
HAL Id: hal-02925284
https://hal.science/hal-02925284v2

Preprint submitted on 28 Aug 2021 (v2), last revised 26 Sep 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dispatching to Parallel Servers
Olivier Bilenne

To cite this version:
Olivier Bilenne. Dispatching to Parallel Servers: Solutions of Poisson’s Equation for First-Policy
Improvement. 2021. �hal-02925284v2�

https://hal.science/hal-02925284v2
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Dispatching to Parallel Servers

Solutions of Poisson’s Equation for First-Policy Improvement

Olivier Bilenne

Abstract Policy iteration techniques for multiple-server dispatching rely on
the computation of value functions. In this context, we consider the continuous-
space M/G/1-FCFS queue endowed with an arbitrarily-designed cost function
for the waiting times of the incoming jobs. The associated relative value func-
tion is a solution of Poisson’s equation for Markov chains, which in this work
we solve in the Laplace transform domain by considering an ancillary, un-
derlying stochastic process extended to (imaginary) negative backlog states.
This construction enables us to issue closed-form relative value functions for
polynomial and exponential cost functions and for piecewise compositions of
the latter, in turn permitting the derivation of interval bounds for the rel-
ative value function in the form of power series or trigonometric sums. We
review various cost approximation schemes and assess the convergence of the
interval bounds these induce on the relative value function. Namely: Taylor
expansions (divergent, except for a narrow class of entire functions with low
orders of growth), and uniform approximation schemes (polynomials, trigono-
metric), which achieve optimal convergence rates over finite intervals. This
study addresses all the steps to implementing dispatching policies for systems
of parallel servers, from the specification of general cost functions towards the
computation of interval bounds for the relative value functions and the exact
implementation of the first-policy improvement step.
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Fig. 1: Size-aware dispatching with i.i.d. service times (Xn
d
= X for all n) and

i.i.d. exponential inter-arrival times (Tn) to k M/G/1-FCFS servers.
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I Introduction

An essential design aspect for systems of parallel servers resides in the allo-
cation of the processing resources to the impending workload. In the alloca-
tion problem, commonly referred to as dispatching (also: task assignment or
routing), one server must be assigned to each incoming job in a way so as
to minimize a performance metric of interest: typically, the waiting / sojourn
times in the server queues or overall power consumption. The dispatching prob-
lem is relevant in diverse domains of application including parallel computing
(mobile cloud computing, server clusters, supercomputers), industrial logis-
tics (customer service systems), and traffic congestion management (visitor
queues, road tolls).

We are interested in systems composed of several first-come, first-served
(FCFS) queueing servers operated in parallel, and fed with a sequence of jobs
with Markovian arrival times. In our model, illustrated in Figure 1, every new
job turning up at the dispatcher is instantly forwarded towards one of the
servers, where a penalty is incurred as a function of the backlog (uncompleted
work) at the server upon job arrival—server backlog thus coinciding with the
waiting time of the job until processing begins. Our objective is to minimize
the average cost experienced by the system over an infinite time horizon.

A standard approach for solving this problem is through policy iteration
(PI), [17,5]. Starting with an inital dispatching policy, PI proceeds in two
steps, repeated in turn until a fixed policy is reached: (i) policy evaluation,
where the mean cost of the considered policy is computed, together with a
relative value function expressing state sensitivity with respect to the steady-
state costs induced by the policy; followed by (ii) policy improvement, where
the relative value function is exploited to improve the current policy and derive
a new, more cost-effective dispatching policy. The policy evaluation step is dif-
ficult to implement in continuous state spaces without extensive Monte Carlo
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simulations. Only the first PI iteration on a tractable, random initial policy
is easier to carry out, because the job flow then decomposes into independent
Poisson processes for the individual queueing servers, and the relative value
function takes a separable form, solution of the so-called Poisson equation.
The first-policy improvement (FPI) approach (also known as one-step policy
iteration, and variants) consists of cutting short the policy iteration algorithm
after the first iteration. The motivation behind FPI is twofold: it is known that
a single iteration of the PI algorithm may produce fine heuristics (see e.g. [29,
42,36,39,6] or [40, §7.5]) and, besides, the Poisson equation for Markov chains
admits explicit solutions readily available for effortless PI.

Related work and our contribution. The existence of explicit solutions to the
Poisson equation for the waiting times of the M/G/1 queue was pointed out
in [14], where a general solution to Poisson’s equation was proposed in the form
of a fundamental kernel, whose application to the cost function produces solu-
tions of the equation. These solutions proved, in particular, to take closed forms
for cost functions given as moments of the waiting time, f(u) = un. There fol-
lowed a list of derivations of explicit relative value functions for Markovian
queueing systems: both in discrete-space settings where only the number of
yet unprocessed jobs at the servers is known to the dispatcher and (typically)
the expected sojourn times of the incoming jobs are penalized, [29,39,7,6];
and in ‘size-aware’ continuous-space settings where the service times of the
jobs become available to the dispatcher upon arrival and the actual waiting
or sojourn times are penalized, [1,24,18,19,23]. Recent studies on size-aware
dispatching renewed the interest in explicit Poisson solutions, extending their
class in [21] to the fixed-deadline cost functions f(u) = 1[τ,∞)(u), and to
exponential costs in [22], with views on polynomials. In the discrete space
setting, the forms f [u] = una−u and f [u] = δ[u− a] were identified in [12]
as candidates for closed-form relative value function, via transform-domain
analysis (based on generating functions) of the general solution of Poisson’s
equation—a methodology in spirit similar to the approach we will use in this
study.

In this work we extend the collection of explicit solutions of the continuous-
space Poisson equation to f(u) = une−au, and we develop a methodology based
on complex analysis for solving Poisson’s equation that covers a more general
class of piecewise continuous cost functions. Our motivation behind piecewise-
definite functions is the possibility they offer to derive, under mild conditions
for the cost function, tight bounds to the corresponding relative value function,
which enable us to perform the FPI step exactly. Our developments depart
from previous studies by proposing a comprehensive implementation of FPI
in continuous spaces with cost functions of any general kind.

Outline. The paper is structured as follows. Section II introduces the rel-
ative value function as the solution of Poisson’s equation. This equation is
solved in Section III from the viewpoint of complex analysis (III.1); complex
analysis which allows us to derive the relative value function of the M/G/1
queue for cost functions of the type f(u) = une−au (III.2), and to provide
a method of solution for piecewise-defined costs (III.3), which cover various
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solutions previously reported in the literature. In Section IV we consider cost
functions given as convergent series: successively, Taylor series (4), and uniform
approximations by polynomials or trigonometric sums (IV.2); and we propose
an algorithm for computing FPI policies based on approximations of the cost
functions. We conclude with a full implementation of the FPI dispatcher for
the cost function f(u) = u2/(a2 + u2), picked for illustrative purposes, in the
case of a two-server system with exponentially distributed service times. We
refer to Appendix A for a more detailed presentation of FPI, and to the on-
line supplementary material for ancillary results, implementation details, and
many examples of derivations of relative value functions, [9,8].

Notation. For any real random variable Y , we denote by X∗(s) = E[e−sY ] the
Laplace-Stieltjes transform of Y , by µY the probability measure associated
with Y , by FY : R 7→ [0, 1] its cumulative probability distribution, and by
F ′Y : R 7→ [0,+∞] its probability density function, with Prob(Y ≤ y) =
µY ((−∞, y]) = FY (y) =

´ y
−∞ F ′Y (u) du.

II Relative value function of the M/G/1 queue and Poisson
equation

The FPI framework lead us to consider an individual server modeled by a
continuous-state FCFS-M/G/1 queue. The queue is fed with a sequence of
jobs with random arrival times modulated by a Poisson point process with
rate λ > 0, [16,13]. The dynamics of the queue is modeled by the equation

Un+1 =
[
Un +Xn − Tn+1

]+
, n ≥ 0, (Q)

where Xn denotes the service time of the nth incoming job, Un is the coinciding
queue backlog upon arrival, and Tn+1 is the inter-arrival time for Xn+1. The
random sequence ((Un, Xn))n∈N produced by (Q) is seen as a Markov decision
process (MDP) with transition kernel P .1

The service time of every incoming job is assumed as in [41] to be random,
conditioned on the activity of the queue at the time of arrival, and independent
of the other factors; it is distributed either like the positive random variable X
if on arrival the queue is busy processing a previous job, or like a second
positive random variable X0 if the queue is idle (empty), where X0 may differ
from X in distribution, thus accounting for a setup delay that the queue might
require to wake up from its idle state. The stability of the queue is guaranteed
by a server utilization ratio ρ = λE[X] less than 1, and by a finite mean service
time at u = 0, i.e., ρ̃ = λE[X0] <∞.

1 The transition kernel P (u, x,S) = Prob((Un+1, Xn+1)∈S|(Un, Xn) = (u, x)) satisfies

P (u, x,U × X ) =

{
P (u+ x, {0})µX0

(X ) if U = {0}
P (u+ x,U)µX(X ) if U 6⊃ {0}

}
, (II.1)

where, for all u ≥ 0, one has P (u, [0, t]) = e−λ(u−t) if t ∈ [0, u], and P (u,R \ [0, u]) = 0.
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Assumption 1 (Stability) ρ < 1, ρ̃ <∞.

Ergodicity implies the existence of a unique asymptotic probability distribu-
tion FW̃ for the waiting times at the queue, where W̃ denotes a random variable
distributed accordingly. A distinction is made between the actual stationary
waiting times, and the waiting times that would ensue with homogeneous ser-
vice times X0 ≡ X, modeled by the variable W . Now, consider a cost function
f : R≥0 7→ R quantifying the (expected) penalty f(u) incurred when a job joins
the queue at backlog state u ∈ R≥0. We complete our model with assumptions
on the costs that guarantee existence of the relative value function.

Assumption 2 (Cost integrability) |f | is µW - and µW̃ -integrable.

All in all, the server model considered throughout the paper is:

Server Model The FCFS-M/G/1 queue (Q) with arrival rate λ and service
times (X,X0), endowed with a cost function f , under Assumptions 1 and 2.

For any u ∈ R≥0 and any time horizon t ≥ 0, we denote by V (u, t) the
(random) total cost incurred over a time interval of the type [t0, t0 + t) when
the backlog at time t0 is u. Under Assumption 2, the quantity V (u, t) averaged
over the number of arrivals in the time window tends as t → ∞ to the mean
cost per job f̄ = E[f(W̃ )]. The relative value function v : R≥0 7→ R is then
defined by [31,32]

v(u) = lim
t→∞

{
E[V (u, t)]− λf̄t

}
, ∀u ≥ 0, (VF)

as an expression of the state sensitivity of the costs with respect to the steady-
state regime. In order to compute (VF), we will regard v as a solution of the
following Poisson equation, derived in Appendix B.

Proposition 1 (Poisson equation) The relative value function (VF) rewrites
as v(u) = g(u, 0)− f(u) = Pg(u, 0)− f̄ for some g : R≥0 7→ R solution of the
Poisson equation

g(u, x) = Pg(u, x) + f(u)− f̄ , (PE)

where Pg(u, x) :=
´
g(t, y)P (u, x, d(t, y)).

All µW̃ -integrable solutions of (PE) are equal up to an additive constant,
[15]. Besides, due to the existence of a strong law of large numbers and a central
limit theorem for the costs, [14,15], g and f̄ can be estimated empirically,
though at the price of extensive numerical simulations. Lastly, and preferably,
some solutions of (PE) are known to exist in closed form; deriving explicit
solutions of this kind is the direction we will explore in this work.

A general solution to (PE) was given in [14] under the integral form

g(u, x) =
´ +∞
0

f(t)Γ (u, x, dt) dt, where Γ defines the solution kernel of the
queue. Although closed-form relative value functions can be inferred from this
integral form, it is impractical for a systematic derivation of solutions. In
Section III we take a different approach by considering a transform-domain
expression of the solutions of PE, obtained by complex analysis of the Poisson
equation.



6 Olivier Bilenne

<(s)0

=(s)

γ

Cr C−r

ROC(B∂+c)

−pW

−P(W ∗)

r

Fig. 2: Convergence of B∂+c for constant service times X = x and step cost
function f(u) = 1[τ,∞)(u), with τ > 0: Lf (s) = 1/s has one pole at s = 0 with
ROC(Lf ) = {s ∈ C | <(s) > 0}, while W ∗(−s) = (1− λx)s/[s+ λ(1− esx)]
has an infinity of poles at s = −λ[1 + (1/ρ) Wk (−ρe−ρ)] for k ∈ Z0, where
ρ = λx and Wk denotes the kth branch of the product logarithm function,
with −pW = −λ[1 + (1/ρ) W−1 (−ρe−ρ)] > 0, [11].

III Closed-form relative value function

In this section we develop the tools that will help us compute relative value
functions.

III.1 Characterization of the relative value function

Before proceeding, recall the Pollaczek-Khintchine formula for the Laplace-
Stieltjes transform of W , [37,26], which we characterize in Appendix B:

W ∗(s) =
(1− ρ)s

s− λ(1−X∗(s))
. (PK)

Let pW denote the dominant singularity of W ∗ which, in view of Proposi-
tion B.1(i), is a real negative pole. In the transform domain, µW -integrability
of |f | reduces to a condition on the relative positions of the singularities
of W ∗(−s) and those of Lf (s) =

´∞
0
e−su f(u) du, the Laplace transform of f .

Concretely, the regions of absolute convergence (ROCs) of W ∗(−s) and Lf (s)
(two open half-planes with normal vectors pointing in opposite directions)
should have nonempty intersection, i.e., −pW ∈ ROC(Lf ). This condition is
illustrated in Figure 2 for the case of constant service times.

For analysis purposes, we now extend the nonnegative process (Q) to neg-
ative backlog values by presuming of a (fictitious) stochastic process governed
by (PE) over the entire real axis. We set the scene as follows.
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First, we let f(u) = 0 for u < 0, and we complete (II.1) with P (u, [t, u]) =
1− e−λ(u−t) if u < 0, thus conjecturing for (Q) the R<0 behaviour

Un+1 = Un +Xn − Tn+1 if Un +Xn < 0, n ≥ 0. (Q−)

Observe that the so extended Markov process loses the irreducibility of (Q),
since the process remains caught in R≥0 once it has occupied a nonnegative
state. Otherwise, it is expected to drift towards u = −∞, where its chances
vanish to ever reach R≥0. Next, we consider an ancillary, more tractable tran-
sition kernel P̂ of the type (II.1) with uniform dynamics for the backlogs:

P̂ (u, [t, u]) = 1− e−λ(u−t), ∀u ∈ R. (III.1)

The Poisson equation (PE) then rewrites as the simple form

g(u, x) = P̂ g(u, x) + f̂(u, x), (PE’)

where f̂(u, x) := ∆(u+ x) + f(u)− f̄ 1[0,+∞)(u), and ∆(u) := (P − P̂ )g(u, 0).
Clearly, (PE’) retains the property that its solutions are defined up to a con-
stant. By construction, they also solve (PE) on R≥0. The true and virtual parts
of these solutions over R<0 are identified by Theorem 1.

Theorem 1 (Extended Poisson equation) Every solution of (PE’) has
the form g(u, x) = v̂(u+ x) + f(u) + r(u+ x) 1(−∞,−x)(u) for some r : R 7→ R
common to all solutions and for v̂ : R 7→ R satisfying

v̂(u) = v(0) + c(u)− λf̄

1− ρ
u1[0,+∞)(u) + r(u) 1(−∞,0)(u), ∀u ∈ R, (Ŝ)

where the two-sided Laplace transform of the right derivative of c, B∂+c(s) =´∞
−∞ e−su ∂+c(u) du, is given on its nonempty region of convergence by

B∂+c(s) =
λ

(1− ρ)
W ∗(−s)Lf (s). (C)

Theorem 1 can be shown by transform-domain analysis of the solutions of (PE’).
The proofs of all the results given in this section are deferred to Appendix B.

The function v̂ in (Ŝ) is an extension of the relative value function to the
negative backlogs, with v̂(u) ≡ v(u) if u ≥ 0. Theorem 1 suggests that the
relative value function (VF) characterizes the M/G/1 queue (Q) as much as
the imaginary process (Q−) taking place in the negative backlog values. What
is more, the hidden negative end of the queue seems to hold the key to solving
the associated Poisson equation in the transform domain.

By inverse transformation of (Ŝ), we obtain the following results.

Proposition 2 (Relative value function) Let f be piecewise continuous.
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(i) The relative value function (VF) is continuous, almost everywhere con-
tinuously differentiable, and semi-differentiable with right derivative

∂+v(u) = λ
(
f+(u)− f̄ + E [v(u+X)− v(u)]

)
, ∀u ∈ R>0, (DE)

where f+(u) := limt→u+ f(t). At u = 0, one has

v(0) = f(0)− f̄ + E[v(X0)], (BCa)

v′(0) = λ
(
f+(0)− f(0) + E[v(X)− v(X0)]

)
. (BCb)

(ii) The relative value function is given by

v(u) = v(0) + c(u)− λf̄

1− ρ
u, ∀u ∈ R≥0, (S)

where c : R 7→ R is continuous, almost everywhere continuously differentiable,
and semi-differentiable with right-derivative

∂+c(u) =
λ

1− ρ
E [f(u+W )] , ∀u ∈ R. (CVF)

Equation (DE) in Proposition 2(i) was for instance used in [21] to derive the
relative value function of the M/D/1 queue with a step cost function 1[τ,∞).
However, the expectation of the random jump v(·+X), makes (DE) difficult
to solve for v in the general case. The result reported in (ii) is but the expres-
sion taken by the kernel solution of [14] in the limit case where the invariant
measure of the Poisson equation coincides with the stationary measure of the
waiting times. A relation of duality can be observed between (S), where the
relative value function follows by cross-correlation of the cost function with the
asymptic waiting times, and (DE), where the cost function can be recovered by
cross-correlation of the relative value function and the service times. In fact,
(DE) and (S) are backlog-domain renditions of the same transform-domain
solution (C).

A closer look at (S) tells us that the computation of the relative value
function v reduces to the derivation through (CVF) of a related function,
denoted c in this work and referred to as the ‘core’ value function or, more
concisely, core function. Intuitively, c(u) corresponds to the expected total
cost experienced by the queue from an initial state u until it returns to the
empty state 0. By construction, c(0) = 0, and the rest of c(u) can be obtained
by integration from 0 of its right-derivative ∂+c, available via (C) or (CVF).
Observe that c is fully characterized by λ, X and f+, independently of the
parameters X0 and f(0), which specify the behavior of the queue at u = 0.

The rest of the study is principally concerned with the derivation of the
core function, with disregard to the other two terms in (S). Once c is known,
the mean cost f̄ can be inferred from X0 and f(0) on condition that |f | is
µW̃ -integrable. Combining (BCb) with (CVF) then yields

f̄ =

(
1− ρ

1− ρ+ ρ̃

){
c′(0)/λ+ f(0)− f+(0) + E[c(X0)]− E[c(X)]

}
. (III.2)



Solutions of Poisson’s Equation for First-Policy Improvement 9

Table 1: Explicit core functions for f = fa,n, (a ∈ PW , n ∈ N).

f(u) c′(u) c(u)

1 λ
1−ρ

λ
1−ρu

e−au λ
1−ρW

∗(a) e−au λ
1−ρW

∗(a) 1−e−au
a

un λn!
1−ρ

∑n
k=0 wn−k

uk

k!
λn!
1−ρ

∑n
k=0 wn−k

uk+1

(k+1)!

une−au λn!
1−ρ

∑n
k=0 wa:n−k

uke−au
k!

λn!
1−ρ

∑n
t=0

(∑n
k=t

wa:n−k
ak+1

)(
δ[t]− (au)te−au

t!

)
Coefficients:

w0 = 1,

wk = [λ/(1− ρ)]
∑k−1
t=0 xk−t+1wt, (k ≥ 1),

xk = 1/(k!)E[Xk], (k ≥ 0),

(III.3)

wa:0 = W ∗(a),

wa:1 = [λ/(1− ρ)]
(
W ∗(a)/a

)2(
1−X∗(a)− axa:1

)
,

wa:k = [λW ∗(a)/(1− ρ)a]
[
(1/λ− xa:1)wa:k−1 −

∑k−2
t=0 xa:k−twa:t

]
, (k ≥ 2),

xa:k = 1/(k!)E[Xke−aX ], (k ≥ 0).

(III.4)

Note that the CVF and the mean cost are all we need for FPI-dispatching,
since the admission cost of a job with service time x at state u reduces to

A(u, x) := f(u) + v(u+ x)− v(u) = c(u+ x)− c(u)−
(

λf̄

1− ρ

)
x. (AC)

See Appendix A for details on the role of the admission cost in FPI-dispatching.
In Sections III.2-III.3, we exploit these results and derive the causal part

of ∂+c by inverse transformation of (C).

III.2 Basic solutions: analytic cost functions

The analysis of (C) is straightforward for the cost functions belonging to the
class Ξ := span({fa,n | a ∈ C, n ∈ N}), where span(S) denotes the linear
span of a set S, and the function fa,n, defined by fa,n(u) = une−au, is char-
acterized by the meromorphic Laplace transform Lfa,n(s) = n!/(s + a)n+1,
which is analytic on the complex plane except for a set of isolated, non-
essential singularities, called poles. Observe that the condition of existence
of the core function reduces for the cost function fa,n to a ∈ PW , where we
write PW = {s ∈ C | <(s) < −pW }.

Table 1 provides us with the closed-form core functions for the cost func-
tion fa,n, obtained after inversion of (C) by integration along a vertical axis
in the region of absolute convergence of B∂+c, as we proceed to do now. Let
γ ∈ (a,−pW ), and consider the contour Cr = {γ + it | t ∈ [−r, r]} ∪ Ar, where
Ar = {γ+reiα |α ∈ [π2 ,

3π
2 ]} is an arc centered in γ. Since lims→∞ |W ∗(s)| ≤ 1

(cf. Proposition B.1(ii)), we find limr→∞W ∗(−γ − reiα)Lfa,n(γ + reiα) = 0
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for α ∈
[
π
2 ,

3π
2

]
, and the condition of the third Jordan lemma is satisfied [33,

§3.1.4, Theorem 1][10, §88]. It follows that integration of B∂+c(s)esu along the
arc Ar vanishes as r →∞,

lim
r→∞

ˆ
Ar
W ∗(−s)Lfa,n(s) esu ds = 0, ∀u ∈ R≥0, (III.5)

and counterclockwise integration of B∂+c(s)esu on the contour Cr reduces to
computing the residue2 at the pole of Lfa,n . The residue theorem gives

c′a:n(u)
(C)
= 1

2πi limt→∞
´ γ+it
γ−it

(
λ

1−ρW
∗(−s) n!

(s+a)n+1

)
esu ds

(III.5)
= 1

2πi

�
Cr

(
λ

1−ρW
∗(−s) n!

(s+a)n+1

)
esu ds

= Ress=−a
(

λ
1−ρW

∗(−s) n!
(s+a)n+1 e

su
)

(III.6)
= λ

1−ρ lims→−a
1
n!

dn

dsn

[
n!W ∗(−s)esu

]
= λ

1−ρ
∑n
k=0

(
n
k

)(
(−1)n−k dn−k

dsn−kW
∗(a)

)
uke−au

= n!λ
1−ρ

∑n
k=0 wa:n−k

(
uk

k!

)
e−au,

(III.7)

for all u ∈ R≥0, in which

wa:k =
(−1)k

k!

dk

dsk
W ∗(a)

is the kth coefficient of the Taylor expansion of W ∗(−s) at a, reducing to
w0:k ≡ wk if a = 0. The coefficients {wk} and {wa:k} will be referred to as
the germ of W ∗(−s). In (III.3) and (III.4), they are computed inductively as
functions of the coefficients {xk} and {xa:k} of the power series of X∗(s). As
such, they are finite by analycity of X∗(s) on PW (cf. Proposition B.1(i)). See
also Proposition B.1(iv)-(v) for a derivation of (III.3) and (III.4), and [9] for
expressions of {wk} specific to standard service time distributions. The final
expressions3 for c′a:n and ca:n are reported in Table 1.

Since the operation f 7→ c is a linear map, observe that all cost func-
tions given as linear combinations of fa,n types are elements of Ξ enjoying
explicit relative value functions. Examples include the trigonometric functions
cos and sin, which play a part in the developments of Section IV.2, or the set
of incomplete gamma functions {Γ(n + 1, a·) |n ∈ N, a ∈ C}, which spans Ξ
completely.

2 Recall that the residue of a meromorphic function f at a pole a of order n is given
by [10]

Ress=a (f(s)) = 1
(n−1)!

lims→a
dn−1

dsn−1

[
(s− a)nf(s)

]
. (III.6)

3 Alternatively, notice that fa,n = (−1)n(δn/δan) fa,0 if a ∈ PW \ {0}. It fol-
lows from (CVF) and the Leibniz integral rule that, for a ∈ PW \ {0} and n > 0,
c′a:n(u) = (−1)n(δn/δan)c′a:0(u) = (−1)n[λ/(1− ρ)] (δn/δan)[W ∗(a)e−au], and the expres-
sions for c′a:n can be derived by successive differentiations of c′a:0. By continuity arguments,
we also find, for n > 0, c′0:n(u) = (−1)n lima→0(δn/δan)[c′a:0(u)].
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III.3 Piecewise-defined cost functions

Let f0, f1 ∈ Ξ, and assume the cost function is given by f = f0 1[0,τ) +
f1 1[τ,∞), where 1· denotes the indicator function, or, equivalently,

f(u) = f0(u) +∆(u) 1[τ,∞)(u), ∀u ∈ R≥0. (III.8)

where ∆ = f1− f0. Since the Laplace transform of f(u) = une−au 1[τ,∞)(u) is
given on the half-plane <(s) > <(−a) by

Lf (s) =
´∞
τ
une−(s+a)u du = n!e−aτ

∑n
q=0

τq

q!(s+a)n−q+1 e
−sτ , (III.9)

we can find ζ such that Lf (s) = Lf0(s) + ζ(s, τ)e−sτ with lims→∞ ζ(s, τ) = 0.
If we place γ in the half-plane < (s) > 0 between −pW and the poles of f0, f1,
(III.5) becomes in the present setting,

limr→∞
´
Ar W

∗(−s)Lf0(s) esu ds = 0, ∀u ∈ R≥0,

for the first term, and

limr→∞
´
Ar W

∗(−s)ζ(s, τ) es(u−τ) ds = 0, ∀u ∈ (τ,∞),

limr→∞
´
A−r W

∗(−s)ζ(s, τ) es(u−τ) ds = 0, ∀u ∈ [0, τ),

for the second term. Thus, inverse transformation by counterclockwise inte-
gration along Cr still applies for all backlog values u > τ , where

∂+c(u) = λ
1−ρ

∑
p∈P(Lf ) Ress=p

(
W ∗(−s)Lf (s) esu

)
, ∀u ∈ (τ,∞). (III.10)

It is clear from (CVF) that the derivative ∂+c(u) for u > τ does not depend
on the values of the cost function on the interval (0, τ). It is therefore equal
over (τ,∞) to the derivative of the core function for the analytic cost f = f1,
and it can equivalently be derived from (III.7) (or, alternatively, inferred from
Table 1) for the cost function f = f1.

For u < τ , however, the terms f0 and ∆1[τ,∞) in (III.8) must be treated
separately: f0 by simple inspection of Table 1, and ∆1[τ,∞) by clockwise in-
tegration along the contour C−r = {γ + it | t ∈ [−r, r]} ∪ A−r. The success of
this last operation is conditioned by the singularities of W ∗(−s), all contained
in the interior of C−r as r →∞. In our discussion we consider separately the
service time distributions for which W ∗ has a finite set of poles P(W ∗) (e.g.
exponential or Erlang service time distributions), and those for which W ∗ has
infinitely many poles (as in discrete service time distributions).

If P(W ∗) is finite, the clockwise integral along C−r yields |P(W ∗)| residues
at the poles of W ∗(−s), and we find

∂+c(u) = λ
1−ρ

∑
p∈P(Lf0 )

Ress=p
(
W ∗(−s)Lf0(s) esu

)
− λ

1−ρ
∑
p∈P(W∗) Ress=−p

(
W ∗(−s)ζ(s, τ) es(u−τ)

)
, ∀u ∈ (0, τ).

(III.11)
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If otherwise P(W ∗) is infinite, then the clockwise integral along C−r cannot
be computed directly by the residue theorem, which would issue an infinite
sum. This difficulty can nevertheless be overcome whenever W ∗ rewrites as

W ∗ = Wu +Wu, ∀u ∈ (0, τ), (III.12)

where Wu and Wu are meromorphic, |P(Wu)| is finite, and

lim
r→∞

´
A−r Wu(−s)ζ(s, τ) es(u−τ) ds = lim

r→∞

´
Ar Wu(−s)ζ(s, τ) es(u−τ) ds = 0.

Then, if we choose γ ∈ ROC(B∂+c) and consider the pole sets Pu = {p ∈
P(Wu(−·) ζ(·, τ)),<(p) < γ} and Pu = {p ∈ P(Wu(−·) ζ(·, τ)),<(p) > γ},
both finite in cardinality, we find

∂+c(u) = λ
1−ρ

∑
p∈P(Lf0 )

Ress=p
(
W ∗(−s)Lf0(s) esu

)
+ λ

1−ρ
∑
p∈Pu

Ress=p
(
Wu(−s) ζ(s, τ) es(u−τ)

)
− λ

1−ρ
∑
p∈Pu

Ress=p
(
Wu(−s)ζ(s, τ) es(u−τ)

)
, ∀u ∈ (0, τ).

(III.13)

It is seen in Appendix C that the decomposition proposed in (III.12) is relevant
in particular in the case of discrete service time distributions.

IV Relative value function approximations

In the absence of exact expressions for the relative value functions, the FPI
step can still be carried out based on relative value function bounds. Suppose
that lower and upper bounds, f− and f+, are available for f with explicitly
computable core functions, denoted by c− and c+, respectively. Using the
interval arithmetic notation,4 we write f ∈ [f ] ≡ [f−, f+] and, by linearity
of the map f 7→ c, we find in [c] ≡ [c−, c+] a bounding interval for the core
function, while (III.2) provides the bounds [f̄ ] ≡ [f̄−, f̄+] for the mean cost f̄ .

In the k-server system of Figure 1 with arrival rates λ1, . . . , λk and cost
functions bounded by [f1], . . . , [fk], the admission cost (AC) inherits the bounds

[Ai](u, x) = [ci](ui + xi)− [ci](ui)−
(
λi[f̄i]

1− ρi

)
xi, ([AC])

where [c1], . . . , [ck] and [f̄1], . . . , [f̄k] are the corresponding interval bounds for
the core function and mean costs. The FPI decision at state (u, x) can be made
in favor of a server i ∈ {1, . . . , k} iff

[Ai](u, x) ≤ [Aj ](u, x), ∀j 6= i. (D)

If otherwise no server satisfies (D), the precision of the interval bounds for the
cost functions must be improved until a decision can be made.

In the rest of this section we discuss various cost approximation schemes.

4 Interval arithmetic. We use [x] ≡ [x1, x2] to represent an interval on R. We write [x] ∈ [R]
where [R] = {[x1, x2] |x1 ≤ x2; x1, x2 ∈ R}, a ∈ [x] iff x1 ≤ a ≤ x2, |[x]| = x2 − x1, and
−[x] = [−x2,−x1]. For [x], [y] ∈ [R] we have [x]+[y] = [x1 +y1, x2 +y2], [x] < [y] iff x2 < y1,
and [x] ≤ [y], [x] > [y] and [x] ≥ [y] are defined similarly.
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IV.1 Analytic cost functions and Taylor series

Due to the availability of explicit relative value functions for the type f(u) =
unn, Taylor/Maclaurin series have been cited as natural candidates for the
approximation of analytic cost functions, [20]. Let f be an infinitely smooth
real function on R≥0 with k-th derivative f (k). For n ∈ N, consider an inter-
val [r(n)] such that f ∈ f̂ (n) + [r(n)], where f̂ (n)(u) =

∑n
k=0 f

(k)(0)uk/k! is
the Taylor polynomial of order n. If ĉ(n) denotes the core function associated
with f̂ (n), and [%(n)] is a bounding interval covering the core functions for all
cost functions comprised in [r(n)], then using Table 1 we find

ĉ(n)(u) = λ
1−ρ

∑n
k=0{

∑n−k
t=0 wt f

(k+t)(0)} u
k+1

(k+1)! ,

and, by linearity, c ∈ [c(n)], where [c(n)] = ĉ(n) + [%(n)].
If f is analytic, then [r(n)] vanishes pointwise near u = 0 as n → ∞, and

our hopes are that the remainder [%(n)] will become small as well, with [c(n)]
converging towards c in some sense. The next result, however, claims that a
cost function f given as a convergent Taylor series only yields a convergent
sequence of core functions if f is entire (i.e., its Taylor series converges ev-
erywhere) with order of growth5 less than the exponential type |pW |, whereas
any function f falling outside this restrictive category is expected to produce
a divergent sequence for c. A proof of Theorem 2 is given in Appendix E.

Theorem 2 (Taylor series for c) Let f be entire with order of growth % and
type σ, so that

f(u) =
∑∞

n=0
[f (n)(t)/n!] (u− t)n, ∀u, t ∈ R≥0. (IV.1)

For k ∈ N, let c̃k = limn→∞ c̃
(n)
k , where

c̃
(n)
k = [λ/(1− ρ)]

∑n−k

q=0
wq f

(k+q)(0), (n ∈ N), (IV.2)

and define the functions ψ and χ as

ψ(u) =

ˆ u

0

∑∞

k=0

c̃k
k!
ξk dξ, (IV.3a)

χ(u) =
λ

1− ρ

ˆ u

0

∑∞

q=0
wq f

(q)(ξ) dξ. (IV.3b)

(i) If either % < 1 or % = 1 and σ < |pW |, then the coefficients c̃n are finite
for all n, (IV.3a) and (IV.3b) converge on R≥0, and ψ = χ = c.

(ii) If either % > 1 or % = 1 and σ > |pW |, then (IV.2) diverges for all k.

5 Recall that the order of growth of an entire function f [30], defined by % =
lim supr→∞ ln ln ‖f‖∞,r/ ln r, where ‖f‖∞,r = sups{|f(s)| | |s| < r}, is the infimum
of all m such that f(s) = O(exp(|s|m)), while the type of f is defined by σ =
lim supr→∞ ln ‖f‖∞,r/r%. If % = 1, then f is said to be of exponential type σ.
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Fig. 3: Taylor series for the CVF with exponential service times (X ∼ Exp(ω);
ω = 2λ), and cost function f(u) = 1− e−au of exponential type |a|: c (dashed
line) and [c(n)] for n = 1, . . . , 25. The series converges only if |a| < |pW | = ω−λ.

Equation (IV.3a) is the Taylor series (in convergence conditions) of c at u = 0.
The coefficients of the series are given by {c̃k}, the sequence of the succes-
sive derivatives of c′(u) at 0, obtained by cross-correlation between the se-
quence {f (k)(0)} of the derivatives of f at u = 0 and {wk}, the germ of W ∗

at the origin, given in (III.3). Equation (IV.3a) may be understood as an ex-
tension of (IV.2) to u ≥ 0, in the sense that c′(u) is computed directly by
cross-correlation of the cost derivatives at u with the the germ of W ∗ at 0.

The message of Theorem 2 is illustrated by Figure 3, which exposes through
an elementary problem the hazards of processing cost functions as Taylor
series. Appendix D features an interpretation of this issue in terms of systems
and signals, where the coefficients (IV.2) result by linear filtering of coefficients
of the Taylor series of f and Theorem 2 is understood as the condition for
stability of the system. See [8] and the examples in [9] for all computational
details related to Figure 3.

The conclusions of Theorem 2 lead us to consider, in the rest of Section IV,
approximations schemes no longer on R≥0, where the growth of the func-
tions {un} as u → ∞ causes divergence, but on finite intervals where the
series converge safely.

IV.2 Continuous cost functions and uniform approximation

Assume now that the cost function f is continuous6, and partition the backlog
axis into an interval (0, τ) where f is approximated precisely (in virtue of the
Weierstrass approximation theorem) with respect to the uniform norm ‖f‖ =

supu∈[0,τ ] |f(u)| by a finite sum f̂ (n) of degree n, and its complement (τ,∞),
where unrefined bounds in Ξ are chosen for f . Bounds for the core function
can be inferred from the developments of Section III.3.

6 Piecewise continuous functions can be treated similarly by partitioning R>0 into as
many intervals as required by their discontinuities.
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Definition 1 (W) Given τ > 0 and f̂ , ξ ∈ Ξ, we denote by W(f̂ ; ξ) the CVF

relative to the cost function f = f̂ 1(0,τ) + ξ 1(τ,∞).

Proposition 3 (Continuous cost) Consider the server model of Section II
with a cost function f continuous on a nonempty interval (0, τ), and such that
f ∈ [f ], where

[f ] = {f̂ (n) + [−η(n), η(n)]}1(0,τ) + [ξ] 1(τ,∞), (IV.4)

in which f̂ (n) is a finite sum of degree n ∈ N, η(n) ≥ 0, [ξ] ≡ [ξ−, ξ+], and

f̂ (n), ξ−, ξ+ are real elements of Ξ. The core function satisfies

c ∈
[
W(f̂ (n) − η(n); ξ−),W(f̂ (n) + η(n); ξ+)

]
,

where W (cf. Definition 1) is computed as in Section III.3.

The FPI step can be implemented based on the interval bounds ([AC]) for [f ],
in place of the actual admission cost (AC), provided that the parameters τ
and n chosen for the servers allow for it. Otherwise, the parameter values
should be refined (by increasing τ and n) until decision (D) can be made.

A pseudocode for the resulting procedure is given in Algorithm 1, where
the cost function fi of each server i is supplied with a continuum of bounding
interval functions [ξi] such that, for every τ > 0, fi(ui) ∈ [ξi(τ)](ui) if ui > τ .
Algorithm 1 infers the FPI decision π̂(u, x) at any state (u, x) by gradually
decreasing the error tolerance εt of the admission cost bounds at each server,
computed by (IV.4). To guarantee the error margin εt at a server i, the pa-
rameter τi is first taken large enough for the approximation error in the u > τi
window to be less than εt/2 (line 1), then the sum f̂ (n) is given enough terms
for the approximation error in the 0 < u < τi window to be less than εt/2

(line 2), so that the overall precision εt is secured for the bounds [f̂i] (line 3).
All servers with exceeding admission costs will be ignored (line 4) for the rest
of the procedure, which resumes with a smaller margin εt+1.

Uniform approximation. In Table 2 are listed possible approximation schemes
for the function f over the interval (0, τ), together with their respective ex-

pression for the finite sum f̂ (n) and the associated uniform error bounds η(n),
given in terms of the modulus of continuity of f on [0, τ ], defined by

ω(f ; [0, τ ]; δ) = sup{|f(u1)− f(u2)| : u1, u2 ∈ [0, τ ], |u1 − u2| ≤ δ}. (IV.5)

A simple option for approximating f is the Bernstein polynomial, [4]. Its
expression in Table 2 rewrites as b(n)(u) = E[f(Kτ/n)], where K ∼ B(n, u/τ)
denotes the binomial random variable obtained from n trials with success prob-
ability u/τ , so that the argument Kτ/n has mean u and variance O(τ2/n)

7 In Algorithm 1, the first argument of Ai (f ; ·, ·) (or [Ai] ([f ]; ·, ·)) indicates the cost func-
tion f (resp. the interval function [f ]) for which the admission cost at server i is computed.
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Algorithm 1: FPI with interval relative value functions7

Data: {(λ1, f1, [ξ1]), . . . , (λk, fk, [ξk])}, {εt} with εt ↓ 0

Input : (u, x) ∈ Rk≥0 × Rk≥0
Output: π ⊂ {1, . . . , k}

Initialization: t← 0, π ← {1, . . . , k}, [f̂i]← (−∞,∞) for all i ∈ π

While t ≤ tmax and |π| > 1 do
For i ∈ π do

1 τi ← arg infτ≥0

{∣∣[Ai] ([ξi(τ)] 1(τ,∞);u, x
) ∣∣ ≤ εt/2}

2 ni ← arg minn
{∣∣Ai (1(0,τi)

;u, x
) ∣∣ ≤ εt/(4η(n))

}
3 [f̂i]←

{
f̂

(ni)

i + [−η(ni), η(ni)]
}

1(0,τi)
+ [ξi(τi)] 1(τi,∞)

For i ∈ π do

4 If ∃j ∈ π\{i} such that [Ai]
(

[f̂i];u, x
)
> [Aj ]

(
[f̂j ];u, x

)
then

π ← π\{i}

vanishing uniformly on [0, τ ]. It follows by continuity that b(n) converges to-
wards f uniformly on the interval, with error bound η(n) . ω

(
f ; [0, τ ]; τ/

√
n
)
.

A faster rate, η(n) . ω (f ; [0, τ ]; τ/πn), can be achieved using trigonometric
sums, [38]. The scheme t(n) given in Table 2 was derived by developing the
Fourier series of the continuous, 2τ -periodic function defined over [−τ, τ ] by
f̌(u) = f(|u|), thus obtained by mirroring and replication of the section of f
corresponding to [0, τ ]. The quantities {α̌k} featured in Table 2 are the Fourier
coefficients of f̌(u), while {%n,k} are real parameters that are introduced to
guarantee the claimed error bounds.8 In particular, if for some α ∈ (0, 1]
the cost function satisfies the α-Höldern condition |f(u1) − f(u2)| ≤ h|u1 −
u2|α for all u1, u2 ∈ [0, τ ], then ω(f ; [0, τ ]; δ) ≤ hδα, and the trigonometric
sum t(n) converges uniformly on [0, τ ] with error bound η(n) = O((τ/n)α).
If f is Lipschitz continuous on [0, τ ] with modulus L, then η(n) < 2Lτ/n.

The convergence rate of the trigonometric sums is non-improvable without
further assumption on f . In the event the function f admits a kth deriva-
tive f (k) on [0, τ ], then the uniform error bounds can be further lowered to
O(n−kω(f (k); [0, τ ]; τ/[2(n− k)])) by using the derivatives of f as the tar-
gets of approximation, [38]. This is done by considering a different, near-
optimal scheme t̂(n), which has the advantage over t(n) to retain the de-
grees of smoothness of the cost function. The expression for t̂(n) in Table 2
was obtained by computing an approximate trigonometric sum for the 2π-
periodic function f̃(θ) = f(ũ(θ)), derived from f via the change of variable
ũ(θ) = (τ/2) (1 + cos(θ)). Observe that t̂(n) is fully specified by {α̃k}, the
Fourier coefficients of f̃ , which for many cost functions can be derived exactly.

8 In [28, §3], it is suggested to use the parameter values

%n,0 = 1, %n,1 = cos( π
n+2

), %n,k =

∑n−k
q=0 sin

(
q+1
n+2

π
)

sin
(
q+k+1
n+2

π
)

∑n
q=0 sin2

(
q+1
n+2

π
) for k = 2, . . . , n, (IV.6)
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Table 2: Uniform approximation schemes f̂ (n) ∈ Ξ over the interval [0, τ ], and
error bounds as functions of the modulus of continuity of f , [4,27,38].

Approx. scheme f̂ (n)(u) for u ∈ [0, τ ] Error bound η(n)

Bernstein
polynomial

b(n)(u) =
n∑
k=0

[(
n
k

) k∑
l=0

(
k
l

) (−1)l

(−τ)k
f( lτ

n
)
]
uk 3

2
ω
(
f ; [0, τ ]; τ√

n

)
Trigonometric

sum
t(n)(u) = α̌0 + 2

n∑
k=1

α̌k cos( kπu
τ

), where 6ω
(
f ; [0, τ ]; τ

πn

)
α̌k = 1

τ

´ τ
0 f(u) cos( kπu

τ
) du.

Near-optimal
polynomial

t̂(n)(u) =
n∑
k=0

γ(n, k)uk, where 6ω
(
f ; [0, τ ]; τ

2n

)
γ(n, k) = ( 2

τ
)k
n−k∑
t=0

(t+k
k

)
(−1)tγ̄(n, t+ k),

γ̄(n, t) =
∑
k∈σ̄(n,t) %n,k βk ν(k, b t

2
c),

σ̄(n, t) =

{
{t, t+2, t+4, ..., n} if n−t even
{t, t+2, t+4, ..., n−1} if n−t odd

}
,

ν(k, q) = (−1)b
k
2
c−q

q∑
t=0

(
k

2bk
2
c−2t

)(bk
2
c−t
bk
2
c−q

)
,

β0 = α̃0 and βk = 2α̃k for k ≥ 1,

α̃k = 1
π

´ τ
0 f(u)

pk( 2u
τ
−1)√

u(τ−u)
du,

pk(x) =

{∑k/2
q=0 ν(k, q)x2q if k even∑(k−1)/2
q=0 ν(k, q)x2q+1 if k odd

}
.

[ if f k-times
differentiable

] Infer f̂ (n)(u) from near-optimal polynomials
O
(ω(f(k);[0,τ ]; τ

2(n−k)
)

nk

)
computed for the first k derivatives of f .

See Lemma E.1 for closed-form expressions of these coefficients in the case
when f is given as a quotient of polynomials.

We refer to [9] for an extended discussion on uniform approximation schemes
and for detailed derivations of the approximation techniques listed in Table 2.

Case study: quotient cost function. Let f(u) = u2/(a2 + u2), where a > 0
is a positive parameter, and consider the near-optimal approximation scheme
described in Table 2. The Fourier coefficients α̃k for f are given by Lemma E.1
with l(k) ≡ k. In [9], closed-form expressions for those coefficients are derived
from (E.9) after computation of the residues at the complex conjugate poles ia
and −ia. An exact expression of the modulus of continuity of f is also provided.

In this case study, the cost function f is approximated by (IV.4), with f̂ (n) ≡
t̂(n) as stated in Table 2 and [ξ] set to

[ξ](u) =
[
f(τ),− (1− f(τ)) exp

{
−
( f ′(τ)
1−f(τ)

)
(u− τ)

}]
, u ≥ τ,

in which f ′(τ) = 2a2τ(a2 + τ2)−2. The intervals produced for f , and for its
relative value function in the presence of jobs with exponentially-distributed
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(b) Value function intervals (exponentially
distributed service times; ω = 2, λ = 1).

Fig. 4: Intervals for f(u) = u2/(a2 + u2) as per Table 2 (n = 1, . . . , 20).
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(a) π(u, x) for x = (1, 2).
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(b) Minimum order n?(u, x) needed for deci-
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Fig. 5: One-step policy improvement for a two-server system (1, 2) with arrival
rates (λ1, λ2) = (1, 1/2), exponentially distributed service times with param-
eters (ω1, ω2) = (2, 1), and cost function f(u) = u2/(a2 + u2), [8].

service times are displayed in Figure 4, for fixed τ and n = 1, . . . , 20. The
relative value function intervals shown in Figure 4(b) followed from the results
in Table 2 and the developments of [9]. The interval gaps can be arbitrarily
reduced by increasing both n and τ , as in Algorithm 1.

Consider a system of two parallel servers 1 and 2, with server 1 twice
faster than 2. Feed the system a sequence of jobs with arrival rate λ = 3/2
and service times exponentially distributed with parameters (ω1, ω2) = (2, 1).
Assume that the workload is initially balanced between the two servers, i.e.,
(λ1, λ2) = (1, 1/2), and let f(u) = u2/(a2 + u2). Figure 5(a) depicts, for
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a particular job with service times (x1, x2) = (1, 2) and for various back-
log u = (u1, u2), the FPI policy π(u, x) issued by Algorithm 1. The quan-
tity n?(u, x) displayed in Figure 5(b) is the minimum degree n required by t̂(n)

for dispatching at (u, x). This quantity was estimated by reporting the min-
imum order that allowed for dispatching for a coarse grid of values of the
parameter τ . It can be seen that n?(u, x) grows with the distance to the ori-
gin u = (0, 0), and increases abruptly near the frontiers of the dispatching
policy π. The relatively high orders rendered by Figure 5(b) are due to the
conservativeness of the uniform error bound η(n) ≡ 6ω(f ; [0, τ ]; τ/(2n)) for
this particular choice of the cost function (cf. Figure 4(a)). In practice, more
accurate estimates of the error bound would contribute to reducing the esti-
mation orders. More generally, building the function approximations from the
k first derivatives of f , as previously suggested, will significantly accelerate
convergence.

V Discussion

Integral transformations of the Poisson equation g = Pg + f have the qual-
ity of simplifying the analysis, as they provide a principled framework for the
systematic derivation of solutions. Although it is known that the candidate
functions for closed-form solutions form a dense set where any f can be ap-
proximated with arbitrary precision, one should be cautious that a convergent
series for f does not always produce a convergent series for g; Taylor series
of f , in particular, are subject to tail effects and most likely to diverge af-
ter µW -integration with respect to the stationary probability measure of the
waiting times.

In the context of first-policy improvement, such tail effects can be avoided
by considering approximations of f on finite supports—preferably trigonomet-
ric sums, which for Lipschitz-continuous f achieve the convergence rate O(τ/n)
in the number n of approximation terms, improvable to O(τ/[(n− k)nk]) if f
is k-times continuously differentiable—, while using tractable bounds for the
larger backlog values. The availability of closed forms for bounding intervals
of this type with a diversity of service time distribution models gives the green
light to a systematized implementation of the FPI step.

We believe that the techniques developed in this study, combined with well-
chosen supervised learning methods, make it possible, in large multiple-server
systems, to devise efficient online algorithms for learning FPI policies gradu-
ally, as the incoming jobs are dispatched and the (possibly high-dimensional)
state space is visited. The design and assessement of FPI dispatching policies
in such systems is left to future work.
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A On policy iteration and first-policy improvement

Recall the system depicted in Figure 1, where jobs, arriving according to a Poisson process
with rate λ, are dispatched upon arrival towards one of the k servers (1, . . . , k) selected by
a (possibly random) dispatching policy π(u, x), where u = (u1, . . . , uk) ∈ Rk≥0 denotes the

server backlog vector and x = (x1, . . . , xk) ∈ Rk≥0 are the prospective service times of an
incoming job at the servers. By taking snapshots at intitial time n = 0 and at the job arrival
times (n = 1, 2, 3, . . . ), the continuous-time system reduces to a MDP, (Φπn)n∈N, with state
Φπn = (Un, Xn) ∈ Ω ≡ Rk≥0×Rk≥0, where Xn is the service time vector of the nth job and Un
is the backlog of the system at the time of arrival, and with transition probability kernel
P = (P1, . . . , Pk) such that, for any n and every (u, x) ∈ Ω, S ⊂ Ω,

Pi(u, x,S) := Prob(Φπn+1 ∈ S|Φπn = (u, x), π(u, x) = i) = Pi((u1, . . . , ui + x, . . . , uk), 0,S).

Assume that the performance of the system is measured by a cost function f , where
f(i, u, x) ≡ fi(ui) 1R>0

(x) models a penalty incurred when a job with service time x joins
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server i, given backlog state u = (u1, . . . , uk). We would like to minimize the long-run
average cost, defined by

Jπ = lim sup
N→∞

1

N

N∑
n=1

E [f (π(Φπn), Φπn)] ,

independently of Φπ0 . The optimality equations of the system are

g(u, x) = mini [fi(ui) + Pig(u, x)]− ς, (OEa)

π(u, x) ∈ arg mini [fi(ui) + Pig(u, x)] , (OEb)

where Pig(u, x) =
´
Ω g(t, y)Pi(u, x, d(t, y)) ≡ Pig((u1, . . . , ui + xi, . . . , uk), 0). If one can

find ς∗ > 0, a policy π∗, and an integrable function g such that (g, ς∗) solves (OEa) and π∗

satisfies (OEb), then π∗ is the optimal policy and

ς∗ = limN→∞(1/N)
∑
N
n=1 E

[
f
(
π∗(Φπ

∗
n ), Φπ

∗
n

)]
is the optimal cost of the system, [25,2,31,32]. The policy iteration algorithm for solv-
ing (OE) can be described as follows, [17]. Given an initial policy π(0), find, for k ≥ 0, a
function g(k), a mean cost ς(k), and a policy π(k+1) satisfying

g(k)(u, x) = f(π(k)(u, x), u, x) + Pπ(k)(u,x)g
(k)(u, x)− ς(k) (PIa)

π(k+1)(u, x) ∈ arg mini
[
fi(ui) + v(k)(u1, . . . , ui + xi, . . . , uk)

]
(PIb)

where (PIa) is the policy evaluation step, (PIb) is the policy improvement step and v(k)(u) :=´
Ω g

(k)(t, y)P (u, 0, d(t, y))−ς(k) defines the relative value function under policy π(k). Under

favorable conditions, (π(k), ς(k)) eventually converges towards a solution (π∗, ς∗), [31,32].
Solving (PIb), however, is generally difficult.

The first iteration of (PI) may still be implemented easily if the initial policy π(0) ≡ π
is a random Bernoulli-split between the servers. In that case, the Poisson process separates
into k independent Poisson processes with rates λ1, . . . , λk, where λ1 + · · · + λk = λ, and
the multiple-server system decomposes into k independent M/G/1 queues with arrival rates
λ1, . . . , λk and transition probability kernels P (λ1), . . . , P (λk). The relative value function
under the initial random policy then takes the additively separable form v(u) =

∑k
i=1 vi(ui),

where vi(ui) := P (λi)gi(ui, 0)− ςi is the relative value function at server i, and gi satisfies

gi(ui, xi) = P (λi)gi(ui, xi) + fi(ui)− ςi. (i = 1, . . . , k) (FPIa)

Since fi(ui) +v(u1, . . . , ui+xi, . . . , uk) = fi(ui) +v(u) +vi(ui+xi)−vi(ui), (PIb) reduces
to

π̂(u, x) ∈ arg min
i
Ai(u, x), (FPIb)

where Ai(u, x) = fi(ui)+vi(ui+xi)−vi(ui) is the admission cost at server i. The first-policy
improvement approach then consists in stopping the PI algorithm after a single iteration, by
solving (FPIa)-(FPIb). Observe that (FPIa) is an instance of the Poisson equation g = Pg+f
under

´
f(u) ν(du) = 0, where ν denotes the non-trivial measure invariant for the transition

kernel P (i.e., Pν = ν), [34,35,3]. In (FPIa), ν coincides with the asymptotic probability
measure of the waiting times at server i.

B Characterization of the value function

Before showing Propositions 1-2, and Theorem 1, we characterize W ∗ in the complex plane.

Proposition B.1 (Analycity of W ∗ and pole location) Under Assumption 1:
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(i) The dominant singularity pW of W ∗ (i.e., that with largest real value) is a pole with
degree 1 lying on the negative real axis R<0. The dominant singularity pX of X∗ is real,
negative (possibly infinite) and satisfies pX < pW . X∗ is analytic on {s ∈ C | < (s) > pW }.

(ii) W ∗ is analytic on {s ∈ C0 | < (s) > pW }, where lims→∞ |W ∗(s)| ≤ 1.
(iii) One can find ε > 0 such that W ∗ is analytic on {s ∈ C0 \ {pW } |<(s) > pW − ε}.
(iv) W ∗ is analytic in a neighborhood of 0, where it rewrites as the series

W ∗(s) =
∑∞
k=0 wk (−s)k, ∀s ∈ {σ ∈ C0 : |σ − a| < |pW |}, (B.1)

in which the coefficients {wk} are given by (III.3) in Table 1, and satisfy wk = E[Wk]/k!,
for k ∈ N. The series {wk} is asymptotically geometric with asymptotic rate |pW |−1.

(v) At any point a ∈ C0 where W ∗ is analytic, W ∗ rewrites as the series

W ∗(s) =
∑∞
k=0 wa:k(a− s)k, ∀s ∈ {σ ∈ C : |σ − a| < ra}, (B.2)

where ra denotes the distance from a to the closest singularity of W ∗. The coefficients {wa:k}
are given by (III.4) in Table 1.

Next, we derive the identities of Section III.1 for the value function.

Proof (Proposition 1) Start the queue at state u. The quantity V (u, t) appearing in (VF)
rewrites, for any T ≥ 0 and for t large enough, as V (u, t) = V (u, T ) + V (U(T ), t − T ),
where U(T ) denotes the backlog observed after time T . It follows from the Markov property
of the system and from the the definition VF of the value function that

v(u) = E[V (u, T )− λf̄T ] + E[v(U(T ))]. (B.3)

Now, consider the function

g(u, x) = limN→∞{
∑N
n=1 E

[
f(Un)− f̄

]
| (U1, X1) = (u, x)}+ f̄ , ∀u, x ∈ R≥0, (B.4)

which can be verified to satisfy Equation (PE) by application of the Markov property to
the MDP. The function g defined by (B.4) can be seen as a discrete-time counterpart of the
value function (VF), which follows from (B.4) by using the convention (U0, X0) = (u, 0) and
setting v(u) ≡ Pg(u, 0)− f̄ or, equivalently, from (B.3) by defining T as the arrival time of
the first job so that E[V (u, T )− λf̄T ] = −f̄ and E[v(U(T ))] ≡ Pg(u, 0). �

Proof (Theorem 1) A simple calculation reveals that ∆(u) = 0 if u < 0, and ∆(u) =

(P − P̂ )g(u, 0) = κe−λu, for u ≥ 0, with κ satisfying by

κ = E
[
g(0, X0)− λ

´ 0
−∞ g(u,X) eλu du

]
. (B.5)

We characterize the extended value function v̂ : u ∈ R 7→ v̂(u) = g(u, 0) − f(u) associated
with some g solution of (PE’). Note that, by construction, v̂ coincides with the value function
on R≥0, i.e., v̂(u) ≡ v(u) if u ≥ 0. Once v̂ is known, it will be possible to recover g using

g(u, x) = g(u+ x, 0)− f(u+ x) + f(u) = v̂(u+ x) + f(u). (B.6)

Consider s in the region of absolute convergence of Bv̂ , where the orders of integration in
our developments may be permuted. The two-sided Laplace transform of v̂ is given by

Bv̂(s) =
´+∞
−∞ v̂(u) e−su du

=
´+∞
−∞ [g(u, 0)− f(u)] e−su du

(PE’)
=
´+∞
−∞ [P̂ g(u, 0) + ∆(u)− f̄ 1[0,+∞)(u)] e−su du

=
´+∞
−∞ e−su du

´
g(t, x)P̂ (u, 0, d(t, x)) +

´+∞
0 κe−(s+λ)u du− f̄

s
(III.1)

= λE
[ ´+∞
−∞ e−su du

´ u
−∞ g(t,X)e−λ(u−t) dt

]
− f̄

s
+ κ
s+λ

= λE
[ ´+∞
−∞ g(t,X) eλt dt

´+∞
t e−(s+λ)u du

]
− f̄

s
+ κ
s+λ

(B.6)
= λ

s+λ

{
E
[ ´+∞
−∞ v̂(t+X) e−st dt

]
+
´+∞
0 f(t) e−st dt

}
− f̄

s
+ κ
s+λ

= λ
s+λ

{
X∗(−s)Bv̂(s) + Lf (s)− f̄

s
+ κ−f̄

λ

}
.
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Solving the above equation for Bv̂(s) and using W ∗(−s) = 1 + λE[X2]/[2(1− ρ)]s + o(s)
yields, after computations,

Bv̂(s)
(PK)
=

λW∗(−s)
(1−ρ)s

[
Lf (s)− f̄

s
+ κ−f̄

λ

]
= λ

(1−ρ)sW
∗(−s)Lf (s)− λf̄

(1−ρ)s2 + ε
s

+
h(s)
s
,

(B.7)

where h(s) has no singularities on {s ∈ C | < (s) < −pW }, and ε is given by

ε = κ/(1− ρ)− X̂∗2 (λ)f̄/(1− ρ)2, (B.8)

with X̂∗2 (λ) := 1 − λE[X] + λ2E[X2]/2. Since v̂ is expected to be asymptotically flat for
u → −∞, the −λf̄/[(1− ρ)s2] term in (B.7) is necessarily due to a term −λf̄/(1− ρ)u
on R≥0 in the backlog domain. By inverse transformation of (B.7), we find

v̂(u) = v̂(0) + c(u)− λf̄
1−ρu1[0,+∞)(u) + r(u) 1(−∞,0)(u), ∀u ∈ R, (Ŝ)

where r satisfies Lr(−·)(s) = −[h(−s) + ε]/s. The general form for g follows from (B.6), (Ŝ)
and v̂(u) ≡ v(u) on R≥0. The non-empty ROC of B∂+v̂ follows from −pW ∈ ROC(Lf ).

It remains to show that the function r is identical for all solutions or, equivalently, that
the quantity κ in (B.5) is the same for all g. To see this, consider a solution g1 of (PE’)
with associated value function v̂1 and jump ε1 at u = 0. The value function for every
other solution g2 rewrites as v̂2 = α + (v̂1 − ε2 + ε1)1R<0

+ v̂11R≥0
, where ε1, ε2 and α

are constants. We show that ε1 = ε2. If we successively compute the expression (B.8)
for ε1 and ε2, using (B.5), (B.6) and the extension of (PE), we get, after simplifications,
ε2 = ε1 − (ε1 − ε2)X∗(λ)/(1− ρ). Exploiting twice the strict convexity of e−x, we find
X∗(λ) = E[e−λX ] > e−λE[X] > 1 − λE[X] = 1 − ρ. Hence, X∗(λ)/(1− ρ) 6= 1 and,
consequently, ε1 = ε2. �

Proof (Proposition 2) (i) Consider s in the region of absolute convergence of Bv̂ . Since
B∂+c(s) = sBc(s), (C) rewrites as

[s+ λ(1−X∗(−s))]Bc(s)
(PK)
= λLf (s) + sLr(−·)(−s) [1 + λ/s(1−X∗(−s))] ,

while transformation of (Ŝ) gives Bc(s) = Bv̂(s) + λf̄/[(1− ρ)s2]. Besides,

X∗(−s)Bv̂(s) = E[esX ]
´+∞
−∞ v̂(u)e−sudu = E[

´+∞
−∞ v̂(u)e−s(u−X)du]

= E[
´+∞
−∞ v̂(t+X)e−stdt] =

´+∞
−∞ E[v̂(t+X)]e−stdt = BE[v̂(·+X)](s).

Combining the above with B∂+v̂(s) = sBv̂(s), we get, after computations,

B∂+v̂(s) = λ
[
Lf (s)− f̄/s+ BE[v̂(·+X)](s)− Bv̂(s)

]
+ h̃(s), (B.9)

where h̃(s) shows no singularity on {s ∈ C | < (s) < −pW }, and we have used Proposi-
tion B.1(i) and 1 +λ/s(1−X∗(−s)) = 1−ρ+ o(1). Inverse Laplace transformation of (B.9)
then gives, at every u ≥ 0 where v̂ is differentiable,

v̂′(u) = λ
(
f(u)− f̄ + E [v̂(u+X)− v̂(u)]

)
, (B.10)

which holds for almost every u > 0 by piecewise continuity of f . Since by construction
v(u) ≡ v̂(u) for u ≥ 0, we find (DE). From Theorem 1, we have

v̂(0) = g(0, 0)− f(0)
(PE’)

= Pg(0, 0)− f̄ (II.1)
= E[v̂(X0)] + f(0)− f̄ , (B.11)

which yields (BCa). Finally, we find (BCb) by taking the limit of (B.10) as u→ 0+,

v̂′(0) = λ
(
f+(0)− f̄ + E [v̂(X)− v̂(0)]

) (B.11)
= λ

(
f+(0) + E [v̂(X)]− E[v̂(X0)]− f(0)

)
.
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(ii) Equation (S) follows directly from (Ŝ) and the fact that v(u) ≡ v̂(u) for u ≥ 0. It
remains to compute ∂+c. From Theorem 1, we get

B∂+c(s)
(C)
= λ

(1−ρ)W
∗(−s)Lf (s) = λ

(1−ρ)E[esW ]
´+∞
−∞ f(u)e−su du

= λ
(1−ρ)E[

´+∞
−∞ f(u)e−s(u−W ) du] = λ

(1−ρ)
´+∞
−∞ E[f(t+W )]e−s(t) dt

= λ
(1−ρ)BE[f(·+W )](s),

(B.12)

where we have used f(u) = 0 if u < 0. Equation (C) follows by inversion of (B.12). �

C Splitting schemes for the Pollaczek-Khinchin formula

This section includes further details on the transform splitting scheme (III.12), which proves
very useful when computing value functions with discrete service time distributions. See
also [9] for a step-by-step derivation of the core function in the case of jobs with identical
service times.

C.1 Discrete service time distributions

Consider the M/D/1 queue, where all the jobs have equal service time x. In this scenario,
the transform W ∗ is given by (PK) with X∗(s) = e−sx, and rewrites as

W ∗(s) = [Υ (−s)]mW ∗(s) +
(1−λx)s
s−λ

∑m−1
k=0 [Υ (−s)]k, ∀m ∈ N>0, (C.1)

where Υ (s) := [λ/(s+ λ)] esx. It can be seen that (III.12) holds if

Wu(s) = [Υ (−s)]m̃(u)W ∗(s), Wu(s) =
s(1−ρ)
s−λ

∑m̃(u)−1
k=0 [Υ (−s)]k,

with m̃(u) = d(τ − u)/xe.
‘

C.2 Degenerate cases

The decomposition scheme (C.1) is not possible for all discrete service time distributions.
Consider for instance the geometric service time distribution FX(u) = (eς−1)

∑∞
k=1 e

−kςθ(u−
kx) for u ∈ R≥0, where x > 0 and λ < (1 − e−ς)/x. We have E[X] = x/(1 − e−ς),
X∗(s) = (eς − 1)/(eς+sx − 1), and W ∗ degenerates into

W ∗(s) =
b(eς+sx − 1)s

(s− λ)eς+sx − s+ λeς
= b− s(eς+sx − 1) f(s), (C.2)

where b = (1− e−ς − λx)/(1− e−ς) and f(s) = [(λ− s)eς+sx + s− λeς ]−1. Although f(s)
decreases like O(r−1) as |s| → ∞ (i.e., not fast enough for counterclockwise integration
along Cr), it decomposes as follows:

f(s) = [Υ̃ (−s)]mf(s) +
∑m
k=1[Υ̃ (−s)]k/(λeς − s), (m = 1, 2, . . . ), (C.3)

where Υ̃ (s) = (s+ λeς)/(s+ λ) esx−ς is O(e<(s)x) with just one pole at −λ. By distribut-
ing (C.2) and using (C.3) twice with parameters m+ 1 and m, we find, after computations,
that (III.12) holds if we set

Wu(s) = λb
s(eς−1)(λeς−s)m̃l(u)−1

(λ−s)m̃(u) [s−λ−(s−λeς)e−(sx+ς)]
e−m̃(u)(sx+ς),

Wu(s) = s−b
s−λ + λb

(eς−1)−s
(s−λ)(s−λeς)

∑m̃(u)−1
k=1

(
s−λeς
s−λ

)k
e−k(sx+ς),

with m̃(u) = d(τ − u)/xe.
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D System interpretation of Taylor series CVFs

In view of (C), the core function can be seen as the answer to the input f of a linear filter
with transfer function λ/(1− ρ)W ∗(−s). Similarly, the Taylor series (IV.3) for the CVF of
an analytic cost function is reminiscent of digital filtering in signal processing. Indeed, for
n ∈ N, consider the vector of derivatives f̃ (n) = (f̃0, . . . , f̃n−1), where f̃k = f (k)(0), and the

vector c̃(n) = (c̃
(n)
0 , . . . , c̃

(n)
n−1), where c̃

(n)
k is defined by (IV.2). Using the matrix inversion

lemma, one shows that the Toeplitz, upper triangular matrices

X(n) =


x1 x2 x3 · · · xn
0 x1 x2 . . . xn−1

0 0 x1 . . . xn−2

...
...

...
. . .

...
0 0 0 . . . x1

, W (n) = λ
1−ρ


w0 w1 w2 · · · wn−1

0 w0 w1 . . . wn−2

0 0 w0 . . . wn−3

...
...

...
. . .

...
0 0 0 . . . w0

.

satisfy W (n)(I(n)/λ−X(n)) = I(n) for all n, where I(n) denotes the identity matrix. Besides,
(IV.2) rewrites in matrix form as c̃(n) = W (n)f̃ (n).

As n → ∞, {c̃t} becomes the output (at nonnegative times) of the cross-correlation
of {f̃t} with the sequence defined by h̃[t] = λ/(1− ρ)wt for t ≥ 0, thus giving us an
interpretation for analytic functions of Proposition 2(ii), where c′ was obtained by cross-
correlation of f(u) with λ/(1 − ρ)F ′W (u). Similarly, (IV.3b) expresses c′(u) as the cross-

correlation of the sequence of derivatives of f at u with the sequence h̃[t].
From our observation follows that the Z-transforms of the sequences satisfy

Zc̃(∞) (z) = Zh̃(1/z)Zf̃(∞) (z), (D.1)

where Zh(z) =
∑∞
k=0 h[k]z−k denotes the Z-transform of a sequence h[t]. The vector c̃(∞)

can be recovered from (D.1) by inverse Z-transform provided that the regions of convergence
of Zf̃(∞) (z) and Zh̃(1/z) intersect on a non-empty circular band—this condition is to be

linked to those of Theorem 2(i).
Conversely, inverting W (n) yields f̃ (n) = (I(n)/λ−X(n))c̃(n) and, as n→∞,

f̃k = c̃k/λ−
∑∞
t=0[c̃t+k/(t+ 1)!]E[Xt+1], (D.2)

which provides us with a converse for Theorem 2, where the source cost function of a given
core function with germ {c̃k} can be recovered from c through (D.2), on the condition
that c grows slower than the exponential type |pX |—where pX denotes the dominant pole
of X—, in which case (I(n)/λ − X(n)) c̃(n) converges as n → ∞. Similarly, Zf̃(∞) (z) =

(Zh̃(1/z))−1Zc̃(∞) (z), where (Zh̃(z))−1 is the Z-transform of δ[t]/λ− E[Xt+1]/(t+ 1)!.

E Proofs and auxiliary results

Proof (Theorem 2) (i) If % is the order of growth of the entire cost function f , and σ is its
type, then for any ε > 0, there is kε <∞ such that, [30, Lecture 1],

1
k!
|f (k)(0)| <

( e(%+ε)
k

) k
%+ε , ∀k > kε, (E.1a)

1
k!
|f (k)(0)| <

( e(σ+ε)%
k

) k
% , ∀k > kε. (E.1b)

Consider the quantity c̃k =
∑∞
q=0 wq f

(k+q)(0) introduced in (IV.2), as well as

c̄k = λ
1−ρ

∑∞
q=0 wq

∣∣f (k+q)(0)
∣∣ , ∀k ∈ N. (E.2)
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Recall from Proposition B.1-(iv) in Appendix B that limk→∞ wk+1/wk = |pW |−1. Besides,
it can be seen (e.g. using Stirling’s approximation for the factorial) that

limk→∞
(k+1)!

(
esr

k+l+1

) k+l+1
r

k!
(
esr
k+l

) k+l
r

=

{
0, if r < 1
s, if r = 1
∞, if r > 1

}
, ∀l ∈ N. (E.3)

Equations (E.1a) and (E.1b) tell us that, under the assumptions of (i) and by taking ε
sufficiently small, one can find a dominant series for c̃k and c̄k that successfully passes the
ratio test for convergence due to (E.3), so that both c̃k and c̄k are finite for all k. The
finiteness of c̄k allows us to interchange the integration order in the computation of c̃k.
Noting that wq = E[W q ]/q! for all q (cf. Proposition B.1-(iv)), we apply Fubini’s theorem
and find, for k ∈ N≥0,

c̃k = λ
1−ρ

∑∞
q=0 E[f (k+q)(0)W

q

q!
] = λ

1−ρE[
∑∞
q=0 f

(k+q)(0)W
q

q!
]
(IV.1)

= λ
1−ρE[f (k)(W )].

(E.4)
Similarly, we introduce, for k ∈ N,

ĉk = λ
1−ρE

[∣∣f (k)(W )
∣∣] (IV.1)

≤ λ
1−ρE

[∑∞
q=0

∣∣f (k+q)(0)
∣∣ Wq

q!

]
= λ

1−ρ
∑∞
q=0 wq

∣∣f (k+q)(0)
∣∣ (E.2)

= c̄k.
(E.5)

and ĉk is finite as well. Suppose now that |(dk/duk)f(0)| < k!(esr/k)k/r for k > kε—in the
case (i), this holds either for some r < 1 or for r = 1 and some finite s—, and consider the
sequence

βk = λ
1−ρ

∑∞
q=0 (q + k)!wq

(
esr
q+k

) q+k
r , ∀k ∈ N. (E.6)

It is easy to see that the three sequences
∑∞
k=0 c̃ku

k+1/(k + 1)!,
∑∞
k=0 c̄ku

k+1/(k + 1)! and∑∞
k=0 ĉku

k+1/(k + 1)! converge wherever
∑∞
k=0 βku

k+1/(k + 1)! is convergent. Besides,

βk+1
(E.6)
= λ

1−ρ
∑∞
q=0

[
(q+k+1)!

(
esr

q+k+1

) q+k+1
r

(q+k)!
(
esr
q+k

) q+k
r

]
(q + k)!wq

(
esr
q+k

) q+k
r . (E.7)

In the conditions of (i), we infer from E.3 that the expression between brackets in (E.7)
tends to a finite quantity not larger than s, so that, for any ν > 0 one can find a kν such
that βk+1 ≤ (βkν+1 − βkν ) + (s + ν)βk for k > kν . It follows from the ratio test that∑∞
k=0 βkξ

k/k! converges for ξ ∈ R≥0, and so do
∑∞
k=0 c̃kξ

k/k! = ψ(u),
∑∞
k=0 c̄kξ

k/k! and∑∞
k=0 ĉkξ

k/k!. This last conclusion, together with (E.4), (E.5), and Fubini’s theorem applied
to set of natural numbers with the counting measure, yields, for u ∈ R≥0,

ψ(u)
(E.4)
= λ

1−ρ
´ u
0

∑∞
k=0 E[f (k)(W ) ξ

k

k!
] dξ = λ

1−ρ
´ u
0 E[

∑∞
k=0 f

(k)(W ) ξ
k

k!
] dξ

(IV.1)
= λ

1−ρ
´ u
0 E [f(ξ +W )] dξ

(CVF)
= c(u),

where the last result follows from Proposition 2(ii). Since∑∞
k=0 c̄k

ξk

k!
= λ

1−ρ
∑∞
k=0

(∑∞
q=0 |wq f (k+q)(0) ξ

k

k!
|
)
<∞, ∀ξ ∈ R≥0,

Fubini’s theorem applies and one may interchange the order of summation in (IV.3a):

ψ(u) = λ
1−ρ
´ u
0

∑∞
q=0 wq

(∑∞
k=0 f

(k+q)(0) ξ
k

k!

)
dξ = λ

1−ρ
´ u
0

∑∞
q=0 wq f

(q)(ξ) dξ
(IV.3b)

= χ(u),

which holds for u ∈ R≥0.
(ii) Similarly, for any ε > 0, one can find growing sequences of naturals {lk} and {mk}

such that, [30, Lecture 1],

|f(lk)(0)|
lk!

>
( e(%−ε)

lk

) lk
%−ε , (k ∈ N≥0), (E.8a)

|f(mk)(0)|
mk!

>
( e(σ−ε)%

mk

)mk
% , (k ∈ N≥0). (E.8b)
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Recall the series c̃k defined in (IV.2). By taking ε sufficiently small in (E.8a) and (E.8b) and
using (E.3), we find that the asymptotic ratio between the moduli of two terms of (IV.2)
with respective indices lq − k, lq+1 − k (in the case % > 1) or mq − k,mq+1 − k (in the
case % = 1, σ > |pW |−1) is greater than one for q taken large enough. Hence, one can find
a subsequence of terms of (IV.2) which grows in modulus, and c̃k diverges for all k. �

Lemma E.1 (Coefficients {α̃k} for quotients of polynomials) Let gm and hn be
polynomials of degrees m and n, and consider

f(u) =
gm(u)
hn(u)

, ∀u ∈ R≥0.

For τ > 0, recall the polynomial pk given in Table 2 and define fk(s) = f(s) pk(2s/τ − 1)
under the assumption P(fk) ∩ [0,∞) = ∅. The Fourier coefficients of f satisfy, for k ≥ 0,

α̃k =
√
π
∑l(k)
q=0

ζ−q (−τ)q

q!Γ( 1
2
−q)
−
∑
a∈P(fk) Ress=a

(
fk(s) s−

1
2 ]−π(s− τ)−

1
2 ]−π

)
, (E.9)

where l(k) = max(0,m−n+k) is the largest nonnegative integer l such that lims→0 slfk (1/s)
is finite, and {ζq} are the coefficients of the Laurent series at +∞ of the analytic continu-
ation of fk, i.e.,

ζq = 1
(l(k)+q)!

lims→0
dl(k)+q

dsl(k)+q

[
sl(k)fk

(
1
s

)]
, (q = −l(k), . . . ,∞). (E.10)

See [9] for a derivation derivation of Lemma E.1 by the technique of contour integration.
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