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LAMN PROPERTY FOR THE DRIFT AND VOLATILITY
PARAMETERS OF A SDE DRIVEN BY A STABLE LEVY PROCESS

EMMANUELLE CLEMENT!* ARNAUD GLOTER? AND HUONG NGUYEN?

Abstract. This work focuses on the local asymptotic mixed normality (LAMN) property from high
frequency observations, of a continuous time process solution of a stochastic differential equation driven
by a truncated a-stable process with index e € (0, 2). The process is observed on the fixed time interval
[0,1] and the parameters appear in both the drift coefficient and scale coefficient. This extends the
results of Clément and Gloter [Stoch. Process. Appl. 125 (2015) 2316-2352] where the index a € (1, 2)
and the parameter appears only in the drift coefficient. We compute the asymptotic Fisher information
and find that the rate in the LAMN property depends on the behavior of the Lévy measure near zero.
The proof relies on the small time asymptotic behavior of the transition density of the process obtained
in Clément et al. [Preprint HAL-01410989v2 (2017)].
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1. INTRODUCTION

Modeling with pure jump Lévy processes plays an important role in many fields, especially in mathematical
finance (see for example [3, 16, 20]) and parametric inference for such processes is a currently active subject.

In this paper, we are concerned with parametric estimation of a stochastic differential equation driven by
a pure jump Lévy process, from high-frequency observations on a fixed observation time. More precisely we
consider the statistical experiment (R",B,, (P2)scocr2) corresponding to the observation of a Lévy driven

stochastic equation at discrete times (X A )1<i<n, solution of

t
Xf:a:o—k/ b(XP.0)ds + oLy, tel0,1],
0

where (Ly¢)efo,1] is a truncated a-stable process with exponent o € (0,2) and 8 = (6,0)" € R x (0,00) is an
unknown parameter to be estimated. We prove in this work that the local asymptotic mixed normality property

Keywords and phrases: Lévy process, stable process, Malliavin calculus for jump processes, LAMN property, parametric
estimation.
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(LAMN) holds for the parameter 8. The LAMN property has been introduced by Jeganathan [14, 15] to extend
to the markovian case the LAN property introduced in the pioneer works by Lecam and Héjek (see [10, 21]) in
the i.i.d. case. This property permits in particular to identify the optimal estimation rate for the parameters 6
and o and the asymptotic Fisher information.

Parametric inference and LAN property for pure jump Lévy processes based on high frequency observations
have been investigated in several papers, see for example Ait-Sahalia and Jacod [1, 2], Kawai and Masuda
[17, 18], Masuda [22]. In particular, in [22], the LAN property is established and estimators are proposed for
the parameters (6,0, ) in the model X; = 6t + o L%, where (L) is an a-stable process. Alt-Sahalia and Jacod
[1, 2] considered the model X; = o L% 4+ 0Y; where (Y;) is a Lévy process, independent of (L) and dominated
by (L¢). More recently, Ivanenko, Kulik and Masuda [12] proved the LAN property for the parameter (0, o) in
the model X; = 0t + 0Z; + Uy, where Z is a locally a-stable process and U is an independent and less active
process. In all these works, the increments (X i— Xi-1)1<i<n are independent and the transition density of
the discrete time process (X i )1<i<p is almost explicit.nExtensions to stochastic equations driven by pure jump
Lévy processes are not immediate and require a different approach since the transition density of the Markov
chain (X i )1<i<pn is unknown. Moreover they involve a random asymptotic Fisher information and lead to the
LAMN property. Concerning the parametric estimation of a stochastic differential equation driven by a pure
jump Lévy process from high frequency observations on a fixed observation time, we can mention the recent
paper by Masuda [23] where some estimators of the parameters (6, 0) are proposed for the general equation

t t
X, =20+ / b(X,,0)ds + / o(X,_,0)dLs,
0 0

where L is a locally a-stable process, with a € [1,2). However in that case the asymptotic efficiency of the
estimators is not yet establish and to our knowledge, the only result in that direction is given in Clément and
Gloter [5], where the LAMN property is proved for the estimation of the drift parameter 6 for the process
solution of (2.1) (with ¢ = 1), in the case a € (1,2). They show that the LAMN property is satisfied with

’ 2
rate r,, = n3~% and information Ty = fol 8.9b(X§,9)2ds fR “:‘j”(i(q”;))du7 where ¢, is the density of the standard
a-stable distribution with characteristic function u — e~ ¢(@ul®
Based on the main ideas of [5] and using the results of [6], we extend in the present paper these results to

-1
a € (0,2) and prove that the LAMN property holds for the parameters (0, 0) with rate r,, = (n 20 1)
n_2

I
0

mainly based on the L?-regularity property of the transition density (see Jeganathan [14]) and on Malliavin
calculus (see for example Gobet [8] for the use of Malliavin calculus in the case of a diffusion process). The L2-
regularity property is established here by using the asymptotic behavior of the density of the process solution
of (2.1) in small time as well as its derivative with respect to the parameter, given in [6] and based on the
Malliavin calculus for jump processes developed by Bichteler et al. [4]. It also requires a careful study of the
asymptotic behavior of the information matrix based on one observation of the process, this is the subject of
Section 3. This paper contains also an independent and interesting result stating a continuity property with
respect to the conditioning variable in a conditional expectation (see Prop. 6.8).

This paper is organized as follows. The main results (asymptotic expansion of the log-likelihood function and
LAMN property) are stated in Section 2. Section 3 studies the asymptotic behavior of the Fisher information
matrix based on the observation of X i (as m goes to infinity). The proof of the main results are given in

(u)+ugpl, (u))®

0
and information matrix 7 = < ) where 771 = %I@ and Zos = % fR (e ) du. The proof is
22 *

Section 4 and Section 5. Finally, Section 6 contains some additional technical proof required to establish the
results of Section 3.
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2. MAIN RESULTS

We consider the process (Xf)te[o,l] solution to
t
X7 = a +/ b(XP,0)ds + oLyt € [0,1], (2.1)
0

where (L¢)se[o,1) is a pure jump Lévy process defined on some probability space (£2,.A,P) and we are interested
in the statistical properties of the process (X/), based on the discrete time observations (X f/n)i:o,___n. We

assume that the following assumptions are fulfilled.
Hll

(a) The function b has bounded derivatives up to order five with respect to both variables.
. S t _ _ t _
(bi) The Lévy process (Lt)iepo,1) is given by Ly = [, ‘[[71,1] 2{f(ds,dz) — v(ds,dz)} + [, f[il’l]c zu(ds, dz)
where T is a Poisson random measure, with compensator T(dt,dz) = dt x F(z)dz where F(z) is given on
R by F(z) = M%HHZ#OT(Z), a € (0,2). We assume that 7 is a non negative smooth function equal to 1
on [—1,1], vanishing on [—2,2]° such that 0 < 7 < 1.

y () |”
(bi) We assume that Vp > 1, [ | 755 | T(u)du < oo, [p

- () p

7(u)

T(u)du < 0.

These assumptions are sufficient to ensure that (2.1) has an unique solution belonging to L”,Vp > 1, and that
X7 admits a density, for ¢ > 0 (see [24]). Moreover, it is proved in [6] that this density is differentiable with
respect to .

Remark 2.1. Our assumptions on the Lévy measure F' are quite restrictive and reduce the generality of
our results but simplify the proofs which nevertheless remain still technical. There are mainly two important
properties required on the Lévy measure in our approach. First, since our method is based on Malliavin calculus,
the LP—bounds for the tails of the Lévy process are crucial to ensure that our process belongs to the Malliavin
space. Secondly, the stable behavior of the Lévy measure around zero is also required to make the rescaled
process (n'/*L, /n) close to the a-stable process (L'). The introduction of the truncation function 7 permits
to address both issues and to avoid more technical proofs. In particular it permits to ensure that the process
(n'/*L, /n) has no jump of size larger than 2n'/® and consequently makes easier the control of the asymptotic
behavior of the Malliavin weights (mainly studied in [6]). Moreover the exact stable behavior of the Lévy measure
around zero (7 = 1) gives the equality between the rescaled process (n'/®L, /n) and the a-stable process (Lf'),
and also the equality of the corresponding Poisson measures, on a set A, whose complementary has small
probability (P(AS) < C/n, see Lem. 3.3). This property is repeatedly used in our proofs (see for example the
proof of Thm. 2.5) and is also essential to study the limit of the Malliavin weights in [6].

However, since the information matrix obtained in the LAMN property (established in Cor. 2.6) does not
depend on the function 7, this suggests that the same result probably holds for a more general Lévy measure
even with no integrability conditions on the large jumps and that the truncation or integrability assumptions
should only be introduced in the proof sections. To that end, a possible extension of our paper (and also of [6])
could be to replace T by a more general function g such that g(0) = 1 and satisfying (b;;), but up to now we do
not know how to obtain the key results established in [6] in this more general context.

Before stating our main results, we introduce some notations which are used throughout this paper. For a
vector h € R?, hT denotes the transpose of h, and |h| denotes the euclidean norm. For a function f defined on
R x R? depending on both variables (z, 3), here 3 = (§,0)T € R x (0, +00), we denote by f’ the derivative of f
with respect to the variable x, by 0y f the derivative of f with respect to the parameter 0, by 0, f the derivative

0
of f with respect to the parameter o, and Vgf = (;fc) .
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We denote by pf/n (z,y) the transition density of the homogeneous Markov chain (X-ﬂ/n)i:o,“.n, by (Fijn)i

K3
the o-field such that F;/, = o(X?, s <i/n) = o(Ls, s < i/n) and by P2 the law of the vector (x5, ...,Xlﬁ) on
- w
Our first result is an asymptotic expansion of the log-likelihood ratio.

=

1 1
nz o 0
Theorem 2.2. We assume that Hy holds. Let r,, = ( 0 B ), then for every h € R?
n

B+rn
tog 8 (07 XP) = T (B)E Na(B) — SHTTu(B)h+ op(1), 22)
dPn " 2
with
n—1
Tn(B) =10 > E [&n(B) (B Fijn] T
=0

NalB) = Ju(B)F 10 3 €10(B),
1=0

;Q

39Pi 3
i (XL,X. 1)
1 n n

5
BE (X'isz‘BJrl)

n

&in (ﬂ) =

We can precise the asymptotic behavior of J,(8) and N, (5). Let ¢, be the density of LY, where (L) is a
centered a-stable Lévy process whose Lévy measure is kfiﬁh z|#0- We define the following quantity which will
be the random asymptotic information of the statistical model:

Z(B) = (Iél zl) (2.3)

where

1 1 / 2 1 / 2
I = */ 80b(X§79)2d3 X / Pa(v) du, 1y = — X / (o (1) + ue (v)) du.
a? Jo R Paolu) o? R Yo lu)

Remark 2.3.
i) From [2, 12], we know that the parameter 6 of the process X¢ = 0t + L; is estimated with rate nz~ = and

’ 2
“‘;“a(gg) du and that the parameter o of the process X7 = oL; is estimated with the

Fisher information fR

, 2
and Fisher information fR Wdu.

ii) It is worth to notice that the information does not depend on the truncation function 7, but depends on
« through the Fisher information of the translated a-stable process and multiplicative a-stable process.

usual rate n—1/2

Theorem 2.4. With the notations and assumptions of Theorem 2.2, the following convergences hold:

Jo(B) 2= 7(B) i probability, (2.4)
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n—1
Ve> 0, Y E[lrlinB) Lir.e..a)5e] —— 0. (2.5)
=0

Theorem 2.5. We have the convergence in law

TV ENA(B) = o 3 €n(B) = N0, Z(5)) (2.6)
=0

where the limit variable is conditionally Gaussian and the convergence is stable with respect to the o-field
o(Lgys <1).

The stable convergence in law (2.6) and the convergence in probability (2.4) yield the convergence in law of
the couple (J,(8), Nn(8)):

(Jn(B), Nu(B)) = (Z(B), N),

where N is a standard Gaussian variable independent of Z(3). As a consequence of the asymptotic expansion
given in Theorem 2.2 and the preceding limit theorems, we deduce the LAMN property.
n%_é

Corollary 2.6. The family (P2) satisfies the LAMN property with rate r,, = <

Z(S) given by (2.3).

The rate of estimation of the drift parameter depends on « : when « tends to 2, the rate is extremely low,
however, when « goes to zero, it becomes high, especially for a < 1 where it is faster than the usual one n~/2.
On the other hand, the rate of estimation of the volatility parameter ¢ is n~!/2? and does not depend on .

Before proceeding to the proof of these results, we discuss some extensions of our model that are not addressed
in this paper.

. |, and information
0 n-z

e The Malliavin calculus used in this paper allows to consider the more general process
t t
X7 =z +/ b(Xf,e)ds+/ (X’ ,0)dL,
0 0

and based on the results given in [4] the Malliavin operators have explicit expressions. But the difficulty
relies on the control of the Malliavin weights. Although explicit, these weights contain a lot of cumbersome
terms especially the iterated weights involving the derivatives of the process with respect to the parameters
0 and o. These iterated weights (and their asymptotic behavior) are crucial to obtain the asymptotic
behavior of the derivative of the transition density in small time (see [6]). The restriction to a constant
coefficient ¢, assumed in this paper, permits to handle all these terms successfully. The theoretically
possible extension to a general coefficient is still open.

e Unlike the papers [1, 2, 12], our model does not contain an additional noise. Based on the structure of an
additive model, the key point in these papers is that the density of the observed process can be written
explicitly as a convolution between the Lévy process and the additional noise. Since we are dealing with a
stochastic equation, this approach does not work anymore in our case and the introduction of an additional
noise complicates significantly our model study.

e In contrast to the diffusion or jump-diffusion case, the interesting particularity of a pure jump process
is that we can estimate the drift coefficient observing the process on a fixed time period [0,7T]. Tt is
important to stress that the estimation of 6 is impossible without letting T go to infinity if (L;) has a
Brownian component. This is why we focus in this paper on the estimation of (6, 0) from high frequency
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observations on the time interval [0,1]. The long time estimation problem (nh, — oo, where n is the
number of observations and h, the step between two consecutive observations) is also an interesting
problem, but substantially different, that can certainly be treated with our methodology under ergodicity
assumptions.

The remainder of the paper is devoted to the proofs of the main theorems above. The first step of our
approach consists in studying the asymptotic Fisher information matrix by using Malliavin calculus techniques.

3. THE ASYMPTOTIC FISHER INFORMATION MATRIX IN SMALL TIME

3.1. The asymptotic properties of the Fisher information matrix

Our main concern in this section is to study the asymptotic properties of the Fisher information carried by
the observation of the random variable X f In’ We recall the definition of the Fisher information matrix:

In,ﬁwo Iﬂﬁ,wo
gnBao — [T 12 (3.1)
I{LQ’B’:”" I;Léﬂ,:co

where

2

Aoy (w0, X7),) . Doy (20, X7,,) Do (20, X7),)
T B, vB N A =E

p1($03X{3/n) p’i(xmxf/n) pi(l‘me/n)

n

Iﬁﬁ@o =K

2
9o b} (w0, X7,,,)
P (0. X7,,)
n

and  IpP™ =E (

The following proposition gives the asymptotic behavior of the Fisher information based on the observation
of the random variable X 16 /n B8 % tends to zero.

n—r oo

Theorem 3.1. Let (8,) be a sequence such that B, —— 8, Q@ C R x (0,00) a compact set and r, =

n:a 0
then
0 n-

N[=

1 2 [ paw)?
. 1, B, T n—00 Faeb(fﬂo,e) fR ©a(u) du 0
i) nr,ZmPr%or, ;02
0 SN [a (u)+uel, (u)] du
o? JR ba(u)

and this convergence is uniform with respect to .
N Lo, Vo7 a0 X D)
ii) Vp > 1, supnﬁeQ,on n THW < 0.
As a consequence of ii) with p = 2, we deduce immediately sup, gcq n2_2/aIﬁ’ﬁ’w° < o0,

SUP,, e 0 I;gﬁ’mo < o0 and from Cauchy-Schwarz inequality sup,, sc0 4, nl’l/alﬁﬁ’m" < 0.

Remark 3.2. From Theorem 3.1, we see that the Fisher information contained in one observation is of magni-
tude n~=!r2 and the Fisher information based on n observations is of magnitude r,,?. This is consistent with

the fact that r, is the rate in the LAMN property stated in Corollary 2.6.

The rest of this section is devoted to the proof of Theorem 3.1.
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3.2. Proof of Theorem 3.1

The proof of Theorem 3.1 relies on a representation of the score function using Malliavin calculus initiated
by Gobet (see [8, 9]) and adapted to our context in [6].
This representation is established after a rescaling that we describe in the next subsection.

8.2.1. Rescaling and representation of the score function using Malliavin calculus

We consider p¢(dt,dz,du) a Poisson measure on [0,00) x R x [0,1] with compensating measure
ve(dt,dz,du) = dtl), »o dﬁdu and for n > 1, we define the Poisson random measure p(™ by

VA C[0,00) xR, pu™(A /0 //0 N alt, 2 1{u<7—( S )M “(dt,dz, du).

We note that the compensator of p(™ (dt,dz) is v(™ (dt,dz) = dt x T(#)l‘z#o‘z‘dﬁ :=dt x F,(z)dz and the

compensated Poisson random measure by (™ (dt,dz) = p(™(dt,dz) — 0™ (dt,dz).
We define the process (L}') by:

t t
L} z/ / 2™ (ds, dz) —|—/ / 2™ (ds, dz). (3.2)
0 J[=—nl/a nl/a 0 J[—nl/a pl/a)

We observe that the process (Ly/,,) (recall Hy(b;)) equals in law (#L?) since the associated Poisson measures
have the same compensator. Moreover, when n grows, we can show that the process (L}') converges almost
surely to an a-stable process defined by

+ t
L? = / / Z‘[L(dS,dZ) + / / Z,u(dsa dZ), (33)
0 J[-1,1] 0 J[-1,1]°

where p is the Poisson random measure defined by,

WA C[0,00) xR, p(A)= / / / La(t, 2)ue(dt, dz, du).
[0,00) /R J[0,1]

The compensator of u(dt,dz) is v(dt,dz) = dt x 1|Z|¢0|Z|‘iﬁ and we denote the compensated Poisson random
measure by fi(dt,dz) = p(dt,dz) — v(dt, dz).

It is important to note that L™ and the a-stable process L are defined on the same probability space (this
property is crucial in our method to study the convergence of the Fisher information Z#%0). The connection
between L™ and L® is given more clearly by the following lemma.

Lemma 3.3 (Lem. 3.1 in [6]). On the event A, = {pu({(t,2)[0 <t < 1,|z| > n'/*}) = 0}, we have

M(n) = M, L? = L?a
and P(A,) =1+ 0O(1/n).
Furthermore, let (fn)nen and [ be measurable functions from  x [0,1] x R to R such that there exists C

with P(C) =1 and Yw € C, ¥s € [0,1],V]z] > 1 fn(w, s, 2) — f(w,s,2). Then

1
// fulw, s, z)p™ (ds, dz) === // (w, s, 2)u(ds, dz).
0 |z|>1 |z|>1
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n— oo

Moreover, we have sup,cpo 1) | Ly — Lf'| — 0.
We now consider the process (?:’B’IO) solution to the equation
) I NB,T0 g n
Yt = T —+ E o b(YS ,Q)ds —+ mLt t S [O, ].] (34)
. n B . 1:8,%o n,8,x . 18,%0

From the construction of L™, (X} )ic[0,1] equals in law (Y, )teo,1]- Let ¢""* be the density of Y, then
the connection between the densities of X and ?;L’B’IO is given by

Py (@0, 3) = g0 (x). (3.5)

We remark also that (??’ﬂ’xo)t admits derivatives with respect to the parameters # and o, denoted by (95Y;?),
and (&,Yt’@ )t, respectively. With these notations, we have the following representation.

n,3,%0

Proposition 3.4 (Thm. 6.2 in [6]). Let ¢ be the density of Y, then we have the representation of the
logarithmic derivative of the density as a conditional expectation:

Vaph T80 M(u)

1 8q™" w0 8,20\ 7m0,

3 (wo,u) = W(U) = azqn,ﬁ,mo = E(Hyy»ﬂ»zo(vﬁyl 0)\Y1 ° = u) (3.6)
Py 9 et (W)

with

BT
—n,B,%0 7‘[7;1,11,10 (89Y1 0)
Hymowo(VaY 7)) = B
| o 0,77)

n,B,To BT

The Malliavin weight Hen 5,20 (VY ) depends on the derivatives of Y with respect to 6 and o
1

and on Malliavin operators. Its explicit expression will be given in Section 6 (see (6.11)) after some recalling on
Malliavin calculus.

3.2.2. Intermediate lemmas

In this section, we study the convergence of the Malliavin weight appearing in the representation of the score
function. The limit of this Malliavin weight brings out an other weight denoted by Hy« (1) (given explicitly in
(6.16)) that permits to represent ¢!, /©,, where ¢, is the density of LY, as an expectation. This representation
is not immediate since LY does not belong to the domain of our Malliavin operators (see Sect. 6).

Lemma 3.5. We have the representation

valv) _ g [Hpa(1)|L§ = ). (3.7)

The connection between the weights Hen.s.2¢ (VBY;L’B’%) and Hpe (1) is established in the next lemmas. The
1

first lemma shows the convergence of the normalized iterated Malliavin weight Hyn.s.20 (Vg??’ﬁ’zo).
1
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n—oo

Lemma 3.6. Let (8,)n>1 be a sequence such that 8,, —— B. Then, the following convergence holds uniformly
with respect to xg

M BnsT
21 Hn om0 (VoY1) =

nl_l/aH?n‘ﬁn,zo (69?;7'713711730) e éaeb(x076>HLa(1>
1 e A (3.8)
Mmoo (0,707 21 \ L (L§H e (1) — 1)

where LS is defined by (3.3). Moreover, for any compact subset Q C R x (0, 0),

—n.Bao. |P
Vp > 1, sup E|[n'/?r HYWBIO(VBYlﬁ %)

n,BEQ,To

< 0.

The next two lemmas are related to a continuity property with respect to the conditioning variable, in a
conditional expectation.

n—roo

Lemma 3.7. Let (B,)n>1 be a sequence such that 5, —— B. Then, the following convergence holds uniformly
with respect to xg.

i) n2 2B [E [y o000 (6T 1 G0y o Bn012) 1200y 45y, 0)]2 E [E[H e (1) 1912
1B To n,Bn,T0q97 N—>00 a a
it) E[E [vaﬁn’wo (aoyl )Y 7] == S E[E[L§H (1) - 1|L3]7],

Lemma 3.8. Let (8n)n>1 be a sequence such that By, 2720 3. Then, the following convergence holds uniformly

with respect to xg,

o 7, Bn @ B @ 77 Bn %0 |57 Bn @
n'=Y E[E [H mofn, To(aéyl O)|Y1 O]E[HV?>f*mmo(8oY1 0)|Y1 O]]

2% LR EH e ()| LB Hee (1) - L] (39)

The proofs of the above lemmas are very technical. They are postponed to Section 6. Admitting these
intermediate results, we can proceed to the proof of Theorem 3.1.

3.2.3. Proof of Theorem 3.1

1 1
n—o00 n2- e 0
Proof. i) We need to prove that for (3,) a sequence such that 3, 27%% B and 1, = ( 0 ) we have

w(w)?
In’ﬁ”’zo n—00 aeb an fR fp (D) du 0
nry, Tn 1 [po (w)+uil, (u)]?
0 aZ fR Pa(u) du

and that this convergence is uniform with respect to xg.

n27%Inﬁn,Io nlfélnﬁmro
Since nrpZmPmror, = (7 A, B , the proof of the above convergence reduces to prove
n —31'127 n L0 1'227 n L0

the convergence of each entries of the matrix.
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Convergence of n2~2/2ZP~  From (3.6) in Proposition 3.4, we have

5>N,0n,T 71:Pn,T 2
n2—2/a1'1117ﬂn7w0 — n2—2/aE |:E [H??,ﬁn,wo (39Y1’5 > 0)|Y175 0} :|
n o0 1 . . .
Do, —5 0pb(wo, 0)°E |E [Hpe (1)\L?]2} , uniformly with respect to zg, from Lemma 3.7 7),
o

2
%] from (3.7) in Lemma 3.5.

Convergence of Z33’»™. We remark that from the representation (3.7), we can deduce the following
representation

£alt) 0200t B (e (1) L5 = o] 41 = ~B[(LFHee(1) ~ )15 =] (3.10)

Furthermore, combining (3.6) and Lemma 3.7 i), we have

[ Eva ns XM 2
Iy’ =R {]E Henin wo (0,777 IO] ] .

1
nox, Ly {IE [(L9Hpa(1) — 1) \L?]Q] . uniformly with respect to o,
g

_ L (palL9) + LEeh(L9))?
o? | ‘Poc(Ltll)Q

1 from (3.10).

Convergence of n'~1/ "‘I?é’a ™% We first recall the expression for the Fisher information

5917&" (o, Xf]‘n) dop't" (o, Xlﬁ/"n)

PO (w0, X2 ) PP (o, X

;7™ =E )
1/n 1/n

then from (3.6) in Proposition 3.4 and Lemma 3.8 we have
1—1/0(I7l7ﬁn7$0 _ 1—1/aE E[H_ 9 ?n.ﬂn,zo ?nﬁn@o E[H- 9 7"7[377/@0 ?n7ﬁn7m0
n 12 =n [E[ ygvfinwo( 0 1 Yy JE[ y?ﬁ"'zl)( LRSS Y 1l
n o0 1 (e} « «
=== SEE[H e (1)L E[LS Hiw (1) — 1|LT]]. (3.11)

On the other hand, from (3.7) and (3.10) we get

GalLR) (Palli) + Eeh(LD)) _ e (1) 1 1
Colll (£olt) M0l . 151 B (B () - 1)128] (312)

Combining (3.11) with (3.12) gives

n—o00 1 / - ! 1 1 / 2
nl—l/az—{léﬂn,wo — — (pa(u> [Lp (u) + U(pa(u)]d’u, _ — SDla(U)dU + — / U ((pa(U’)) du = 0’ (313)
0% JRr Pa(u) % Jr 0% Jr  ¢alu)

where we used the fact that ¢, is a symmetric function, and that the functions under the integral are odd. This
completes the proof of part 7).
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1) Using (3.6) in Proposition 3.4 again and Jensen’s inequality, we get:

P
Vsph (20, X7) A
S —TE Eln'/2r Hon, 8,20 (V 7”’6’10 p
pﬂ(l‘o,Xg) ‘ nty T 0( BL1 )| ’

1
n

E nl/an

and the result follows from Lemma 3.6.
This achieves the proof of Theorem 3.1. O

4. PROOF OF THE ASYMPTOTIC EXPANSION OF THE LIKELIHOOD
(THMS. 2.2-2.4)

The aim of this section is to prove the asymptotic expansion of the log-likelihood function, stated in
Theorem 2.2 as well as the convergence given in Theorem 2.4. The proof of Theorem 2.2 is based essentially
on the L2-regularity property of the transition density pf /n(x, y). From Jeganathan’s article [14], the following
four conditions A1-A4 are sufficient to get the expansion (2.2) of Theorem 2.2.

dep”, 5 dp ()

e (Xi?Xi+1> F iz
. 25 w - ' (z,y)

We recall the notation &; ,,(5) = Dun? and we denote x,(5,x,y) = o’ ()
T (xB B ) e

(v PTG

n

Al. L?-regularity

- Btrah (B V2 5 (8 vz 1 8 ? | aoe
E E pi" (Xj_l,y> — D1 (Xj—lay) - §h Tan(ﬁij—l 7y) dy| ——0.
R n 1 n

j=1
A2,
n—1
Jn(B) =10 Z E [fzn(ﬁ)f?n(ﬁ)‘fz/n} Ty~ Z(p) (>0 a.e.), in probability.
i=0
A3.
n—1
n—roo
Ve>0, Y E[lrb&inBPlre  @iza] 0.
i=0
A4.

sup ZE(|rnfzn(ﬁ)§zn(ﬁ)Trn|) < C, for a strictly positive constant C.
" =0

The condition A1 is proved in Section 4.1 and A2 and A3 are proved in Section 4.2. The condition A4 is
immediate from Theorem 3.1 %) since

2, nBX] nB8,X7,

2 i/n 1—1
n aI n &I
NE(n&s n(B)Ein(8) rn) = E B X7 np.x?
118X, B Xiyn
n' el Iy
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Note that these conditions do not imply the stable convergence in law (2.6) since in our framework the
filtration (F ); does not satisfy the "nested condition” (see Thm. 3.2 in [11]). The proof of the stable convergence

in law will be given in Section 5.

4.1. Proof of the condition A1l (the L2-regularity condition)

Following [5], the crucial point of the proof is the asymptotic behavior of the transition density of Xtﬁ
established in [6] and recalled below.

Theorem 4.1 (Thm. 2.1 in [6]). We assume that Hy holds. Let (/*"™) be the solution to the ordinary
differential equation

gt — g4 = /b mhro gyds t e 0,1]. (4.1)

Let (By)n>1 be a sequence such that 3, 272205 B then for all (70, u) € R?,

n—oo

. n n On,
i) D (w0, 27 + 0T0) T pa(u),

UOn

.. On B u n,05,T0
“) SUPyer SUPy, nl/apl (1’0, ni/o + St ) < o0,
n

where @, is the density of LY, a centered a-stable Lévy process.

Theorem 4.2 (Thm. 2.2 in [6]). Under the assumptions of Theorem 4.1,

2 n—roo

i)~ 0ap" (w0, s + 670 "0) T2 —Bgb(ao, 0) x @l (u),

2
o

3

n—oo

2
T 0ap1" (0, 27 + 67770) T~ (u) — u (u),

:>—-

2
.. " Bn uo, n,0n,20
i) SUp,eg SUP,, |~z 0pp’ 1" (To, 2% + 677" )| < oo,
nao« n

o 0”’10) < 0.

2
. O Bn uoy
SUP,,cg SUP,, | 7%= 0o D" (To, 7175 + 61

n,G,XB,71
Proof of Al. By the change of variable y = —57- + ¢ = proving A1l is equivalent to show:

:LG:/R]E{{fn(X]’?ﬁu)—gn(anl,u)}z] du %% 0, (4.2)
j=1

where

_ 1/2—1/2a |, B+rah uo n,0,0) /2 _ B uo n0,0\ /2
fn("E?U)—\/ETL |:p711 (l’, TLI/O‘ +§1 ) p% x, nl/oz +§1 5
o _ o uo n,0,x
gn(l’,u) = %nl/Q 1/2 ( h) Xn (Bv xz, + S1 ) .

Following the proof of Proposition 8 in [5], the next three properties are sufficient to prove (4.2).

1. There exists a function f such that,
Va,u, fu(z,u) T f(z,u),

n— oo

gn(z,u) —— f(x,u).
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2. We have for all x,

1imsup/fn(gc,u)zdug/f(ac,u)Qdu7

n R R

1imsup/gn(m,u)2du§/f(x,u)zdu.
n R R

3. We have

sup/ fon(z,u)?du < oo,
R

x,n

sup/ gn(z,u)?du < oco.
R

x,n

We now need to check the validity of the conditions (4.3)—(4.5).
We start with the proof of the condition (4.3).
1

1_1
n2"a
We recall that r,, = ( 0 ~, | and h = (A4, h2)T € R? then by a simple computation we have,
n-_ 2
. Oaph (w Ve +<{”9’$) L 0.ph (%%“7& +<?’9’m)
gn(z,u) = 7\5”17%]11 I Vo % h AN

+ )
2 1/2 9 7
pi <$7 nlf;'a + <IL’07$) p’(i (.’L', an% + gilﬂ,a:)

From Theorems 4.1 and 4.2, we see that

n— 00 L hl 90/04 (u) hQ ((Pa (u) + 7'“)0/04 (u))
gn(z,u) — f(x,u) = —%39b(x, 0) o)1 ~ % PO

Let m; = pﬁ;r”ht (x, e+ §f’0’x), t € [0, 1], then we can rewrite f,(z,u) as

—1/2a [ 1/2 1/2
Fala,u) = Jon/2=120 {12l } :
Using the mean value theorem, we get for some s(x,u) € (0,1)

/

n uo n,0,x
VO 11720 Ms@w) VO 12 124 Tvﬁp% (:c, /e T )
Fu(@,u) = 771 m B TTL (rh) Br (x uo nﬁ@’) /2’

i/a + S1

where f,, = 8+ rns(z, u)h.
From Theorems 4.1 and 4.2, we also get that f,,(z,u) ——— f(z,u).
Now we prove the condition (4.4).

(4.5)
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We have

2 89p5 ( +§n91)2 2 19) pﬂ ( +§n91)2
/g (,T u)2du— thnQ—3/a/ i ’”l/a ! du + —2 h —l/a/ i ,”l/a L d
n ) -
R R pg (x’n?f%_’__<'1n’9,ﬂ?> 4 R pi( , 1/a _'_gf,em)

B n,0,x 3 n,0,x
+0h1h2n1—2/a/ 8917% (1’7 nl/a + ¢ ) 301’%( ’nl/a + ¢ )
R

(4.6)
2 B n,0,x 1/2 B n,0,x 1/2
p% T, nl/a +¢ p% T, nl/a ta
From Theorem 3.1, we get
/ Gn (@, u)2du =2 / f(z,u)? V. (4.7
R
Using
B+rnhs n,0,x
1 Vgap (33 +< )
o BP1 ) l/a 1
fo(z,u) = £n1/2—1/2a (rnh)T n " ds
2 0 B~4+rnhs n,0,x 1/2
P T, nl/a +4
we write:
rnhs . n,0,x
) ) onl—1/e 1 TVgpi+ h (w,am +¢ ) 2
fo(z,w)du = || fa(z, )|z = ———— (rnh) & ds
R 4 0 B+rnhs . n,0,x 1/2
D1 (1’7‘7”1/& +< )
B+rnhs n,0,z 2
onl-1/a 1 TVﬁPl " (%Um +6 )
Sy / (rnh) nh 02\ 1/2 ds
2
nhs . n,0,c rnhs n,0,z
onl-1/a /1 . dop " (x,am +¢ ) . c%pﬁi+ (:r 0—77+¢6 )
= n2 «hq n nz 2
4 S n €T 1/2 S n xT 1/2
0 piﬁ‘nh (l’7 Unlya +§1 o ) pi-kr"h (x70-n1./cx +§1 o ) 2

du

2 2
nl- 1/a phtermh (x, vt 9, x) ) Z&;p/@;s”‘h (x, Lo o ‘”)
/ / n du+/ n~ " hj “
R

nh ,0, nh 0,
5+sr (CIT, 1/a+iﬂ z) pi+5T (.T, 1/a+? cc)

n n

2

1/2
;N aepli+srnh (:r7 l/a +<Iz€:c) aapﬁ+srn (l’, 1/a +§Iz0:c)
+/n a2h1ho du ds
R

n
B+srph n,0,x
py " (337 e T a )

n

1-1/a 1 . 39p5+”" (HC,U)2 . 05Dy )
= & [/ /n1*5h§ ﬁ+8r h dv + / n571h§ ﬁj—w h dv
4 0 R P o (2, 0) R P (z,0)

n n

2

1/2

Oupy T (2, 0) Doy (2,0 w
/ 2h1hy—* 5Ter dv ds | by the change of variable et q" =,
P nh (LE, ’U)

n
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1/2
1
— i / n27%h%IIL1,B+srnh,z +h§I;L2,B+srnh,z +n171/a2h1h2:z'1n2,ﬂ+srnh,z ds
0
nooo 1 hi 2/ (o (w)® h1h2/ Pa (1) [po(u) + ups(u)]
— = ——(0pb(x,0 du + du
72 4 O ), eof) " Palt)
1 h3 ( ()+wa
= 4.
T2 oo () / () (4.8)

Where, in the last line, we have used Theorem 3.1 for the convergences of Zj;° oo grpterahe pnftsrahr

respectively and the application of the dominated convergence theorem. From (4.7) and (4.8) we get (4.4). (4.5)
is deduced directly from Theorem 3.1. O

4.2. Proof of the conditions A2 and A3 (Thm. 2.4)
From the Markov property and (3.1) we have:

n,s3, x5 n,s3, x5
i/n 5,85 /n
Ill I12

n,B,X ,'/,,L n’lB’Xi/n

TP X0 =B [6.0(8)n(8)1Gisn] =

12 Iy
From Theorem 3.1 we know that the quantities
E) ( ) 2] o' (u)?
n B |: gb i/n :| Z du 0
sup |nrp,Z ’B’Xi/nrn — / R oelw) () g ( )]
1<n— apa u ’“Pa u
Osi=n—t 0 o’2 fR Pa(u) du

converge to zero as n — oco. Then the convergence A2 is a consequence of the convergence of a Riemann sum.

k
Vepf (2,X5)

To prove A3, from the Markov property, we get: E [|rn§i,n( )|k \Xz/n = x] =E ||r, , for any

3" 3
pi(xX[)
n

var @x5) "
k > 1. But from Theorem 3.1 i) we have sup, , E nl/2 2__n

Tn < 00, Yk > 1. This control, for

ﬂn Bn
pL(Ile)
n n

instance with k = 4, is sufficient to imply the Lindeberg’s condition A3.

5. PROOF OF THEOREM 2.5 (STABLE CENTRAL LIMIT THEOREM )

The aim of this section is to prove the stable convergence in law stated in Theorem 2.5. We first recall the
following result established in [6] where 7?”8’% is defined by (3.4) and is equal in law to X i .

Lemma 5.1 (Lem. 4.1 in [6]). Let (¢7°%°) be the solution to the ordinary differential equation (4.1), then
n1/a<?'11»ﬂ7w0 _gln,e,xo) n—00 oL2, (5.1)

and this convergence is uniform with respect to xg.
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1 1
27 0
Proof of Theorem 2.5. Since r,, = (n 0 1) we have
n_2

909"
n—1 n—1 n%_é pﬁ% (XinL)
1 n n
W= 0
=0 =0\ nmr (X€7X{3+1)
l n n
Theorem 2.5 is an immediate consequence of Lemmas 5.2-5.4 below. O
Lemma 5.2. We consider
o1, 1 o (/Lo — L))
@i = n' T (XT, X ) + —00b(XT,0) —
P n n o n Do (nl/a(LH_l — LL))
then we have n~1/2 Z?:_Ol Wi n TL?TO% 0.
Proof. Using Lemma 9 in [7], it is sufficient to show that:
n—1
n71/2 Z |E[wl,n‘-rz/rb]| %& 07 (52)
i=0
n—1
nt Y (B[] | Fal| S 0, (5.3)
i=0

We start by the proof of (5.2). Since a score function has an expectation equal to zero, and Lit1 — L. is
independent of F;/,,, we deduce that

e (nVo(Len — L))
oo (i 1,)

n

1
E[wi | Fijn] = ~09b(X7,0)E

Since (L;); has stationary increments, the law of n'/® (Lixs — L:) is the same as the law of LT. Moreover,
we know from Lemma 3.3, that P(L} # L{) = O(1/n), thus

©h -1
=l O(n™),
o (n™")

o

]. / La

where we used the fact that % is bounded (see e.g. Thm. 7.3.2 in [19]). Using E [Zi&g” =[x @b (u)du = 0,

we deduce |E[w; »|G;/n]| < Cn~! for some constant C' and (5.2) follows.
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We now prove (5.3). We have

A / V(Lo — L,
n,0,A ]_ 2 QDa (n ( i1 L))
Elw? o|Fijn] = n?°T, * +— |06b(X],0)] E =)
7 ’ Pa (nl/a(Lzﬂ —LL-)>
1-1/a aepg (XL’XZ—I) 1 3 Do (nl/a(Litl — L%))
2 n T h 50X, 0) Fi (5.4)
p% X%7Xi:§1) 7 " Pa (nl/a(L it1 — LTLL)) "

With a method analogous to the proof of (5.2), we can show that

oo (LT)?
‘PG(L?)Z

2
o (nl/a(Lﬂ*Li'O
m__n } + o(1). From Theorem 3.

:E{

E

n

show that the following control holds, uniformly with respect to 1,

1, it appears that the first two terms in the

po(mireip-15))
right-hand side of (5.4) are asymptotically close to the same quantities, and that (5.3) is proved as soon as we

aepi(Xganﬂ) 1 ! (nl/a(Lﬂ _Li)) 1 2 / La 2
E |nte S 2 guh(X 2, 6) L F | = [anb(x ] 0)] E[%‘( ;)2]+0(1).
p%(XL'7X’i+1) " Do (nl/o‘(Lz+1 —Li)) " g n SDa(Ll)
(5.5)
1-1/a 90g™ P70 (V1770 1 ou(LY)
a 1 aeb(xo,a)%@) , S0

Using the notations of Section 3.2.1, we define d™%% =R [n

that the left-hand side of (5.5) reduces, from the Markov property,
s
Xg, to d™?%/n. On the other hand, we can rewrite d?% as

n

nl/a(yi’-»ﬁ»l’o _g;z,ﬁ,mg)

qn-B-w0 (7?,B~IO) o
)

and the fact that Y,

)

(3.5) equals in law

/

(

BT 2]
15) n,B,xo Y 1 « o
dn,e’l’o =E nl*l/oz vd Snlﬂw )769b(170,9) .8 6,
g0 (777 Y
5 (p’ (nl/a(YI">/3>T0C;L,Q,:L'U))
0, n,B,x0 ?n, Lo 1 / n o P
+E |nt— Ve 04 ﬁnlﬁm )*(%b(xo,@) 2 { :L) - — . (5.6)

Using the Cauchy-Schwarz inequality for the second term in the right-hand side of (5.6), we get

(

n1/a(?;m/3110 _gIL,G,wo)

)

8,%0 ©

a n,B,xo Y 1 / Ln @ o
E | |n' /24 £7llﬂ z ) —0pb(x0, 0) 7 711) - — .
g (Y 0) va (L1) Pa (nl/a(Yl’ ’go_ﬁn' ’mo))

1/2
i B8 27 1/2 ’ (nl/o‘(Y?’ﬁ’IO_CI"*GvWO)) 2
0, n,B,xo ?n, Zo 1 I (LT « o
S E nlfl/Oé 04 £n16 - )78917(1'0,9) E 900(( :l) _ — - )
gl (Y 70) @ Pa (L7) Pa (nl/a(}/f’/’mo{{l’ ’mo))
(5.7)
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Furthermore, Ve > 0 we have

1/a(Yn/310 ILG.LO)) 2

174 (nl/a(yn‘ﬁ‘”o nBTO))

l/a Y” 8,20 n,60,xq
) ‘Pa ( ( - —S1 )>

=K —
Pa (L ) o (nl/a(Y?'B'wo_gI‘ﬁaIO)) {

1/a(y" 0,z0 {L,@vzo)

o

—L7|<e

}

o

SD, nl/a(??ﬁﬁ,ﬂroicf,e,wo)
Yo (L) ™" 7
+E —~

1
N s ) i
«

nl/e @y Bz gn,ﬂ,ro)

o

—L7|>

)

oa

< C162 + 2C,E 1{ /o™ 8,30 gn,ﬂ,mo) }
= —LT|>e
l/a Y” 8,20 _ _n,0,z9
_C162+202P[ (¥ &1 )—er>€ G
g

where we used the fact that £= is bounded with a bounded derivative (see e.g. Thm. 7.3.2 in [19]) and Lemma 5.1
From Theorem 3.1 i%), and the estimates above we deduce that (5.7) converges to zero as n — co. Then,

l/a n/fmo n,0,xq
B0 o < (Y —<; ))
Agq B0 (Y7 0) 1 o g
1 1/« (9q ( 1 ) 8917(.’170,6) — - +0(1)’ (58)
<n1/‘3‘(Y¥’ ol ’IO)>
@

grBseo (V) 0) 0

d”agﬂ'o =E

g

where the o(1) term is uniform with respect to z¢. Now, using Proposition 3.4, we get

1/a ?71,5,10 n,0,zq
@ (" e ))
+o(1).

—n,B,z0., 1
@m0 =F | ' U 5. (957 ) = Dgb(ao, 0)
1 o ( /o (Y n.ﬁ..’l:o g?,9,10)>
Pa

o

From Lemma 3.6, we also have

o on. B, n,0,x
A A
O > .
n o0
0.

1
n,0,xg _ 2 o
sup |d Uzaab(l“o,@) E [H;, (U(p (nl/a(y?,g,mil,e.mov

Zo
o

From Lemma 5.1 we can deduce that

o~
—
~
=Q =R
S—

1
n,0,xy N0 2 o 14
d e ;2 [89()(3?0,9)] E l:HL (1)7@ (L ):| y
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uniformly with respect to xg. Then, the relation (3.7) enables to rewrite this convergence as,

o (L9)°

1
drdmo 2122, = [Bgb(x0,0)]> E l“] , uniformly with respect to zg.

Pa (Ll )

This result implies (5.5) and hence (5.3). O

Lemma 5.3. We consider

3pi lgoa( l/a(Lerl 7L ))+n1/°‘(Lz+1 7LL')90/ ( l/a(L +1 7Li'))
_ n Xﬁ Xﬁ ) 0 " =
Qin 8 ( 7+1
# % oo (/2L — 2,))

then we have n™ 1/221 o Oim TH—OO>0

Proof. We proceed as in the proof of Lemma 5.2 and check that

n—1
n_1/2 Z |E[Qz,n|}—z/n]| TH—OO> 07 (59)
i=0
n—1
n~' Y B0}, | Full =0, (5.10)
i=0

We start by the proof of (5.9). Since a score function has an expectation equal to zero, and Lit1 — L. is
independent of F;,,, we deduce that

L [ (nl/a(Lﬂ - Li-)> (L — L

)¢h (nl/“(Lﬂ - Li))
Eloin|Fi/n] = ;E =
Pa (nl/o‘(L% — L

)
Since (L;); has stationary increments, the law of n'/®(Li1 — L) is the same as the law of L}. Moreover,
we know from Lemma 3.3, that P(L} # L{) = O(1/n), thus

3l

3~

E{gin|Fijn] = LE {%(L?) + LY %(Uf)] ” o (w) + upl, (u)

L) ) On™.

where we used the fact that W“( ) is bounded (see e.g. Thm. 7.3.2 in [19]). Using E {%] Jg el (u)du =

ea(LT)
—1, we deduce |E[g; n|F;/n]| § Cn ! for some constant C' and (5.9) follows.
We now prove (5.10). We have

2
np Xt g [% (nl/a(Li - Li-)) + (Lo — L1 )y, (nl/a(Li — L. ))}

2
pa (ML — Ly))
L

n

Oop T (X7, X%) 1 9o (nV/*(Less = L)) 4t/ (Lass = L)y (n/*(Lusa — L))
+ 2]E 67:, B O 6 n - n n n n n fi
Pi(X5, X5) 7 o (nl/a(L@—LiD "
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With a method analogous to the proof of (5.9), we can show that

[ (w2 L —2) 0 — Lyt (oL — L)) ] [m(m) T LEeh(L9))
D (nl/a(Li%1 - Li-))2 B Pa(L§)?

n

+ o(1).

Proceeding as in the proof of (5.4), then (5.9) is proved as soon as we show that the following control holds
uniformly with respect to i,

n n

&,pl (Xﬁ X?-%—l) 1 Pa (’ﬂl/a(LiJrl — L%)> +’ﬂ1/a(Li+1 — L )gO'a (nl/a(L@ — L%))

_ ‘FL
(Xﬁ X?H) o P (n1/a(Li’+1 _Li)) D
(palL§) + L§oL (L))
= —;E wa(L‘f‘)Q +0(1). (5.12)

~n,B,x
We define d"7"° = E { "f}(}: — TO;) 1 LG (p)Jr(LLl “3“@ )} , so that the left-hand side of (5.12) reduces, from the

n,o’,Xf/n
Markov property, to d; .

Proceeding as in the proof of (5.8), noting that @“(2") is bounded with a bounded derivative (see e.g. Thm.
7.3.2 in [19]), then we also get that

w0 (”1/“<Y;Lﬁ*f°<f'*“0>>
«

o led

nl/a(?’;ﬁvmo ,gilv@,w())
Pa >

where the o(1) term is uniform with respect to . Now, using Proposition 3.4, we get

BT
60-(](Y1 O)
n,B,x
g(Y7")

0,q(V7" ™) 1

B
oY1) @

1
d?,a,aco -F +E ; + 0(1)

HY” 520 (0o ?;l 7 IO)

d?#f’ﬂco 1
(o)
o o, B n,0,x o o8 n,0,x
—n,B,To n'/ (Y, s 0_§1 0)80/ nl/ (Y, s 0_§1 9)
H?n,ﬂ,mo (80-Y1 ) o &3 o
1
+E wn.B,2g _ n.0,@ +o(1).
g nl/a(ylf , ofglw v'O)
Pa >

From Lemma 5.1 and the convergence result (3.8) we can deduce that

oo 1 o La La il La
d711»<77950 - 72E |:(L(11/HLQ(1) o 1) P ( 1) + LSD ( 1 ):| 7
Yo (LT)

uniformly with respect to xo. Then, the relation (3.10) enables to rewrite this convergence as,

dng’zg n—oo 7%E
(2

(¢a (L) + LY, <L%>>2] |
Pa (L?)Q

This result implies (5.12) and hence (5.10). O
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Lemma 5.4. We have the convergence in law,

/ Vel ..« —L.
wer () |

_p-l/2 S Eaeb(Xg ,0)
on (nl/a(Lﬂle)) " N(0,Z(B)) (5.13)
+ i = ) ’
—-1/2 an | P (nl/a(L@ —L%)> +n!/ (L1 —L i ), <n1/a(Lﬂ _Li))
-n i=0 o - / . ] n n

P (ORI
where the convergence is stable with respect to the o-field o(Lg,s < 1) .
Proof. We define the following processes:

|nt]

zi =3 (Lep = 1y)

Sy E St Lopb(x?.0)
1

n,1

I — Iy 12 Po ,

t = \pn2 =n /o 1/a i 1)a )
t lnt) P\ (Liva—Ls) J+n /' “(Lix1—Li)pg|n/*(Lit1—Li)

Pa <n1/“(LM 7Ll))
n

n

1
o

m,1 = wnt/e(L o —L
m o__ Ft _ . —1/2 ol ( ﬁl Z)
Iy = 2 =n 1a 1/a 1)«
t [t (" (Li+1*LL))+n (Lit1 *Ll)wa(n (Lit1 *LL')>
En(]) n n n n n n
i=

Pa (nl/“(Liil _Li)>
n n

We will apply Lemma 2.8 in [13] to prove (5.13). Indeed, we will show that there exists a Gaussian random

E 99ix (LY )i; } 0
vector v with var(y) = wa(L1) o o, .27 |, independent of Ly such that one has the
0 E (Wu(Li )+LT g (LT ))
o (L)
convergence in law
(T Z7) = (v, L1). (5.14)

Then, by application of Lemma 2.8 in [13], there exists a bi-dimensional Brownian motion (I'}); independent of

1 B
(L¢)¢ such that one has the convergence in law (Z", I, T"") = (L,I",I") where I'y = fot (Ua&b((‘)xs -0) ?) dr,

and var(I'}) = var(y).
Let us focus on the derivation of the convergence (5.14). For (u,v,w) € R3, we set

v ehmVoLy) oy (PaVOLy) 0Ly (1 L))

X (1, 0,w) = E ‘ A ]
(u, v, w) XA Qa(n/oLy) +Zn1/2 Ya(nt/aL.)

+iwl1
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Using the i.i.d. structure of the increments of the Lévy process L, we easily get the following expression about
the characteristic function of (I'f*, Z7*)

m,2

log E |exp(iul}™" + iwl™? + in{L)} = nlog X, (u, v, w). (5.15)

Let us study the asymptotic behavior of X, (u, v, w). Using the expansion of the exponential function near zero

and that i—i and % are bounded we get

iwLL:| 1 iu Spla(nl/aL%) + 1 (@Q(HI/QL%) +n1/aL%W:"(nl/aL%))
) nl/2 S00‘(n1/aL%) nl/2 SDQ(nl/DLL%)

2

L (h07L) o (pen L) 40t Ly Ly)) O
nt/2 pq(nt/*Li) +n1/2 ¢a(n!/*L1) o :

%) iwL 1 v (Sﬁa(nl/aL%)-‘rnl/aL%(p;(nl/aL%)) iwL
B + n1/2 ()Oa(nl/aLi) e n

2
u2E (p;(nl/o‘L%) iwL UUE gp;(nl/aL%) (Wa(nl/aL%)-‘y—’l’bl/aL%‘P/o‘(nl/aL%)) eile
Ly ) Pa(nt/*L1)

’U2 @a(nl/aLL) + nl/aLi@;(nl/aLi) ’ iwkl 1 —3/2
_%E @Q(nl/aL%) e n +O(’I’L )
. , 2
0 v U
=20 (u, v, w) + 7 X2 (u, v, w) + 7 X3 (u, v, w) — %X7§4)(u,v,w)
2
—y&f’)(u,v,w) — U—XT(LG)(u,v,w) + O(n_3/2). (5.16)
n 2n
First, we have
0 (u,0,w) = e =14 ¢p(w) /n+ O(n?) (5.17)

where ¢(w) is the Lévy Khintchine exponent of L.

We now focus on the term Xf)(u, v,w). Using the results of Lemma 3.3, and the fact that nl/O‘Ll/n has the
same law as LT, we get

gOl Zﬂ
XT(LQ) (u,v,w) =FE [@O‘(L'f)e nl/“} +0(n™h
- / Pa(s)e /7 ds + O(n™")
R
W
_nl/a

= O(max(n~Y* n71)). (5.18)

./ Sﬁa(s)ei /% ds + O(n™') using integration by parts formula
R
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For the term X}Ls) (u,v,w), using Lemma 3.3 again, it is easy to see that

X o) = B | (P ZEE L) 5 o)

:/@a(s)eiﬁds—k/sgp’a(s)eiﬁds—i—O(n_l). (5.19)
R R

Using integration by parts formula, we have

swL® iws 1/a iws
E(e %) = / va(s)ent/>ds = _n‘ / ol (s)ent/=ds.
R W Jr
Then, we deduce that
iws ) jwL® ) a
/<p;(s)en1/a ds = ——2 (e %) = -2 _E(ent 1), (5.20)
R nl/a nl/a

Since L§ is a symmetric a-stable process then we have for some constant C'(a) > 0

E(ertf i) = =0 =" (5.21)
Combining (5.20) with (5.21), we have
/‘P;(S)eﬁuﬁds R =l (5.22)
R nt/a©

Now, since [ |s¢l (s)|ds < oo and w we_c(a)‘nf;"" admits a derivative on R, we obtain by taking the

derivative with respect to w of the both sides of (5.22)

iws _ w  |* _ w | «a
/ s (s)ertfrds = —e C@l=l" 4 ac(a)e ¢l 1
R

n
—/Rgoa(s)e%ds—i—aC(a)e_c(a) /e 7|u711| . (5.23)
From (5.19) and (5.23) we can deduce that
X% (u,v,w) = O(nh). (5.24)
For the term X" (u,v,w), using Lemma 3.3 again, we have
(4) Qofx 2 zﬁ —1y n—o0 /
X (u,v,w) =K (p—(L‘f‘) ent/*| +0(n"") —E " (La) (5.25)

For the term X\ (u,v,w) we have

X (u,0,w) = E [%@?) (QalL§) + Lol (L)) s
?

ol pallh) } +0(n ™)
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nooe, g [26(18) (2alL§) + L8 (TD] _ ) o
E{%(L%) LD ]_0 from (3.13). (5.26)

For the term A,\® (u,v,w), we see that

/ La)'i‘LaQD/ (La) 2 ﬂ _
XTEG) u,v,w) = E (@a( 1 1Pa\l1 eni/o | + 0!
(v, 0:10) l palL?) )
n o / LOC La / La 2
== <‘p“( 13;@33%( 1)) ] (5.27)
ally

Collecting the convergence of (Xéi)(u, v,w))1<i<6, We deduce the convergence

u2 / 2
log E |exp(iul}™" + iwl™? + in{‘)} 2220 (v — 5 il o) {%(L?)ﬂ _ %E

(so;w?zo jéi;”@“‘”ﬂ

and thus the convergence in law of this lemma. O

6. PROOFS OF LEMMAS 3.5-3.8

The proof of these lemmas is very technical and requires many intermediate results. We first recall the
Malliavin calculus for jump processes used in [6] and some properties of the Malliavin weights. Next we will
establish a regularity property of a conditional expectation with respect to the conditioning variable. Then we
will proceed to the proof of the lemmas.

6.1. Malliavin calculus and preliminary lemmas

We recall the Malliavin calculus on the Poisson space associated to the measure ;™) (defined in Sect. 3.2.1)
and the basic properties of the Malliavin operators (see Bichteler, Gravereaux, Jacod [4], Chap. IV, Sects. 8-10).
For a test function f:[0,1] x E+— R ( f is measurable C2 with respect to the second variable, with bounded

derivative, and f € N,>1LP(v)) we set pu(™(f fo i p™(dt,dz). We introduce an auxiliary function
P’ as
2t if |z] <1
p"(z) = < ((2) if 1<]21<2 (6.1)

where 7 is defined in the assumption Hy (b;), and  is a non negative function belonging to C*° such that the func-
tion p" belongs to C*. Note that ( is defined such that p"(z) admits a derivative and p", (p")’, p" 7 Ez; belong to
22 if 2< |z < 20t/

Np>1LP (F,(z)dz). From the conditions on 7, we can easily deduce that z*7(557z) = {O £ (2] > dnl/
- " if |z n-/e.

n—roo

Moreover, we can see that p"(z) —— p(z) where

2 i |zl <1
pz) = {C() it 1<l <2 (62)
22 if |zl > 2.
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Note that from the definition of p™ and p, we can easily see that p™(z) = p(z) if |z| < 2n!/®.
With these notations, we define the Malliavin operator L, on a simple functional u(”)( f), in the same way
as in [5] by the following equations :

L) = 5 (G40 T 4.

where f' and f” are the derivatives with respect to the second variable. For ® = F(u(™ (f1), .., u(™ (f1)), with
F of class C2, we set

L® = Z(’?xl n) (f1), (n)(fk)) (1t (n) () Z &x 8% (n) (f1),-. (n)(fk))ﬂ(n)(pnfl(f]().

1,j=1

These definitions permit to construct a linear operator L on a space D C Np>1LP whose basic properties are
the following.

1) L is self-adjoint: V&, ¥ € D, we have EOLYV = ELDV.
ii) L®? > 20LP.
1it) EL® = 0.

We associate to L, the symmetric bilinear operator I':
I(®,V) =L(PY) — PLY — VL. (6.3)

This operator satisfies the following properties (see [4], Egs. (8-3))

[(F(®), ( T(@,¥), (6.4)
F(F(q)1;q>2) = (¢l’¢2)r(¢1’ )+8¢2F((I)1,(D2)F((I)2,\I/), (65)

IT(®, ¥)| < (<I> ®)V20(, w)/2,

v)
w)

Remark 6.1. The operators L and I' depend on n through the functions p™ and F}, but to simplify the notation
we omit the dependence in n.

The operator L and the operator I permit to establish the following integration by parts formula (see [4],
Prop. 8-10, p. 103).

Proposition 6.2. For ® and ¥ in D, and [ bounded with bounded derivative up to order two, if T'(®,®) is
invertible and T =1 (®, ®) € Ny>1 LP then we have

Ef (2)¥ =Ef(®)Ha (D), (6.7)

with
Ho (V) = —20T 1 (®, ) LE — T(®, UI' (&, )) (6.8)
— 20T 1, ®)LP — T @Y+ g gpl (2 1(@,2) (6.9)

=L (@, — : — L F(\}{I)(’b@) . 6.10
(raw) row (o) (610)
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With these notations, we can explicit the Malliavin weight Hymn.s.a0 (VBY?’B’%) appearing in the
1
representation of the score function given in Proposition 3.4.

Proposition 6.3 (Thms. 3.1 and 6.2 in [6]).

Hapro.mo 0,7
—n,B,z
Hprneo (0,Y77)

—n,B3,To —n,B,%0 —"0,T0

’ 1
aez}hﬂwo H?"’B’”O (1) - —n.Bz0 —n,BTo F(Yfll B0 oty n,B, Io) (6.11)
9,Y ' INCE R LYy 0o Yl )

—n,B,z
M nea (Vo¥177) =

and

—n,B,T —n,B,x0 —n,B,x —n, B,z

Hens (1) _ F(Yl ’ F(le ’ Yl 0)) -9 LYl ’
Yy 5eo - —n,B,20 —n,B,z —=n,B,x n,B,x

1 (F(Yl ,B,x0 Yl,ﬁ o)) F(Yl 07Y1 0)

1
- ;n”“?—lg(l) +RY 5(1) + RE 5(1) + RE (1) (6.12)

The main term ﬁg(l) is given by

1 n — n ) n 1 n _ n @ .n n
A1) = o J=( S e >’< s, dz) [ fole) ™ [(p /<z> Lt dsds) o
€1 [fo Ju(ex p(ds, dz)} e fy Juler pm(ds, dz)
with
n 1 1 /B0
e =exp| — b Y, ,0)du ) . (6.14)
nJo
The remainder terms satisfy for any compact set @ C R x (0, 00)
C C c
>2 E < — n 1 < ~ <Y 1
Vp>2, Esup|R]4(1)]° < ’ ggglRw( = sup [R5 5(1)] < —, (6.15)

BeRQ BeERQ

where C is some deterministic constant.
Remark 6.4.

i) It is proved in [6] (see (4.23)) that ﬁg(l) is bounded by a random variable independent of n, 5 and xg
and belonging to N,>1L” and that it converges in L”, Vp > 1, uniformly with respect to zo (see (4.23) and
(5.49) in [6]) to Hp-(1) given by

fo fR )u(ds, dz) fol fR [ '(2) — HZ_QP( )] (dS,dZ)'
[fo fR p(ds dz)} fo pr p(ds, dz)

Hpa(1) = (6.16)

Moreover, Hyo (1) and L¥H (1) belong to LP,Vp > 1.
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ii) Inthe case b= 0and o = 1, we have €; = 1 and the remainder terms R 5(1), R% 5(1) are equal to zero (see
(4.7) and (4.8) in [6]). Moreover, we see that (6.12) can be rewritten as ﬁg( )+ Ry 5(1) = Hrp(1),

nl/a

then we can deduce that Hpn» (1) LT:) Hire(1).
p>

Before studying the Malliavin weight Hwon,s,20 (V yo , we give some control on the processes 00,2,
Yy g1 t

and (5‘0}/;5 )¢, respectively solution to the equations

89Yt ,B,x0 _ 7/ b/(ys,ﬁ, 079)89}/5,5, 0d8+ E/ 69b(YS’ﬁ’ 079)d8, (6.17)
0
>N T s >N xT Ln
ath B0 _ / b/(Y n,3, o,e)aaysaﬁ, °ds + 1; ' (6.18)
nJo nt/«

We have the following properties.

Lemma 6.5 (Lem. 5.1 in [6]). Let Q@ C R x (0,00) be a compact subset. We have

. 18,20 C
i) SUPgeq |89Y1 <&,

. BT
i) SUPgeq SUPe( 1] ‘8,,5/3 ’

n—oo

0, Vp>1.

We mnow proceed to the decomposition of the Malliavin weight Hem.pn.eo (VgY;L 'B“’xo) defined in

Proposition 6.3 into some main parts and some remainder parts. From (6 11), (6.12), we can rewrite
" Bn,To

HY” Bn,xg (V@Yl ) aS,

1/0&8 Yn Bnyonﬂn(l)

BnsTo _ o' n N Bn,To
,H??;Bn,zo (Vﬁyl ) - L ( 1/0‘6 Yn ﬁn a:OHgn( ) _ 1) + Rﬁn (Vﬁyl ) (619)
where ﬁg(l) is given by (6.13) and
5 ag?”yﬁm-%o Vle,Zn
n X PnsTo 1 n n n maPn
5. (VY )= ( n/”) [Ris, (1) +REs (1) +RE 5 (1)] — Vln,% ) (6.20)
80'Y1 U'lﬂaﬁn - 0-7"

with U = D72 7700 vt = @™ 0,717 and Vi = DY 17, 0,77"°) given by

Ul”ﬁ_ n2/a // ™ (ds, dz), (6.21)

n 1 ! n,5,To n,B,To —n, 3,0
Vi = e)? [ (U [y (70 + 5 007 Y as, (6.22)
n,o 1 ! n,0,Z0 ” Torrn, ! n\—2 n n
Ve L [ (00, i e as s T [ [ @t eu s (623)
0 0 R

and (€7 )sefo,1] given by (6.14).
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Now we recall two technical lemmas given in [6] useful to study the convergence of the Malliavin weight
5B, To

7-[7?,;371,@0 (VpY, ) in the proof of Lemmas 3.7-3.8 later.

Lemma 6.6 (Lem. 5.4 in [6]). Let (3,) be a sequence converging to 5. For all p > 1, the following convergences
hold uniformly with respect to xq

" BnsTo n—00

i) ndp YT H, (1) T 9gb(o, O)H e (1),
i) n'/°0, vy i (1) 1% L9 Ha (1),
where ﬁg(l) and Hrpe« (1) are respectively given by (6.13) and (6.16).

Lemma 6.7 (Lem. 5.3 in [6]). Let @ C R x (0,00) be a compact subset. The following estimates hold:

where C' is some deterministic constant and supgeq |Ry 5(1)| converges to zero as n — oo in LP,Vp > 1.

6.2. Regularity of the conditional expectation

In this section, we prove a regularity property of the conditional expectation with respect to the conditioning
variable.

Proposition 6.8. Let H be a random variable such that E(H)? < co. We assume that there exists a sequence of
n—oo

random variables (H™)p>1 with E(H™)? < oo and such that H" — M and sup,, ||[T'(H™, H")||, < oo. Then,

E {E[m?”f*ﬁ"*“ﬂ ~E[BIHILST] 2% 0 (6.24)

and this convergence is uniform with respect to xg.

Remark 6.9. Note that if the random variable H depends on all the measure p then the Malliavin calculus
of Section 3.2.1 is not defined. So we need to introduce the sequence of random variables (H™), for which the
Malliavin calculus of Section 6.1 is defined, such that T'(H™, H™) is also well defined. It is the case, for instance,
if 1" is a simple functional of (™).

Proof of Proposition 6.8. First we reduce the situation to the case where the random variable in the expectation
is bounded. Let K > 1 and denote by = — Xk (x) a smooth truncation function with

Xg(z) =0 for |z| > K
1 for |z| < K/2 (6.25)
0<Xg(z)<1 for K/2<|z|<K.

For all € > 0, we can choose K large enough such that ||H — HXx (H)||3 < € and then, one can see that (6.24)
is implied by the following convergence, VK > 2

n—oo

— 0.

sup
Zo

E [EHAx ()77 "] — E [EHAx (H)|L5)]
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2 m—oo

Now since E (H"™ — H)” —— 0, it is sufficient to prove that, VK > 2

sup [ [H™ X (HM) [V B’““ﬂ —E [E[H" Xk (K™ L9]2]| 2222 0. (6.26)
Zo
We now prove (6.26). First, we define " and ﬁHn’K as follows
g (T oy [H"XK (HM|T P g?’emﬂ —E [H"x H) Y ﬂ :
P — B [ 20| = B e ) o
With these notations, we can rewrite (6.26) as
sup g [y (@0 - poneny”] [ (2 ] 2220 (6.29)
o
Using Lemma 6.11 in Section 6.4, we know that:
sup R[4 (75 — ) g (0 | 22
Zo

and since \77””'1(\ and |ﬁH"'K| are bounded by the constant K, we deduce

n—o00
— 0.

n,K —n,Bn, _ K —=n,bn,
o] O e s i S L

sup
Zo

Now, applying Lemma 6.10 in Section 6.4, with the choice H"™ = 1 with the bounded function (ﬁH"’K)2 we get

(6.28) and the proposition is proved. O

We can now prove Lemmas 3.5-3.8.

6.3. Proofs of Lemmas 3.5-3.8

Proof of Lemma 3.5. First we remark that although L{ does not belong to the domain of Malliavin operators
D we can establish a representation for ¢/, /¢, .

Indeed, since L} belongs to the Malliavin space D, the integration by parts formula (6.7) gives for any test
function f (f is bounded, compactly supported and f’ is bounded),

E[f'(L})] = E[f(LT)HLp (1)]- (6.29)
Now from Lemma 3.3, we have P(L} = L¢) =22 1 and from Remark 6.4 ii) we have Hrn(1) % Hio(1).
p>

Letting n go to infinity in (6.29), we deduce
E[f'(L)] = E[f(LY)HL~ (1)]. (6.30)
Observing that [ ¢q(u)f'( = — [l (u) f(u)du, we get [ f(u)pl (uw)du = —E[f(L$)H o (1)] and we deduce

the representation (3.7).
O
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Proof of Lemma 3.6. The proof of this lemma is based on the results in ecalled in Section 6. From (6.20),

(6]
Yy s %) converges to zero in L?, Vp > 1

Lemma 6.5, Lemma 6.7 and (6.15), we easily deduce that supgcq Rj(VsY
(uniformly with respect to xg).
P
From Lemma 6.6 i) —4¢) and (6.19) we can deduce (3.8). The uniform control of E ’nl/zrn'}-lyn 5,00 (VY7 o 0y

is immediate.
O

Proof of Lemma 3.7. From Jensen’s inequality, we have

2]
<E

M, Bn, T H‘L L 1 71, Pn T
IEUIE[ I=laq_ yoin. Ie(agylﬁ TPy — E[;@gb(xoﬁ)”}-[m( )Y, o’ ]
5N,0n,T0 1
E nl—l/aH?%ymo(aQYﬂ’ )~ ~0sb(ao, O)H1n (1)

o]
|

From Lemma 3.6, the last term converges to zero uniformly with respect to xg. In turn, it gives the uniform
convergence

—n,Bn, 1
= E ||n' " Hpm sz (DY) = ~0gb(wo, 6)Ho (1)

sup n2=2/oR [E[HW s (DY O [T 2 } - %891)(1:0,9)21[5 [E[?—Lm( DYy ﬁ"’“’ﬂ =, ),
0
By the same method as above, we also get the uniform convergence
sup [ [Elp 0 (077" )VT 7] = o[BI M (1) = 1) 7777 2250
Hence, this lemma will be proved as soon as we show that
sup [E []E[Hm( ek 5“’“”“]1 ~E [E[’Hm(lﬂL‘fﬂ 1=, g, (6.31)
o
sup B [El(L3 22 (1) = D I7T ™| - B [BILE ML (1) - ) 257 | =0 (6:32)
o
To prove (6.31), we apply Proposition 6.8 with the choice H = H (1) and
Hr— fo Jer"(z (2)p"(ds, dz) fol Je [(0™)'( Hapn( )] u"(ds, dz) — " (6.33)

Uo f]R n(ds dz)} fo pr "(ds, dz)

From Remark 6.4 i) we get that H" = Hrp(1) - ﬁR’fﬁ, moreover E(H«(1))? < oo and H" M—OO> Hra(1).

The computation of F(’}l",’;‘—l") is omitted but reduces to the computation of the I'-bracket between simple
functionals. After some calculus (similar to those in the proof of Thm. 2.1 in [6]) we get that T(H", H™)
is bounded by a random variable independent of n and belonging to N,>1L?. Turning to 6.32, we proceed
similarly with the choices H = L§H o (1) and H™ = LVH". Note that using Lemma 6.6 ii) with b(x, ) = 0 and

n—roo

o =1 we deduce that L}H" . L$H (1) moreover we can prove that sup,, |[D(LEH™, LyH™)||s < co. O
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Proof of Lemma 3.8. 1t is easy to see that

E

1/ T Br T\ |71 BT T Br T |71 BT
P OB [Mn e (5T froy iy QARG St S
]. ny ]- ny
_E [U (LoHpa (1) — 1) [V ’”} [Uagb(xoﬁ)?-[m( |y’ ’”] ’
ni—1/c 1,8 %0\ |71 Bn,To
<E E[H—n Bn.zo (80Y1 )|Y ]

o LoHpe(1) =1 .
T e e B e B

ag

+IE E |:(L1HLO‘(1)_ )|7n5" IU:|
g
,Bn,To n,Bn,To 8 b(z ,9 H a(1 —"Nn,Bn,To
( 1— l/Oé]E[H an xo(aeylﬁ )‘Ylﬂ ]E|: 0 ( 0 0-) L ( )|Y16 :| > . (634)

Then using Cauchy-Schwarz inequality

E | | 0! VOB Hyr om0 (9077 oy g7 fnsor
$7-1,Pn,T 71 Pn T LQH [ ]- - 1 71PN ,T
i (Bl 0,77 0P - | P2 = o] |
N, Bn,x N, B T 2 1/2
< [E(( B (TN Ch e e °]) )}
97 1/2
La [e3 1 - 1 ns
X |E | EfMgnonro (07777 ZO]—E[( IHLU() ) }
- i 1/2
< |:]E (n22/aE [’Hyn,ﬂn,wo (agY;L”Bmxo) |Y17 n,$0:|):|
1

1/2

LYHpa(1) - 1)

% E E ‘H . Zo(a Y176n7$0) _ (

_ |:]E (n22/a

g

2
BnsTo

2 1/2 o - La o(1) =1 2
1

Y o

1/2

Eva ;ﬂn;
Hrm.nao (05717

(6.35)
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Furthermore, from (3.8) we easily deduce that (6.35) converges to zero uniformly with respect to xg. Similarly,
we also get that

LY a(l) — 1) —=n n T 1/ 71 Bn T N Bn T ) a(1 X Pn,T
E [ ’E |:( 17‘[LG( ) )|Y1,[3 0:| (nl 1/ E[H7T’=/3na10(aeyl B 0)|Y1 B 0] _E (%b(iﬂo i)/HL ( )‘Yl B 0])‘:|

tends to zero uniformly with respect to xg. And then, we can conclude that (6.34) converges to zero uniformly
with respect to zg. In turn, it gives the uniform convergence

sUp | E 0! VOB Mg e (00Y ] T B g e (97T

Zo

1 —n,Bn,T 1 —N,Bn,T n—oo
_E {E L (LoHpa (1) — 1) |77 0] E La@b(xo,e)’;-tm(1)|yl’ﬁ"’ 0” =00 ), (6.36)

On the other hand, we can rewrite

1 —Nn,Bn,T 1 37 PnsT
s (B[] @it 0 8 | oo o |

_ EE []E <i (LSH o (1) — 1) + %agb(zo, 0)%La(1)|y’1"5’”°ﬂ ’
_ {IE (i (LOHpa(1) — 1) — iaeb@so,e)Hm(l)ﬂﬂ"*“)] L (6.37)

Then, the lemma will be proved as soon as we show that

1 1 M Bn,To ?
E [E (U (LMo (1) = 1) + —Opb(ao, ) Hee (1) ’Yl’ﬁ ﬂ

g

_ {E (1 (LoHpa(1) — 1) — %&gb(xo,ﬁ)?-tm(l) 'Y?’ﬁ"’“’)r (6.38)

is uniformly convergent with respect to z¢ to

E {E (i (LOHpa (1) — 1) + %8@()(30079)7-[1;@(1) ‘ L‘f‘)r
- {u«: (i (LOHpe(1) — 1) — %agb(xo,e)mau) ‘ Lff‘ﬂ L (6.39)

We end the proof by using Proposition 6.8 with H = L{Hpa (1) £ 0pb(wo,0)H (1) and H" = LYH"
Ogb(zo, 0)H"™ where H" is given by (6.33).

O H
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6.4. Lemmas 6.10 and 6.11

The aim of this section is to show that the functions nH"’K and ﬁHmK defined by (6.27) are close in some
sense. The idea is mainly based on ([5], Prop. 9, p. 2348), however we need a more technical study since a € (0, 2)
and the function b is not assumed to be bounded. Our first result is the following.

Lemma 6.10. Under the assumptions of Proposition 6.8, for all bounded function h, VK > 2, there exists a
constant Cg > 0 such that

n n n,3,%o n,0.x n n O'La C
e (R = o) < B [ (Z5E )] | < S

and the above estimate is uniform with respect to xo € R and B € Q, for any compact set Q C R x (0, 00).
Proof. Since H" X (H™) is bounded and P(L} # Lg) < € (see Lem. 3.3) it is sufficient to show that

i (T = o) - 8 [ en (25| < (6.40)

We now prove (6.40).
Let us denote H™5 = H" X (H™) and H any primitive function of h. Using the integration by parts formula
(6.7), we have

oL} oL?

IE[ (nl/a)w K} =E [H(nl/a)H(:L? (H"’K)} (6.41)

where H L (H™E) is given by (6.10), namely here

(/=)
oL} n, n oL?
H on (H’n,K) — L HH,K O'LTll _ (nl/la )H K - L H K nl/t‘
(0 L) F(JL;L o'LI") nl/a oL oL r oL} O’LI”) .

nl/a i/e i F(ma ) (15 o

On the other hand, we have for ¢ € [0, 1]

—n xT n x LTL ]. t —nNn T
Yo gt o = 1 / BT 0) = b0, 0)| ds
1 Bz n.0.2
< - ||b'||oo\Y T _ nfwo|qs
N jpBro B,zo _
Sﬁ/o [T loo Y5 - 1/a|ds+ 1+1/a/ oL |ds.

Applying the Gronwall’s inequality, for C' a positive constant, independent of n and K,

n,B3,z n,o, oL} C ! n
‘Yl 0 _mhwo _ nl/ix < m/o |oL7|ds. (6.42)

Using that the function H is globally Lipschitz with a Lipschitz constant ||h||s, we deduce from (6.41) that

n oL™ n,s,x n,0,z0 n
e [wrn 2 | B [ o g 0|

n
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1
i |LE|dsH, any )(H”vK)H . (6.43)

‘ oC
o T/a

n1+1/o¢

||h||ooE[

Y;LBIO - §1n’6’m0)'H oL} (’H” K)] using successively the self-adjoint property of the

(17
operator L, (6.3) and (6.10), to obtain an 1ntegratlon by part formula in a reverse direction:

Now we compute E[H (

< NB,T n,0,x n
BH(T}™ = O g (M)

[ =z n,K » L ULZL K anKU L
—E |HY}” “—c?*“%{L (F(ffn am)> s —FETLZ)W) I\ ez g )
oy ohy n 1 1 ekt Wl

nl/ar’ pl/a nl/ar’ pl/a nl/a nl/u

r .6,z n,0,zo\ o LY —n.Bx n,0,x oL —n.Bx n,0,x T
_p |LEHEY oot I - HEYLTT - o) L(EE) — LHYYTT — o)) Sy K]
- O—L7L O-L"L
i Lo we)
r oLT n,B,To n,0,x oL n.B,To0 n,0,x
r LL,HY — 0o - LY — 0o
g [ DG HOY P g lw Koo _ o TG Vi PO e

F( oL} oLY )

L nl/cu nl/a

oL} oLY
Doy o)

nl/a’ pl/a

Putting together (6.43) and (6.44) we deduce,

oL} —n,B,x 0. oC !
a2 B n T ) < I [ g 00 [zl
nl/a 0 1
18T n,0,x
—n,B,x r a?Y -G 0
R I e et |
T(Zok, Z%)
o’L —":B,To n,0,xq
oC e Y1 - )
< (E Ml [P g ) [ 10| -+ e e | -1
nli+1/ (7 D(ZEL, 25 1
77:8,%0 n,0,x
C H o L -
< Dbl ||| M on (L2 st 1S oo H i W—" S
n o lln /s 1 (o7 ni7s) 1
ne i
Hence the lemma will be proved if we show that sup,, sup,¢o 1 I{n’s) < oo and sup,, nIz(”) < 00.
Step 1: we show that sup, sup ¢y Il( < 00.
We can write from (6.9)
iy —2L(EE HmE WK oL? _ oL? oL} D(ZEL HmK)
H( oLf )(H ’ ): oLl oL} oLy oLT \o 1/a’r( 1/a’ 1/0‘) B nULn oLy
i/ Py i) D(rs k) n n n Uiy oi7w)
n'/e [—2L(Ly)H™K H™E I(Ly, H™X)
= DLy, T(LY, LY)) — ——— 6.46
- [T rn T ) - S (040

Now, let us recall that from (3.2)

L?:// Z[L(n)(dt7d2)+// 2p(™ (dt, dz),
0 JzI<1 0 Jiz[>1
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then,

’H 23 (H”’K)|LQ| (6.47)

< ILH ooy (H™E) / / 2™ (dt, dz)
nt/e (578 0 Jz<1

(H™E) / / p(™M(dt, dz
1/a ( 1/01) | |>1| | )

First, we consider the expectation of the right-hand side term in (6.47), we have:

o 7—[ H”K// ") (dt, dz)
/“ ) ||<1

27 1/2 1/2

2
(/ / dt dz)) lE( 1/aH ULl )(Hn K)) ] by Cauchy-Schwarz inequality,
|<1
) 1/2 1/2
= 2% ——dzdt
/ f o

2
n,K
T W e (H™ <
E<n1/a (nlL/la)( )) ] M
where M is a deterministic constant.

Furthermore, from (6.6) we have |['(Ly, H™X)| < D(H™K, H™K)
inequality, we get

|

Then, we can deduce that

nl/a

(6.48)

IN

1/2

E( 7t L2 )(H" K))Q] (6.49)

Y2p(Le, L1)Y/? and from (6.46), convexity

o
nl/e ,H(:f?f )

(H™™)

(6.50)

2 n n,K n,K 2 n,K n,K
—2L(LT)H™ H™ n n orn T(H™® ,H™™)
< il S R A
} 2[< Ly Ly Ty et “Ll))> Ty

2 n n,K n,K 2 n,K n,K
g n,K _QL(LI)H ’ H ’ n n n ) |:F(H ’ 7H ’ ):|
_— oL » < . . )
J TRCIEC SR ) <= |(Fin o e ) s [Nty
I, iz
(6.51)
Our aim is to prove that I7"; and I, are bounded independently of n.
For I},, we see from (6.8) and Remark 6.4,
Ly, DL, L)) 2L(LY) 7 1
NP o v 7 B A A R (6:52)

From the crucial fact ||H"¥ || < K and from (6.12), (6.15), Remark 6.4 we can deduce that I}, is bounded
by a random variable independent of n (but depending on K).
For I75, from (6.1) and (6.21), we have

N F(Hn’K,Hn’K) (Hn K Hn K) F(Hn’K,Hn’K)
fla =k ( T(Ly, L}) ) = () SEl "
1 L1 fo Sz " (dt,dz) Jo le|<1Z w(dt, dz)

Now since H™ ¥ is a smooth Malliavin functional, using the chain rule property (6.4) we have

D(H™E HEY < AT (H™, H™) (6.53)
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where ¢k is any upper bound of the derivative of x — x Xk ().
Then we deduce that

T(H", H")

Iy < C%(E 1
Jo f|2|<1 2Ap(dt, dz)

-1
From the assumption on I'(H™, H™) in Proposition 6.8 and since (fol f\z\<1 Z4p(dt, dz)) belongs to Np>1L?

(see [5], the proof of Thm. 4), we can deduce that I}, is bounded independently of n. Thus, we get that the
expectation of the right-hand side term in (6.47) is finite.
Turning to the expectation of (6.48), we have:

1
B || Tat o, 05 [ eln®taz)
n/ (l/a) 0 Jiz|>1
=B | [T H ey (HF) / / 1216 (dt, d2) / / 1216 (dt, dz)
alN(Z 1/a 1<|z|<2 |z|>2
<E H o H”K // |z|p™ (dt, d2)|| + E 7—[ H”K // 2| ™ (dt, d2)|| .
nt 1<|2|<2 |z>2

By a similar estimation technique as for the bound of (6.47), we get that

supE l e M oy (H™ ) / / 2™ (dt,dz2)|| < Cx < 4o0.
1/a ) 1<|z|<2
We now show that
o 1
supE WH( %3 )(’H"’K)/ / 2| (dt, d2)|| < Cx < +oc. (6.54)
n n nl/a 0 Jlz[>2

In fact, from (6.46) we have

E ’Hom ’H"K// |2 (™ (dt, dz)
|z]|>2

|

—2L(LY)H™E HmE ‘ ’ (L?,H"K‘ //
B E n n + n n F anr anLn n Iy z N(n) dt dZ
' oy oy g e GO BN P s )
— _QL(L?)H’”’K HTL,K ‘/1/
=E + L(L?, T(LY, LY 2| (dt, dz
’ (LY, LY) (LY, Ly)? (L1, (LT, L) 0 |z|>2|| ( )
I,
Ln nK
t+E ’ 1;Hn ’// |2 (dt, dz) (6.55)
L(Ly, L 2|>2

n
11.4
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To prove (6.54), we just have to show that I3 and I, are bounded independently of n. For I35, we recall here
(6.52),

1

DYDY L) 2L(L) -
nl/a 1,8 !

T(LY,LY)2 T(LY,LY)

=H3(1) +

Then from the boundedness of H™ ¥, we get

1 1
’"Hﬁ ‘/ / 2| ™ (dt, dz) |R?ﬁ(1)|71/a/ / |z|u(")(dt,dz)]
|z[>2 n 0 J|z|>2

From the proof of Lemma 5.4 in [6], we can deduce that ’ﬁg(l) fol le|>2 | 2| (dt, d2)

variable independent of n and belonging to N,>1L?.
Using Cauchy-Schwarz inequality and (6.15), we get
1/2

2
E[mm = e dz>]< s T dz)] (6.56)

Now from (™) (ds,dz) = (™) (ds,dz) + v(™)(ds,dz), by convexity inequality, we have

/ / ‘Z/| p™(ds,dz)| < 2E / / |/| 1™ (ds, dz) / / / U(”) ds dz)
|2|>2 nH/® s n17a " H>2”°‘
2> 1 / / ||
dzds dzds
/ /<| |<ani/a 2/ |zt 2<|z|<2nt/e N/ ‘Z|1+a

C n2/a nl/a
< ( + ) where C' is a deterministic constant.
n

I'y < KE + KE

is bounded by a random

+ 2

<2E +2

! ! (6.57)

From (6.56) and (6.57), we deduce that the left-hand side of (6.56) is bounded by <. Then we get that
sup,, I3 < +o0 .

For I?,, from the boundedness of H™¥ (6.21), and the fact that

D(L?, H™E) < TR 1K) 0(Le | L) Y/2 we have:

K gmK) 1/2
Iy <E o) z|lpt™ (dt, dz)
1.4 (’ F(LI,L |z ‘>2‘ |

Hn,K an,K 1/2
=E I /2/ / |2 (™ (dt, dz)
[ ormnignaa ™ fo-
1/2
(anK anK .
<E Ir 1/2/ / | 2™ (dt, dz)
’fo 252 221 (ds, dz) .
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Applying the Cauchy-Schwarz inequality, we have

//>2 (dt, dz) //|>2 ™) (ds, dz) (/ />2lzu (dt dz)>. (6.58)

We deduce

‘F HnK HnK 1/2

ds dz

/ / 2| (™ (dt, d2)
2
’fo z|>2 ==

1 1/2
<E |F<H"7K,anf<>\”2{ / / u<"><dt,dz>}
0 J|z|>2
1/2
/ /|| 2 p™ (dt dz)]} . (6.59)
z|>

1/2
From { {fo Ji- ‘>2,u ™) (dt, dz)}} < C4 where C} is a constant and the fact that T'(H™¥, H™K) admits
finite moment, independently of n (but depending of K') then, (6.59) is bounded independently of n and I}, is

proved. Hence (6.54) follows.
Step 2: We now prove sup,, nl¥ < C* where C* is a positive constant.

< {E HF(H”’K,HW”K 1/2{

We have
F(Zﬁt ’ Yl’lB Zo g{L,g,-’L‘O) 1 1 T le;t ’ ’ﬁ 9307 0) _ b(g:,ﬂ,zo’ 9))
oLy oLy -1 = n oL7 oL7 ds
I(G7es nre) (nl/avm)
1 ||b'||DQ oL} —n B0
S WT(ZEL, oIy F( e Ve ds.

Doy s

Using that

F( G’LIL ?n7ﬁvx0) < F( O’L1 ULl ) /21"(?:7513507?:‘76710)1/2

ni/as ni/as pija

71, 0,% 7N x / 71, 0,% i /2
USRS DS R
1/2

—n,B,x0 —=n,B,x o 2
F(Yl,& 0’Y1757 0) oLl ) 1/

< Ml (nl/aa ni/e

for some constants M and M7, we can easily deduce that

oLT ) n,0,x
F( l/oMYl —S1 0)71 <g
r oL} oL} - n’
(nl/a7 nl/a)

for a positive constant C*.
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Lemma 6.11. Under the assumptions of Proposition 6.8, for any compact set @ C R x (0,00), VK > 2, there
exists a constant cx > 0 such that

H K (lel Bz _ gzhe,zo) ﬁH" K(Yl"B Lo C{lﬂ’mo) <

1

(6.60)

sup ||n —.
z0,BEQ n

Proof. We estimate the L'-norm appearing in (6.60) by duality. Let 5 : R — [—1,1] be a measurable function,
we evaluate:

[ n, K — n, K ,—
’]E (777-[ (Yn Bero §IL;07$0) _ ﬁH (Yn Brmo C?,H,x()))ﬁ(ﬁ Bizo gIL,G,xo)} ‘

n,K —n,B,x n To\ A n,Br n,0,x nx , oL{ |
< B[ @10 - B o] < [ (D >

VBT

nl/a

_qnK oL§ — oL$ g, K B, n,0,zo B, n,0,z
" 'E [777{ (nl/i)ﬂ(nl/iy )] - [”H (Y7 — By — 0)_ ‘
H K n,B,T0 n,0,20\ 375 %o n,0,x _7H""K O—L(ll a O—Llll ] Ck
< B [0 - BT = e | B | (BT | |+ K

where we have used Lemma 6.10 with the choice H” = 1, K > 2 and the choice h = ﬁHn'KB, recalling that

7% ||oe < K. From the definition of 7" (alLla) and nH"'K Yy o ¢%70) as conditional expectations,
we have:

nK —n,B,x n —=n,B,x n,0,z _amnk , oLy — oL§
A B |

= [ [ reya e = o] - 8 e ey | < K,

n

where we used Lemma 6.10. This gives,

L O,T n,0,x —H™" ;TP n,0,x T,0,T n,0,x C

sup B [ (70 = o) — gt (T - e B — °>H (1+K)=<

[18llec <1 n
and we deduce the result of this lemma. O
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