ

n1/α +ςn,θ,x1

)2
pβ+srnh1
n

(
x, uσ

n1/α +ςn,θ,x1

) du

+

∫
R
n−

1
α 2h1h2

∂θp
β+srnh
1
n

(
x, uσ

n1/α + ςn,θ,x1

)
∂σp

β+srnh
1
n

(
x, uσ

n1/α + ςn,θ,x1

)
pβ+srnh1
n

(
x, uσ

n1/α + ςn,θ,x1

) du


1/2

ds


2

=
n1−1/α

4
[

∫ 1

0

 ∫
R
n1− 1

α h2
1

∂θp
β+srnh
1
n

(x, v)2

pβ+srnh1
n

(x, v)
dv +

∫
R
n

1
α
−1h2

2

∂σp
β+srnh
1
n

(x, v)2

pβ+srnh1
n

(x, v)
dv

+

∫
R

2h1h2

∂θp
β+srnh
1
n

(x, v) ∂σp
n,β+srnh
1
n

(x, v)

pβ+srnh1
n

(x, v)
dv


1/2

ds


2

by the change of variable
uσ

n1/α
+ ςn,θ,x1 = v,
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=
1

4


∫ 1

0

 n2− 2
α h2

1In,β+srnh,x11 + h2
2In,β+srnh,x22 + n1−1/α2h1h2In,β+srnh,x12


1/2

ds


2

n→∞−−−−→ 1

σ2

h2
1

4
(∂θb(x, θ))

2

∫
R

(ϕ′α(u))
2

ϕα(u)
du+

h1h2

2σ2

∫
R

ϕ′α(u) [ϕα(u) + uϕ′α(u)]

ϕα(u)
du

+
1

σ2

h2
2

4

∫
R

(ϕα(u) + uϕ′α(u))
2

ϕα(u)
du =

∫
R
f2(x, u)du. (4.8)

Where, in the last line, we have used Theorem 3.1 for the convergences of In,β+srnh,x
11 , In,β+srnh,x

22 , In,β+srnh,x
12 ,

respectively and the application of the dominated convergence theorem. From (4.7) and (4.8) we get (4.4). (4.5)
is deduced directly from Theorem 3.1.

4.2. Proof of the conditions A2 and A3 (Thm. 2.4)

From the Markov property and (3.1) we have:

In,β,X
β
i/n = E

[
ξi,n(β)ξi,n(β)T |Gi/n

]
=

In,β,Xβi/n11 I
n,β,Xβ

i/n

12

I
n,β,Xβ

i/n

12 I
n,β,Xβ

i/n

22

 .

From Theorem 3.1 we know that the quantities

sup
0≤i≤n−1

∣∣∣∣∣∣nrnIn,β,Xβi/nrn −
 1
σ2

[
∂θb(X

β
i/n)

]2 ∫
R
ϕ′(u)2

ϕ(u) du 0

0 1
σ2

∫
R

[ϕα(u)+uϕ′α(u)]
2

ϕα(u) du

∣∣∣∣∣∣
converge to zero as n→∞. Then the convergence A2 is a consequence of the convergence of a Riemann sum.

To prove A3, from the Markov property, we get: E
[
|rnξi,n(β)|k|Xβ

i/n = x
]

= E

∣∣∣∣∣rn∇βp
β
1
n

(x,Xβ1
n

)

pβ1
n

(x,Xβ1
n

)

∣∣∣∣∣
k
 , for any

k ≥ 1. But from Theorem 3.1 ii) we have supn,x E

∣∣∣∣∣n1/2rn
∇βpβ1

n

(x,Xβ1
n

)

pβ1
n

(x,Xβ1
n

)

∣∣∣∣∣
k
 < ∞, ∀k ≥ 1. This control, for

instance with k = 4, is sufficient to imply the Lindeberg’s condition A3.

5. Proof of Theorem 2.5 (stable central limit theorem)

The aim of this section is to prove the stable convergence in law stated in Theorem 2.5. We first recall the

following result established in [6] where Y
n,β,x0

1 is defined by (3.4) and is equal in law to Xβ
1
n

.

Lemma 5.1 (Lem. 4.1 in [6]). Let (ςn,θ,x0

t ) be the solution to the ordinary differential equation (4.1), then

n1/α(Y
n,β,x0

1 − ςn,θ,x0

1 )
n→∞−−−−→
a.s.

σLα1 , (5.1)

and this convergence is uniform with respect to x0.
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Proof of Theorem 2.5. Since rn =

(
n

1
2−

1
α 0

0 n−
1
2

)
we have

rn

n−1∑
i=0

ξi,n(β) =

n−1∑
i=0


n

1
2−

1
α

∂θp
β
1
n

pβ1
n

(
Xβ

i
n

, Xβ
i+1
n

)
n−

1
2

∂σp
β
1
n

pβ1
n

(
Xβ

i
n

, Xβ
i+1
n

)
 .

Theorem 2.5 is an immediate consequence of Lemmas 5.2–5.4 below.

Lemma 5.2. We consider

$i,n = n1−1/α
∂θp

β
1
n

pβ1
n

(Xβ
i
n

, Xβ
i+1
n

) +
1

σ
∂θb(X

β
i
n

, θ)
ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)

ϕα

(
n1/α(L i+1

n
− L i

n
)
)

then we have n−1/2
∑n−1
i=0 $i,n

n→∞−−−−→
P

0.

Proof. Using Lemma 9 in [7], it is sufficient to show that:

n−1/2
n−1∑
i=0

|E[$i,n|Fi/n]| n→∞−−−−→
P

0, (5.2)

n−1
n−1∑
i=0

|E[$2
i,n|Fi/n]| n→∞−−−−→

P
0, (5.3)

We start by the proof of (5.2). Since a score function has an expectation equal to zero, and L i+1
n
− L i

n
is

independent of Fi/n, we deduce that

E[$i,n|Fi/n] =
1

σ
∂θb(X

β
i
n

, θ)E

ϕ′α
(
n1/α(L i+1

n
− L i

n
)
)

ϕα

(
n1/α(L i+1

n
− L i

n
)
)
 .

Since (Lt)t has stationary increments, the law of n1/α(L i+1
n
− L i

n
) is the same as the law of Ln1 . Moreover,

we know from Lemma 3.3, that P(Ln1 6= Lα1 ) = O(1/n), thus

E[$i,n|Fi/n] =
1

σ
∂θb(X

β
i
n

, θ)E
[
ϕ′α(Lα1 )

ϕα(Lα1 )

]
+

∥∥∥∥ϕ′αϕα
∥∥∥∥
∞
O(n−1),

where we used the fact that
ϕ′α
ϕα

is bounded (see e.g. Thm. 7.3.2 in [19]). Using E
[
ϕ′α(Lα1 )
ϕα(Lα1 )

]
=
∫
R ϕ
′
α(u)du = 0,

we deduce |E[$i,n|Gi/n]| ≤ Cn−1 for some constant C and (5.2) follows.
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We now prove (5.3). We have

E[$2
i,n|Fi/n] = n2−2/αI

n,β,Xβi
n

11 +
1

σ2

[
∂θb(X

β
i
n

, θ)
]2

E

ϕ′α
(
n1/α(L i+1

n
− L i

n
)
)2

ϕα

(
n1/α(L i+1

n
− L i

n
)
)2


+2E

n1−1/α
∂θp

β
1
n

(Xβ
i
n

, Xβ
i+1
n

)

pβ1
n

(Xβ
i
n

, Xβ
i+1
n

)

1

σ
∂θb(X

β
i
n

, θ)
ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)

ϕα

(
n1/α(L i+1

n
− L i

n
)
)∣∣∣∣F i

n

 . (5.4)

With a method analogous to the proof of (5.2), we can show that

E

ϕ′α(n1/α(L i+1
n
−L i

n
)

)2

ϕα

(
n1/α(L i+1

n
−L i

n
)

)2

 = E
[
ϕ′α(Lα1 )2

ϕα(Lα1 )2

]
+ o(1). From Theorem 3.1, it appears that the first two terms in the

right-hand side of (5.4) are asymptotically close to the same quantities, and that (5.3) is proved as soon as we
show that the following control holds, uniformly with respect to i,

E

n1−1/α
∂θp

β
1
n

(Xβ
i
n

, Xβ
i+1
n

)

pβ1
n

(Xβ
i
n

, Xβ
i+1
n

)

1

σ
∂θb(X

β
i
n

, θ)
ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)

ϕα

(
n1/α(L i+1

n
− L i

n
)
)∣∣∣∣F i

n

=− 1

σ2

[
∂θb(X

β
i
n

, θ)
]2

E
[
ϕ′α(Lα1 )2

ϕα(Lα1 )2

]
+o(1).

(5.5)

Using the notations of Section 3.2.1, we define dn,θ,x0 = E
[
n1−1/α ∂θq

n,β,x0 (Y
n,β,x0
1 )

qn,β,x0 (Y
n,β,x0
1 )

1
σ∂θb(x0, θ)

ϕ′α(Ln1 )

ϕα(Ln1 )

]
, so

that the left-hand side of (5.5) reduces, from the Markov property, (3.5) and the fact that Y
n,β,x0

1 equals in law

Xβ
1
n

, to d
n,θ,Xβ

i/n . On the other hand, we can rewrite dn,θ,x0 as

dn,θ,x0 = E

n1−1/α ∂θq
n,β,x0(Y

n,β,x0

1 )

qn,β,x0(Y
n,β,x0

1 )

1

σ
∂θb(x0, θ)

ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)


+E

n1−1/α ∂θq
n,β,x0(Y

n,β,x0

1 )

qn,β,x0(Y
n,β,x0

1 )

1

σ
∂θb(x0, θ)

ϕ′α (Ln1 )

ϕα (Ln1 )
−
ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)

 . (5.6)

Using the Cauchy-Schwarz inequality for the second term in the right-hand side of (5.6), we get

E


∣∣∣∣∣∣∣∣n

1−1/α ∂θq
n,β,x0(Y

n,β,x0

1 )

qn,β,x0(Y
n,β,x0

1 )

1

σ
∂θb(x0, θ)

ϕ′α (Ln1 )

ϕα (Ln1 )
−
ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)

∣∣∣∣∣∣∣∣


≤

E(n1−1/α ∂θq
n,β,x0(Y

n,β,x0

1 )

qn,β,x0(Y
n,β,x0

1 )

1

σ
∂θb(x0, θ)

)2
1/2

E
ϕ′α (Ln1 )

ϕα (Ln1 )
−
ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)


2


1/2

.

(5.7)
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Furthermore, ∀ε > 0 we have

E

ϕ′α (Ln1 )

ϕα (Ln1 )
−
ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)


2

= E

ϕ′α (Ln1 )

ϕα (Ln1 )
−
ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)


2

1{∣∣∣∣∣n1/α(Y
n,θ,x0
1 −ςn,θ,x01 )

σ −Ln1

∣∣∣∣∣≤ε
}

+ E

ϕ′α (Ln1 )

ϕα (Ln1 )
−
ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)


2

1{∣∣∣∣∣n1/α(Y
n,β,x0
1 −ςn,θ,x01 )

σ −Ln1

∣∣∣∣∣>ε
}

≤ C1ε
2 + 2C2E

1{∣∣∣∣∣n1/α(Y
n,β,x0
1 −ςn,θ,x01 )

σ −Ln1

∣∣∣∣∣>ε
}


= C1ε
2 + 2C2P

[∣∣∣∣∣n1/α(Y
n,β,x0

1 − ςn,θ,x0

1 )

σ
− Ln1

∣∣∣∣∣ > ε

]
n→∞−−−−→ C1ε

2,

where we used the fact that
ϕ′α
ϕα

is bounded with a bounded derivative (see e.g. Thm. 7.3.2 in [19]) and Lemma 5.1.

From Theorem 3.1 ii), and the estimates above we deduce that (5.7) converges to zero as n→∞. Then,

dn,θ,x0 = E

n1−1/α ∂θq
n,β,x0(Y

n,β,x0

1 )

qn,β,x0(Y
n,β,x0

1 )

1

σ
∂θb(x0, θ)

ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,θ,x0
1 −ςn,θ,x01 )

σ

)
+ o(1), (5.8)

where the o(1) term is uniform with respect to x0. Now, using Proposition 3.4, we get

dn,θ,x0 =E

n1−1/αH
Y
n,β,x0
1

(∂θY
n,β,x0

1 )
1

σ
∂θb(x0, θ)

ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
+o(1).

From Lemma 3.6, we also have

sup
x0

∣∣∣∣∣∣∣∣d
n,θ,x0 − 1

σ2
∂θb(x0, θ)

2E

HLα(1)

ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)

∣∣∣∣∣∣∣∣
n→∞−−−−→ 0.

From Lemma 5.1 we can deduce that

dn,θ,x0
n→∞−−−−→ 1

σ2
[∂θb(x0, θ)]

2 E
[
HLα(1)

ϕ′α (Lα1 )

ϕα (Lα1 )

]
,
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uniformly with respect to x0. Then, the relation (3.7) enables to rewrite this convergence as,

dn,θ,x0
n→∞−−−−→ − 1

σ2
[∂θb(x0, θ)]

2 E

[
ϕ′α (Lα1 )

2

ϕα (Lα1 )
2

]
,uniformly with respect to x0.

This result implies (5.5) and hence (5.3).

Lemma 5.3. We consider

%i,n =
∂σp

β
1
n

pβ1
n

(Xβ
i
n

, Xβ
i+1
n

) +
1

σ

ϕα

(
n1/α(L i+1

n
− L i

n
)
)

+ n1/α(L i+1
n
− L i

n
)ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)

ϕα

(
n1/α(L i+1

n
− L i

n
)
)

then we have n−1/2
∑n−1
i=0 %i,n

n→∞−−−−→
P

0.

Proof. We proceed as in the proof of Lemma 5.2 and check that

n−1/2
n−1∑
i=0

|E[%i,n|Fi/n]| n→∞−−−−→
P

0, (5.9)

n−1
n−1∑
i=0

|E[%2
i,n|Fi/n]| n→∞−−−−→

P
0. (5.10)

We start by the proof of (5.9). Since a score function has an expectation equal to zero, and L i+1
n
− L i

n
is

independent of Fi/n, we deduce that

E[%i,n|Fi/n] =
1

σ
E

ϕα
(
n1/α(L i+1

n
− L i

n
)
)

+ n1/α(L i+1
n
− L i

n
)ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)

ϕα

(
n1/α(L i+1

n
− L i

n
)
)

 .
Since (Lt)t has stationary increments, the law of n1/α(L i+1

n
− L i

n
) is the same as the law of Ln1 . Moreover,

we know from Lemma 3.3, that P(Ln1 6= Lα1 ) = O(1/n), thus

E[%i,n|Fi/n] =
1

σ
E
[
ϕα(Lα1 ) + Lα1ϕ

′
α(Lα1 )

ϕα(Lα1 )

]
+

∥∥∥∥ϕα(u) + uϕ′α(u)

ϕα(u)

∥∥∥∥
∞
O(n−1),

where we used the fact that
uϕ′α(u)
ϕα(u) is bounded (see e.g. Thm. 7.3.2 in [19]). Using E

[
Lα1 ϕ

′
α(Lα1 )

ϕα(Lα1 )

]
=
∫
R uϕ

′
α(u)du =

−1, we deduce |E[%i,n|Fi/n]| ≤ Cn−1 for some constant C and (5.9) follows.
We now prove (5.10). We have

E[%2
i,n|Fi/n] = I

n,β,Xβi
n

22 +
1

σ2
E


[
ϕα

(
n1/α(L i+1

n
− L i

n
)
)

+ n1/α(L i+1
n
− L i

n
)ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)]2

ϕα

(
n1/α(L i+1

n
− L i

n
)
)2


+ 2E

∂σpβ1n (Xβ
i
n

, Xβ
i+1
n

)

pβ1
n

(Xβ
i
n

, Xβ
i+1
n

)

1

σ

ϕα

(
n1/α(L i+1

n
− L i

n
)
)

+n1/α(L i+1
n
− L i

n
)ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)

ϕα

(
n1/α(L i+1

n
− L i

n
)
) ∣∣∣∣F i

n


(5.11)
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With a method analogous to the proof of (5.9), we can show that

E


[
ϕα
(
n1/α(L i+1

n
− L i

n
)
)

+ n1/α(L i+1
n
− L i

n
)ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)]2

ϕα
(
n1/α(L i+1

n
− L i

n
)
)2

 = E

[
[ϕα(Lα1 ) + Lα1ϕ

′
α(Lα1 )]

2

ϕα(Lα1 )2

]
+ o(1).

Proceeding as in the proof of (5.4), then (5.9) is proved as soon as we show that the following control holds
uniformly with respect to i,

E

∂σpβ1n (Xβ
i
n

, Xβ
i+1
n

)

pβ1
n

(Xβ
i
n

, Xβ
i+1
n

)

1

σ

ϕα

(
n1/α(L i+1

n
− L i

n
)
)

+ n1/α(L i+1
n
− L i

n
)ϕ′α

(
n1/α(L i+1

n
− L i

n
)
)

ϕα

(
n1/α(L i+1

n
− L i

n
)
) ∣∣∣∣F i

n


= − 1

σ2
E

[
(ϕα(Lα1 ) + Lα1ϕ

′
α(Lα1 ))

2

ϕα(Lα1 )2

]
+ o(1). (5.12)

We define dn,σ,x0

1 = E
[
∂σq(Y

n,β,x0
1 )

q(Y
n,β,x0
1 )

1
σ
ϕα(Ln1 )+Ln1ϕ

′
α(Ln1 )

ϕα(Ln1 )

]
, so that the left-hand side of (5.12) reduces, from the

Markov property, to d
n,σ,Xβ

i/n

1 .

Proceeding as in the proof of (5.8), noting that
uϕ′α(u)
ϕα(u) is bounded with a bounded derivative (see e.g. Thm.

7.3.2 in [19]), then we also get that

dn,σ,x0

1 = E

[
∂σq(Y

n,β,x0

1 )

q(Y
n,β,x0

1 )

1

σ

]
+ E

∂σq(Y n,β,x0

1 )

q(Y
n,β,x0

1 )

1

σ

n1/α(Y
n,β,x0
1 −ςn,θ,x01 )

σ ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
+ o(1)

where the o(1) term is uniform with respect to x0. Now, using Proposition 3.4, we get

dn,σ,x0

1 = E

HY n,β,x01
(∂σY

n,β,x0

1 )

σ



+ E

HY n,β,x01
(∂σY

n,β,x0

1 )

σ

n1/α(Y
n,β,x0
1 −ςn,θ,x01 )

σ ϕ′α

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
ϕα

(
n1/α(Y

n,β,x0
1 −ςn,θ,x01 )

σ

)
+ o(1).

From Lemma 5.1 and the convergence result (3.8) we can deduce that

dn,σ,x0

1
n→∞−−−−→ 1

σ2
E
[
(Lα1HLα(1)− 1)

ϕα (Lα1 ) + Lα1ϕ
′
α (Lα1 )

ϕα (Lα1 )

]
,

uniformly with respect to x0. Then, the relation (3.10) enables to rewrite this convergence as,

dn,σ,x0

1
n→∞−−−−→ − 1

σ2
E

[
(ϕα (Lα1 ) + Lα1ϕ

′
α (Lα1 ))

2

ϕα (Lα1 )
2

]
.

This result implies (5.12) and hence (5.10).
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Lemma 5.4. We have the convergence in law,


−n−1/2

∑n−1
i=0

ϕ′α

(
n1/α(L i+1

n
−L i

n
)

)
ϕα

(
n1/α(L i+1

n
−L i

n
)

) 1
σ∂θb(X

β
i
n

, θ)

−n−1/2
∑n−1
i=0

1
σ

ϕα

(
n1/α(L i+1

n
−L i

n
)

)
+n1/α(L i+1

n
−L i

n
)ϕ′α

(
n1/α(L i+1

n
−L i

n
)

)
ϕα

(
n1/α(L i+1

n
−L i

n
)

)

⇒ N (0, I(β)) (5.13)

where the convergence is stable with respect to the σ-field σ(Ls, s ≤ 1) .

Proof. We define the following processes:

Znt =

bntc∑
i=0

(
L i+1

n
− L i

n

)
,

Γnt =

(
Γn,1t

Γn,2t

)
= n−1/2


∑bntc
i=0

ϕ′α

(
n1/α(L i+1

n
−L i

n
)

)
ϕα

(
n1/α(L i+1

n
−L i

n
)

) 1
σ∂θb(X

β
i
n

, θ)

∑bntc
i=0

ϕα

(
n1/α(L i+1

n
−L i

n
)

)
+n1/α(L i+1

n
−L i

n
)ϕ′α

(
n1/α(L i+1

n
−L i

n
)

)
ϕα

(
n1/α(L i+1

n
−L i

n
)

) 1
σ

 ,

Γ′nt =

(
Γ′n,1t

Γ′n,2t

)
= n−1/2


∑[nt]
i=0

ϕ′α

(
n1/α(L i+1

n
−L i

n
)

)
ϕα

(
n1/α(L i+1

n
−L i

n
)

)
∑[nt]
i=0

ϕα

(
n1/α(L i+1

n
−L i

n
)

)
+n1/α(L i+1

n
−L i

n
)ϕ′α

(
n1/α(L i+1

n
−L i

n
)

)
ϕα

(
n1/α(L i+1

n
−L i

n
)

)

 .

We will apply Lemma 2.8 in [13] to prove (5.13). Indeed, we will show that there exists a Gaussian random

vector γ with var(γ) =

E
[
ϕ′α(Lα1 )2

ϕα(Lα1 )
2

]
0

0 E
[

(ϕα(Lα1 )+Lα1 ϕ
′
α(Lα1 ))

2

ϕα(Lα1 )
2

]
, independent of L1 such that one has the

convergence in law

(Γ′n1 , Z
n
1 )⇒ (γ, L1). (5.14)

Then, by application of Lemma 2.8 in [13], there exists a bi-dimensional Brownian motion (Γ′t)t independent of

(Lt)t such that one has the convergence in law (Zn,Γn,Γ′n)⇒ (L,Γ,Γ′) where Γt =
∫ t

0

(
1
σ∂θb(X

β
s , θ) 0

0 1
σ

)
dΓ′s

and var(Γ′1) = var(γ).
Let us focus on the derivation of the convergence (5.14). For (u, v, w) ∈ R3, we set

Xn(u, v, w) = E

exp

i u

n1/2

ϕ′α(n1/αL 1
n

)

ϕα(n1/αL 1
n

)
+ i

v

n1/2

(
ϕα(n1/αL 1

n
) + n1/αL 1

n
ϕ′α(n1/αL 1

n
)
)

ϕα(n1/αL 1
n

)
+ iwL 1

n

 .
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Using the i.i.d. structure of the increments of the Lévy process L, we easily get the following expression about
the characteristic function of (Γ′n1 , Z

n
1 )

logE
[
exp(iuΓ′n,11 + ivΓ′n,21 + iwZn1 )

]
= n logXn(u, v, w). (5.15)

Let us study the asymptotic behavior of Xn(u, v, w). Using the expansion of the exponential function near zero

and that
ϕ′α
ϕα

and
xϕ′α(x)
ϕα(x) are bounded we get

Xn(u, v, w) = E


[
e
iwL 1

n

] 1 +

 iu

n1/2

ϕ′α(n1/αL 1
n

)

ϕα(n1/αL 1
n

)
+

iv

n1/2

(
ϕα(n1/αL 1

n
) + n1/αL 1

n
ϕ′α(n1/αL 1

n
)
)

ϕα(n1/αL 1
n

)



+
1

2

 iu

n1/2

(
ϕ′α(n1/αL 1

n
)
)

ϕα(n1/αL 1
n

)
+

iv

n1/2

(
ϕα(n1/αL 1

n
) + n1/αL 1

n
ϕ′α(n1/αL 1

n
)
)

ϕα(n1/αL 1
n

)

2


+O(n−3/2)

= E
[
e
iwL 1

n

]
+

iu

n1/2
E

[
ϕ′α(n1/αL 1

n
)

ϕα(n1/αL 1
n

)
e
iwL 1

n

]
+

iv

n1/2
E


(
ϕα(n1/αL 1

n
) + n1/αL 1

n
ϕ′α(n1/αL 1

n
)
)

ϕα(n1/αL 1
n

)
e
iwL 1

n


−u

2

2n
E

(ϕ′α(n1/αL 1
n

)

ϕα(n1/αL 1
n

)

)2

e
iwL 1

n

− uv

n
E

ϕ′α(n1/αL 1
n

)

ϕα(n1/αL 1
n

)

(
ϕα(n1/αL 1

n
) + n1/αL 1

n
ϕ′α(n1/αL 1

n
)
)

ϕα(n1/αL 1
n

)
e
iwL 1

n


− v

2

2n
E

(ϕα(n1/αL 1
n

) + n1/αL 1
n
ϕ′α(n1/αL 1

n
)

ϕα(n1/αL 1
n

)

)2

e
iwL 1

n

+O(n−3/2)

:= X (1)
n (u, v, w) +

iu

n1/2
X (2)
n (u, v, w) +

iv

n1/2
X (3)
n (u, v, w)− u2

2n
X (4)
n (u, v, w)

−uv
n
X (5)
n (u, v, w)− v2

2n
X (6)
n (u, v, w) +O(n−3/2). (5.16)

First, we have

X (1)
n (u, v, w) = eψ(w)/n = 1 + ψ(w)/n+O(n−2) (5.17)

where ψ(w) is the Lévy Khintchine exponent of L1.

We now focus on the term X (2)
n (u, v, w). Using the results of Lemma 3.3, and the fact that n1/αL1/n has the

same law as Ln1 , we get

X (2)
n (u, v, w) = E

[
ϕ′α
ϕα

(Lα1 )e
i
wLα1

n1/α

]
+O(n−1)

=

∫
R
ϕ′α(s)e

i ws

n1/α ds+O(n−1)

= − iw

n1/α

∫
R
ϕα(s)e

i ws

n1/α ds+O(n−1) using integration by parts formula

= O(max(n−1/α, n−1)). (5.18)
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For the term X (3)
n (u, v, w), using Lemma 3.3 again, it is easy to see that

X (3)
n (u, v, w) = E

[(
ϕα(Lα1 ) + Lα1ϕ

′
α(Lα1 )

ϕα(Lα1 )

)
e
i
wLα1

n1/α

]
+O(n−1)

=

∫
R
ϕα(s)e

i ws

n1/α ds+

∫
R
sϕ′α(s)e

i ws

n1/α ds+O(n−1). (5.19)

Using integration by parts formula, we have

E(e
iwLα1

n ) =

∫
R
ϕα(s)e

iws

n1/α ds = −n
1/α

iw

∫
R
ϕ′α(s)e

iws

n1/α ds.

Then, we deduce that ∫
R
ϕ′α(s)e

iws

n1/α ds = − iw

n1/α
E(e

iwLα1
n ) = − iw

n1/α
E(e

iw

n1/α
Lα1 ). (5.20)

Since Lα1 is a symmetric α-stable process then we have for some constant C(α) > 0

E(e
iw

n1/α
Lα1 ) = e

−C(α)
∣∣∣ w

n1/α

∣∣∣α
. (5.21)

Combining (5.20) with (5.21), we have∫
R
ϕ′α(s)e

iws

n1/α ds = − iw

n1/α
e
−C(α)

∣∣∣ w

n1/α

∣∣∣α
. (5.22)

Now, since
∫
|sϕ′α(s)|ds < ∞ and w 7→ we

−C(α)
∣∣∣ w

n1/α

∣∣∣α
admits a derivative on R, we obtain by taking the

derivative with respect to w of the both sides of (5.22)∫
R
sϕ′α(s)e

iws

n1/α ds = −e−C(α)
∣∣∣ w

n1/α

∣∣∣α
+ αC(α)e

−C(α)
∣∣∣ w

n1/α

∣∣∣α |w|α
n

= −
∫
R
ϕα(s)e

iws

n1/α ds+ αC(α)e
−C(α)

∣∣∣ w

n1/α

∣∣∣α |w|α
n

. (5.23)

From (5.19) and (5.23) we can deduce that

X (3)
n (u, v, w) = O(n−1). (5.24)

For the term X (4)
n (u, v, w), using Lemma 3.3 again, we have

X (4)
n (u, v, w) = E

[
ϕ′α
ϕα

(Lα1 )2e
i
wLα1

n1/α

]
+O(n−1)

n→∞−−−−→ E
[
ϕ′α
ϕα

(Lα1 )2

]
. (5.25)

For the term X (5)
n (u, v, w) we have

X (5)
n (u, v, w) = E

[
ϕ′α(Lα1 )

ϕα(Lα1 )

(ϕα(Lα1 ) + Lα1ϕ
′
α(Lα1 ))

ϕα(Lα1 )
e
iwLα1

n1/α

]
+O(n−1)
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n→∞−−−−→ E
[
ϕ′α(Lα1 )

ϕα(Lα1 )

(ϕα(Lα1 ) + Lα1ϕ
′
α(Lα1 ))

ϕα(Lα1 )

]
= 0 from (3.13). (5.26)

For the term X (6)
n (u, v, w), we see that

X (6)
n (u, v, w) = E

[(
ϕ′α(Lα1 ) + Lα1ϕ

′
α(Lα1 )

ϕα(Lα1 )

)2

e
iwLα1

n1/α

]
+O(n−1)

n→∞−−−−→ E

[(
ϕ′α(Lα1 ) + Lα1ϕ

′
α(Lα1 )

ϕα(Lα1 )

)2
]
. (5.27)

Collecting the convergence of (X (i)
n (u, v, w))1≤i≤6, we deduce the convergence

logE
[
exp(iuΓ′n,11 + ivΓ′n,21 + iwZn1 )

]
n→∞−−−−→ ψ(v)− u2

2
E
[
ϕ′α
ϕα

(Lα1 )2

]
− v2

2
E

[(
ϕ′α(Lα1 ) + Lα1ϕ

′
α(Lα1 )

ϕα(Lα1 )

)2
]

and thus the convergence in law of this lemma.

6. Proofs of Lemmas 3.5–3.8

The proof of these lemmas is very technical and requires many intermediate results. We first recall the
Malliavin calculus for jump processes used in [6] and some properties of the Malliavin weights. Next we will
establish a regularity property of a conditional expectation with respect to the conditioning variable. Then we
will proceed to the proof of the lemmas.

6.1. Malliavin calculus and preliminary lemmas

We recall the Malliavin calculus on the Poisson space associated to the measure µ(n) (defined in Sect. 3.2.1)
and the basic properties of the Malliavin operators (see Bichteler, Gravereaux, Jacod [4], Chap. IV, Sects. 8–10).
For a test function f : [0, 1]× E 7→ R ( f is measurable, C2 with respect to the second variable, with bounded

derivative, and f ∈ ∩p≥1L
p(ν)) we set µ(n)(f) =

∫ 1

0

∫
E
f(t, z)µ(n)(dt,dz). We introduce an auxiliary function

ρn as

ρn(z) =


z4 if |z| < 1

ζ(z) if 1 ≤ |z| ≤ 2

z2τ( z
2n1/α ) if |z| > 2

(6.1)

where τ is defined in the assumption H1(bi), and ζ is a non negative function belonging to C∞ such that the func-

tion ρn belongs to C∞. Note that ζ is defined such that ρn(z) admits a derivative and ρn, (ρn)′, ρn
F ′n(z)
Fn(z) belong to

∩p≥1L
p(Fn(z)dz). From the conditions on τ , we can easily deduce that z2τ( z

2n1/α ) =

{
z2 if 2 ≤ |z| ≤ 2n1/α

0 if |z| > 4n1/α.

Moreover, we can see that ρn(z)
n→∞−−−−→ ρ(z) where

ρ(z) =


z4 if |z| < 1

ζ(z) if 1 ≤ |z| ≤ 2

z2 if |z| > 2.

(6.2)
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Note that from the definition of ρn and ρ, we can easily see that ρn(z) = ρ(z) if |z| ≤ 2n1/α.
With these notations, we define the Malliavin operator L, on a simple functional µ(n)(f), in the same way

as in [5] by the following equations :

L(µ(n)(f)) =
1

2
µ(n)

(
(ρn)′f ′ + ρn

F ′n
Fn

f ′ + ρnf ′′
)
,

where f ′ and f ′′ are the derivatives with respect to the second variable. For Φ = F (µ(n)(f1), .., µ(n)(fk)), with
F of class C2, we set

LΦ =

k∑
i=1

∂F

∂xi
(µ(n)(f1), ..., µ(n)(fk))L(µ(n)(fi)) +

1

2

k∑
i,j=1

∂2F

∂xi∂xj
(µ(n)(f1), ..., µ(n)(fk))µ(n)(ρnf ′if

′
j).

These definitions permit to construct a linear operator L on a space D ⊂ ∩p≥1L
p whose basic properties are

the following.

i) L is self-adjoint: ∀Φ,Ψ ∈ D, we have EΦLΨ = ELΦΨ.
ii) LΦ2 ≥ 2ΦLΦ.
iii) ELΦ = 0.

We associate to L, the symmetric bilinear operator Γ:

Γ(Φ,Ψ) = L(ΦΨ)− ΦLΨ−ΨLΦ. (6.3)

This operator satisfies the following properties (see [4], Eqs. (8-3))

Γ(F (Φ),Ψ) = F ′(Φ)Γ(Φ,Ψ), (6.4)

Γ(F (Φ1,Φ2),Ψ) = ∂Φ1F (Φ1,Φ2)Γ(Φ1,Ψ) + ∂Φ2F (Φ1,Φ2)Γ(Φ2,Ψ), (6.5)

|Γ(Φ,Ψ)| ≤ Γ(Φ,Φ)1/2Γ(Ψ,Ψ)1/2. (6.6)

Remark 6.1. The operators L and Γ depend on n through the functions ρn and Fn but to simplify the notation
we omit the dependence in n.

The operator L and the operator Γ permit to establish the following integration by parts formula (see [4],
Prop. 8–10, p. 103).

Proposition 6.2. For Φ and Ψ in D, and f bounded with bounded derivative up to order two, if Γ(Φ,Φ) is
invertible and Γ−1(Φ,Φ) ∈ ∩p≥1L

p then we have

Ef ′(Φ)Ψ = Ef(Φ)HΦ(Ψ), (6.7)

with

HΦ(Ψ) = −2ΨΓ−1(Φ,Φ)LΦ− Γ(Φ,ΨΓ−1(Φ,Φ)) (6.8)

= −2ΨΓ−1(Φ,Φ)LΦ− 1

Γ(Φ,Φ)
Γ(Φ,Ψ) +

Ψ

Γ(Φ,Φ)2
Γ(Φ,Γ(Φ,Φ)) (6.9)

= ΦL

(
Ψ

Γ(Φ,Φ)

)
− ΨLΦ

Γ(Φ,Φ)
− L

(
ΨΦ

Γ(Φ,Φ)

)
. (6.10)
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With these notations, we can explicit the Malliavin weight H
Y
n,β,x0
1

(∇βY
n,β,x0

1 ) appearing in the

representation of the score function given in Proposition 3.4.

Proposition 6.3 (Thms. 3.1 and 6.2 in [6]).

H
Y
n,β,x0
1

(∇βY
n,β,x0

1 ) =

HY n,β,x01
(∂θY

n,β,x0

1 )

H
Y
n,β,x0
1

(∂σY
n,β,x0

1 )


=

(
∂θY

n,β,x0

1

∂σY
n,β,x0

1

)
H
Y
n,β,x0
1

(1)− 1

Γ(Y
n,β,x0

1 , Y
n,β,x0

1 )

(
Γ(Y

n,β,x0

1 , ∂θY
n,β,x0

1 )

Γ(Y
n,β,x0

1 , ∂σY
n,β,x0

1 )

)
(6.11)

and

H
Y
n,β,x0
1

(1) =
Γ(Y

n,β,x0

1 ,Γ(Y
n,β,x0

1 , Y
n,β,x0

1 ))

(Γ(Y
n,β,x0

1 , Y
n,β,x0

1 ))
2 − 2

LY
n,β,x0

1

Γ(Y
n,β,x0

1 , Y
n,β,x0

1 )

=
1

σ
n1/αĤnβ(1) +Rn1,β(1) +Rn2,β(1) +Rn3,β(1). (6.12)

The main term Ĥnβ(1) is given by

Ĥnβ(1) =

∫ 1

0

∫
R(εns )−3ρn(z)(ρn)

′
(z)µn(ds,dz)

εn1

[∫ 1

0

∫
R(εns )−2ρn(z)µn(ds,dz)

]2 −
∫ 1

0

∫
R(εns )−1

[
(ρn)

′
(z)− 1+α

z ρn(z)
]
µn(ds,dz)

εn1
∫ 1

0

∫
R(εns )−2ρn(z)µn(ds,dz)

(6.13)

with

εns = exp

(
1

n

∫ s

0

b′(Y
n,β,x0

u , θ)du

)
. (6.14)

The remainder terms satisfy for any compact set Q ⊂ R× (0,∞)

∀p ≥ 2, E sup
β∈Q

∣∣Rn1,β(1)
∣∣p ≤ C

n
, sup

β∈Q
|Rn2,β(1)| ≤ C

n
, sup

β∈Q
|Rn3,β(1)| ≤ C

n
, (6.15)

where C is some deterministic constant.

Remark 6.4.

i) It is proved in [6] (see (4.23)) that Ĥnβ(1) is bounded by a random variable independent of n, β and x0

and belonging to ∩p≥1L
p and that it converges in Lp,∀p ≥ 1, uniformly with respect to x0 (see (4.23) and

(5.49) in [6]) to HLα(1) given by

HLα(1) =

∫ 1

0

∫
R ρ(z)ρ′(z)µ(ds,dz)[∫ 1

0

∫
R ρ(z)µ(ds,dz)

]2 −
∫ 1

0

∫
R
[
ρ′(z)− 1+α

z ρ(z)
]
µ(ds,dz)∫ 1

0

∫
R ρ(z)µ(ds,dz)

. (6.16)

Moreover, HLα(1) and Lα1HLα(1) belong to Lp,∀p ≥ 1.
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ii) In the case b ≡ 0 and σ = 1, we have εns = 1 and the remainder termsRn2,β(1),Rn3,β(1) are equal to zero (see

(4.7) and (4.8) in [6]). Moreover, we see that (6.12) can be rewritten as Ĥnβ(1) + 1
n1/αRn1,β(1) = HLn1 (1),

then we can deduce that HLn1 (1)
Lp−−→
p≥1

HLα(1).

Before studying the Malliavin weight H
Y
n,β,x0
1

(∇βY
n,β,x0

1 ), we give some control on the processes (∂θY
β
t )t

and (∂σY
β
t )t, respectively solution to the equations

∂θY
n,β,x0

t =
1

n

∫ t

0

b′(Y
n,β,x0

s , θ)∂θY
n,β,x0

s ds+
1

n

∫ t

0

∂θb(Y
n,β,x0

s , θ)ds, (6.17)

∂σY
n,β,x0

t =
1

n

∫ t

0

b′(Y
n,β,x0

s , θ)∂σY
n,β,x0

s ds+
Lnt
n1/α

. (6.18)

We have the following properties.

Lemma 6.5 (Lem. 5.1 in [6]). Let Q ⊂ R× (0,∞) be a compact subset. We have

i) supβ∈Q |∂θY
n,β,x0

1 | ≤ C
n ,

ii) supβ∈Q sups∈[0,1]

∣∣∣∂σY n,β,x0

s

∣∣∣ n→∞−−−−→
Lp

0, ∀p ≥ 1.

We now proceed to the decomposition of the Malliavin weight H
Y
n,βn,x0
1

(∇βY
n,βn,x0

1 ) defined in

Proposition 6.3 into some main parts and some remainder parts. From (6.11), (6.12), we can rewrite

H
Y
n,βn,x0
1

(∇βY
n,βn,x0

1 ) as,

H
Y
n,βn,x0
1

(∇βY
n,βn,x0

1 ) =

 1
σn
n1/α∂θY

n,βn,x0

1 Ĥnβn(1)
1
σn

(
n1/α∂σY

n,βn,x0

1 Ĥnβn(1)− 1
)+Rnβn(∇βY

n,βn,x0

1 ) (6.19)

where Ĥnβ(1) is given by (6.13) and

Rnβn(∇βY
n,βn,x0

1 ) =

(
∂θY

n,βn,x0

1

∂σY
n,βn,x0

1

)[
Rn1,βn(1) +Rn2,βn(1) +Rn3,βn(1)

]
−

 V n,θn1

Un,βn1
V n,σn1

Un,βn1

− 1
σn

 (6.20)

with Un,β1 = Γ(Y
n,β,x0

1 , Y
n,β,x0

1 ), V n,θ1 = Γ(Y
n,β,x0

1 , ∂θY
n,β,x0

1 ) and V n,σ1 = Γ(Y
n,β,x0

1 , ∂σY
n,β,x0

1 ) given by

Un,β1 =
(εn1 )

2
σ2

n2/α

∫ 1

0

∫
R

(εns )
−2
ρn(z)µ(n)(ds,dz), (6.21)

V n,θ1 =
1

n
(εn1 )2

∫ 1

0

(εns )−2
(
Un,βs

[
(∂θb)

′(Y
n,β,x0

s , θ) + b′′(Y
n,β,x0

s , θ)∂θY
n,β,x0

s

])
ds, (6.22)

V n,σ1 =
1

n
(εn1 )2

∫ 1

0

(εns )−2
(
b′′(Y

n,β,x0

s , θ)∂σY
n,β,x0

s Un,βs

)
ds+

σ

n2/α
(εn1 )2

∫ t

0

∫
R

(εns )−2ρn(z)µ(n)(ds,dz) (6.23)

and (εns )s∈[0,1] given by (6.14).
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Now we recall two technical lemmas given in [6] useful to study the convergence of the Malliavin weight

H
Y
n,βn,x0
1

(∇βY
n,βn,x0

1 ) in the proof of Lemmas 3.7–3.8 later.

Lemma 6.6 (Lem. 5.4 in [6]). Let (βn) be a sequence converging to β. For all p ≥ 1, the following convergences
hold uniformly with respect to x0

i) n∂θY
n,βn,x0

1 Ĥnβn(1)
n→∞−−−−→
Lp

∂θb(x0, θ)HLα(1),

ii) n1/α∂σY
n,βn,x0

1 Ĥnβn(1)
n→∞−−−−→
Lp

Lα1HLα(1),

where Ĥnβ(1) and HLα(1) are respectively given by (6.13) and (6.16).

Lemma 6.7 (Lem. 5.3 in [6]). Let Q ⊂ R× (0,∞) be a compact subset. The following estimates hold:

i) supβ∈Q

∣∣∣V n,θ1

Un,β1

∣∣∣ ≤ C
n ,

ii)
V n,σ1

Un,β1

= 1
σ +Rn9,β(1),

where C is some deterministic constant and supβ∈Q |Rn9,β(1)| converges to zero as n→∞ in Lp,∀p ≥ 1.

6.2. Regularity of the conditional expectation

In this section, we prove a regularity property of the conditional expectation with respect to the conditioning
variable.

Proposition 6.8. Let H be a random variable such that E(H)2 <∞. We assume that there exists a sequence of

random variables (Hn)n≥1 with E(Hn)2 <∞ and such that Hn n→∞−−−−→
L2

H and supn ||Γ(Hn,Hn)||2 <∞. Then,

E
[
E[H|Y n,βn,x0

1 ]
2
]
− E

[
E[H|Lα1 ]

2
]
n→∞−−−−→ 0 (6.24)

and this convergence is uniform with respect to x0.

Remark 6.9. Note that if the random variable H depends on all the measure µ then the Malliavin calculus
of Section 3.2.1 is not defined. So we need to introduce the sequence of random variables (Hn), for which the
Malliavin calculus of Section 6.1 is defined, such that Γ(Hn,Hn) is also well defined. It is the case, for instance,
if Hn is a simple functional of µ(n).

Proof of Proposition 6.8. First we reduce the situation to the case where the random variable in the expectation
is bounded. Let K > 1 and denote by x 7→ XK(x) a smooth truncation function with


XK(x) = 0 for |x| > K

XK(x) = 1 for |x| ≤ K/2
0 ≤ XK(x) ≤ 1 for K/2 ≤ |x| ≤ K.

(6.25)

For all ε > 0, we can choose K large enough such that ||H −HXK(H)||22 < ε and then, one can see that (6.24)
is implied by the following convergence, ∀K > 2

sup
x0

∣∣∣E [E[HXK(H)|Y n,βn,x0

1 ]2
]
− E

[
E[HXK(H)|Lα1 ]2

]∣∣∣ n→∞−−−−→ 0.
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Now since E (Hn −H)
2 n→∞−−−−→ 0, it is sufficient to prove that, ∀K > 2

sup
x0

∣∣∣E [E[HnXK(Hn)|Y n,βn,x0

1 ]2
]
− E

[
E[HnXK(Hn)|Lα1 ]2

]∣∣∣ n→∞−−−−→ 0. (6.26)

We now prove (6.26). First, we define ηH
n,K

and ηH
n,K

as follows

ηH
n,K

(Y
n,βn,x0

1 − ςn,θn,x0

1 ) = E
[
HnXK(Hn)|Y n,βn,x0

1 − ςn,θn,x0

1

]
= E

[
HnXK(Hn)|Y n,βn,x0

1

]
,

ηH
n,K

(
σLα1
n1/α

) = E
[
HnXK(Hn)| σL

α
1

n1/α

]
= E [HnXK(Hn)|Lα1 ] .

(6.27)

With these notations, we can rewrite (6.26) as

sup
x0

∣∣∣∣E [ηHn,K (Y
n,βn,x0

1 − ςn,θn,x0

1 )
2
]
− E

[
ηH

n,K

(
σLα1
n1/α

)
2]∣∣∣∣ n→∞−−−−→ 0 (6.28)

Using Lemma 6.11 in Section 6.4, we know that:

sup
x0

E
[∣∣∣∣ηHn,K (Y

n,βn,x0

1 − ςn,θn,x0

1 )− ηH
n,K

(Y
n,βn,x0

1 − ςn,θn,x0

1 )

∣∣∣∣] n→∞−−−−→ 0

and since |ηHn,K | and |ηH
n,K

| are bounded by the constant K, we deduce

sup
x0

∣∣∣∣E[ηH
n,K

(Y
n,βn,x0

1 − ςn,θn,x0

1 )2]− E[ηH
n,K

(Y
n,βn,x0

1 − ςn,θn,x0

1 )2]

∣∣∣∣ n→∞−−−−→ 0.

Now, applying Lemma 6.10 in Section 6.4, with the choice Hn = 1 with the bounded function (ηH
n,K

)2 we get
(6.28) and the proposition is proved.

We can now prove Lemmas 3.5–3.8.

6.3. Proofs of Lemmas 3.5–3.8

Proof of Lemma 3.5. First we remark that although Lα1 does not belong to the domain of Malliavin operators
D we can establish a representation for ϕ′α/ϕα.

Indeed, since Ln1 belongs to the Malliavin space D, the integration by parts formula (6.7) gives for any test
function f (f is bounded, compactly supported and f ′ is bounded),

E[f ′(Ln1 )] = E[f(Ln1 )HLn1 (1)]. (6.29)

Now from Lemma 3.3, we have P(Ln1 = Lα1 )
n→∞−−−−→ 1 and from Remark 6.4 ii) we have HLn1 (1)

Lp−−→
p≥1

HLα(1).

Letting n go to infinity in (6.29), we deduce

E[f ′(Lα1 )] = E[f(Lα1 )HLα(1)]. (6.30)

Observing that
∫
ϕα(u)f ′(u)du = −

∫
ϕ′α(u)f(u)du, we get

∫
f(u)ϕ′α(u)du = −E[f(Lα1 )HLα(1)] and we deduce

the representation (3.7).
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Proof of Lemma 3.6. The proof of this lemma is based on the results in [6] recalled in Section 6. From (6.20),

Lemma 6.5, Lemma 6.7 and (6.15), we easily deduce that supβ∈QRnβ(∇βY
n,βn,x0

1 ) converges to zero in Lp,∀p ≥ 1
(uniformly with respect to x0).

From Lemma 6.6 i)− ii) and (6.19) we can deduce (3.8). The uniform control of E
∣∣∣n1/2rnHY n,β,x01

(∇βY
n,β,x0

1 )
∣∣∣p

is immediate.

Proof of Lemma 3.7. From Jensen’s inequality, we have

E

[∣∣∣∣E[n1−1/αH
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]− E[
1

σ
∂θb(x0, θ)HLα(1)|Y n,βn,x0

1 ]

∣∣∣∣2
]

≤ E

[
E

[∣∣∣∣n1−1/αH
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )− 1

σ
∂θb(x0, θ)HLα(1)

∣∣∣∣2|Y n,βn,x0

1

]]

= E

[∣∣∣∣n1−1/αH
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )− 1

σ
∂θb(x0, θ)HLα(1)

∣∣∣∣2
]

From Lemma 3.6, the last term converges to zero uniformly with respect to x0. In turn, it gives the uniform
convergence

sup
x0

∣∣∣∣n2−2/αE
[
E[H

Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]2
]
− 1

σ2
∂θb(x0, θ)

2E
[
E[HLα(1)|Y n,βn,x0

1 ]2
]∣∣∣∣ n→∞−−−−→ 0.

By the same method as above, we also get the uniform convergence

sup
x0

∣∣∣∣E [E[H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]2
]
− 1

σ2
E
[
E[(Lα1HLα(1)− 1) |Y n,βn,x0

1 ]2
]∣∣∣∣ n→∞−−−−→ 0.

Hence, this lemma will be proved as soon as we show that

sup
x0

∣∣∣∣E [E[HLα(1)|Y n,βn,x0

1 ]
2
]
− E

[
E[HLα(1)|Lα1 ]

2
]∣∣∣∣ n→∞−−−−→ 0, (6.31)

sup
x0

∣∣∣∣E [E[(Lα1HLα(1)− 1) |Y n,βn,x0

1 ]
2
]
− E

[
E[(Lα1HLα(1)− 1) |Lα1 ]

2
]∣∣∣∣ n→∞−−−−→ 0. (6.32)

To prove (6.31), we apply Proposition 6.8 with the choice H = HLα(1) and

Hn =

∫ 1

0

∫
R ρ

n(z)(ρn)
′
(z)µn(ds,dz)[∫ 1

0

∫
R ρ

n(z)µn(ds,dz)
]2 −

∫ 1

0

∫
R
[
(ρn)

′
(z)− 1+α

z ρn(z)
]
µn(ds,dz)∫ 1

0

∫
R ρ

n(z)µn(ds,dz)
:= H̃n. (6.33)

From Remark 6.4 ii) we get that H̃n = HLn1 (1)− 1
n1/αRn1,β , moreover E(HLα(1))2 <∞ and H̃n n→∞−−−−→

L2
HLα(1).

The computation of Γ(H̃n, H̃n) is omitted but reduces to the computation of the Γ-bracket between simple
functionals. After some calculus (similar to those in the proof of Thm. 2.1 in [6]) we get that Γ(H̃n, H̃n)
is bounded by a random variable independent of n and belonging to ∩p≥1L

p. Turning to 6.32, we proceed

similarly with the choices H = Lα1HLα(1) and Hn = Ln1 H̃n. Note that using Lemma 6.6 ii) with b(x, θ) = 0 and

σ = 1 we deduce that Ln1 H̃n
n→∞−−−−→
L2

Lα1HLα(1) moreover we can prove that supn ||Γ(Ln1 H̃n, Ln1 H̃n)||2 <∞.
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Proof of Lemma 3.8. It is easy to see that

E

 ∣∣∣∣ n1−1/αE[H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]E[H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]

−E
[

1

σ
(Lα1HLα(1)− 1) |Y n,βn,x0

1

]
E
[

1

σ
∂θb(x0, θ)HLα(1)|Y n,βn,x0

1

] ∣∣∣∣


≤ E

 ∣∣∣∣∣∣ n1−1/αE[H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]

(
E[H

Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]− E
[

(Lα1HLα(1)− 1)

σ
|Y n,βn,x0

1

] ) ∣∣∣∣


+ E

 ∣∣∣∣∣∣ E
[

(Lα1HLα(1)− 1)

σ
|Y n,βn,x0

1

]
(
n1−1/αE[H

Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]− E
[
∂θb(x0, θ)HLα(1)

σ
|Y n,βn,x0

1

] ) ∣∣∣∣∣∣
 . (6.34)

Then using Cauchy-Schwarz inequality

E

 ∣∣∣∣ n1−1/αE[H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]

×
(

E[H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]− E
[

(Lα1HLα(1)− 1)

σ
|Y n,βn,x0

1

] ) ∣∣∣∣


≤
[
E
((

n1−1/αE[H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]
)2
)]1/2

×

E
 E[H

Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]− E
[

(Lα1HLα(1)− 1)

σ
|Y n,βn,x0

1

] 2


1/2

≤
[
E
(
n2−2/αE

[∣∣∣H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )
∣∣∣2 |Y n,βn,x0

1

])]1/2

×

E
 E

[∣∣∣∣HY n,βn,x01
(∂σY

n,βn,x0

1 )− (Lα1HLα(1)− 1)

σ

∣∣∣∣2 |Y n,βn,x0

1

] 1/2

=

[
E
(
n2−2/α

∣∣∣H
Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )
∣∣∣2)]1/2

E
 ∣∣∣∣HnY n,βn,x01

(∂σY
n,βn,x0

1 )− (Lα1HLα(1)− 1)

σ

∣∣∣∣2
1/2

.

(6.35)
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Furthermore, from (3.8) we easily deduce that (6.35) converges to zero uniformly with respect to x0. Similarly,
we also get that

E
[ ∣∣∣∣E [ (Lα1HLα(1)− 1)

σ
|Y n,βn,x01

](
n1−1/αE[H

Y
n,βn,x0
1

(∂θY
n,βn,x0
1 )|Y n,βn,x01 ]− E

[
∂θb(x0, θ)HLα(1)

σ
|Y n,βn,x01

])∣∣∣∣ ]

tends to zero uniformly with respect to x0. And then, we can conclude that (6.34) converges to zero uniformly
with respect to x0. In turn, it gives the uniform convergence

sup
x0

∣∣∣∣∣∣ E
[
n1−1/αE[H

Y
n,βn,x0
1

(∂θY
n,βn,x0

1 )|Y n,βn,x0

1 ]E[H
Y
n,βn,x0
1

(∂σY
n,βn,x0

1 )|Y n,βn,x0

1 ]
]
−

− E
[
E
[

1

σ
(Lα1HLα(1)− 1) |Y n,βn,x0

1

]
E
[

1

σ
∂θb(x0, θ)HLα(1)|Y n,βn,x0

1

]] ∣∣∣∣∣∣ n→∞−−−−→ 0. (6.36)

On the other hand, we can rewrite

E
[
E
[

1

σ
(Lα1HLα(1)− 1) |Y n,βn,x0

1

]
E
[

1

σ
∂θb(x0, θ)HLα(1)|Y n,βn,x0

1

]]

=
1

4
E


[
E
(

1

σ
(Lα1HLα(1)− 1) +

1

σ
∂θb(x0, θ)HLα(1)|Y n,βn,x0

1

)]2

−
[
E
(

1

σ
(Lα1HLα(1)− 1)− 1

σ
∂θb(x0, θ)HLα(1)|Y n,βn,x0

1

)]2
 . (6.37)

Then, the lemma will be proved as soon as we show that

E


[
E
(

1

σ
(Lα1HLα(1)− 1) +

1

σ
∂θb(x0, θ)HLα(1)

∣∣∣∣Y n,βn,x0

1

)]2

−
[
E
(

1

σ
(Lα1HLα(1)− 1)− 1

σ
∂θb(x0, θ)HLα(1)

∣∣∣∣Y n,βn,x0

1

)]2
 (6.38)

is uniformly convergent with respect to x0 to

E


[
E
(

1

σ
(Lα1HLα(1)− 1) +

1

σ
∂θb(x0, θ)HLα(1)

∣∣∣∣Lα1)]2

−
[
E
(

1

σ
(Lα1HLα(1)− 1)− 1

σ
∂θb(x0, θ)HLα(1)

∣∣∣∣Lα1)]2
 . (6.39)

We end the proof by using Proposition 6.8 with H = Lα1HLα(1) ± ∂θb(x0, θ)HLα(1) and Hn = Ln1 H̃n ±
∂θb(x0, θ)H̃n where H̃n is given by (6.33).
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6.4. Lemmas 6.10 and 6.11

The aim of this section is to show that the functions ηH
n,K

and ηH
n,K

defined by (6.27) are close in some
sense. The idea is mainly based on ([5], Prop. 9, p. 2348), however we need a more technical study since α ∈ (0, 2)
and the function b is not assumed to be bounded. Our first result is the following.

Lemma 6.10. Under the assumptions of Proposition 6.8, for all bounded function h, ∀K > 2, there exists a
constant CK > 0 such that∣∣∣∣E[HnXK(Hn)h(Y

n,β,x0

1 − ςn,θ,x0

1 )]− E
[
HnXK(Hn)h

(
σLα1
n1/α

)]∣∣∣∣ ≤ CK
n
||h||∞

and the above estimate is uniform with respect to x0 ∈ R and β ∈ Q, for any compact set Q ⊂ R× (0,∞).

Proof. Since HnXK(Hn) is bounded and P(Ln1 6= Lα1 ) ≤ C
n (see Lem. 3.3) it is sufficient to show that∣∣∣∣E[HnXK(Hn)h(Y

n,β,x0

1 − ςn,θ,x0

1 )]− E
[
HnXK(Hn)h

(
σLn1
n1/α

)]∣∣∣∣ ≤ CK
n
||h||∞. (6.40)

We now prove (6.40).
Let us denote Hn,K = HnXK(Hn) and H any primitive function of h. Using the integration by parts formula

(6.7), we have

E
[
h(
σLn1
n1/α

)Hn,K
]

= E
[
H(

σLn1
n1/α

)H
(
σLn1

n1/α
)
(Hn,K)

]
(6.41)

where H
(
σLn1

n1/α
)
(Hn,K) is given by (6.10), namely here

H
(
σLn1

n1/α
)
(Hn,K) = L

(
Hn,K

Γ(
σLn1
n1/α ,

σLn1
n1/α )

)
σLn1
n1/α

−
L(

σLn1
n1/α )Hn,K

Γ(
σLn1
n1/α ,

σLn1
n1/α )

− L

(
Hn,K σLn1

n1/α

Γ(
σLn1
n1/α ,

σLn1
n1/α )

)
.

On the other hand, we have for t ∈ [0, 1]∣∣∣∣Y n,β,x0

t − ςn,θ,x0

t − σLnt
n1/α

∣∣∣∣ =

∣∣∣∣ 1n
∫ t

0

[
b(Y

n,β,x0

s , θ)− b(ςn,θ,x0
s , θ)

]
ds

∣∣∣∣
≤ 1

n

∫ t

0

||b′||∞|Y
n,β,x0

s − ςn,θ,x0
s |ds

≤ 1

n

∫ t

0

||b′||∞|Y
n,β,x0

s − ςn,θ,x0
s − σLns

n1/α
|ds+

1

n1+1/α

∫ 1

0

|σLns |ds.

Applying the Gronwall’s inequality, for C a positive constant, independent of n and K,∣∣∣∣Y n,β,x0

1 − ςn,θ,x0

1 − σLn1
n1/α

∣∣∣∣ ≤ C

n1+1/α

∫ 1

0

|σLns |ds. (6.42)

Using that the function H is globally Lipschitz with a Lipschitz constant ||h||∞, we deduce from (6.41) that∣∣∣∣E [Hn,Kh(
σLn1
n1/α

)

]
− E

[
H(Y

n,β,x0

1 − ςn,θ,x0

1 )H
(
σLn1

n1/α
)
(Hn,K)

]∣∣∣∣
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≤
∣∣∣∣ σC

n1+1/α

∣∣∣∣ ||h||∞E
[∣∣∣∣∫ 1

0

|Lns |dsH(
σLn1

n1/α
)
(Hn,K)

∣∣∣∣] . (6.43)

Now we compute E[H(Y
n,β,x0

1 − ςn,θ,x0

1 )H
(
σLn1

n1/α
)
(Hn,K)] using successively the self-adjoint property of the

operator L, (6.3) and (6.10), to obtain an integration by part formula in a reverse direction:

E[H(Y
n,β,x0

1 − ςn,θ,x0

1 )H
(
σLn1

n1/α
)
(Hn,K)]

= E

[
H(Y

n,β,x0

1 − ςn,θ,x0

1 )

{
L

(
Hn,K

Γ(
σLn1
n1/α ,

σLn1
n1/α )

)
σLn1
n1/α

−
L(

σLn1
n1/α )Hn,K

Γ(
σLn1
n1/α ,

σLn1
n1/α )

− L

(
Hn,K σLn1

n1/α

Γ(
σLn1
n1/α ,

σLn1
n1/α )

)}]

= E

[
{L(H(Y

n,β,x0

1 − ςn,θ,x0

1 )
σLn1
n1/α )−H(Y

n,β,x0

1 − ςn,θ,x0

1 )L(
σLn1
n1/α )− L(H(Y

n,β,x0

1 − ςn,θ,x0

1 ))
σLn1
n1/α )}Hn,K

Γ(
σLn1
n1/α ,

σLn1
n1/α )

]

= E

[
Hn,K

Γ(
σLn1
n1/α , H(Y

n,β,x0

1 − ςn,θ,x0

1 ))

Γ(
σLn1
n1/α ,

σLn1
n1/α )

]
= E

[
Hn,Kh(Y

n,β,x0

1 − ςn,θ,x0

1 )
Γ(

σLn1
n1/α , Y

n,β,x0

1 − ςn,θ,x0

1 )

Γ(
σLn1
n1/α ,

σLn1
n1/α )

]
. (6.44)

Putting together (6.43) and (6.44) we deduce,

∣∣∣∣E[Hn,Kh(
σLn1
n1/α

)]− E[Hn,Kh(Y
n,β,x0

1 − ςn,θ,x0

1 )]

∣∣∣∣ ≤ (
σC

n1+1/α
)||h||∞

∣∣∣∣∣∣∣∣H(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

|Lns |ds
∣∣∣∣∣∣∣∣

1

+ E

[∣∣∣∣∣Hn,Kh(Y
n,β,x0

1 − ςn,θ,x0

1 )

{
Γ(

σLn1
n1/α , Y

n,β,x0

1 − ςn,θ,x0

1 )

Γ(
σLn1
n1/α ,

σLn1
n1/α )

− 1

}∣∣∣∣∣
]

≤ (
σC

n1+1/α
)||h||∞

∣∣∣∣∣∣∣∣H(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

|Lns |ds
∣∣∣∣∣∣∣∣

1

+ ||Hn,K ||∞||h||∞
∣∣∣∣∣∣∣∣Γ(

σLn1
n1/α , Y

n,β,x0

1 − ςn,θ,x0

1 )

Γ(
σLn1
n1/α ,

σLn1
n1/α )

− 1

∣∣∣∣∣∣∣∣
1

≤ C

n
||h||∞

∫ 1

0

∣∣∣∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)|Lns |

∣∣∣∣∣∣∣∣
1︸ ︷︷ ︸

I
(n,s)
1

ds+ ||Hn,K ||∞||h||∞
∣∣∣∣∣∣∣∣Γ(

σLn1
n1/α , Y

n,β,x0

1 − ςn,θ,x0

1 )

Γ(
σLn1
n1/α ,

σLn1
n1/α )

− 1

∣∣∣∣∣∣∣∣
1︸ ︷︷ ︸

In2

. (6.45)

Hence the lemma will be proved if we show that supn sups∈[0,1] I
(n,s)
1 <∞ and supn nI

(n)
2 <∞.

Step 1: we show that supn sups∈[0,1] I
(n,s)
1 <∞.

We can write from (6.9)

H
(
σLn1

n1/α
)
(Hn,K) =

−2L(
σLn1
n1/α )Hn,K

Γ(
σLn1
n1/α ,

σLn1
n1/α )

+
Hn,K

Γ(
σLn1
n1/α ,

σLn1
n1/α )2

Γ

(
σLn1
n1/α

,Γ(
σLn1
n1/α

,
σLn1
n1/α

)

)
−

Γ(
σLn1
n1/α ,Hn,K)

Γ(
σLn1
n1/α ,

σLn1
n1/α )

=
n1/α

σ

[
−2L(Ln1 )Hn,K

Γ(Ln1 , L
n
1 )

+
Hn,K

Γ(Ln1 , L
n
1 )2

Γ(Ln1 ,Γ(Ln1 , L
n
1 ))− Γ(Ln1 ,Hn,K)

Γ(Ln1 , L
n
1 )

]
. (6.46)

Now, let us recall that from (3.2)

Lns =

∫ s

0

∫
|z|≤1

zµ̃(n)(dt, dz) +

∫ s

0

∫
|z|>1

zµ(n)(dt,dz),
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then, ∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)|Lns |

∣∣∣∣ ≤
∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ s

0

∫
|z|≤1

zµ̃(n)(dt,dz)

∣∣∣∣∣ (6.47)

+

∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

∫
|z|>1

|z|µ(n)(dt,dz)

∣∣∣∣∣ (6.48)

First, we consider the expectation of the right-hand side term in (6.47), we have:

E

[∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ s

0

∫
|z|≤1

zµ̃(n)(dt,dz)

∣∣∣∣∣
]

≤

E(∫ s

0

∫
|z|≤1

zµ̃(n)(dt,dz)

)2
1/2 [

E
(

σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

)2
]1/2

by Cauchy-Schwarz inequality,

=

[∫ 1

0

∫
|z|≤1

z2 1

|z|1+α
dzdt

]1/2 [
E
(

σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

)2
]1/2

≤M

[
E
(

σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

)2
]1/2

(6.49)

where M is a deterministic constant.
Furthermore, from (6.6) we have

∣∣Γ(Ln1 ,Hn,K)
∣∣ ≤ Γ(Hn,K ,Hn,K)

1/2
Γ(Ln1 , L

n
1 )1/2 and from (6.46), convexity

inequality, we get[∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∣∣∣∣]2 ≤ 2

[(
−2L(Ln1 )Hn,K

Γ(Ln1 , L
n
1 )

+
Hn,K

Γ(Ln1 , L
n
1 )2

Γ(Ln1 ,Γ(Ln1 , L
n
1 ))

)2

+
Γ(Hn,K ,Hn,K)

Γ(Ln1 , L
n
1 )

]
. (6.50)

Then, we can deduce that

E
(∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∣∣∣∣)2

≤ 2E

[(
−2L(Ln1 )Hn,K

Γ(Ln1 , L
n
1 )

+
Hn,K

Γ(Ln1 , L
n
1 )2

Γ(Ln1 ,Γ(Ln1 , L
n
1 ))

)2
]

︸ ︷︷ ︸
In1.1

+2E
[

Γ(Hn,K ,Hn,K)

Γ(Ln1 , L
n
1 )

]
︸ ︷︷ ︸

In1.2

.

(6.51)

Our aim is to prove that In1.1 and In1.2 are bounded independently of n.
For In1.1, we see from (6.8) and Remark 6.4,

Γ(Ln1 ,Γ(Ln1 , L
n
1 ))

Γ(Ln1 , L
n
1 )2

− 2L(Ln1 )

Γ(Ln1 , L
n
1 )

= HLn1 (1) = Ĥnβ(1) +
1

n1/α
Rn1,β . (6.52)

From the crucial fact ||Hn,K ||∞ ≤ K and from (6.12), (6.15), Remark 6.4 we can deduce that In1.1 is bounded
by a random variable independent of n (but depending on K).

For In1.2, from (6.1) and (6.21), we have

In1.2 = E
(

Γ(Hn,K ,Hn,K)

Γ(Ln1 , L
n
1 )

)
= E

(
Γ(Hn,K ,Hn,K)∫ 1

0

∫
R ρ

n(z)µ(n)(dt, dz)

)
≤ E

 Γ(Hn,K ,Hn,K)∫ 1

0

∫
|z|<1

z4µ(dt, dz)

 .

Now since Hn,K is a smooth Malliavin functional, using the chain rule property (6.4) we have

Γ(Hn,K ,Hn,K) ≤ c2KΓ(Hn,Hn) (6.53)
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where cK is any upper bound of the derivative of x 7→ xXK(x).
Then we deduce that

In1.2 ≤ c2KE

 Γ(Hn,Hn)∫ 1

0

∫
|z|<1

z4µ(dt, dz)

 .

From the assumption on Γ(Hn,Hn) in Proposition 6.8 and since
(∫ 1

0

∫
|z|<1

z4µ(dt,dz)
)−1

belongs to ∩p≥1L
p

(see [5], the proof of Thm. 4), we can deduce that In1.2 is bounded independently of n. Thus, we get that the
expectation of the right-hand side term in (6.47) is finite.

Turning to the expectation of (6.48), we have:

E

[∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

∫
|z|>1

|z|µ(n)(dt,dz)

∣∣∣∣∣
]

= E

[∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

(∫ 1

0

∫
1≤|z|≤2

|z|µ(n)(dt, dz) +

∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)

)∣∣∣∣∣
]

≤ E

[∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

∫
1≤|z|≤2

|z|µ(n)(dt,dz)

∣∣∣∣∣
]

+ E

[∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)

∣∣∣∣∣
]
.

By a similar estimation technique as for the bound of (6.47), we get that

sup
n

E

[∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

∫
1≤|z|≤2

|z|µ(n)(dt,dz)

∣∣∣∣∣
]
≤ CK < +∞.

We now show that

sup
n

E

[∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)

∣∣∣∣∣
]
≤ CK < +∞. (6.54)

In fact, from (6.46) we have

E

[∣∣∣∣∣ σ

n1/α
H

(
σLn1

n1/α
)
(Hn,K)

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz)

∣∣∣∣∣
]

≤ E


 ∣∣∣∣−2L(Ln1 )Hn,K

Γ(Ln1 , L
n
1 )

+
Hn,K

Γ(Ln1 , L
n
1 )2

Γ(Ln1 ,Γ(Ln1 , L
n
1 ))

∣∣∣∣+

∣∣∣∣Γ(Ln1 ,Hn,K)

Γ(Ln1 , L
n
1 )

∣∣∣∣
 × ∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)


= E

[∣∣∣∣−2L(Ln1 )Hn,K

Γ(Ln1 , L
n
1 )

+
Hn,K

Γ(Ln1 , L
n
1 )2

Γ(Ln1 ,Γ(Ln1 , L
n
1 ))

∣∣∣∣ ∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)

]
︸ ︷︷ ︸

In1.3

+ E

[∣∣∣∣Γ(Ln1 ,Hn,K)

Γ(Ln1 , L
n
1 )

∣∣∣∣ ∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)

]
︸ ︷︷ ︸

In1.4

(6.55)



172 E. CLÉMENT ET AL.

To prove (6.54), we just have to show that In1.3 and In1.4 are bounded independently of n. For In1.3, we recall here
(6.52),

Γ(Ln1 ,Γ(Ln1 , L
n
1 ))

Γ(Ln1 , L
n
1 )2

− 2L(Ln1 )

Γ(Ln1 , L
n
1 )

= Ĥnβ(1) +
1

n1/α
Rn1,β(1).

Then from the boundedness of Hn,K , we get

In1.3 ≤ KE

[∣∣∣Ĥnβ(1)
∣∣∣ ∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)

]
+KE

[∣∣Rn1,β(1)
∣∣ 1

n1/α

∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)

]

From the proof of Lemma 5.4 in [6], we can deduce that
∣∣∣Ĥnβ(1)

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz)
∣∣∣ is bounded by a random

variable independent of n and belonging to ∩p≥1L
p.

Using Cauchy-Schwarz inequality and (6.15), we get

E

[∣∣Rn1,β(1)
∣∣ 1

n1/α

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz)

]
≤ C√

n

E

[∫ 1

0

∫
|z|>2

|z|
n1/α

µ(n)(dt,dz)

]2
1/2

(6.56)

Now from µ(n)(ds,dz) = µ̃(n)(ds,dz) + υ(n)(ds,dz), by convexity inequality, we have

E

[∫ 1

0

∫
|z|>2

|z|
n1/α

µ(n)(ds,dz)

]2

≤ 2E

[∫ 1

0

∫
|z|>2

|z|
n1/α

µ̃(n)(ds,dz)

]2

+ 2

[∫ 1

0

∫
|z|>2

|z|
n1/α

υ(n)(ds,dz)

]2

≤ 2E

[∫ 1

0

∫
2<|z|≤2n1/α

|z|2

n2/α

1

|z|1+α
dzds

]
+ 2

[∫ 1

0

∫
2<|z|≤2n1/α

|z|
n1/α

1

|z|1+α
dzds

]2

≤ C

n2/α

(
n2/α

n
+
n1/α

n

)
where C is a deterministic constant.

(6.57)
From (6.56) and (6.57), we deduce that the left-hand side of (6.56) is bounded by C

n . Then we get that
supn I

n
1.3 < +∞ .

For In1.4, from the boundedness of Hn,K , (6.21), and the fact that

Γ(Ln1 ,Hn,K) ≤ Γ(Hn,K ,Hn,K)
1/2

Γ(Ln1 , L
n
1 )1/2 we have:

In1.4 ≤ E

[(∣∣∣∣Γ(Hn,K ,Hn,K)

Γ(Ln1 , L
n
1 )

∣∣∣∣)1/2 ∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz)

]

= E

 ∣∣Γ(Hn,K ,Hn,K)
∣∣1/2∣∣∣∫ 1

0

∫
R ρ

n(z)µ(n)(ds,dz)
∣∣∣1/2

∫ 1

0

∫
|z|>2

|z|µ(n)(dt,dz)


≤ E

 ∣∣Γ(Hn,K ,Hn,K)
∣∣1/2∣∣∣∫ 1

0

∫
|z|>2

z2µ(n)(ds,dz)
∣∣∣1/2

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz)

 .
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Applying the Cauchy-Schwarz inequality, we have

∫ 1

0

∫
|z|>2

µn(dt,dz)×
∫ 1

0

∫
|z|>2

z2µ(n)(ds,dz) ≥

(∫ 1

0

∫
|z|>2

|z|µn(dt, dz)

)2

. (6.58)

We deduce

E

 ∣∣Γ(Hn,K ,Hn,K)
∣∣1/2∣∣∣∫ 1

0

∫
|z|>2

z2µ(n)(ds,dz)
∣∣∣1/2

∫ 1

0

∫
|z|>2

|z|µ(n)(dt, dz)


≤ E

∣∣Γ(Hn,K ,Hn,K)
∣∣1/2{∫ 1

0

∫
|z|>2

µ(n)(dt,dz)

}1/2


≤
{
E
[∣∣Γ(Hn,K ,Hn,K)

∣∣]}1/2

{
E

[∫ 1

0

∫
|z|>2

µ(n)(dt,dz)

]}1/2

. (6.59)

From
{
E
[∫ 1

0

∫
|z|>2

µ(n)(dt, dz)
]}1/2

≤ C4 where C4 is a constant and the fact that Γ(Hn,K ,Hn,K) admits

finite moment, independently of n (but depending of K) then, (6.59) is bounded independently of n and In1.4 is
proved. Hence (6.54) follows.

Step 2: We now prove supn nI
n
2 < C* where C* is a positive constant.

We have

∣∣∣∣Γ(
σLn1
n1/α , Y

n,β,x0

1 − ςn,θ,x0

1 )

Γ(
σLn1
n1/α ,

σLn1
n1/α )

− 1

∣∣∣∣ =
1

n

∣∣∣∣ ∫ 1

0

Γ(
σLn1
n1/α , b(Y

n,β,x0

s , θ)− b(ςn,θ,x0
s , θ))

Γ(
σLn1
n1/α ,

σLn1
n1/α )

ds

∣∣∣∣
≤ 1

n

||b′||∞
Γ(

σLn1
n1/α ,

σLn1
n1/α )

∫ 1

0

∣∣∣∣Γ(
σLn1
n1/α

, Y
n,β,x0

s )

∣∣∣∣ ds.
Using that


Γ(

σLn1
n1/α , Y

n,β,x0

s ) ≤ Γ(
σLn1
n1/α ,

σLn1
n1/α )

1/2
Γ(Y

n,β,x0

s , Y
n,β,x0

s )
1/2

Γ(Y
n,β,x0

s , Y
n,β,x0

s )
1/2
≤MΓ(Y

n,β,x0

1 , Y
n,β,x0

1 )
1/2

Γ(Y
n,β,x0

1 , Y
n,β,x0

1 )
1/2
≤M1Γ(

σLn1
n1/α ,

σLn1
n1/α )

1/2

for some constants M and M1, we can easily deduce that

∣∣∣∣Γ(
σLn1
n1/α , Y

n,β,x0

1 − ςn,θ,x0

1 )

Γ(
σLn1
n1/α ,

σLn1
n1/α )

− 1

∣∣∣∣ ≤ C∗

n
,

for a positive constant C∗.
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Lemma 6.11. Under the assumptions of Proposition 6.8, for any compact set Q ⊂ R× (0,∞), ∀K > 2, there
exists a constant cK > 0 such that

sup
x0,β∈Q

∣∣∣∣∣∣∣∣ηHn,K (Y
n,β,x0

1 − ςn,θ,x0

1 )− ηH
n,K

(Y
n,β,x0

1 − ςn,θ,x0

1 )

∣∣∣∣∣∣∣∣
1

≤ cK
n
. (6.60)

Proof. We estimate the L1-norm appearing in (6.60) by duality. Let β : R→ [−1, 1] be a measurable function,
we evaluate:∣∣∣∣E [(ηHn,K (Y

n,β,x0

1 − ςn,θ,x0

1 )− ηH
n,K

(Y
n,β,x0

1 − ςn,θ,x0

1 ))β(Y
n,β,x0

1 − ςn,θ,x0

1 )
] ∣∣∣∣

≤
∣∣∣∣E [ηHn,K (Y

n,β,x0

1 − ςn,θ,x0

1 )β(Y
n,β,x0

1 − ςn,θ,x0

1 )
]
− E

[
ηH

n,K

(
σLα1
n1/α

)β(
σLα1
n1/α

)

] ∣∣∣∣
+

∣∣∣∣E [ηHn,K (
σLα1
n1/α

)β(
σLα1
n1/α

)

]
− E

[
ηH

n,K

(Y
n,β,x0

1 − ςn,θ,x0

1 )β(Y
n,β,x0

1 − ςn,θ,x0

1 )
] ∣∣∣∣

≤
∣∣∣∣E [ηHn,K (Y

n,β,x0

1 − ςn,θ,x0

1 )β(Y
n,β,x0

1 − ςn,θ,x0

1 )
]
− E

[
ηH

n,K

(
σLα1
n1/α

)β(
σLα1
n1/α

)

] ∣∣∣∣+
CK
n
K

where we have used Lemma 6.10 with the choice Hn = 1,K > 2 and the choice h = ηH
n,K

β, recalling that

||ηH
n,K

||∞ ≤ K. From the definition of ηH
n,K

(
σLα1
n1/α ) and ηH

n,K

(Y
n,β,x0

1 − ςn,θ,x0

1 ) as conditional expectations,
we have: ∣∣∣∣E [ηHn,K (Y

n,β,x0

1 − ςn,θ,x0

1 )β(Y
n,β,x0

1 − ςn,θ,x0

1 )
]
− E

[
ηH

n,K

(
σLα1
n1/α

)β(
σLα1
n1/α

)

] ∣∣∣∣
=

∣∣∣∣E [HnXK(Hn)β(Y
n,β,x0

1 − ςn,θ,x0

1 )
]
− E

[
HnXK(Hn)β(

Lα1
n1/α

)

]∣∣∣∣ ≤ CK
n
,

where we used Lemma 6.10. This gives,

sup
||β||∞≤1

∣∣∣∣E [(ηHn,K (Y
n,β,x0

1 − ςn,θ,x0

1 )− ηH
n,K

(Y
n,β,x0

1 − ςn,θ,x0

1 ))β(Y
n,β,x0

1 − ςn,θ,x0

1 )
] ∣∣∣∣ ≤ (1 +K)

CK
n

and we deduce the result of this lemma.
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