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F Uniform approximation schemes and error bounds (Table 2)

In Sections F.1, F.2 and F.3 we discuss the methods for deriving the finite sum [f̂ (n)] when
the cost function f is continuous on any support [0, τ ].

F.1 Bernstein polynomials

The function f can be approximated on [0, τ ] by the Bernstein polynomial [1]

b(n)(u) =
∑n

l=0

(n
l

)(u
τ

)l(
1−

u

τ

)n−l
f (lτ/n) , ∀u ∈ [0, τ ]. (F.1)

Notice that (F.1) rewrites as b(n)(u) = E[f(Kτ/n)], where the random variable K ∼
B(n, u/τ) is distributed according to the binomial distribution with n trials and success
probability u/τ . The quantity K/n has mean u/τ and variance (u/τ)(1−u/τ)/n ≤ 1/(4n),
which vanishes uniformly on [0, τ ]. It follows from continuity arguments that E[f(Kτ/n)]
converges uniformly towards f(u) on that interval, [7, proof of Theorem 2.7]. So does (F.1),
with rate

‖f − b(n)‖ ≤ (3/2)ω
(
f ; [0, τ ]; τ/

√
n
)
, (F.2)

[10, Theorem 1.2], where

ω(f ; [0, τ ]; δ) = sup{|f(u1)− f(u2)| : u1, u2 ∈ [0, τ ], |u1 − u2| ≤ δ}

defines the modulus of continuity of f on the interval [0, τ ], [6, §21]. To conform with (IV.4),
we rewrite (F.1) as1

b(n)(u) =
∑n

k=0
βn,ku

k, ∀u ∈ [0, τ ], (F.3)

where

βn,k = (−τ)−k
(n
k

) k∑
l=0

( k
l

)
(−1)lf

(
lτ

n

)
, (k = 0 . . . , n). (F.4)

From (F.2) and (F.3), we infer bounds for the relative value function.

1 The coefficients βn,0, . . . , βn,n can be computed recursively. Indeed, one show by induc-

tion that βn,k = (1/k!) f̌
(k)
n (0), where, for k = 1, . . . , n,

f̌
(0)
n (l) = f(lτ/n), f̌

(k)
n (l) = [(n− k + 1)/τ ]

[
f̌

(k−1)
n (l+1)−f̌ (k−1)

n (l)
]
, (l = 0, . . . , n−k).

(F.5)

Indeed, βn,0 = f̌
(0)
n (0)/0! is immediate. Suppose now that

f̌
(k)
n (l) =

k!

(−τ)k

(n
k

)∑k

t=0

( k
t

)
(−1)tf

(
tτ

n

)
, (l = 0, . . . , n− k), (F.6)

holds for k = 1, . . . , q − 1, where 1 ≤ q ≤ n− 1. Then, for l = 0, . . . , n− q,

f̌
(q)
n (l)

(F.5)
=

(n−q+1)
τ

[
f̌

(q−1)
n (l + 1)− f̌ (q−1)

n (l)
]

(F.4)
= n−q+1

τ

(
(q−1)!

(−τ)q−1

)(
n
q−1

)∑q−1
t=0

(
q−1
t

)
(−1)t

[
f
(

(t+l+1)τ
n

)
− f

(
(t+l)τ
n

)]
=
(

q!
(−τ)q

)
(n−q+1)

q

(
n
q−1

) [∑q
t=1

(
q−1
t−1

)
(−1)tf

(
(t+l)τ
n

)
+
∑q−1
t=0

(
q−1
t

)
(−1)tf

(
(t+l)τ
n

)]
=
(

q!
(−τ)q

) (
n
q

){
f
(
lτ
n

)
+ (−1)qf

(
(q+l)τ
n

)
+
∑q−1
t=1

[(
q−1
t−1

)
+
(
q−1
t

)]
(−1)tf

(
(t+l)τ
n

)}
= q!

(−τ)q

(
n
q

)∑q
t=0

(q
t

)
(−1)tf

(
(t+l)τ
n

)
and (F.6) holds for k = q. By induction, (F.6) is true for 0 ≤ k ≤ n. By setting l = 0

in (F.6), we infer from (F.4) that βn,k = f̌
(k)
n (0)/k! for 0 ≤ k ≤ n.
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Corollary F.1 (Bernstein polynomials) Proposition 3 holds for f̂ (n) ≡ b(n) defined
by (F.3) with the uniform error bound η(n) = 3/2ω(f ; [0, τ ]; τ/

√
n).

F.2 Approximation by trigonometric sums

A better convergence rate for f̂ (n) can be obtained using trigonometric sums; we refer to [10,
§1.1] for details on this topic. Consider the continuous, 2τ -periodic function f̌ : R 7→ R
defined on [−τ, τ ] by f̌(u) = f(|u|). The Weierstrass approximation theorem (see, e.g.,
[8, Weierstrass first theorem], [10, Theorem 1.1], [7, Theorem 2.7]) claims that f̌ can be
approximated by a trigonometric sum with arbitrary precision with respect to the uniform
norm ‖f‖ = supu∈[−τ,τ ] |f(u)|. This implies that for any ε > 0 one can find n < ∞
and a trigonometric sum t(n) such that η(n) = ‖f̌(u) − t(n)(u)‖ < ε. It then follows that
f ∈ [f ] = t(n) +[−η(n), η(n)]. Such a trigonometric sum is given by the partial Fourier series,
which for the real, even function f̌ reduces to

t(n)(u) = α̌0 + 2
∑n

k=1
α̌k cos(kπu/τ), (F.7)

where

α̌k =
1

τ

ˆ τ
0
f(u) cos(kπu/τ) du, (k ∈ N). (F.8)

are the Fourier coefficients. With the modulus of continuity of f̌ defined by

ω(f̌ ; δ) = sup{|f̌(u1)− f̌(u2)| : u1, u2 ∈ R, |u1 − u2| ≤ δ}, (F.9)

the Fourier series (F.7) converges towards the periodic function f̌ with rate O(η(n)) =
log(n)ω(f̌ ; τ/(nπ)), [6, §21]. Faster convergence can be obtained by slightly modifying the
Fourier coefficients in (F.7). For this, consider

ť(n)(u) = %n,0 α̌0 + 2
∑n

k=0
%n,k α̌k cos(kπu/τ), (F.10)

where %n,0, . . . , %n,n ∈ R. The choice of parameters proposed in [8, §3],

%n,0 = 1, %n,1 = cos( π
n+2

), %n,k =

∑n−k
q=0 sin

(
q+1
n+2

π
)

sin
(
q+k+1
n+2

π
)

∑n
q=0 sin2

(
q+1
n+2

π
) for k = 2, . . . , n, (IV.6)

lends (F.10) the convergence rate

η(n) ≤ 6ω
(
f̌ ; τ

πn

)
, (F.11)

(see [8, first Jackson Theorem], or [10, Theorem 1.3]). Since ť(n) ∈ Ξ and by construction
ω(f̌ ; ·) ≡ ω(f ; [0, τ ]; ·), ť(n) is a candidate finite sum for Proposition 3 and (F.11) gives us
bounds for the relative value function.

Corollary F.2 (Trigonometric sums) Proposition 3 holds for f̂ (n) ≡ b(n) defined by (F.3)
with the uniform error bound η(n) = 6ω(f ; [0, τ ]; τ/(πn)).

In particular, if for some α ∈ (0, 1] the cost function satisfies the α-Höldern condition
|f(u1) − f(u2)| ≤ h|u1 − u2|α for all u1, u2 ∈ [0, τ ], then ω(f ; [0, τ ]; δ) ≤ hδα, and (F.7)
converges uniformly towards f on [0, τ ] with η(n) = O((τ/n)α). If f is Lipschitz continuous
on [0, τ ] with modulus L, then η(n) < 2Lτ/n.
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F.3 Near-optimal polynomial approximation

Alternatively, the convergence rate of Corollary F.3 can be obtained using polynomials.
Set f̃ : R 7→ R to be the continuous, 2π-periodic function defined by f̃(θ) = f(ũ(θ)),
where ũ(θ) = (τ/2) (1 + cos(θ)). It follows from the (τ/2)-Lipschitz continuity of ũ and
the definition (F.9) of the modulus of continuity, that ω(f̃ ; δ) ≤ ω(f ; [0, τ ]; τδ/2) for δ > 0.
Proceeding as in (F.10), we consider the trigonometric sum for f̃ given by the modified
Fourier series

t̃(n)(θ) =
∑n

k=0
%n,kβk cos(kθ), ∀θ ∈ R, (F.12)

where β0 = α̃0, βk = 2α̃k if k ≥ 1, and α̃k = (1/π)
´ π
0 f̃(θ) cos(kθ) dθ for k ∈ N. Defin-

ing %n,k as in (IV.6), yields the uniform convergence rate

‖f − t̃(n)‖ =
(F.11)

≤ 6ω
(
f̃ ; 1/n

)
≤ 6ω (f ; [0, τ ]; τ/(2n)) . (F.13)

It remains to rewrite (F.12) as a polynomial in u by returning to the backlog domain. For
this, we develop cos(kθ) = <

(
(cos(θ) + i sin(θ))k

)
and find cos(kθ) = pk(cos(θ)), where the

polynomial pk(x), characterized by its k real roots located in (−1, 1), is defined by

pk(x) =

{∑k/2
q=0 ν(k, q)x2q , if k is even∑(k−1)/2
q=0 ν(k, q)x2q+1, if k is odd

}
, (F.14)

where ν(0, 0) = 1, and

ν(k, q) = (−1)b
k
2
c−q∑q

t=0

(
k

2(b k
2
c−t)

)(
b k
2
c−t

b k
2
c−q

)
, (q = 0 . . . ,

⌊
k
2

⌋
, k ∈ N>0).

Since f̃(θ) = f(τ(1 + cos(θ))/2), a polynomial approximation of f on [0, τ ] is obtained by
setting cos(kθ) = pk(2u/τ − 1) in (F.12), and we find, after straightforward computations,

t̂(n)(u) =
∑n

k=0
γ(n, k)uk, ∀u ∈ [0, τ ], (F.15)

where we define

γ(n, k) = (2/τ)k
∑n−k

t=0

( t+ k
k

)
(−1)t γ̄(n, t+ k), (k = 0 . . . , n).

and γ̄(n, t) =
∑
k∈σ̄(n,t) %n,k βk ν(k, bt/2c) for t = 0, . . . , n, in which σ̄(n, t) = {t, t + 2, t +

4, . . . , n} if n− t is even, and σ̄(n, t) = {t, t+ 2, t+ 4, . . . , n− 1} otherwise (0 ≤ t ≤ n). As
for the Fourier coefficients of f̃ , they reduce to

α̃k =
1

π

ˆ π
0
f(ũ(θ)) cos(kθ) dθ

(F.14)
=

1

π

ˆ τ
0
f(u)

pk( 2u
τ
− 1)√

u(τ − u)
du, (F.16)

where we have used the change of variable u = ũ(θ). For many cost functions, the coeffi-
cients {α̃k} can be derived exactly. See Lemma for expressions of these coefficients in the
case when f is given as a quotient of polynomials.

From (F.13), we infer the following bounds for the relative value function.

Corollary F.3 (Near-optimal polynomials) Proposition 3 holds for f̂ (n) ≡ t̂(n) defined
by (F.15) with uniform error bound η(n) = 6ω(f ; [0, τ ]; τ/(2n)).

Without further assumptions on f , the convergence rate O(ω(f ; [0, τ ]; τ/(2n))) guaranteed
by (F.15) is non-improvable. The performance of ť(n) and t̂(n) in Corollaries F.2 and F.3 are
then really close, and the choice of either approach (Section F.2 or F.3), mostly dependent
on the computability of the Fourier coefficients (F.8) or (F.16), respectively, is left to the
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appreciation of the reader. The second approach nevertheless prevails in the event the cost
function has a kth derivative f (k) on [0, τ ]. Then, the convergence rate in Corollary F.3 can
be lowered to O(n−kω(f (k); [0, τ ]; τ/[2(n− k)])) by using the derivatives as the targets of
approximation, [10, Theorem 1.5]. This distinguishing property of approach F.3 stems from
the fact that f̃(θ) retains the smoothness of the cost function, whereas f̌(u) shows irregular-
ities at u = (2k+ 1)τ . We refer to [10, §1.1] and references therein for further considerations
on the optimality of (F.13) as a convergence rate for polynomial approximations.

G Proof of Proposition B.1

Proposition B.1 (Analycity of W ∗ and pole location) Under Assumption 2:

(i) The dominant singularity pW of W ∗ (i.e., that with largest real value) is a pole with
degree 1 lying on the negative real axis R<0. The dominant singularity pX of X∗ is real,
negative (possibly infinite) and satisfies pX < pW . X∗ is analytic on {s ∈ C | < (s) > pW }.

(ii) W ∗ is analytic on {s ∈ C0 | < (s) > pW }, where lims→∞ |W ∗(s)| ≤ 1.
(iii) One can find ε > 0 such that W ∗ is analytic on {s ∈ C0 \ {pW } |<(s) > pW − ε}.
(iv) W ∗ is analytic in a neighborhood of 0, where it rewrites as the series

W ∗(s) =
∑∞
k=0 wk (−s)k, ∀s ∈ {σ ∈ C0 : |σ − a| < |pW |}, (B.1)

in which the coefficients {wk} are given by (III.3) in Table 1, and satisfy wk = E[Wk]/k!,
for k ∈ N. The series {wk} is asymptotically geometric with asymptotic rate |pW |−1.

(v) At any point a ∈ C0 where W ∗ is analytic, W ∗ rewrites as the series

W ∗(s) =
∑∞
k=0 wa:k(a− s)k, ∀s ∈ {σ ∈ C : |σ − a| < ra}, (B.2)

where ra denotes the distance from a to the closest singularity of W ∗. The coefficients {wa:k}
are given by (III.4) in Table 1.

Proof (i) First observe in

W ∗(s) =
(1− ρ)s

s− λ(1−X∗(s))
(PK)

that 0 is a removable singularity of W ∗(s). Since X∗ and W ∗ are the Laplace transforms of
probability density functions on R≥0, their dominant singularities pX , pW are real, nonpos-
itive, and possibly infinite (−∞)2. Besides, X∗(s) is, by definition, continuous and strictly
decreasing on (pW ,+∞) with lims→∞X∗(s) = 0. It intersects with the straight line 1−s/λ
at s = 0 (removable singularity) with slope stricly larger than −1/λ (ρ < 1). Since the limit
value of the derivative of X∗(s) at −∞, given by lims→−∞ E[−Xe−sX ] is infinite, X∗(s)
must necessarily cross 1 − s/λ at another negative value pW > pX , which is the dominant
(non-removable) singularity of W ∗. Moreover, since the slopes of the curves at pW are dif-
ferent, the derivative of s− λ(1−X∗(s)) at pW is nonzero. It follows that pW is a pole of
degree 1. Because X∗ is a Laplace transform, it is analytic on its domain, which includes
the half-plane to the right of pW .

(ii) From the conclusions of (i), we find σ − λ
(
1− E[e−σX ]

)
6= 0 for every σ ∈ {s ∈

C0 | < (s) > pW }, where W ∗(σ) is nonzero. Since we also have lims→∞X∗(s) = 0, it follows
from (PK) that lims→∞ |W ∗(s)| ≤ 1.

2 If FY is the probability distribution of a random variable Y on R≥0, then∣∣∣LF ′
Y

(s)
∣∣∣ ≤ ´∞0 ∣∣e−su∣∣FY (du) =

´∞
0 e−<(s)uFY (du) = LF ′

Y
(<(s)), ∀s ∈ C.

It follows that LFY is absolutely dominated by its expression on the real axis, which is a
real, nonnegative function. The dominant singularity pY of LF ′

Y
lies therefore on the real

axis. Since F ′Y is absolutely integrable, pY is negative.
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(iii) On the vertical axis s = pW + it, the denominator of W ∗(s) is given by

{pW − λ(1− E[e−pWX cos(tX)]}+ i{t− λE[e−pWX sin(tX)]}. (G.1)

The real part of (G.1) can only be 0 if cos(tX) = 1 almost everywhere with respect to FX ,
where sin(tX) = 0 and the imaginary part of (G.1) reduces to t. Hence, the only singularity
on the axis s = pW + it is pW . Next, we show that it is not possible to find a sequence {ŝk}
of singularities of W ∗ such that <(ŝk)→ 0. Suppose it is: the sequence is either bounded or
not. If it is bounded, then there exists a subsequence of {ŝk} of poles converging towards a
point of the imaginary axis, which can only be pW , and consequently ŝk−λ(1−X∗(ŝk)) = 0
for the subsequence converging towards pW . By analytic continuation, s−λ(1−X∗(s)) = 0
in a neighborhood of pW , which is impossible. Suppose now that {ŝk} is unbounded and
converges to i∞. If ŝk = pW − δk + itk, the imaginary part of s− λ(1−X∗(s)) is given by

tk − λE[e−pWX sin(tkX)]− λE[Xe−pWX sin(tkX)]δk + o(δk), (G.2)

where |E[e−pWX sin(tkX)]| ≤ E[e−pWX ] = 1−pW /λ is a finite quantity, while the deviation
|E[Xe−pWX sin(tkX)]| ≤ E[Xe−pWX ] is dominated by the (finite) slope of X∗(s) at pW .
Since tk → ∞, (G.2) diverges, and the sequence does not exist. It follows that there is no
singularity with imaginary value arbitrarily close to that of pW .

(iv) The series expansion of W ∗ at 0 is W ∗(s) =
∑∞
k=0(E[Wk]/k!)(−s)k, where E[Wk]

is the kth moment of the waiting time distribution. These moments have known expressions
which satisfy E[Wk] = k!wk for all k—see e.g. [3, §5.1.5]). Hence (B.1) is the (unique) Taylor
expansion of W ∗ at 0. Now, the ratio test for this Taylor series tells us that {E[Wk]/k!}
grows asymptotically exponentially with asymptotic rate a if and only if the Taylor series
converges on the interior of a disc with radius a centered at the origin, and diverges outside
the disc, thus betraying the presence of a singularity of W ∗ on the circle. Besides, since
{E[Wk]/k!} has only real, nonnegative values, the series takes its largest absolute value on
the circle at the intersection with the negative branch of the real axis. It follows in that case
that −a = pW is the dominant singularity of W ∗.

(v) For n ∈ N and the specified point a, consider the cost function f(u) = (−u)ne−au =
(∂n/∂an)[e−au]. It follows from Table 1 and the Leibniz integral rule that

c′(u) = λ
1−ρ

∑n
k=0

(
n
k

) dn−kW∗(a)

dan−k
(−u)ke−au, (G.3)

and from Table 1 that

c′(u) = (−1)n λn!
1−ρ

∑n
k=0 wa:n−k

uke−au

k!

= λ
1−ρ

∑n
k=0

(
n
k

)
(−1)n−k(n− k)!wa:n−k(−uk)e−au.

(G.4)

Inspection of (G.3) and (G.4) then yields (dk/dak)[W ∗(a)]/k! = (−1)kwa:k for all k,
and (B.2) follows from the Taylor series of W ∗ at a. �

H Proof of Proposition 2 (variant)

This appendix contains an alternate proof for Proposition 2. First, we recall basic properties
of the M/G/1 queue.

Lemma H.1 Let 0 ≤ u2 ≤ u1 and suppose that the M/G/1 queue, initially at state u1,
reaches state u2 for the first time after a random period of time T , during which N jobs
have arrived. Then,

(a) E [T ] = 1
1−ρ (u1 − u2), (b) E [N ] = λ

1−ρ (u1 − u2). (H.1)
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Proof Lemma H.1 is a consequence of the law of large numbers. Consider n realizations
of the setting, and denote by T1, . . . , Tn the random values observed for the variable T ,

by N1, . . . , Nn those observed for the variable N , and by {Xk,l}
Nk
l=1, . . . , {Xk,l}

Nn
l=1. Since

the rate of the Poisson process is equal to the density of arrivals per unit of time,

λ = lim
n→∞

∑n
k=1 Nk∑n
k=1

Tk
=
(

lim
n→∞

∑n
k=1 Nk
n

)(
lim
n→∞

n∑n
k=1

Tk

)
=

E[N ]
E[T ]

. (H.2)

Similarly,

lim
n→∞

1
n

∑n
k=1

∑Nk
l=1Xk,l =

(
lim
n→∞

∑n
k=1

∑Nk
l=1

Xk,l∑n
k=1

Nk

)(
lim
n→∞

∑n
k=1 Nk
n

)
= E [X]E [N ] .

(H.3)

By definition of the variables, we also have u2 = u1 +
∑Nk
l=1 Xk,l − Tk for k = 1, . . . , n, and

it follows that

E [T ] = limn→∞
1
n

∑n
k=1 Tk = u1 − u2 + limn→∞

1
n

∑n
k=1

∑Nk
l=1Xk,l

(H.3)
= u1 − u2 + E [X]E [N ]

(H.2)
= u1 − u2 + ρE [T ]

which yields (H.1a), and (H.1b) follows from (H.2). �

Proposition 2 (Relative value function) Let f satisfy Assumption 2 and be piecewise
continuous.

(i) The relative value function (VF) is continuous, almost everywhere continuously diffe-
rentiable, and semi-differentiable with right derivative

∂+v(u) = λ
(
f+(u)− f̄ + E [v(u+X)− v(u)]

)
, ∀u ∈ R>0, (DE)

where f+(u) := limt→u+ f(t). At u = 0, one has

v(0) = f(0)− f̄ + E[v(X0)], (BCa)

v′(0) = λ
(
f+(0)− f(0) + E[v(X)− v(X0)]

)
. (BCb)

(ii) The relative value function is given by

v(u) = v(0) + c(u)−
λf̄

1− ρ
u, ∀u ∈ R≥0, (S)

where c : R 7→ R is continuous, almost everywhere continuously differentiable, and semi-
differentiable with right-derivative

∂+c(u) =
λ

1− ρ
E [f(u+W )] , ∀u ∈ R. (CVF)

Proof (Proposition 2) Start the queue at state u. The quantity V (u, t) appearing in (VF)
rewrites, for any T ≥ 0 and for t large enough, as V (u, t) = V (u, T ) + V (U(T ), t − T ),
where U(T ) denotes the backlog observed after time T . It follows from the Markov property
of the system and from the the definition VF of the relative value function that

v(u) = E[V (u, T )− λf̄T ] + E[v(U(T ))]. (H.4)

We now turn to show the claims, starting with (ii), from which useful properties of v (exis-
tence, continuity) can be inferred.

(ii) If in (H.4) u is taken to be the initial backlog of the queue and T is defined as
the time when the queueing system reaches the empty state (u = 0) for the first time, we
get (S), with c(u) = E[V (u, T )] defined as the expected total cost incurred until the queue
is first empty. In order to compute E[V (u1, T )], we introduce the following notion: given
any random set S containing a random number of stochastic real variables, we define the
measure ΨS : R→ R≥0 as ΨS((−∞, t]) = E[

∑
t′∈S θ(t−t′)] for all t ∈ R, where θ denotes the



8 Olivier Bilenne

step function with the convention θ(x) = 1 if x ≥ 0 and θ(x) = 0 otherwise. If a function f
is defined on the same domain as S and measurable with respect to ΨS , then

ΨSf =
´∞
−∞ f(ξ)ΨS(dξ) = E[

∑
t′∈S f(t′)] (H.5)

provided that f is integrable on R with respect to ΨS . In particular, if S denotes the set of
the times of the successive arrivals of a Poisson process with density λ initiated at a time t0,
we have ΨS(dt) = λ dt for t ≥ t0, and find ΨS((−∞, t]) = λ(t− t0)θ(t− t0).

To compute c(u), we report the arrival times of all the jobs landed during the random
period of time T , and classify the coinciding backlog values as follows:

Y1, Y1+U11, ..., Y1+U1M1
, Y2, Y2+U21, ..., Y2+U2M2

, Y3, ..., YN , YN+UN1, ..., YN+UNMN ,

in which B = {Y1, . . . , YN} is the longest nonincreasing sequence of backlogs and, for p =
1, . . . , N , Ap = {Up0, Up1, . . . , UpMp} is the sequence of relative backlog values interposed
in-between, where we have used the convention Up0 = 0 for p = 1, . . . N . First observe that
Y1, . . . , YN rewrite as Yp = u − Tp for p = 1, . . . , N , where the variables T1, T2, . . . form a
Poisson process with rate λ. It follows that ΨB is given by

ΨB(dt) = λ1[0,u](t) dt. (H.6)

We compute the quantities ΨA1 . . . , ΨAN , by applying the law of large numbers. First ob-
serve, for p ∈ {1, . . . , N}, that Up0, . . . , UpMp , Up0, . . . , UpMp , Up0, . . . form the successive
waiting times of an analogous M/G/1 queue with service time convention (X,X). Taking n
samples of the process, we find, for t ∈ R≥0,

ΨAp ([0, t]) = limn→∞
1
n

∑n
k=1

(∑M(k)
p

q=0 θ(t− U (k)
pq )
)

=
(

limn→∞

∑n
k=1(M(k)

p +1)

n

)(
limn→∞

∑n
k=1

∑M
(k)
p

q=0 θ(t−U(k)
pq )∑n

k=1
(M

(k)
p +1)

)
= (1 + E[Mp])E[θ(t−W )]

(H.1b)
=

(
1 +

λE[Xp]

1−ρ

)
µW ([0, t]) =

µW ([0,t])
1−ρ .

(H.7)

We are now able to compute c(u), and we find

c(u) = E
[∑N

p=1

∑Mp
q=0 f(Yp + Upq)

]
= E

[∑N
p=1 E

[∑Mp
q=0 f(Yp + Upq)|Yp

]]
(H.5)
= E

[∑N
p=1

´∞
−∞ f(Yp + t)ΨAp (dt)

]
(H.7)
= 1

1−ρE
[∑N

p=1

´∞
0 f(Yp + t)µW (dt)

]
(H.5)
= 1

1−ρ
´∞
0

(´∞
0 f(ξ + t)µW (dt)

)
ΨB(dξ)

(H.6)
= λ

1−ρ
´ u
0

(´∞
0 f(ξ + t)µW (dt)

)
dξ

= λ
1−ρ
´ u
0 E [f(ξ +W )] dξ.

(H.8)

Then, (CVF) follows by right differentiation of (H.8).
(i) Let T = δ, where δ > 0 is a small time step. Since the inter-arrival times are

exponentially distributed, Prob(N = 0) = 1 − λδ + o(δ), Prob(N = 1) = λδ + o(δ), and
Prob(N ≥ 2) = o(δ).

First consider t > 0 and initialize the system at time u = t+δ. By considering separately
the three events N = 0, N = 1 and N > 1, we find that E[V (u, δ)] = λδ E[f(Û)] + o(δ),

with Û uniformly distributed over (t, u], and E[v(U(δ))] = (1−λδ) v(t)+λδ E[v(t+X)]+o(δ).
Introducing these two results into (H.4) gives

v(t+ δ) = v(t) + λδ E[f(Û)− f̄ ] + λδ E[v(t+X)− v(t)] + o(δ), (H.9)

where under Assumption 2 the expectations are necessarily finite (cf. (iii)). By letting δ ↓ 0
in (H.9), we find that v is continuous, and right differentiable at t with right derivative

∂+v(u) = λ
(
f+(u)− f̄ + E[v(u+X)]− v(u)

)
, (H.10)
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Table I.1: Germ of W ∗(−s) at s = 0 for constant (M/D/1), exponentially-
distributed (M/M/1) and Erlang-distributed (M/Eq/1) service times.

M/D/1 (constant): X = x, with x > 0; E[Xk] = xk; W ∗(s) =
(1−λx)s

s−λ(1−e−sx)
; P(W ∗) ={

λ[1 + 1
λx

Wk

(
−λxe−λx

)
] | k ∈ Z0

}
; −pW = −λ[1 + 1

λx
W−1

(
−λxe−λx

)
];

wk =
[∑k

t=1

(
λx

1−λx
)t
φ(t, k + t)

]
xk, (k ≥ 1), (I.1)

where Wn denotes the nth branch of the product logarithm function, [2], and

φ(1, n) = 1
n!
, (n ≥ 2), (I.2a)

φ(m+ 1, n) =
∑n−2
p=2m

φ(m,p)
(n−p)! , (m = 1, . . . , bn−2

2
c, n ≥ 2), (I.2b)

φ(m,n+ 1) = m
n+1

[φ(m,n) + φ(m− 1, n− 1)], (m = 2, . . . , bn
2
c, n ≥ 4). (I.2c)

M/M/1 (exponential): F ′X(x) = ωe−ωx with rate ω > λ; E[Xk] = k!ω−k; W ∗(s) =

(ω−λ)(s+ω)
ω(s+ω−λ)

; P(W ∗) = {λ− ω}; −pW = ω − λ;

wk = λ
ω(ω−λ)k

, (k ≥ 1). (I.3)

M/Eq/1 (Erlang): F ′X(x) = ω
(q−1)!

(ωx)q−1e−ωx, with shape q ≥ 1 and rate ω > qλ;

E[Xk] =
(k+q−1)!

(q−1)!
ω−k; W ∗(s) =

(1−λx)(s+ω)q

ωq
[
( s
ω

+1)q− λ
ω

∑q−1
k=0

(
q
k+1

)
( s
ω

)k
] ; |P(W ∗)| = q;

wk = 1
ωk

∑k
t=1

(
λ

ω−qλ
)t
ϕ(q)(t, k + t), (k ≥ 1), (I.4)

where

ϕ(q)(1, n) =
(
n+q−1
q−1

)
, (n ≥ 2), (I.5a)

ϕ(q)(m+ 1, n) =
∑n−2
p=2m

(
q+n−p−1
q−1

)
ϕ(q)(m, p),(m = 1, . . . , bn−2

2
c, n ≥ 2). (I.5b)

which holds for every u > 0 and inherits the piecewise continuity of f .
Now, if t = 0, δ > 0 and the system is started from u = 0, then E[V (u, δ)] =

λδ E[f(0)] + o(δ), E[v(U(δ))] = (1 − λδ) v(0) + λδ E[v(X0)] + o(δ) and, using (H.4) and
continuity arguments, we obtain (BCa). Then (BCb) follows by setting u = 0 in (H.10) and
substituting v(0) with its value computed in (BCa). �

I Moments of the asymptotic waiting times and rates of growth

In Table I.1 we derive the coefficient sequence {wk} for standard service time distributions
(constant, exponential, Erlang), and study its asymptotic growth. The moments of W and
their growth rates can be inferred from those of {wk} using the identity E[Wk] = k!wk.

Proof (Derivation of Table (I.1)) The expression for {wk} were derived either by com-
bination of (PK) and (III.7), or by computation of the moments E[Xk] and development
of (III.3).
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(M/D/1) Before showing (I.1), observe from (I.2a)-(I.2b) that the quantity n!φ(m,n)
is in fact the number of possible scenarios that may occur when placing n distinct objects
(unordered) into m numbered urns so that each urn contains at least two objects (n ≥ 2m).
For k = 1, (I.1) follows directly from (III.3). If we suppose that (I.1) holds for k = 1, . . . , p,
then, using E[Xk] = xk,

wp+1
(III.3)

= λ
1−λx

[
xp+2

(p+2)!
+
∑p
t=1

xp−t+2

(p−t+2)!
wt
]

(I.1)
= λ

1−λx
[
xp+2

(p+2)!
+
∑p
t=1

xp−t+2

(p−t+2)!

∑t
q=1( λ

1−λx )q φ(q, t+ q)xt+q
]

= λ
1−λx

xp+2

(p+2)!
+
∑p
q=1( λ

1−λx )q+1
∑p
t=q φ(q, t+ q) x

p+q+2

(p−t+2)!
(I.2a)

= λ
1−λxφ(1, p+ 2)xp+2 +

∑p+1
q=2( λ

1−λx )q
[∑p

l=q−1
φ(q−1,q−1+l)

(p−l+2)!

]
xp+1+q

(I.2b)
=

∑p+1
q=1

(
λ

1−λx
)q
φ(q, p+ 1 + q)xp+1+q

and (I.1) holds for all k by induction. We obtain in (I.2a)-(I.2b) a recursive procedure for
computing the values of {φ(m,n)}. Identity (I.2c), which follows from (I.2a)-(I.2b), tends to
simplify and accelerate the process in practice. As for the poles of W ∗ (cf. Figure 2, they are
the (nonzero) solutions of s−λ(1− e−sx) = 0 or, equivalently, (s−λ)xe(s−λ)x = −λxe−λx,
which is an instance of the equation zez = a, the solutions of which are given by Wn (a),
where Wn is the nth branch of the product logarithm function Wn, [2].

(M/M/1) W ∗ follows from (PK) and X∗(s) = ω/(s+ ω). After successive derivations
of W ∗(−s), which rewrites as W ∗(−s) = [(ω − λ)/ω] [1+λ/(ω − λ− s)], we compute (III.7)
and find wa:k = [(ω − λ)/ω] [δ[k] + λ(ω − λ− a)−k−1], which reduces to (I.3) when a = 0.

(M/Eq/1) In (I.5a)-(I.5b), ϕ(q)(m,n) can be understood, for q ≥ 1 and n ≥ 2m, as
the number of possible outcomes when m ordered collections of n1, n2, . . . , nm unordered
objects are respectively picked out of m urns 1, 2, . . . ,m so that n1 + · · · + nm = n and
np ≥ 2 for p = 1, . . . ,m, where each urn p is initially assumed to contain q−1 distinct objets
plus np objects randomly drawn (without repetition) from a common set of n additional
distinct objects (p = 1, . . . ,m). We now turn to show (I.4). It is easy to verify that (I.4) is
true for k = 1. Suppose now that (I.4) holds for k = 1, . . . , p, then

wp+1
(III.3)

= λω
ω−qλ

[ (p+q+1
q−1

)
ω−(p+2) +

∑p
t=1

(
p−t+q+1
q−1

)
ω−(p−t+2)wt

]
(I.4)
= λ

ωp+1(ω−qλ)

[ (p+q+1
q−1

)
+
∑p
t=1

(
p−t+q+1
q−1

)
ωt
(∑t

l=1( λ
ω−qλ )l

ϕ(q)(l,t+l)
ωt

)]
= λ

ωp+1(ω−qλ)

[ (p+q+1
q−1

)
+
∑p
l=1( λ

ω−qλ )l
∑p
t=l

(
p−t+q+1
q−1

)
ϕ(q)(l, t+ l)

]
(I.5a)

= λ
ωp+1(ω−qλ)

ϕ(q)(1, p+ 2)

+ λ
ωp+1(ω−qλ)

∑p
l=1( λ

ω−qλ )l
(∑l+p

m=2l

(
q+(p+l+2)−m−1
q−1

)
ϕ(q)(l,m)

)
(I.5b)

= 1
ωp+1

∑p+1
l=1 ( λ

ω−qλ )lϕ(q)(l, p+ 1 + l)

and (I.4) holds for all k by induction. �

J Proof of Lemma E.1

Lemma E.1 (Coefficients {α̃k} for quotients of polynomials) Let gm and hn be poly-
nomials of degrees m and n, and consider

f(u) =
gm(u)

hn(u)
, ∀u ∈ R≥0.

For τ > 0, recall (.0) and define fk(s) = f(s) pk(2s/τ − 1) under the assumption P(fk) ∩
[0,∞) = ∅. The Fourier coefficients (.0) of f satisfy, for k ≥ 0,

α̃k =
√
π

l(k)∑
q=0

ζ−q (−τ)q

q!Γ
(

1
2
− q
) − ∑

a∈P(fk)

Ress=a
(
fk(s) s−

1
2 ]−π(s− τ)−

1
2 ]−π

)
, (E.9)
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C1/ε

Cε(0) Cε(τ)

P(fk)

τ 1
σ <(s)0

=(s)

ε

1/ε

Fig. 6: Singularities of fk(s) s
−1/2]−π(s− τ)

−1/2
]−π (1− σs)−l(k) and compu-

tation of α̂k(σ) by contour integration.

where l(k) = max(0,m−n+k) is the largest nonnegative integer l such that lims→0 slfk
(

1
s

)
is finite, and {ζq} are the coefficients of the Laurent series at +∞ of the analytic continu-
ation of fk, i.e.,

ζq =
1

(l(k) + q)!
lim
s→0

dl(k)+q

dsl(k)+q

[
sl(k)fk

(
1

s

)]
, (q = −l(k), . . . ,∞). (J.1)

Proof We would like to compute

α̃k
(.0)
=

1

π

ˆ τ
0

gm(u) pk
(

2u
τ
− 1
)

hn(u)
√
u(τ − u)

du, (J.2)

for any k ∈ N≥0. For l ∈ N≥0 and σ � 1/τ , we define the altered coefficient

α̂k(σ) =
1

π

ˆ τ
0

gm(u) pk
(

2u
τ
− 1
)

hn(u) (1− σu)l
√
u(τ − u)

du,

which has the property to converge to <(α̃k) as σ ↓ 0. Indeed, since by assumption f and pk
are bounded on [0, τ ], the integrand of (J.2) is absolutely integrable on the interval. As
soon as σ ≤ 1/(2τ), one has |(1− σu)−l| ≤ 2l and the conditions of Lebesgue’s dominated
convergence theorem are met. Now, consider the contour integral in the complex domain

γk(σ) = 1
π

�
C

(
gm(s) pk( 2s

τ
−1)

hn(s) (1−σs)l

)
s−

1
2 ]−π (s− τ)−

1
2 ]−π ds

= 1
π

( �
C1/ε

+
ff
Cε(0)+

´ τ−ε
ε +

ff
Cε(τ)+

´ ε
τ−ε

)
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l ds,
(J.3)

where sα]−π = eα(ln |s|+i arg s]−π) denotes the principal branch of the complex exponentia-
tion, and the circles C1/ε, Cε(0), and Cε(τ) are understood as in Figure 6 with ε > 0 chosen
small enough so that 1/σ and the poles of fk all lie between the outer contour Cε and the
inner contour.

We proceed to compute γk(σ) term by term. Let l = max(0,m − n + k). First notice
that

lims→∞
(
s− τ

2

) ( fk(s)

(1−σs)l

)
s−

1
2 ]−π(s− τ)−

1
2 ]−π

(J.1)
=

ζ−l
(−σ)l

where we consider that ζ−l = 0 whenever m−n+k < 0. By using Jordan’s second lemma [9,
§3.1.4, Theorem 2] (or, equivalently, by computing the residue at ∞), we find

limε→0
1
π

�
C1/ε

fk(s) s
− 1

2 ]−π(s−τ)
− 1

2 ]−π
(1−σs)l ds =

2i ζ−l
(−σ)l

. (J.4)
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Besides, limε→a(s − a)fk(s) s−
1
2 ]−π(s− τ)−

1
2 ]−π (1 − σs)−l = 0 for a = 0, τ as a con-

sequence of the assumption 0, τ /∈ P(fk). It follows from Jordan’s first lemma [9, §3.1.4,
Theorem 1] that

lims→0,τ
1
π

(ff
Cε(0) +

ff
Cε(τ)

)
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l ds = 0. (J.5)

Lastly, by inspection of s−
1
2 ]−π(s− τ)−

1
2 ]−π right above and below the segment (0, τ), it

can be seen that

limε→0
1
π

(´ τ−ε
ε +

´ ε
τ−ε

)
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l ds = −2i α̂k(σ). (J.6)

On the other hand the residue theorem gives

γk(σ) =
(

1
π

)
2iπ

∑
a∈P(fk)∪{ 1

σ
} Ress=a

(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)
(J.7)

We draw our attention to the residue at 1/σ. Using the Taylor development of (1−xτ)−1/2−j

at x = 0 we find, for σ < τ and t ∈ N≥0,

lims→ 1
σ

dt

dst

[
s−

1
2 ]−π(s− τ)−

1
2 ]−π

]
= σt+1

∑t
j=0

(
t
j

)
Γ( 1

2 )2(1−στ)
1
2
−j

Γ( 1
2
−j)Γ( 1

2
−t+j)

= σt+1
∑∞
q=0

[∑t
j=0

(
t
j

)
Γ( 1

2 )2

Γ( 1
2
−q−j)Γ( 1

2
−t+j)

]
(−στ)q

q!
.

(J.8)

For large s, the value of fk(s) is given by the Laurent series expansion of fk at +∞, i.e.,

fk(s) =
∑∞
q=−l ζq s

−q , (0� |s| <∞). (J.9)

Then,

Ress= 1
σ

(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)
= lims→ 1

σ

1
(l−1)!

dl−1

dsl−1

[
(s− 1

σ
)l
(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)]
(J.8)
=

(− 1
σ

)l

(l−1)!

∑l−1
t=0

(
l−1
t

)
f
(l−1−t)
k ( 1

σ )
( 1
σ

)t+1

∑∞
q=0

[∑t
j=0

(
t
j

)
Γ( 1

2 )2

Γ( 1
2
−q−j)Γ( 1

2
−t+j)

]
(−στ)q

q!

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

(−στ)q

q!

∑l−1
t=0

(
l−1
t

)
f
(l−1−t)
k ( 1

σ )

( 1
σ

)t+1

∑l−1
j=0

(
t
j

)
Γ( 1

2 )2

Γ( 1
2
−q−j)Γ( 1

2
−t+j)

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

(−στ)q

q!

∑l−1
j=0

Γ( 1
2 )

Γ( 1
2
−q−j)

∑l−1
t=j

(
l−1
t

)(
t
j

)
Γ( 1

2 )f(l−1−t)
k ( 1

σ )

( 1
σ

)1+tΓ( 1
2
−t+j)

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

(−τ)q

q!

∑l−1
j=0

(
l−1
j

)
Γ( 1

2 )( 1
σ

)
− 1

2
−q−j

Γ( 1
2
−q−j)

∑l−1−j
t=0

(
l−1−j
t

)
Γ( 1

2 )f(l−1−j−t)
k ( 1

σ )

( 1
σ

)
1
2
+t

Γ( 1
2
−t)

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

Γ( 1
2 )(−τ)q

q!Γ( 1
2
−q)

∑l−1
j=0

(
l−1
j

)
dl−1−j

dxl−1−j

[
x−q√
x

]
x= 1

σ

dl−1−j

dxl−1−j

[
fk(x)√

x

]
x= 1

σ

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

Γ( 1
2 )(−τ)q

q!Γ( 1
2
−q)

dl−1

dxl−1

[
x−(q+1)fk(x)

]
x= 1

σ
.

For small σ, the function fk is analytic in a neighborhood of 1/σ, and so is s−(q+1)fk(s) for
any q. It follows that the derivation in (J.10) applies term by term to the Laurent series (J.9),
and we find

Ress= 1
σ

(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)
(J.9)
=

(− 1
σ

)l

(l−1)!

∑∞
q=0

(
Γ( 1

2 )
Γ( 1

2
−q)

)
(−τ)q

q!
dl−1

dxl−1

[∑∞
j=−l ζj x

−(j+q+1)
]
x= 1

σ

=
ζ−l

(−σ)l
−
∑∞
q=0

(
Γ( 1

2 )
Γ( 1

2
−q)

)
(−στ)q

q!

∑∞
j=−min(q,l)

(
l−1+q+j
l−1

)
ζj σ

j .

(J.10)



Solutions of Poisson’s Equation for First-Policy Improvement (SM) 13

Observe on the other hand that, for q + j ≥ 0,∣∣∣(l−1+q+j
l−1

)∣∣∣ ≤ (l−1+q+j)l−1

(l−1)!
≤
∑∞
t=0

(l−1+q+j)t

t!
≤ el−1+q+j .

Hence, for small σ,∑∞
j=−min(q,l)

∣∣∣(l−1+q+j
l−1

)
ζj σ

j
∣∣∣ ≤ el−1+q

∑∞
j=−l |ζj | (σe)j ≤ κ(σ, l) el−1+q , (J.11)

with κ(σ, l) <∞ by absolute convergence of the above series. Consequently,

∞∑
q=0

∞∑
j=−min(q,l)

∣∣∣∣( Γ( 1
2 )

Γ( 1
2
−q)

)
(−στ)q

q!

(
l−1+q+j
l−1

)
ζj σ

j

∣∣∣∣ (J.11)

≤ κ(σ, l)el−1
∞∑
q=0

(
Γ( 1

2 )
Γ( 1

2
−q)

)
(στ)q

q!
eq

is a finite quantity as it passes the ratio test for σ < 1/τ—this can be shown using Stir-
ling’s formula. It follows from Fubini’s theorem that the summation order in (J.10) can be
permuted. By setting t = j + q we find

Ress= 1
σ

(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)
=

ζ−l
(−σ)l

−
∑∞
q=0

∑∞
t=max(0,q−l)

[
ζt−q

(
l−1+t
l−1

)(
Γ( 1

2 )
Γ( 1

2
−q)

)
(−τ)q

q!

]
σt

=
ζ−l

(−σ)l
−
∑l
q=0 ζ−q

(
Γ( 1

2 )
Γ( 1

2
−q)

)
(−τ)q

q!
+O(σ).

(J.12)

We eventually obtain (E.9) by combining (J.3) and (J.7), together with the intermediate
results (J.4), (J.5), (J.6), and (J.12), and letting σ → 0. �

K Computation of core functions: examples

Example K.1 (Step cost function and identical service times) The cost function f = 1[τ,∞)

is considered with constant service times X = x > 0. The relative value function to this
problem was derived in [4] as a solution of (DE). We have f0 = 0, f1 = 1, Lf (s) = (1/s) e−sτ ,

ζ(s, τ) = 1/s, P(Lf ) = {0}, and pW = −λ [1 + (1/λx) W−1

(
−λxe−λx

)
] < 0, as detailed in

Appendix I.
For u ∈ (τ,∞), we find,

∂+c(u)
(III.10)

= λ
1−λxRess=0

(
1−λx

s+λ(1−esx)
es(u−τ)

) (III.6)
= λ

1−λx .

For u ∈ (0, τ), we inspect the positions of the poles and set γ ∈ (0,−pW ). Decompos-
ing W ∗(−s) as in (III.1), we find P(ζ(·, τ)) = {0}, Pu = {−λ}, and Pu = ∅. Since f0 = 0
and Pu is empty, the first and third terms in (III.13) both vanish and Wu needs not be
considered. We find,

c′(u)
(III.13)

=
∑
p∈{−λ,0} Ress=p

(
λm+1 es(u+mx−τ)

(s+λ)m[s+λ(1−esx)]

)
(K.1)

where m = m̃1(u) = d(τ − u)/xe, We let g(n, k) = u+ (m− 1−n+ k)x− τ for all n, k ∈ N,
and set K(s) = es(u+mx−τ)/[s+ λ(1− esx)], the derivatives of which can be computed by
induction (see Lemma K.1 at the end of the section). At −λ, we find the derivatives

K(n)(−λ) = −(n!/λn+1)
∑n
k=0[(λg(n, k))k/k!] e−λg(n,k), (n ∈ N), (K.2)

and (K.1) reduces, for u ∈ [0, τ), to

c′(u)
(III.6)

= lims→0 s
(
λm+1

(s+λ)m
K(s)

)
+ 1

(m−1)!
lims→−λ

(
λm+1K(m−1)(s)

)
(K.2)
= λ

1−λx − λ
∑m−1
k=0

(λ(u+kx−τ))k

k!
e−λ(u+kx−τ).
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Integrating the last expression from τ to u gives, for u ∈ [0, τ),

c(u) = c(τ) +
λ(u−τ)
1−λx − λ

∑m−1
k=0

´ u
τ−kx

(λ(t+kx−τ))k

k!
e−λ(t+kx−τ) dt

= c(τ) +
λ(u−τ)
1−λx − λ

∑m−1
k=0

´ u+kx−τ
0

(λξ)k

k!
e−λξ dξ

= c(τ) +
λ(u−τ)
1−λx +

∑m−1
k=0

(
e−λ(u+kx−τ)

∑k
q=0

(λ(u+kx−τ))q

q!
− 1
)

= c(τ) +
λ(u−τ)
1−λx − m̃1(u) +

∑m̃1(u)−1
k=0 e−λ(u+kx−τ)

∑k
q=0

(λ(u+kx−τ))q

q!
,

where c(τ) = λτ
1−λx + m̃1(0) −

∑m̃1(0)−1
k=0 e−λ(kx−τ)

∑k
q=0 (λ(kx− τ))q/q!, and m̃1(t) =

d(τ − t)/xe. Our result is coherent with [4, Theorem 2]. ◦

Example K.2 (Core function from a Taylor series) Assume that the service times for u > 0
follow the exponential distribution FX(x) = 1−e−ωx discussed in Appendix I, where ω > λ
in order to satisfy Assumption 1, and pW = λ−ω. Consider the cost function f(u) = 1−e−au,
with <(a) < ω − λ (Assumption 2) and a 6= 0. This cost function, which is given much
attention in [5], is entire (% = 1) of exponential type σ = |a|. Theorem 2 claims that the
derivation of the relative value function from a Taylor series at 0 is possible if |a| < |pW |.
This can be verified. Using the notations of Section IV.1, we find f̃n = δ[n] − (−a)n for
n ∈ N and, with the help of Appendix I,

Zf̃(∞) (z) = a
z+a

, Zh̃( 1
z

)
(I.3)
=

λ(z−ω)
z−(ω−λ)

, Zc̃(∞) (z)
(D.1)
= λa

a+ω−λ
(
a+ω
z+a

− λ
z−(ω−λ)

)
,

with ROC(Zf̃(∞) ) = {z ∈ C | |z| > |a|}, ROC(Zh̃) = {z ∈ C | |z| > ω − λ} and, in con-

sequence, ROC(Zc̃(∞) ) = {z ∈ C | |a| < |z| < ω − λ}, which, as predicted, is nonempty
if |a| < ω − λ and empty if |a| > ω − λ. Picking W ∗ from Table I.1, the inverse Z-transform
of Zc̃(∞) then gives, for n ∈ N,

c̃n =
λ(a+ω)
a+ω−λ (δ[n]− (−a)n) + λ2a

(ω−λ)(a+ω−λ)
δ[n] = λ

1−ρ
(
δ[n]−W ∗(a)(−a)n

)
,

which is the n-th derivative at 0 of λ/(1− ρ)(1 − W ∗(a)e−au). It follows that (IV.3a)
converges for u ∈ R≥0, and we find, in accordance with Table 1,

c(u)
(IV.3a)

= [λ/(1− ρ)] [u−W ∗(a)(1− e−au)/a].

Interval bounds. Notice that f ∈ f̂ (n)+[r(n)] holds if we set [r(n)](u) = [0, an+1/(n+ 1)!]un+1

for n even, and [r(n)] = [−an+1/(n+ 1)!, 0]un+1 for n odd. The resulting interval [%(n)]
follows by inspection of Table 1. Figure 3 displays the interval bounds [c(n)] = ĉ(n) + [%(n)]
obtained for c for various real values of a. The sequence {c(n)} shows to converge towards c
for as long as a < ω − λ. The generation of such a sequence is, however, impossible when
a ≥ ω − λ, as the limit coefficients c̃k are then infinite. ◦

In the next two examples, we consider the piecewise cost function

f(u) =
∑n
j=0 ςju

j 1[0,τ)(u) + ξ(u) 1[τ,∞)(u), ∀u ∈ R≥0,

where ξ(u) = ς̄uke−au, n, k ∈ N, and a ∈ C.

Example K.3 (Polynomial cost in an interval) Consider service times exponentially dis-
tributed with parameter ω > λ, i.e FX(x) = 1 − e−ωx, and the cost function (IV.4)
with ξ ≡ 0. For this problem we have f0(u) =

∑n
j=0 ςju

j , f1 = 0 and ∆ = −f0. Besides,

Lf0 (s) =
∑n
j=0 ςj

j!
sj+1 , ζ(s, τ)

(III.9)
= −

∑n
j=0 ςjj!

∑j
q=0

τq

q!sj−q+1 . (K.3)

Since P(Lf ) = ∅, (III.10) gives ∂+c(u) = 0 for u ∈ (τ,∞).
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For u ∈ (0, τ): using (K.3), P(Lf0 ) = {0}, ρ = λ/ω, and the expression for W ∗ given in
Table I.1, (III.11) reduces, after straightforward computations, to

∂+c(u) = λω
ω−λ

n∑
j=0

j!ςj
[
Ress=0

(
W ∗(−s) e

su

sj+1

)
+
∑j
q=0

τq

q!
Ress=ω−λ

(
W ∗(−s) e

s(u−τ)

sj−q+1

)]
(III.6)

= λ
n∑
j=0

ςju
j + λ2

n∑
j=0

j!ςj
(ω−λ)j+1

(∑j
q=0

[(ω−λ)u]q

q!
− e−(ω−λ)(τ−u)

∑j
q=0

[(ω−λ)τ ]q

q!

)
.

(K.4)
Integration of (K.4) yields, for u ∈ R≥0,

c(u) = λ
∑n
j=0 ςj

[min(u,τ)]j+1

j+1

+λ2
∑n
j=0

j! ςj
(ω−λ)j+2

∑j
q=0

{
[(ω−λ) min(u,τ)]q+1

(q+1)!
− e(ω−λ)min(u,τ)−1

e(ω−λ)τ
[(ω−λ)τ ]q

q!

}
.

Example K.4 Consider service times exponentially distributed with parameter ω > λ, and
the cost function f(u) = uke−au 1[τ,∞)(u), i.e. (IV.4) with n = 0, ς0 = 0. We have f0(u) = 0

and f1 = ∆ = uke−au, so that

Lf0 (s) = 0, ζ(s, τ)
(III.9)

= k!e−aτ
∑k
q=0

τq

q!(s+a)k−q+1 . (K.5)

For u ∈ (τ,∞), we use Table I.1 and P(Lf ) = {−a}, and get

∂+c(u)
(III.10)

= k!λω e−aτ

ω−λ
∑k
q=0

τk−q

(k−q)! Ress=−a
(
W ∗(−s) es(u−τ)

(s+a)q+1

)
(III.6)

= λuke−au + k!λ2

(ω−λ+a)k+1 {
∑k
q=0

1
q!

[(ω − λ+ a)u]q} e−au.
(K.6)

Alternatively, (K.6) can be derived from (III.7) with cost function f1, or by inspection of
Table 1 for f1 via computation of (III.4).

For u ∈ (0, τ), we combine (III.11) with (K.5), P(Lf0 ) = ∅, and W ∗ (Table I.1) to get

∂+c(u) = − λω
ω−λk!e−aτ

∑k
q=0 Ress=ω−λ

(
W ∗(−s) τq

q!(s+a)k−q+1 e
s(u−τ)

)
= k!λ2e−aτ

(ω−λ+a)k+1 {
∑k
q=0

1
q!

[(ω − λ+ a)τ ]q} e(ω−λ)(u−τ).

Hence, if a 6= 0,

c(u) = k!λ2 e−(ω−λ+a)τ

(ω−λ)(ω−λ+a)k+1 {
∑k
q=0

1
q!

[(ω − λ+ a)τ ]q} (e(ω−λ) min(u,τ) − 1)

+ k!λ2

ω−λ
{∑k

q=0
1
q!

[a−(k−q+1) − (ω − λ+ a)−(k−q+1)] [τqe−aτ −max(u, τ)qe−amax(u,τ)]
}
,

and, if a = 0,

c(u) = k!λ2 e−(ω−λ)τ

(ω−λ)k+2 {
∑k
q=0

1
q!

[(ω − λ)τ ]q} (e(ω−λ) min(u,τ) − 1)

+λτk+1

k+1
([max(u

τ
, 1)]k+1 − 1) + k!λ2

(ω−λ)k+2

{∑k
q=0

[(ω−λ)τ ]q+1

(q+1)!
([max(u

τ
, 1)]q+1 − 1)

}
.

Lemma K.1 Proof of (K.2) Consider

K(s) =
es(u+mx−τ)

s+ λ(1− esx)
, (K.7)

and let g(n, k) = u+ (m− 1− n+ k)x− τ for all n, k ∈ N. At −λ, K has the derivatives

K(n)(−λ) = −(n!/λn+1)
∑n

k=0
[(λg(n, k))k/k!] e−λg(n,k), (n ∈ N). (K.2)
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Proof It is straightforward to verify that (K.2) holds for n = 0 and n = 1. For n ≥ 2, we
proceed by induction. observe that (K.7) rewrites as (s+λ−λesx)K(s) = esg(n−1,n), which
gives, after n differentiations at −λ:

K(n)(−λ) =
n

λ
eλxK(n−1)(−λ)−

n−1∑
k=0

(nk )xn−kK(k)(−λ)−
g(n− 1, n)n

λ
e−λg(n,n). (K.8)

Assuming that (K.2) holds for n = 0, 1, . . . , p − 1, the second term of the second member
of (K.8) reduces for n = p to

p−1∑
k=0

(p
k

)
xp−kK(k)(−λ)

(K.2)
= −

p−1∑
q=0

(p
q

)
xp−q q!

λq+1

q∑
l=0

(λg(q,l))l

l!
e−λg(q,l)

= −
p−1∑
q=0

p!
p−q!x

p−q 1
λq+1

q∑
l=0

(λg(p,p+l−q))l
l!

e−λg(p,p+l−q)

= − p!
λp+1

p∑
t=1

(
t−1∑
l=0

(λx)t−l

t−l!
(λg(p,t))l

l!

)
e−λg(p,t)

= − p!
λp+1

p∑
t=1

λt

t!

(
t∑
l=0

(
t
l

)
xt−lg(p, t)l − g(p, t)t

)
e−λg(p,t)

= − p!
λp+1

p∑
t=1

λt

t!

(
(x+ g(p, t))t − g(p, t)t

)
e−λg(p,t)

= − p!
λp+1

p∑
t=1

λt

t!

(
g(p− 1, t)t − g(p, t)t

)
e−λg(p,t).

(K.9)
Inserting (K.9) into (K.8) yields

K(p)(−λ)

(K.2)
= − p!

λp+1

p−1∑
t=0

(λg(p−1,t))t

t!
e−λg(p,t) −

p−1∑
k=0

(p
k

)
xp−kK(k)(−λ)− (λg(p−1,p))p

λp+1 e−λg(p,p)

(K.9)
= − p!

λp+1

p∑
t=0

(λg(p−1,t))t

t!
e−λg(p,t) + p!

λp+1

p∑
t=1

λt

t!

(
g(p− 1, t)t − g(p, t)t

)
e−λg(p,t)

= − p!
λp+1

p∑
t=0

(λg(p,t))t

t!
e−λg(p,t)

and (K.2) holds for all n. �
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5. Hyytiä, E., Righter, R., Virtamo, J., Viitasaari, L.: On value functions for FCFS queues
with batch arrivals and general cost structures. Perform. Eval. 138, 102083 (2020).
DOI 10.1016/j.peva.2020.102083

6. Jackson, D.: Fourier Series and Orthogonal Polynomials. Dover Books on Mathematics.
Dover Publications (1941)

7. Koralov, L., Sinai, Y.: Theory of Probability and Random Processes. Universitext.
Springer Berlin Heidelberg (2007)

8. Korovkin, P.: Linear Operators and Approximation Theory. International monographs
on advanced mathematics & physics. Hindustan Pub. Corp. (1960)



Solutions of Poisson’s Equation for First-Policy Improvement (SM) 17
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