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E Proof of (III.2)

Consider

K(s) =
es(u+mx−τ)

s+ λ(1− esx)
, (E.1)

and let g(n, k) = u+ (m− 1− n+ k)x− τ for all n, k ∈ N. At −λ, K has the derivatives

K(n)(−λ) = −(n!/λn+1)
∑n

k=0
[(λg(n, k))k/k!] e−λg(n,k), (n ∈ N). (III.2)

Proof (III.2) It is straightforward to verify that (III.2) holds for n = 0 and n = 1. For n ≥ 2,
we proceed by induction. observe that (E.1) rewrites as (s + λ − λesx)K(s) = esg(n−1,n),
which gives, after n differentiations at −λ:

K(n)(−λ) =
n

λ
eλxK(n−1)(−λ)−

n−1∑
k=0

(nk )xn−kK(k)(−λ)−
g(n− 1, n)n

λ
e−λg(n,n). (E.2)

Assuming that (III.2) holds for n = 0, 1, . . . , p − 1, the second term of the second member
of (E.2) reduces for n = p to

p−1∑
k=0

(p
k

)
xp−kK(k)(−λ)

(III.2)
= −

p−1∑
q=0

(p
q

)
xp−q q!

λq+1

q∑
l=0

(λg(q,l))l

l!
e−λg(q,l)

= −
p−1∑
q=0

p!
p−q!x

p−q 1
λq+1

q∑
l=0

(λg(p,p+l−q))l
l!

e−λg(p,p+l−q)

= − p!
λp+1

p∑
t=1

(
t−1∑
l=0

(λx)t−l

t−l!
(λg(p,t))l

l!

)
e−λg(p,t)

= − p!
λp+1

p∑
t=1

λt

t!

(
t∑
l=0

(
t
l

)
xt−lg(p, t)l − g(p, t)t

)
e−λg(p,t)

= − p!
λp+1

p∑
t=1

λt

t!

(
(x+ g(p, t))t − g(p, t)t

)
e−λg(p,t)

= − p!
λp+1

p∑
t=1

λt

t!

(
g(p− 1, t)t − g(p, t)t

)
e−λg(p,t).

(E.3)
Inserting (E.3) into (E.2) yields

K(p)(−λ)

(III.2)
= − p!

λp+1

p−1∑
t=0

(λg(p−1,t))t

t!
e−λg(p,t) −

p−1∑
k=0

(p
k

)
xp−kK(k)(−λ)− (λg(p−1,p))p

λp+1 e−λg(p,p)

(E.3)
= − p!

λp+1

p∑
t=0

(λg(p−1,t))t

t!
e−λg(p,t) + p!

λp+1

p∑
t=1

λt

t!

(
g(p− 1, t)t − g(p, t)t

)
e−λg(p,t)

= − p!
λp+1

p∑
t=0

(λg(p,t))t

t!
e−λg(p,t)

and (III.2) holds for all n. �

F Proof of (IV.10)

The coefficients βn,0, . . . , βn,n, defined by

βn,k = (−τ)−k
(n
k

) k∑
l=0

( k
l

)
(−1)lf

(
lτ

n

)
, (k = 0 . . . , n), (F.1)

satisfy βn,k = 1
k!
f̌
(k)
n (0), where, for k = 1, . . . , n,

f̌
(0)
n (l) = f( lτ

n
), f̌

(k)
n (l) = n−k+1

τ

[
f̌
(k−1)
n (l+1)−f̌ (k−1)

n (l)
]

(l = 0, . . . , n−k). (IV.10)
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Proof (IV.10) Indeed, βn,0 = f̌
(0)
n (0)/0! is immediate. Suppose now that

f̌
(k)
n (l) =

k!

(−τ)k

(n
k

)∑k

t=0

( k
t

)
(−1)tf

(
tτ

n

)
, (l = 0, . . . , n− k), (F.2)

holds for k = 1, . . . , q − 1, where 1 ≤ q ≤ n− 1. Then, for l = 0, . . . , n− q,

f̌
(q)
n (l)

(IV.10)
=

(n−q+1)
τ

[
f̌
(q−1)
n (l + 1)− f̌ (q−1)

n (l)
]

(F.1)
= n−q+1

τ

(
(q−1)!

(−τ)q−1

)(
n
q−1

)∑q−1
t=0

(
q−1
t

)
(−1)t

[
f
(

(t+l+1)τ
n

)
− f

(
(t+l)τ
n

)]
=
(

q!
(−τ)q

)
(n−q+1)

q

(
n
q−1

) [∑q
t=1

(
q−1
t−1

)
(−1)tf

(
(t+l)τ
n

)
+
∑q−1
t=0

(
q−1
t

)
(−1)tf

(
(t+l)τ
n

)]
=
(

q!
(−τ)q

) (
n
q

){
f
(
lτ
n

)
+ (−1)qf

(
(q+l)τ
n

)
+
∑q−1
t=1

[(
q−1
t−1

)
+
(
q−1
t

)]
(−1)tf

(
(t+l)τ
n

)}
= q!

(−τ)q
(
n
q

)∑q
t=0

(q
t

)
(−1)tf

(
(t+l)τ
n

)
and (F.2) holds for k = q. By induction, (F.2) is true for 0 ≤ k ≤ n. By setting l = 0

in (F.2), we infer from (F.1) that βn,k = f̌
(k)
n (0)/k! for 0 ≤ k ≤ n. �

G Proof of Proposition A.1

Proposition A.1 (Analycity of W ∗ and pole location) Under Assumption 2:

(i) The dominant singularity pW of W ∗ (i.e., that with largest real value) is a pole with
degree 1 lying on the negative real axis R<0. The dominant singularity pX of X∗ is real,
negative (possibly infinite) and satisfies pX < pW . X∗ is analytic on {s ∈ C | < (s) > pW }.

(ii) W ∗ is analytic on {s ∈ C0 | < (s) > pW }, where lims→∞ |W ∗(s)| ≤ 1.
(iii) One can find ε > 0 such that W ∗ is analytic on {s ∈ C0 \ {pW } |<(s) > pW − ε}.
(iv) W ∗ is analytic in a neighborhood of 0, where it rewrites as the series

W ∗(s) =
∑∞
k=0 wk (−s)k, ∀s ∈ {σ ∈ C0 : |σ − a| < |pW |}, (A.1)

in which the coefficients {wk} are given by (III.3) in Table 1, and satisfy wk = E[Wk]/k!,
for k ∈ N. The series {wk} is asymptotically geometric with asymptotic rate |pW |−1.

(v) At any point a ∈ C0 where W ∗ is analytic, W ∗ rewrites as the series

W ∗(s) =
∑∞
k=0 wa:k(a− s)k, ∀s ∈ {σ ∈ C : |σ − a| < ra}, (A.2)

where ra denotes the distance from a to the closest singularity of W ∗. The coefficients {wa:k}
are given by (III.4) in Table 1.

Proof (i) First observe in

W ∗(s) =
(1− ρ)s

s− λ(1−X∗(s))
(PK)

that 0 is a removable singularity of W ∗(s). Since X∗ and W ∗ are the Laplace transforms of
probability density functions on R≥0, their dominant singularities pX , pW are real, nonpos-
itive, and possibly infinite (−∞)1. Besides, X∗(s) is, by definition, continuous and strictly
decreasing on (pW ,+∞) with lims→∞X∗(s) = 0. It intersects with the straight line 1−s/λ
at s = 0 (removable singularity) with slope stricly larger than −1/λ (ρ < 1). Since the limit

1 If FY is the probability distribution of a random variable Y on R≥0, then∣∣∣LF ′
Y

(s)
∣∣∣ ≤ ´∞0 ∣∣e−su∣∣FY (du) =

´∞
0 e−<(s)uFY (du) = LF ′

Y
(<(s)), ∀s ∈ C.

It follows that LFY is absolutely dominated by its expression on the real axis, which is a
real, nonnegative function. The dominant singularity pY of LF ′

Y
lies therefore on the real

axis. Since F ′Y is absolutely integrable, pY is negative.
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value of the derivative of X∗(s) at −∞, given by lims→−∞ E[−Xe−sX ] is infinite, X∗(s)
must necessarily cross 1 − s/λ at another negative value pW > pX , which is the dominant
(non-removable) singularity of W ∗. Moreover, since the slopes of the curves at pW are dif-
ferent, the derivative of s− λ(1−X∗(s)) at pW is nonzero. It follows that pW is a pole of
degree 1. Because X∗ is a Laplace transform, it is analytic on its domain, which includes
the half-plane to the right of pW .

(ii) From the conclusions of (i), we find σ − λ
(
1− E[e−σX ]

)
6= 0 for every σ ∈ {s ∈

C0 | < (s) > pW }, where W ∗(σ) is nonzero. Since we also have lims→∞X∗(s) = 0, it follows
from (PK) that lims→∞ |W ∗(s)| ≤ 1.

(iii) On the vertical axis s = pW + it, the denominator of W ∗(s) is given by

{pW − λ(1− E[e−pWX cos(tX)]}+ i{t− λE[e−pWX sin(tX)]}. (G.1)

The real part of (G.1) can only be 0 if cos(tX) = 1 almost everywhere with respect to FX ,
where sin(tX) = 0 and the imaginary part of (G.1) reduces to t. Hence, the only singularity
on the axis s = pW + it is pW . Next, we show that it is not possible to find a sequence {ŝk}
of singularities of W ∗ such that <(ŝk)→ 0. Suppose it is: the sequence is either bounded or
not. If it is bounded, then there exists a subsequence of {ŝk} of poles converging towards a
point of the imaginary axis, which can only be pW , and consequently ŝk−λ(1−X∗(ŝk)) = 0
for the subsequence converging towards pW . By analytic continuation, s−λ(1−X∗(s)) = 0
in a neighborhood of pW , which is impossible. Suppose now that {ŝk} is unbounded and
converges to i∞. If ŝk = pW − δk + itk, the imaginary part of s− λ(1−X∗(s)) is given by

tk − λE[e−pWX sin(tkX)]− λE[Xe−pWX sin(tkX)]δk + o(δk), (G.2)

where |E[e−pWX sin(tkX)]| ≤ E[e−pWX ] = 1−pW /λ is a finite quantity, while the deviation
|E[Xe−pWX sin(tkX)]| ≤ E[Xe−pWX ] is dominated by the (finite) slope of X∗(s) at pW .
Since tk → ∞, (G.2) diverges, and the sequence does not exist. It follows that there is no
singularity with imaginary value arbitrarily close to that of pW .

(iv) The series expansion of W ∗ at 0 is W ∗(s) =
∑∞
k=0(E[Wk]/k!)(−s)k, where E[Wk]

is the kth moment of the waiting time distribution. These moments have known expressions
which satisfy E[Wk] = k!wk for all k—see e.g. [2, §5.1.5]). Hence (A.1) is the (unique) Taylor
expansion of W ∗ at 0. Now, the ratio test for this Taylor series tells us that {E[Wk]/k!}
grows asymptotically exponentially with asymptotic rate a if and only if the Taylor series
converges on the interior of a disc with radius a centered at the origin, and diverges outside
the disc, thus betraying the presence of a singularity of W ∗ on the circle. Besides, since
{E[Wk]/k!} has only real, nonnegative values, the series takes its largest absolute value on
the circle at the intersection with the negative branch of the real axis. It follows in that case
that −a = pW is the dominant singularity of W ∗.

(v) For n ∈ N and the specified point a, consider the cost function f(u) = (−u)ne−au =
(∂n/∂an)[e−au]. It follows from Table 1 and the Leibniz integral rule that

c′(u) = λ
1−ρ

∑n
k=0

(
n
k

) dn−kW∗(a)
dan−k

(−u)ke−au, (G.3)

and from Table 1 that

c′(u) = (−1)n λn!
1−ρ

∑n
k=0 wa:n−k

uke−au

k!

= λ
1−ρ

∑n
k=0

(
n
k

)
(−1)n−k(n− k)!wa:n−k(−uk)e−au.

(G.4)

Inspection of (G.3) and (G.4) then yields (dk/dak)[W ∗(a)]/k! = (−1)kwa:k for all k,
and (A.2) follows from the Taylor series of W ∗ at a. �

H Proof of Proposition 2 (variant)

This appendix contains an alternate proof for Proposition 2. First, we recall basic properties
of the M/G/1 queue.
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Lemma H.1 Let 0 ≤ u2 ≤ u1 and suppose that the M/G/1 queue, initially at state u1,
reaches state u2 for the first time after a random period of time T , during which N jobs
have arrived. Then,

(a) E [T ] = 1
1−ρ (u1 − u2), (b) E [N ] = λ

1−ρ (u1 − u2). (H.1)

Proof Lemma H.1 is a consequence of the law of large numbers. Consider n realizations
of the setting, and denote by T1, . . . , Tn the random values observed for the variable T ,

by N1, . . . , Nn those observed for the variable N , and by {Xk,l}
Nk
l=1, . . . , {Xk,l}

Nn
l=1. Since

the rate of the Poisson process is equal to the density of arrivals per unit of time,

λ = lim
n→∞

∑n
k=1 Nk∑n
k=1

Tk
=
(

lim
n→∞

∑n
k=1 Nk
n

)(
lim
n→∞

n∑n
k=1

Tk

)
=

E[N ]
E[T ]

. (H.2)

Similarly,

lim
n→∞

1
n

∑n
k=1

∑Nk
l=1Xk,l =

(
lim
n→∞

∑n
k=1

∑Nk
l=1

Xk,l∑n
k=1

Nk

)(
lim
n→∞

∑n
k=1 Nk
n

)
= E [X]E [N ] .

(H.3)

By definition of the variables, we also have u2 = u1 +
∑Nk
l=1Xk,l − Tk for k = 1, . . . , n, and

it follows that

E [T ] = limn→∞
1
n

∑n
k=1 Tk = u1 − u2 + limn→∞

1
n

∑n
k=1

∑Nk
l=1Xk,l

(H.3)
= u1 − u2 + E [X]E [N ]

(H.2)
= u1 − u2 + ρE [T ]

which yields (H.1a), and (H.1b) follows from (H.2). �

Proposition 2 (Value function) Let f satisfy Assumption 2 and be piecewise continu-
ous.

(i) The value function (VF) is continuous, almost everywhere continuously differentiable,
and semi-differentiable with right derivative

∂+v(u) = λ
(
f+(u)− f̄ + E [v(u+X)− v(u)]

)
, ∀u ∈ R>0, (DE)

where f+(u) := limt→u+ f(t). At u = 0, one has

v(0) = f(0)− f̄ + E[v(X0)], (BCa)

v′(0) = λ
(
f+(0)− f(0) + E[v(X)− v(X0)]

)
. (BCb)

(ii) The value function is given by

v(u) = v(0) + c(u)−
λf̄

1− ρ
u, ∀u ∈ R≥0, (S)

where c : R 7→ R is continuous, almost everywhere continuously differentiable, and semi-
differentiable with right-derivative

∂+c(u) =
λ

1− ρ
E [f(u+W )] , ∀u ∈ R. (CVF)

Proof (Proposition 2) Start the queue at state u. The quantity V (u, t) appearing in (VF)
rewrites, for any T ≥ 0 and for t large enough, as V (u, t) = V (u, T ) + V (U(T ), t − T ),
where U(T ) denotes the backlog observed after time T . It follows from the Markov property
of the system and from the the definition VF of the value function that

v(u) = E[V (u, T )− λf̄T ] + E[v(U(T ))]. (H.4)

We now turn to show the claims, starting with (ii), from which useful properties of v (exis-
tence, continuity) can be inferred.
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(ii) If in (H.4) u is taken to be the initial backlog of the queue and T is defined as
the time when the queueing system reaches the empty state (u = 0) for the first time, we
get (S), with c(u) = E[V (u, T )] defined as the expected total cost incurred until the queue
is first empty. In order to compute E[V (u1, T )], we introduce the following notion: given
any random set S containing a random number of stochastic real variables, we define the
measure ΨS : R→ R≥0 as ΨS((−∞, t]) = E[

∑
t′∈S θ(t−t′)] for all t ∈ R, where θ denotes the

step function with the convention θ(x) = 1 if x ≥ 0 and θ(x) = 0 otherwise. If a function f
is defined on the same domain as S and measurable with respect to ΨS , then

ΨSf =
´∞
−∞ f(ξ)ΨS(dξ) = E[

∑
t′∈S f(t′)] (H.5)

provided that f is integrable on R with respect to ΨS . In particular, if S denotes the set of
the times of the successive arrivals of a Poisson process with density λ initiated at a time t0,
we have ΨS(dt) = λ dt for t ≥ t0, and find ΨS((−∞, t]) = λ(t− t0)θ(t− t0).

To compute c(u), we report the arrival times of all the jobs landed during the random
period of time T , and classify the coinciding backlog values as follows:

Y1, Y1+U11, ..., Y1+U1M1
, Y2, Y2+U21, ..., Y2+U2M2

, Y3, ..., YN , YN+UN1, ..., YN+UNMN ,

in which B = {Y1, . . . , YN} is the longest nonincreasing sequence of backlogs and, for p =
1, . . . , N , Ap = {Up0, Up1, . . . , UpMp} is the sequence of relative backlog values interposed
in-between, where we have used the convention Up0 = 0 for p = 1, . . . N . First observe that
Y1, . . . , YN rewrite as Yp = u − Tp for p = 1, . . . , N , where the variables T1, T2, . . . form a
Poisson process with rate λ. It follows that ΨB is given by

ΨB(dt) = λ1[0,u](t) dt. (H.6)

We compute the quantities ΨA1
. . . , ΨAN , by applying the law of large numbers. First ob-

serve, for p ∈ {1, . . . , N}, that Up0, . . . , UpMp , Up0, . . . , UpMp , Up0, . . . form the successive
waiting times of an analogous M/G/1 queue with service time convention (X,X). Taking n
samples of the process, we find, for t ∈ R≥0,

ΨAp ([0, t]) = limn→∞
1
n

∑n
k=1

(∑M(k)
p

q=0 θ(t− U (k)
pq )
)

=
(

limn→∞

∑n
k=1(M

(k)
p +1)

n

)(
limn→∞

∑n
k=1

∑M
(k)
p

q=0 θ(t−U(k)
pq )∑n

k=1
(M

(k)
p +1)

)
= (1 + E[Mp])E[θ(t−W )]

(H.1b)
=

(
1 +

λE[Xp]
1−ρ

)
µW ([0, t]) =

µW ([0,t])
1−ρ .

(H.7)

We are now able to compute c(u), and we find

c(u) = E
[∑N

p=1

∑Mp
q=0 f(Yp + Upq)

]
= E

[∑N
p=1 E

[∑Mp
q=0 f(Yp + Upq)|Yp

]]
(H.5)
= E

[∑N
p=1

´∞
−∞ f(Yp + t)ΨAp (dt)

]
(H.7)
= 1

1−ρE
[∑N

p=1

´∞
0 f(Yp + t)µW (dt)

]
(H.5)
= 1

1−ρ
´∞
0

(´∞
0 f(ξ + t)µW (dt)

)
ΨB(dξ)

(H.6)
= λ

1−ρ
´ u
0

(´∞
0 f(ξ + t)µW (dt)

)
dξ

= λ
1−ρ
´ u
0 E [f(ξ +W )] dξ.

(H.8)

Then, (CVF) follows by right differentiation of (H.8).
(i) Let T = δ, where δ > 0 is a small time step. Since the inter-arrival times are

exponentially distributed, Prob(N = 0) = 1 − λδ + o(δ), Prob(N = 1) = λδ + o(δ), and
Prob(N ≥ 2) = o(δ).

First consider t > 0 and initialize the system at time u = t+δ. By considering separately
the three events N = 0, N = 1 and N > 1, we find that E[V (u, δ)] = λδ E[f(Û)] + o(δ),
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with Û uniformly distributed over (t, u], and E[v(U(δ))] = (1−λδ) v(t)+λδ E[v(t+X)]+o(δ).
Introducing these two results into (H.4) gives

v(t+ δ) = v(t) + λδ E[f(Û)− f̄ ] + λδ E[v(t+X)− v(t)] + o(δ), (H.9)

where under Assumption 2 the expectations are necessarily finite (cf. (iii)). By letting δ ↓ 0
in (H.9), we find that v is continuous, and right differentiable at t with right derivative

∂+v(u) = λ
(
f+(u)− f̄ + E[v(u+X)]− v(u)

)
, (H.10)

which holds for every u > 0 and inherits the piecewise continuity of f .

Now, if t = 0, δ > 0 and the system is started from u = 0, then E[V (u, δ)] =
λδ E[f(0)] + o(δ), E[v(U(δ))] = (1 − λδ) v(0) + λδ E[v(X0)] + o(δ) and, using (H.4) and
continuity arguments, we obtain (BCa). Then (BCb) follows by setting u = 0 in (H.10) and
substituting v(0) with its value computed in (BCa). �

I Derivation of Table B.1

Proof (Derivation of Table B.1) The expression for {wk} were derived either by combi-
nation of (PK) and (III.7), or by computation of the moments E[Xk] and development
of (III.3).

(M/D/1) Before showing (B.1), observe from (B.2a)-(B.2b) that the quantity n!φ(m,n)
is in fact the number of possible scenarios that may occur when placing n distinct objects
(unordered) into m numbered urns so that each urn contains at least two objects (n ≥ 2m).
For k = 1, (B.1) follows directly from (III.3). If we suppose that (B.1) holds for k = 1, . . . , p,
then, using E[Xk] = xk,

wp+1
(III.3)

= λ
1−λx

[
xp+2

(p+2)!
+
∑p
t=1

xp−t+2

(p−t+2)!
wt
]

(B.1)
= λ

1−λx
[
xp+2

(p+2)!
+
∑p
t=1

xp−t+2

(p−t+2)!

∑t
q=1( λ

1−λx )q φ(q, t+ q)xt+q
]

= λ
1−λx

xp+2

(p+2)!
+
∑p
q=1( λ

1−λx )q+1
∑p
t=q φ(q, t+ q) x

p+q+2

(p−t+2)!
(II.2a)

= λ
1−λxφ(1, p+ 2)xp+2 +

∑p+1
q=2( λ

1−λx )q
[∑p

l=q−1
φ(q−1,q−1+l)

(p−l+2)!

]
xp+1+q

(B.2b)
=

∑p+1
q=1

(
λ

1−λx
)q
φ(q, p+ 1 + q)xp+1+q

and (B.1) holds for all k by induction. We obtain in (B.2a)-(B.2b) a recusrsive procedure
for computing the values of {φ(m,n)}. Identity (B.2c), which follows from (B.2a)-(B.2b),
tends to simplify and accelerate the process in practice. As for the poles of W ∗ (cf. Figure 2,
they are the (nonzero) solutions of s− λ(1− e−sx) = 0 or, equivalently, (s− λ)xe(s−λ)x =
−λxe−λx, which is an instance of the equation zez = a, the solutions of which are given by
Wn (a), where Wn is the nth branch of the product logarithm function Wn, [1].

(M/M/1) W ∗ follows from (PK) and X∗(s) = ω/(s+ ω). After successive derivations
of W ∗(−s), which rewrites as W ∗(−s) = [(ω − λ)/ω] [1+λ/(ω − λ− s)], we compute (III.7)
and find wa:k = [(ω − λ)/ω] [δ[k] + λ(ω − λ− a)−k−1], which reduces to (B.3) when a = 0.

(M/Eq/1) In (B.5a)-(B.5b), ϕ(q)(m,n) can be understood, for q ≥ 1 and n ≥ 2m, as
the number of possible outcomes when m ordered collections of n1, n2, . . . , nm unordered
objects are respectively picked out of m urns 1, 2, . . . ,m so that n1 + · · · + nm = n and
np ≥ 2 for p = 1, . . . ,m, where each urn p is initially assumed to contain q−1 distinct objets
plus np objects randomly drawn (without repetition) from a common set of n additional
distinct objects (p = 1, . . . ,m). We now turn to show (B.4). It is easy to verify that (B.4) is
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C1/ε

Cε(0) Cε(τ)

P(fk)

τ 1
σ <(s)0

=(s)

ε

1/ε

Fig. 6: Singularities of fk(s) s
−1/2]−π(s− τ)

−1/2
]−π (1− σs)−l(k) and compu-

tation of α̂k(σ) by contour integration.

true for k = 1. Suppose now that (B.4) holds for k = 1, . . . , p, then

wp+1
(III.3)

= λω
ω−qλ

[ (p+q+1
q−1

)
ω−(p+2) +

∑p
t=1

(
p−t+q+1
q−1

)
ω−(p−t+2)wt

]
(B.4)
= λ

ωp+1(ω−qλ)
[ (p+q+1

q−1

)
+
∑p
t=1

(
p−t+q+1
q−1

)
ωt
(∑t

l=1( λ
ω−qλ )l

ϕ(q)(l,t+l)
ωt

)]
= λ

ωp+1(ω−qλ)
[ (p+q+1

q−1

)
+
∑p
l=1( λ

ω−qλ )l
∑p
t=l

(
p−t+q+1
q−1

)
ϕ(q)(l, t+ l)

]
(B.5a)

= λ
ωp+1(ω−qλ)ϕ

(q)(1, p+ 2)

+ λ
ωp+1(ω−qλ)

∑p
l=1( λ

ω−qλ )l
(∑l+p

m=2l

(
q+(p+l+2)−m−1
q−1

)
ϕ(q)(l,m)

)
(B.5b)

= 1
ωp+1

∑p+1
l=1 ( λ

ω−qλ )lϕ(q)(l, p+ 1 + l)

and (B.4) holds for all k by induction. �

J Proof of Lemma D.1

Lemma D.1 (Coefficients {α̃k} for quotients of polynomials) Let gm and hn be poly-
nomials of degrees m and n, and consider

f(u) =
gm(u)

hn(u)
, ∀u ∈ R≥0.

For τ > 0, recall (IV.19) and define fk(s) = f(s) pk(2s/τ − 1) under the assumption
P(fk) ∩ [0,∞) = ∅. The Fourier coefficients (IV.21) of f satisfy, for k ≥ 0,

α̃k =
√
π

l(k)∑
q=0

ζ−q (−τ)q

q!Γ
(
1
2
− q
) − ∑

a∈P(fk)

Ress=a
(
fk(s) s−

1
2 ]−π(s− τ)−

1
2 ]−π

)
, (D.9)

where l(k) = max(0,m−n+k) is the largest nonnegative integer l such that lims→0 slfk
(
1
s

)
is finite, and {ζq} are the coefficients of the Laurent series at +∞ of the analytic continu-
ation of fk, i.e.,

ζq =
1

(l(k) + q)!
lim
s→0

dl(k)+q

dsl(k)+q

[
sl(k)fk

(
1

s

)]
, (q = −l(k), . . . ,∞). (J.1)
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Proof We would like to compute

α̃k
(IV.21)

=
1

π

ˆ τ
0

gm(u) pk
(
2u
τ
− 1
)

hn(u)
√
u(τ − u)

du, (J.2)

for any k ∈ N≥0. For l ∈ N≥0 and σ � 1/τ , we define the altered coefficient

α̂k(σ) =
1

π

ˆ τ
0

gm(u) pk
(
2u
τ
− 1
)

hn(u) (1− σu)l
√
u(τ − u)

du,

which has the property to converge to <(α̃k) as σ ↓ 0. Indeed, since by assumption f and pk
are bounded on [0, τ ], the integrand of (J.2) is absolutely integrable on the interval. As
soon as σ ≤ 1/(2τ), one has |(1− σu)−l| ≤ 2l and the conditions of Lebesgue’s dominated
convergence theorem are met. Now, consider the contour integral in the complex domain

γk(σ) = 1
π

�
C

(
gm(s) pk( 2s

τ
−1)

hn(s) (1−σs)l

)
s−

1
2 ]−π (s− τ)−

1
2 ]−π ds

= 1
π

( �
C1/ε

+
ff
Cε(0)+

´ τ−ε
ε +

ff
Cε(τ)+

´ ε
τ−ε

)
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l ds,
(J.3)

where sα]−π = eα(ln |s|+i arg s]−π) denotes the principal branch of the complex exponentia-
tion, and the circles C1/ε, Cε(0), and Cε(τ) are understood as in Figure 6 with ε > 0 chosen
small enough so that 1/σ and the poles of fk all lie between the outer contour Cε and the
inner contour.

We proceed to compute γk(σ) term by term. Let l = max(0,m − n + k). First notice
that

lims→∞
(
s− τ

2

) ( fk(s)

(1−σs)l

)
s−

1
2 ]−π(s− τ)−

1
2 ]−π

(J.1)
=

ζ−l
(−σ)l

where we consider that ζ−l = 0 whenever m−n+k < 0. By using Jordan’s second lemma [3,
§3.1.4, Theorem 2] (or, equivalently, by computing the residue at ∞), we find

limε→0
1
π

�
C1/ε

fk(s) s
− 1

2 ]−π(s−τ)
− 1

2 ]−π
(1−σs)l ds =

2i ζ−l
(−σ)l .

(J.4)

Besides, limε→a(s − a)fk(s) s−
1
2 ]−π(s− τ)−

1
2 ]−π (1 − σs)−l = 0 for a = 0, τ as a con-

sequence of the assumption 0, τ /∈ P(fk). It follows from Jordan’s first lemma [3, §3.1.4,
Theorem 1] that

lims→0,τ
1
π

(ff
Cε(0) +

ff
Cε(τ)

)
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l ds = 0. (J.5)

Lastly, by inspection of s−
1
2 ]−π(s− τ)−

1
2 ]−π right above and below the segment (0, τ), it

can be seen that

limε→0
1
π

(´ τ−ε
ε +

´ ε
τ−ε

)
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l ds = −2i α̂k(σ). (J.6)

On the other hand the residue theorem gives

γk(σ) =
(
1
π

)
2iπ

∑
a∈P(fk)∪{ 1

σ
} Ress=a

(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)
(J.7)

We draw our attention to the residue at 1/σ. Using the Taylor development of (1−xτ)−1/2−j

at x = 0 we find, for σ < τ and t ∈ N≥0,

lims→ 1
σ

dt

dst

[
s−

1
2 ]−π(s− τ)−

1
2 ]−π

]
= σt+1

∑t
j=0

(
t
j

)
Γ( 1

2 )2(1−στ)
1
2
−j

Γ( 1
2
−j)Γ( 1

2
−t+j)

= σt+1
∑∞
q=0

[∑t
j=0

(
t
j

)
Γ( 1

2 )2

Γ( 1
2
−q−j)Γ( 1

2
−t+j)

]
(−στ)q
q!

.

(J.8)
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For large s, the value of fk(s) is given by the Laurent series expansion of fk at +∞, i.e.,

fk(s) =
∑∞
q=−l ζq s

−q , (0� |s| <∞). (J.9)

Then,

Ress= 1
σ

(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)
= lims→ 1

σ

1
(l−1)!

dl−1

dsl−1

[
(s− 1

σ
)l
(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)]
(J.8)
=

(− 1
σ
)l

(l−1)!

∑l−1
t=0

(
l−1
t

)
f
(l−1−t)
k ( 1

σ )
( 1
σ
)t+1

∑∞
q=0

[∑t
j=0

(
t
j

)
Γ( 1

2 )2

Γ( 1
2
−q−j)Γ( 1

2
−t+j)

]
(−στ)q
q!

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

(−στ)q
q!

∑l−1
t=0

(
l−1
t

)
f
(l−1−t)
k ( 1

σ )

( 1
σ
)t+1

∑l−1
j=0

(
t
j

)
Γ( 1

2 )2

Γ( 1
2
−q−j)Γ( 1

2
−t+j)

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

(−στ)q
q!

∑l−1
j=0

Γ( 1
2 )

Γ( 1
2
−q−j)

∑l−1
t=j

(
l−1
t

)(
t
j

)
Γ( 1

2 )f(l−1−t)
k ( 1

σ )

( 1
σ
)1+tΓ( 1

2
−t+j)

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

(−τ)q
q!

∑l−1
j=0

(
l−1
j

)
Γ( 1

2 )( 1
σ
)
− 1

2
−q−j

Γ( 1
2
−q−j)

∑l−1−j
t=0

(
l−1−j
t

)
Γ( 1

2 )f(l−1−j−t)
k ( 1

σ )

( 1
σ
)
1
2
+t

Γ( 1
2
−t)

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

Γ( 1
2 )(−τ)q

q!Γ( 1
2
−q)

∑l−1
j=0

(
l−1
j

)
dl−1−j

dxl−1−j

[
x−q√
x

]
x= 1

σ

dl−1−j

dxl−1−j

[
fk(x)√

x

]
x= 1

σ

=
(− 1

σ
)l

(l−1)!

∑∞
q=0

Γ( 1
2 )(−τ)q

q!Γ( 1
2
−q)

dl−1

dxl−1

[
x−(q+1)fk(x)

]
x= 1

σ
.

For small σ, the function fk is analytic in a neighborhood of 1/σ, and so is s−(q+1)fk(s) for
any q. It follows that the derivation in (J.10) applies term by term to the Laurent series (J.9),
and we find

Ress= 1
σ

(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)
(J.9)
=

(− 1
σ
)l

(l−1)!

∑∞
q=0

(
Γ( 1

2 )
Γ( 1

2
−q)

)
(−τ)q
q!

dl−1

dxl−1

[∑∞
j=−l ζj x

−(j+q+1)
]
x= 1

σ

=
ζ−l

(−σ)l −
∑∞
q=0

(
Γ( 1

2 )
Γ( 1

2
−q)

)
(−στ)q
q!

∑∞
j=−min(q,l)

(
l−1+q+j
l−1

)
ζj σ

j .

(J.10)

Observe on the other hand that, for q + j ≥ 0,∣∣∣(l−1+q+j
l−1

)∣∣∣ ≤ (l−1+q+j)l−1

(l−1)!
≤
∑∞
t=0

(l−1+q+j)t

t!
≤ el−1+q+j .

Hence, for small σ,∑∞
j=−min(q,l)

∣∣∣(l−1+q+j
l−1

)
ζj σ

j
∣∣∣ ≤ el−1+q

∑∞
j=−l |ζj | (σe)j ≤ κ(σ, l) el−1+q , (J.11)

with κ(σ, l) <∞ by absolute convergence of the above series. Consequently,

∞∑
q=0

∞∑
j=−min(q,l)

∣∣∣∣( Γ( 1
2 )

Γ( 1
2
−q)

)
(−στ)q
q!

(
l−1+q+j
l−1

)
ζj σ

j

∣∣∣∣ (J.11)

≤ κ(σ, l)el−1
∞∑
q=0

(
Γ( 1

2 )
Γ( 1

2
−q)

)
(στ)q

q!
eq

is a finite quantity as it passes the ratio test for σ < 1/τ—this can be shown using Stir-
ling’s formula. It follows from Fubini’s theorem that the summation order in (J.10) can be
permuted. By setting t = j + q we find

Ress= 1
σ

(
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l

)
=

ζ−l
(−σ)l −

∑∞
q=0

∑∞
t=max(0,q−l)

[
ζt−q

(
l−1+t
l−1

)(
Γ( 1

2 )
Γ( 1

2
−q)

)
(−τ)q
q!

]
σt

=
ζ−l

(−σ)l −
∑l
q=0 ζ−q

(
Γ( 1

2 )
Γ( 1

2
−q)

)
(−τ)q
q!

+O(σ).

(J.12)

We eventually obtain (D.9) by combining (J.3) and (J.7), together with the intermediate
results (J.4), (J.5), (J.6), and (J.12), and letting σ → 0. �
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3. Mitrinović, D., Kečkić, J.: The Cauchy Method of Residues: Theory and Applications.
Math. Appl. D. Reidel Publishing Company, Dordrecht, Holland (1984)


	E Proof of (III.2)
	F Proof of (IV.10)
	G Proof of Proposition A.1
	H Proof of Proposition 2 (variant)
	I Derivation of Table B.1
	J Proof of Lemma D.1

