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Dispatching to Parallel Servers

Solutions of Poisson’s Equation for First-Policy Improvement

Olivier Bilenne

Abstract Policy iteration techniques for multiple-server dispatching rely on
the computation of value functions. In this context, we consider the continuous-
space M/G/1-FCFS queue endowed with an arbitrarily-designed cost function
for the waiting times of the incoming jobs. The associated value function is
a solution of Poisson’s equation for Markov chains, which in this work we
solve in the Laplace transform domain by considering an ancillary, underlying
stochastic process extended to (imaginary) negative backlog states. This con-
struction enables us to issue closed-form value functions for polynomial and
exponential cost functions and for piecewise compositions of the latter, in turn
permitting the derivation of interval bounds for the value function in the form
of power series or trigonometric sums. We review various cost approximation
schemes and assess the convergence of the interval bounds these induce on
the value function. Namely: Taylor expansions (divergent, except for a narrow
class of entire functions with low orders of growth), and uniform approxima-
tion schemes (polynomials, trigonometric), which achieve optimal convergence
rates over finite intervals. This study addresses all the steps to implementing
dispatching policies for systems of parallel servers, from the specification of
general cost functions towards the computation of interval bounds for the
value functions and the exact implementation of the first-policy improvement
step.
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Fig. 1: Size-aware dispatching with i.i.d. service times (Xn
d
= X for all n) and

i.i.d. inter-arrival times (Tn ∼ Exp(λ) for all n) to k M/G/1-FCFS servers
with backlog u = (u1, . . . , uk).
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I Introduction

An essential design aspect for systems of parallel servers resides in the alloca-
tion of the processing resources to the impending workload. In the allocation
problem, commonly referred to as dispatching (also: task assignment or rout-
ing), one server must be assigned to each incoming job in a way so as to
minimize a performance metric of interest: parallel computing (mobile cloud
computing, server clusters, supercomputers), industrial logistics (customer ser-
vice systems), and traffic congestion management (visitor queues, road tolls).

We are interested in sytems composed of several first-come, first-served
(FCFS) queueing servers operated in parallel, and fed with a sequence of jobs
with Markovian arrival times. In our model, illustrated in Figure 1, every new
job turning up at the dispatcher is instantly forwarded towards one of the
servers, where a penalty is incurred as a function of the backlog (uncompleted
work) at the server upon job arrival—server backlog thus coinciding with the
waiting time of the job until processing begins. Our objective is to minimize
the average cost experienced by the system over an infinite time horizon.

A standard approach for solving this problem is through policy iteration
(PI), [15,5]. Starting with an inital dispatching policy, PI proceeds in two steps,
repeated in turn until a fixed policy is reached: (i) policy evaluation, where
the mean cost of the considered policy is computed, together with a value
function expressing state sensitivity with respect to the steady-state costs
induced by the policy; followed by (ii) policy improvement, where the value
function is exploited to improve the current policy and derive a new, more cost-
effective dispatching policy. The policy evaluation step is difficult to implement
in continuous state spaces without extensive Monte Carlo simulations. Only
the first PI iteration on a tractable, random initial policy is easier to carry
out, because the job flow then decomposes into independent Poisson processes
for the individual queueing servers, and the value function takes a separable
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form, solution of the so-called Poisson equation. The first-policy improvement
(FPI) approach (also known as one-step policy iteration, and variants) consists
of cutting short the policy iteration algorithm after the first iteration. The
motivation behind FPI is twofold: it is known that a single iteration of the PI
algorithm may produce fine heuristics (see e.g. [28,41,35,38,6] or [39, §7.5])
and, besides, the Poisson equation for Markov chains admits explicit solutions
readily available for effortless PI.

Related work and our contribution. The existence of explicit solutions to
the Poisson equation for the waiting times of the M/G/1 queue was pointed
out in [12], where a general solution to Poisson’s equation was proposed in the
form of a fundamental kernel, whose application to the cost function produces
solutions of the equation. These solutions proved, in particular, to take closed
forms for cost functions given as moments of the waiting time, f(u) = un.
There followed a list of derivations of explicit value functions for Markovian
queueing systems: both in discrete-space settings where only the number of
yet unprocessed jobs at the servers is known to the dispatcher and (typically)
the expected sojourn times of the incoming jobs are penalized, [28,38,7,6];
and in ‘size-aware’ continuous-space settings where the service times of the
jobs become available to the dispatcher upon arrival and the actual waiting
or sojourn times are penalized, [1,22,16,17,21]. Recent studies on size-aware
dispatching renewed the interest in explicit Poisson solutions, extending their
class in [19] to the fixed-deadline cost functions f(u) = 1[τ,∞)(u), and to
exponential costs in [20], with views on polynomials. In the discrete space
setting, the forms f [u] = una−u and f [u] = δ[u− a] were identified in [10]
as candidates for closed-form value functions, via transform-domain analysis
(based on generating functions) of the general solution of Poisson’s equation—
a methodology in spirit similar to the approach we will use in our study.

In this work we extend the collection of explicit solutions of the continuous-
space Poisson equation to f(u) = une−au, and we develop a methodology based
on complex analysis for solving Poisson’s equation that covers a more general
class of piecewise continuous cost functions. Our motivation behind piecewise-
definite functions is the possibility they offer to derive, under mild conditions
for the cost function, tight bounds to the corresponding value function, which
enable us to perform the FPI step exactly. Our developments depart from
previous studies by proposing a comprehensive implementation of FPI in con-
tinuous spaces with cost functions of any general kind.

Outline. The paper is structured as follows. Section II contains a more de-
tailed presentation of FPI and introduces the value function as the solution of
Poisson’s equation. This equation is solved in Section III from the viewpoint of
complex analysis (III.1); complex analysis which allows us to derive the value
function of the M/G/1 queue for cost functions of the type f(u) = une−au

(III.2), and to provide a method of solution for piecewise-defined costs (III.3).
Various solutions previously reported in the literature are then reconciled
through basic case studies (Appendix C). In Section IV we consider cost func-
tions given as convergent series: successively, Taylor series (IV.1), Bernstein
polynomials (IV.2.1), trigonometric sums (IV.2.2), and near-optimal polyno-
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mials (IV.2.3); and we propose an algorithm for computing FPI policies based
on approximations of the cost functions. We conclude with a full implementa-
tion of the FPI dispatcher for the cost function f(u) = u2/(a2 + u2), picked
for illustrative purposes, in the case of a two-server system with exponentially
distributed service times.

II Preliminaries

II.1 Policy iteration and first-policy improvement.

Consider the system depicted in Figure 1, where jobs, arriving according to
a Poisson process with rate λ, are dispatched upon arrival towards one of
the k servers (1, . . . , k) selected by a (possibly random) dispatching policy
π(u, x), where u = (u1, . . . , uk) ∈ Rk≥0 denotes the server backlog vector
and x = (x1, . . . , xk) ∈ Rk≥0 are the prospective service times of an incoming
job at the servers. By taking snapshots at intitial time n = 0 and at the job
arrival times (n = 1, 2, 3, . . . ), the continuous-time system reduces to a Markov
decision process (MDP), (Φπn)n∈N, with state Φπn = (Un, Xn) ∈ Ω ≡ Rk≥0×Rk≥0,
where Xn is the service time vector of the nth job and Un is the backlog
of the system at the time of arrival, and with transition probability kernel
P = (P1, . . . , Pk) such that, for any n and every (u, x) ∈ Ω, S ⊂ Ω,

Pi(u, x,S) := Prob(Φπn+1 ∈ S|Φπn = (u, x), π(u, x) = i)
= Pi((u1, . . . , ui + x, . . . , uk), 0,S).

Assume that the performance of the system is measured by a cost function f =
(f1, . . . , fk), where f(i, u, x) ≡ fi(ui) 1R>0(x) models a penalty incurred when
a job with service time x joins server i, given backlog state u = (u1, . . . , uk).
We would like to minimize the expected total cost, defined by

Jπ = lim sup
N→∞

1

N

N∑
n=1

E [f (π(Φπn), Φπn)] ,

independently of Φπ0 . The optimality equations of the system are

g(u, x) = mini [fi(ui) + Pig(u, x)]− ς, (OEa)

π(u, x) ∈ arg mini [fi(ui) + Pig(u, x)] , (OEb)

where Pig(u, x) =
´
Ω
g(t, y)Pi(u, x, d(t, y)) ≡ Pig((u1, . . . , ui + xi, . . . , uk), 0).

If one can find ς∗ > 0, a policy π∗, and an integrable function g such that (g, ς∗)
solves (OEa) and π∗ satisfies (OEb), then π∗ is the optimal policy and ς∗ =
limN→∞(1/N)

∑
N
n=1 E

[
f
(
π∗(Φπ

∗
n ), Φπ

∗
n

)]
is the optimal cost of the system,

[23,2,30,31]. The policy iteration algorithm for solving (OE) can be described
as follows, [15]. Given an initial policy π(0), find, for k ≥ 0, a function g(k), a
mean cost ς(k), and a policy π(k+1) satisfying

g(k)(u, x) = f(π(k)(u, x), u, x) + Pπ(k)(u,x)g
(k)(u, x)− ς(k) (PIa)

π(k+1)(u, x) ∈ arg mini
[
fi(ui) + v(k)(u1, . . . , ui + xi, . . . , uk)

]
(PIb)
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where (PIa) is the policy evaluation step, (PIb) is the policy improvement
step and v(k)(u) :=

´
Ω
g(k)(t, y)P (u, 0, d(t, y))− ς(k) defines the value function

under policy π(k). Under favorable conditions, (π(k), ς(k)) eventually converges
towards a solution (π∗, ς∗). Solving (PIb), however, is generally difficult.

The first iteration of (PI) may still be implemented easily if the initial
policy π(0) ≡ π is a random Bernoulli-split between the servers. In that case,
the multiple-server system decomposes into k independent M/G/1 queues with
arrival rates λ1, . . . , λk and transition probability kernels P (λ1), . . . , P (λk), with
λ1 + · · · + λk = λ. The first-policy improvement approach then consists in
stopping the PI algorithm after a single iteration, by solving

gi(ui, xi) = P (λi)gi(ui, xi) + fi(ui)− ςi, (i = 1, . . . , k) (FPIa)

π̂(u, x) ∈ arg min
i
Ai(u, x), (FPIb)

where

Ai(u, x) = fi(ui) + vi(ui + xi)− vi(ui) (AC)

is the admission cost at server i, and vi(t) := P (λi)gi(t, 0) − ςi is the value
function at i. Observe that (FPIa) is an instance of the Poisson equation
g = Pg + f under

´
f(u) ν(du) = 0, where ν denotes the non-trivial measure

invariant for the transition kernel P (i.e., Pν = ν), [33,34,3]. In (FPIa), ν
coincides with the asymptotic probability measure of the waiting times at
server i. All integrable solutions of (FPIa) with respect to the asymptotic
waiting time probability measure are equal up to an additive constant, [13].
Besides, due to the existence of a strong law of large numbers and a central
limit theorem for the costs, [12,13], vi and ςi can be estimated empirically,
though at the price of extensive numerical simulations. Lastly, and preferably,
some solutions of (FPIa) are known to exist in closed form; deriving explicit
solutions of this kind is the direction we will explore in this work.

II.2 Value function of the M/G/1 queue.

In view of the previous discussion, we consider an individual server modeled
by a continuous-state FCFS-M/G/1 queue. The queue is fed with a sequence
of jobs with random arrival times modulated by a Poisson point process with
rate λ > 0, [14,11]. The dynamics of the queue is modeled by the equation

Un+1 =
[
Un +Xn − Tn+1

]+
, n ≥ 0, (Q)

where Xn denotes the service time of the nth incoming job, Un is the coinciding
queue backlog upon arrival, and Tn+1 is the inter-arrival time for Xn+1.

Notation 1 For any real random variable Y , the probability measure associ-
ated with Y , its cumulative probability distribution, and its probability density
function are respectively denoted by µY , FY : R 7→ [0, 1], and F ′Y : R 7→
[0,+∞], with Prob(Y ≤ y) = µY ((−∞, y]) = FY (y) =

´ y
−∞ F ′Y (u) du.
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The service time of every incoming job is assumed as in [40] to be random, con-
ditioned on the activity of the queue at the time of arrival, and independent of
the other factors; it is distributed either like the positive random variable X
if on arrival the queue is busy processing a previous job, or like a second
positive random variable X0 if the queue is idle (empty), where X0 may dif-
fer from X in distribution, thus accounting for a setup delay that the queue
might require to wake up from its idle state. It follows that of the transition
kernel P (u, x,S) = Prob((Un+1, Xn+1) ∈ S|(Un, Xn) = (u, x)) of the MDP
((Un, Xn))n∈N rewrites as

P (u, x,U × X ) =

{
P (u+ x, {0})µX0(X ) if U = {0}
P (u+ x,U)µX(X ) if U 6⊃ {0}

}
, (II.1)

where, for all u ≥ 0,

P (u, [0, t]) = e−λ(u−t) ∀t ∈ [0, u], P (u,R \ [0, u]) = 0. (II.2)

Consider a cost function f : R≥0 7→ R quantifying the (expected) penalty
f(u) incurred when a job joins the queue at backlog state u ∈ R≥0. The
stability of the queue is guaranteed by a server utilization ratio ρ = λE[X] less
than 1, and by a finite mean service time at u = 0, i.e., ρ̃ = λE[X0] <∞.

Assumption 1 (Stability) ρ < 1, ρ̃ <∞.

All in all, the server model considered throughout the paper is:

Server Model The FCFS-M/G/1 queue (Q) with arrival rate λ and service
times (X,X0) satisfying Assumption 1, endowed with a cost function f .

We complete our model with assumptions on the costs that guarantee existence
of the value function. Some notations are first introduced.

Notation 2 Ergodicity implies the existence of a unique asymptotic proba-
bility distribution FW̃ for the waiting times, where W̃ symbolizes a random
variable distributed accordingly. A distinction is made between the actual sta-
tionary waiting times, with service time convention (X,X0), and the waiting
times that would ensue with the convention (X,X), modeled by the variable W
with distribution FW . The Laplace-Stieltjes transforms of X, X0 and W are
denoted by X∗, X∗0 and W ∗, respectively, where X∗(s) = E[e−sX ].

Assumption 2 (Cost integrability) |f | is µW - and and µW̃ -integrable.

For any u ∈ R≥0 and any time horizon t ≥ 0, we denote by V (u, t) the
(random) total cost incurred over a time interval of the type [t0, t0 + t) when
the backlog at time t0 is u. Under Assumption 2, the quantity V (u, t) averaged
over the number of arrivals in the time window tends as t → ∞ to the mean
cost per job f̄ = E[f(W̃ )]. The value function v : R≥0 7→ R is then defined by

v(u) = lim
t→∞

{
E[V (u, t)]− λf̄t

}
, ∀u ≥ 0, (VF)

as an expression of the state sensitivity of the costs with respect to the
steady-state regime. In order to compute (VF), we will regard v as a solution
of the following Poisson equation, derived in Appendix A.
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Proposition 1 (Poisson equation) Let Assumption 2 hold. The value func-
tion (VF) rewrites as v(u) = g(u, 0)−f(u) = Pg(u, 0)− f̄ for some g : R≥0 7→
R solution of the Poisson equation

g(u, x) = Pg(u, x) + f(u)− f̄ , (PE)

where Pg(u, x) :=
´
g(t, y)P (u, x, d(t, y)).

A general solution to (PE) was given in [12] under the integral form g(u, x) =´ +∞
0

f(t)Γ (u, x, dt) dt, where Γ defines the solution kernel of the queue. Al-
though closed-form value functions can be inferred from this integral form,
it is impractical for a systematic derivation of solutions. In Section III we
take a different approach by considering a transform-domain expression of the
solutions of PE, obtained by complex analysis of the Poisson equation.

III Closed-form value functions.

In this section we develop the tools that will help us compute value functions.

III.1 Characterization of the value function

Before proceeding, recall the Pollaczek-Khintchine formula for the Laplace-
Stieltjes transform of W , [36,25], which we characterize in Appendix A:

W ∗(s) =
(1− ρ)s

s− λ(1−X∗(s))
. (PK)

Let pW denote the dominant singularity of W ∗ which, in view of Proposi-
tion A.1(i), is a real negative pole. In the transform domain, µW -integrability
of |f | reduces to a condition on the relative positions of the singularities
of W ∗(−s) and those of Lf (s) =

´∞
0
e−su f(u) du, the Laplace transform of f .

Concretely, the regions of absolute convergence (ROCs) of W ∗(−s) and Lf (s)
(two open half-planes with normal vectors pointing in opposite directions)
should have nonempty intersection. This condition (Assumption 3) is illus-
trated in Figure 2 for the case of constant service times.

Assumption 3 The cost function f satisfies −pW ∈ ROC(Lf ).

For analysis purposes, we now extend the nonnegative process (Q) to nega-
tive backlog values by presuming of a (fictitious) stochastic process governed
by (PE) over the entire real axis. We set the scene as follows.

First, we let f(u) = 0 for u < 0, and we complete (II.2) with P (u, [t, u]) =
1− e−λ(u−t) if u < 0, thus conjecturing for (II.1) the R<0 behaviour

Un+1 = Un +Xn − Tn+1 if Un +Xn < 0, n ≥ 0. (Q−)

Observe that the so extended Markov process loses the irreducibility of (Q),
since the process remains caught in R≥0 once it has occupied a nonnegative
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<(s)0

=(s)

γ

Cr C−r

ROC(B∂+c)

−pW

−P(W ∗)

r

Fig. 2: Convergence of B∂+c for constant service times X = x and step cost
function f(u) = 1[τ,∞)(u), with τ > 0: Lf (s) = 1/s has one pole at s = 0 with
ROC(Lf ) = {s ∈ C | <(s) > 0}, while W ∗(−s) = (1− λx)s/[s+ λ(1− esx)]
has an infinity of poles at s = −λ[1 + (1/ρ) Wk (−ρe−ρ)] for k ∈ Z0, where
ρ = λx and Wk denotes the kth branch of the product logarithm function,
with −pW = −λ[1 + (1/ρ) W−1 (−ρe−ρ)] > 0, [9].

state. Otherwise, it is expected to drift towards u = −∞, where its chances
vanish to ever reach R≥0. Next, we consider an ancillary, more tractable tran-
sition kernel P̂ of the type (II.1) with uniform dynamics for the backlogs:

P̂ (u, [t, u]) = 1− e−λ(u−t), ∀u ∈ R. (III.1)

The Poisson equation (PE) then rewrites as the simple form

g(u, x) = P̂ g(u, x) + f̂(u, x), (PE’)

where f̂(u, x) := ∆(u+ x) + f(u)− f̄ 1[0,+∞)(u), and ∆(u) := (P − P̂ )g(u, 0).
Clearly, (PE’) retains the property that its solutions are defined up to a con-
stant. By construction, they also solve (PE) on R≥0. The true and virtual parts
of these solutions over R<0 are identified by Theorem 1.

Theorem 1 (Extended Poisson equation) Let Assumption 3 hold. Every
solution of (PE’) has the form g(u, x) = v̂(u+x)+f(u)+r(u+x) 1(−∞,−x)(u)
for some r : R 7→ R common to all solutions and for v̂ : R 7→ R satisfying

v̂(u) = v(0) + c(u)− λf̄

1− ρ
u1[0,+∞)(u) + r(u) 1(−∞,0)(u), ∀u ∈ R, (Ŝ)

where the two-sided Laplace transform of the right derivative of c, B∂+c(s) =´∞
−∞ e−su ∂+c(u) du, is given on its nonempty region of convergence by

B∂+c(s) =
λ

(1− ρ)
W ∗(−s)Lf (s). (C)
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Theorem 1 can be shown by transform-domain analysis of the solutions of (PE’).
The proofs of all the results given in this section are deferred to Appendix A.

The function v̂ in (Ŝ) is an extension of the value function to the nega-
tive backlogs, with v̂(u) ≡ v(u) if u ≥ 0. Theorem 1 suggests that the value
function (VF) characterizes the M/G/1 queue (Q) as much as the imaginary
process (Q−) taking place in the negative backlog values. What is more, the
hidden negative end of the queue seems to hold the key to solving the associ-
ated Poisson equation in the transform domain.

By inverse transformation of (Ŝ), we obtain the following results.

Proposition 2 (Value function) Let f satisfy Assumption 2 and be piece-
wise continuous.

(i) The value function (VF) is continuous, almost everywhere continuously
differentiable, and semi-differentiable with right derivative

∂+v(u) = λ
(
f+(u)− f̄ + E [v(u+X)− v(u)]

)
, ∀u ∈ R>0, (DE)

where f+(u) := limt→u+ f(t). At u = 0, one has

v(0) = f(0)− f̄ + E[v(X0)], (BCa)

v′(0) = λ
(
f+(0)− f(0) + E[v(X)− v(X0)]

)
. (BCb)

(ii) The value function is given by

v(u) = v(0) + c(u)− λf̄

1− ρ
u, ∀u ∈ R≥0, (S)

where c : R 7→ R is continuous, almost everywhere continuously differentiable,
and semi-differentiable with right-derivative

∂+c(u) =
λ

1− ρ
E [f(u+W )] , ∀u ∈ R. (CVF)

Equation (DE) in Proposition 2(i) was for instance used in [19] to derive the
value function of the M/D/1 queue with a step cost function 1[τ,∞). However,
the expectation of the random jump v(· + X), makes (DE) difficult to solve
for v in the general case. The result reported in (ii) is but the expression taken
by the kernel solution of [12] in the limit case where the invariant measure
of the Poisson equation coincides with the stationary measure of the waiting
times. A relation of duality can be observed between (S), where the value
function follows by cross-correlation of the cost function with the asymptic
waiting times, and (DE), where the cost function can be recovered by cross-
correlation of the value function and the service times. In fact, (DE) and (S)
are backlog-domain renditions of the same transform-domain solution (C).

A closer look at (S) tells us that the computation of the value function v
reduces to the derivation through (CVF) of a related function, denoted c in
this work and referred to as the ‘core’ value function or, more concisely, core
function. Intuitively, c(u) corresponds to the expected total cost experienced
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by the queue from an initial state u until it returns to the empty state 0. By
construction, c(0) = 0, and the rest of c(u) can be obtained by integration
from 0 of its right-derivative ∂+c, available via (C) or (CVF). Observe that c
is fully characterized by λ, X and f+, independently of the parameters X0

and f(0), which specify the behavior of the queue at u = 0.

The rest of the study is principally concerned with the derivation of the
core function, with disregard to the other two terms in (S). Once c is known,
the mean cost f̄ can be inferred from X0 and f(0) on condition that |f | is
µW̃ -integrable. Combining (BCb) with (CVF) then yields

f̄ =

(
1− ρ

1− ρ+ ρ̃

){
c′(0)/λ+ f(0)− f+(0) + E[c(X0)]− E[c(X)]

}
. (III.2)

Note that the core function and the mean cost (III.2) are all we need for
FPI-dispatching, since the admission cost (AC) reduces to

Ai(u, x) = ci(ui + xi)− ci(ui)−
(
λif̄i

1− ρi

)
xi. (AC’)

In Sections III.2-III.3, we exploit these results and derive the causal part
of ∂+c by inverse transformation of (C).

III.2 Basic solutions: analytic cost functions

The analysis of (C) is straightforward for the cost functions belonging to the
class Ξ := span({fa,n | a ∈ C, n ∈ N}), where span(S) denotes the linear span
of a set S, and the function fa,n, defined by fa,n(u) = une−au, is character-
ized by the meromorphic Laplace transform Lfa,n(s) = n!/(s + a)n+1, which
is analytic on the complex plane except for a set of isolated, non-essential
singularities, called poles. Observe that the condition of existence of the core
function, previously stated in Assumption 3, reduces for the cost function fa,n
to a ∈ PW , where we write PW = {s ∈ C | <(s) < −pW }.

Table 1 provides us with the closed-form core functions for the cost func-
tion fa,n, obtained after inversion of (C) by integration along a vertical axis
in the region of absolute convergence of B∂+c, as we proceed to do now. Let
γ ∈ (a,−pW ), and consider the contour Cr = {γ + it | t ∈ [−r, r]} ∪ Ar, where
Ar = {γ+reiα |α ∈ [π2 ,

3π
2 ]} is an arc centered in γ. Since lims→∞ |W ∗(s)| ≤ 1

(cf. Proposition A.1(ii)), we find limr→∞W ∗(−γ − reiα)Lfa,n(γ + reiα) = 0
for α ∈

[
π
2 ,

3π
2

]
, and the condition of the third Jordan lemma is satisfied [32,

§3.1.4, Theorem 1][8, §88]. It follows that integration of B∂+c(s)esu along the
arc Ar vanishes as r →∞,

lim
r→∞

ˆ
Ar
W ∗(−s)Lfa,n(s) esu ds = 0, ∀u ∈ R≥0, (III.5)
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Table 1: Explicit core functions for f = fa,n, (a ∈ PW , n ∈ N).

f(u) c′(u) c(u)

1 λ
1−ρ

λ
1−ρu

e−au λ
1−ρW

∗(a) e−au λ
1−ρW

∗(a) 1−e−au
a

un λn!
1−ρ

∑n
k=0 wn−k

uk

k!
λn!
1−ρ

∑n
k=0 wn−k

uk+1

(k+1)!

une−au λn!
1−ρ

∑n
k=0 wa:n−k

uke−au
k!

λn!
1−ρ

∑n
t=0

(∑n
k=t

wa:n−k
ak+1

)(
δ[t]− (au)te−au

t!

)
Coefficients:

w0 = 1,

wk = [λ/(1− ρ)]
∑k−1
t=0 xk−t+1wt, (k ≥ 1),

xk = 1/(k!)E[Xk], (k ≥ 0),

(III.3)

wa:0 = W ∗(a),

wa:1 = [λ/(1− ρ)]
(
W ∗(a)/a

)2(
1−X∗(a)− axa:1

)
,

wa:k = [λW ∗(a)/(1− ρ)a]
[
(1/λ− xa:1)wa:k−1 −

∑k−2
t=0 xa:k−twa:t

]
, (k ≥ 2),

xa:k = 1/(k!)E[Xke−aX ], (k ≥ 0).

(III.4)

and counterclockwise integration of B∂+c(s)esu on the contour Cr reduces to
computing the residue1 at the pole of Lfa,n . The residue theorem gives

c′a:n(u)
(C)
= 1

2πi limt→∞
´ γ+it

γ−it
(

λ
1−ρW

∗(−s) n!
(s+a)n+1

)
esu ds

(III.5)
= 1

2πi

�
Cr

(
λ

1−ρW
∗(−s) n!

(s+a)n+1

)
esu ds

= Ress=−a
(

λ
1−ρW

∗(−s) n!
(s+a)n+1 e

su
)

(III.6)
= λ

1−ρ lims→−a
1
n!

dn

dsn

[
n!W ∗(−s)esu

]
= λ

1−ρ
∑n
k=0

(
n
k

)(
(−1)n−k dn−k

dsn−kW
∗(a)

)
uke−au

= n!λ
1−ρ

∑n
k=0 wa:n−k

(
uk

k!

)
e−au,

(III.7)

for all u ∈ R≥0, in which

wa:k =
(−1)k

k!

dk

dsk
W ∗(a)

is the kth coefficient of the Taylor expansion of W ∗(−s) at a, reducing to
w0:k ≡ wk if a = 0. The coefficients {wk} and {wa:k} will be referred to as
the germ of W ∗(−s). In (III.3) and (III.4), they are computed inductively as
functions of the coefficients {xk} and {xa:k} of the power series of X∗(s). As
such, they are finite by analycity of X∗(s) on PW (cf. Proposition A.1(i)). See
also Proposition A.1(iv)-(v) for a derivation of (III.3) and (III.4), and Table B.1

1 Recall that the residue of a meromorphic function f at a pole a of order n is given by [8]

Ress=a (f(s)) = 1
(n−1)!

lims→a
dn−1

dsn−1

[
(s− a)nf(s)

]
. (III.6)
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for expressions of {wk} specific to standard service time distributions. The final
expressions2 for c′a:n and ca:n are reported in Table 1.

Since the operation f 7→ c is a linear map, observe that all cost functions
given as linear combinations of fa,n types are elements of Ξ enjoying explicit
value functions. Examples include the trigonometric functions cos and sin,
which play a part in the developments of Section IV.2.2, or the set of incom-
plete gamma functions {Γ(n+1, a·) |n ∈ N, a ∈ C}, which spans Ξ completely.

III.3 Piecewise-defined cost functions

Let f0, f1 ∈ Ξ, and assume the cost function is given by f = f0 1[0,τ) +
f1 1[τ,∞), where 1· denotes the indicator function, or, equivalently,

f(u) = f0(u) +∆(u) 1[τ,∞)(u), ∀u ∈ R≥0. (III.8)

where ∆ = f1− f0. Since the Laplace transform of f(u) = une−au 1[τ,∞)(u) is
given on the half-plane <(s) > <(−a) by

Lf (s) =
´∞
τ
une−(s+a)u du = n!e−aτ

∑n
q=0

τq

q!(s+a)n−q+1 e
−sτ , (III.9)

we can find ζ such that Lf (s) = Lf0(s) + ζ(s, τ)e−sτ with lims→∞ ζ(s, τ) = 0.
If we place γ in the half-plane < (s) > 0 between −pW and the poles of f0, f1,
(III.5) becomes in the present setting,

limr→∞
´
Ar W

∗(−s)Lf0(s) esu ds = 0, ∀u ∈ R≥0,

for the first term, and

limr→∞
´
Ar W

∗(−s)ζ(s, τ) es(u−τ) ds = 0, ∀u ∈ (τ,∞),

limr→∞
´
A−r W

∗(−s)ζ(s, τ) es(u−τ) ds = 0, ∀u ∈ [0, τ),

for the second term. Thus, inverse transformation by counterclockwise inte-
gration along Cr still applies for all backlog values u > τ , where

∂+c(u) = λ
1−ρ

∑
p∈P(Lf ) Ress=p

(
W ∗(−s)Lf (s) esu

)
, ∀u ∈ (τ,∞). (III.10)

It is clear from (CVF) that the derivative ∂+c(u) for u > τ does not depend
on the values of the cost function on the interval (0, τ). It is therefore equal
over (τ,∞) to the derivative of the core function for the analytic cost f = f1,
and it can equivalently be derived from (III.7) (or, alternatively, inferred from
Table 1) for the cost function f = f1.

2 Alternatively, notice that fa,n = (−1)n(δn/δan) fa,0 if a ∈ PW \ {0}. It fol-
lows from (CVF) and the Leibniz integral rule that, for a ∈ PW \ {0} and n > 0,
c′a:n(u) = (−1)n(δn/δan)c′a:0(u) = (−1)n[λ/(1− ρ)] (δn/δan)[W ∗(a)e−au], and the expres-
sions for c′a:n can be derived by successive differentiations of c′a:0. By continuity arguments,
we also find, for n > 0, c′0:n(u) = (−1)n lima→0(δn/δan)[c′a:0(u)].
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For u < τ , however, the terms f0 and ∆1[τ,∞) in (III.8) must be treated
separately: f0 by simple inspection of Table 1, and ∆1[τ,∞) by clockwise in-
tegration along the contour C−r = {γ + it | t ∈ [−r, r]} ∪ A−r. The success of
this last operation is conditioned by the singularities of W ∗(−s), all contained
in the interior of C−r as r →∞. In our discussion we consider separately the
service time distributions for which W ∗ has a finite set of poles P(W ∗) (e.g.
exponential or Erlang service time distributions), and those for which W ∗ has
infinitely many poles (as in discrete service time distributions).

If P(W ∗) is finite, the clockwise integral along C−r yields |P(W ∗)| residues
at the poles of W ∗(−s), and we find

∂+c(u) = λ
1−ρ

∑
p∈P(Lf0 ) Ress=p

(
W ∗(−s)Lf0(s) esu

)
− λ

1−ρ
∑
p∈P(W∗) Ress=−p

(
W ∗(−s)ζ(s, τ) es(u−τ)

)
, ∀u ∈ (0, τ).

(III.11)
If otherwise P(W ∗) is infinite, then the clockwise integral along C−r cannot

be computed directly by the residue theorem, which would issue an infinite
sum. This difficulty can nevertheless be overcome whenever W ∗ rewrites as

W ∗ = Wu +Wu, ∀u ∈ (0, τ), (III.12)

where Wu and Wu are meromorphic, |P(Wu)| is finite, and

lim
r→∞

´
A−r Wu(−s)ζ(s, τ) es(u−τ) ds = lim

r→∞

´
Ar Wu(−s)ζ(s, τ) es(u−τ) ds = 0.

Then, if we choose γ ∈ ROC(B∂+c) and consider the pole sets Pu = {p ∈
P(Wu(−·) ζ(·, τ)),<(p) < γ} and Pu = {p ∈ P(Wu(−·) ζ(·, τ)),<(p) > γ},
both finite in cardinality, we find

∂+c(u) = λ
1−ρ

∑
p∈P(Lf0 ) Ress=p

(
W ∗(−s)Lf0(s) esu

)
+ λ

1−ρ
∑
p∈Pu

Ress=p
(
Wu(−s) ζ(s, τ) es(u−τ)

)
− λ

1−ρ
∑
p∈Pu

Ress=p
(
Wu(−s)ζ(s, τ) es(u−τ)

)
, ∀u ∈ (0, τ).

(III.13)
As we see below, the decomposition proposed in (III.12) is relevant in

particular in the case of discrete service time distributions.

Discrete service time distributions. Consider the M/D/1 queue, where all the
jobs have equal service time x. In this scenario, W ∗ is given by (PK) with
X∗(s) = e−sx, and rewrites as

W ∗(s) = [Υ (−s)]mW ∗(s) + (1−λx)s
s−λ

∑m−1
k=0 [Υ (−s)]k, ∀m ∈ N>0, (III.14)

where Υ (s) := [λ/(s+ λ)] esx. It can be seen that (III.12) holds if

Wu(s) = [Υ (−s)]m̃(u)W ∗(s), Wu(s) = s(1−ρ)
s−λ

∑m̃(u)−1
k=0 [Υ (−s)]k,

with m̃(u) = d(τ − u)/xe.
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Degenerate cases. The decomposition scheme (III.14) is not possible for all
discrete service time distributions. Consider for instance the geometric service
time distribution FX(u) = (eς − 1)

∑∞
k=1 e

−kςθ(u − kx) for u ∈ R≥0, where
x > 0 and λ < (1 − e−ς)/x. We have E[X] = x/(1 − e−ς), X∗(s) = (eς −
1)/(eς+sx − 1), and W ∗ degenerates into

W ∗(s) =
b(eς+sx − 1)s

(s− λ)eς+sx − s+ λeς
= b− s(eς+sx − 1) f(s), (III.15)

where b = (1− e−ς − λx)/(1− e−ς) and f(s) = [(λ − s)eς+sx + s − λeς ]−1.
Although f(s) decreases like O(r−1) as |s| → ∞ (i.e., not fast enough for
counterclockwise integration along Cr), it decomposes as follows:

f(s) = [Υ̃ (−s)]mf(s) +
∑m
k=1[Υ̃ (−s)]k/(λeς − s), (m = 1, 2, . . . ), (III.16)

where Υ̃ (s) = (s+ λeς)/(s+ λ) esx−ς is O(e<(s)x) with just one pole at −λ.
By distributing (III.15) and using (III.16) twice with parameters m+1 and m,
we find, after computations, that (III.12) holds if we set

Wu(s) = λb s(eς−1)(λeς−s)m̃l(u)−1

(λ−s)m̃(u) [s−λ−(s−λeς)e−(sx+ς)]
e−m̃(u)(sx+ς),

Wu(s) = s−b
s−λ + λb (eς−1)−s

(s−λ)(s−λeς)
∑m̃(u)−1
k=1

(
s−λeς
s−λ

)k
e−k(sx+ς),

with m̃(u) = d(τ − u)/xe.
See Example C.1 in the appendix for a step-by-step derivation of the core

function in the case of jobs with identical service times.

IV Value function approximations

In the absence of exact expressions for the value functions, the FPI step can
still be carried out based on value function bounds. Suppose that lower and
upper bounds, f− and f+, are available for f with explicitly computable core
functions, denoted by c− and c+, respectively. Using the interval arithmetic
notation3, we write f ∈ [f ] ≡ [f−, f+] and, by linearity of the map f 7→ c, we
find in [c] ≡ [c−, c+] a bounding interval for the core function, while (III.2)
provides the bounds [f̄ ] ≡ [f̄−, f̄+] for the mean cost f̄ .

In the k-server system of Figure 1 with arrival rates λ1, . . . , λk and cost
functions bounded by [f1], . . . , [fk], the admission cost (AC’) inherits the bounds

[Ai](u, x) = [ci](ui + xi)− [ci](ui)−
(
λi[f̄i]

1− ρi

)
xi, ([AC])

where [c1], . . . , [ck] and [f̄1], . . . , [f̄k] are the corresponding interval bounds for
the core function and mean costs. The FPI decision at state (u, x) can be made
in favor of a server i ∈ {1, . . . , k} iff

[Ai](u, x) ≤ [Aj ](u, x), ∀j 6= i. (D)
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If otherwise no server satisfies (D), the precision of the interval bounds for the
cost functions must be improved until a decision can be made.

In the rest of this section we discuss various cost approximation schemes.

IV.1 Analytic cost functions and Taylor series

Due to the availability of explicit value functions for the type f(u) = unn,
Taylor/Maclaurin series have been cited as natural candidates for the ap-
proximation of analytic cost functions, [18]. Let f be an infinitely smooth
real function on R≥0 with k-th derivative f (k). For n ∈ N, consider an inter-
val [r(n)] such that f ∈ f̂ (n) + [r(n)], where f̂ (n)(u) =

∑n
k=0 f

(k)(0)uk/k! is
the Taylor polynomial of order n. If ĉ(n) denotes the core function associated
with f̂ (n), and [%(n)] is a bounding interval covering the core functions for all
cost functions comprised in [r(n)], then using Table 1 we find

ĉ(n)(u) = λ
1−ρ

∑n
k=0{

∑n−k
t=0 wt f

(k+t)(0)} u
k+1

(k+1)! ,

and, by linearity, c ∈ [c(n)], where [c(n)] = ĉ(n) + [%(n)].

If f is analytic, then [r(n)] vanishes pointwise near u = 0 as n → ∞, and
our hopes are that the remainder [%(n)] will become small as well, with [c(n)]
converging towards c in some sense. The next result, however, claims that a
cost function f given as a convergent Taylor series only yields a convergent
sequence of core functions if f is entire (i.e., its Taylor series converges ev-
erywhere) with order of growth4 less than the exponential type |pW |, whereas
any function f falling outside this restrictive category is expected to produce
a divergent sequence for c. A proof of Theorem 2 is given in Appendix D.

Theorem 2 (Taylor series for c) Let f satisfy Assumption 3 and be entire
with order of growth % and type σ, so that

f(u) =
∑∞

n=0
[f (n)(t)/n!] (u− t)n, ∀u, t ∈ R≥0. (IV.1)

For k ∈ N, let c̃k = limn→∞ c̃
(n)
k , where

c̃
(n)
k = [λ/(1− ρ)]

∑n−k

q=0
wq f

(k+q)(0), (n ∈ N), (IV.2)

3 Notation 3 (Interval arithmetic). We use [x] ≡ [x1, x2] to represent an interval
on R. We write [x] ∈ [R] where [R] = {[x1, x2] |x1 ≤ x2; x1, x2 ∈ R}, a ∈ [x] iff x1 ≤ a ≤ x2,
|[x]| = x2−x1, and −[x] = [−x2,−x1]. For [x], [y] ∈ [R] we have [x]+[y] = [x1 +y1, x2 +y2],
[x] < [y] iff x2 < y1, and [x] ≤ [y], [x] > [y] and [x] ≥ [y] are defined similarly.

4 Recall that the order of growth of an entire function f [29], defined by % =
lim supr→∞ ln ln ‖f‖∞,r/ ln r, where ‖f‖∞,r = sups{|f(s)| | |s| < r}, is the infimum
of all m such that f(s) = O(exp(|s|m)), while the type of f is defined by σ =
lim supr→∞ ln ‖f‖∞,r/r%. If % = 1, then f is said to be of exponential type σ.
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Fig. 3: (Example C.2) Taylor series for the CVF with exponential service times
(X ∼ Exp(ω), with ω = 2λ), and cost function f(u) = 1− e−au of exponential
type |a| : c (dashed line) and [c(n)] for n = 1, . . . , 25. The series only converges
if |a| < |pW | = ω − λ.

and define the functions ψ and χ as

ψ(u) =

ˆ u

0

∑∞

k=0

c̃k
k!
ξk dξ, (IV.3a)

χ(u) =
λ

1− ρ

ˆ u

0

∑∞

q=0
wq f

(q)(ξ) dξ. (IV.3b)

(i) If either % < 1 or % = 1 and σ < |pW |, then the coefficients c̃n are finite
for all n, (IV.3a) and (IV.3b) converge on R≥0, and ψ = χ = c.

(ii) If either % > 1 or % = 1 and σ > |pW |, then (IV.2) diverges for all k.

Equation (IV.3a) is the Taylor series (in convergence conditions) of c at u = 0.
The coefficients of the series are given by {c̃k}, the sequence of the succes-
sive derivatives of c′(u) at 0, obtained by cross-correlation between the se-
quence {f (k)(0)} of the derivatives of f at u = 0 and {wk}, the germ of W ∗

at the origin, given in (III.3). Equation (IV.3a) may be understood as an ex-
tension of (IV.2) to u ≥ 0, in the sense that c′(u) is computed directly by
cross-correlation of the cost derivatives at u with the the germ of W ∗ at 0.

The message of Theorem 2 is illustrated by Figure 3, which exposes through
an elementary problem the hazards of processing cost functions as Taylor
series. See Example C.2 in the appendix for computational details.

System interpretation. For n ∈ N, let f̃ (n) = (f̃0, . . . , f̃n−1), with f̃k = f (k)(0),

and c̃(n) = (c̃
(n)
0 , . . . , c̃

(n)
n−1), where c̃

(n)
k is defined by (IV.2). Using the matrix

inversion lemma, one shows that the Toeplitz, upper triangular matrices

X(n) =


x1 x2 x3 · · · xn
0 x1 x2 . . . xn−1

0 0 x1 . . . xn−2

...
...

...
. . .

...
0 0 0 . . . x1

, W (n) = λ
1−ρ


w0 w1 w2 · · · wn−1

0 w0 w1 . . . wn−2

0 0 w0 . . . wn−3

...
...

...
. . .

...
0 0 0 . . . w0

.
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satisfy W (n)(I(n)/λ −X(n)) = I(n) for all n, where I(n) denotes the identity
matrix. Besides, (IV.2) rewrites in matrix form as c̃(n) = W (n)f̃ (n).

As n → ∞, {c̃t} becomes the output (at nonnegative times) of the cross-
correlation of {f̃t} with the sequence defined by h̃[t] = λ/(1− ρ)wt for t ≥ 0,
thus giving us an interpretation for analytic functions of Proposition 2(ii),
where c′ was obtained by cross-correlation of f(u) with λ/(1−ρ)F ′W (u). Simi-
larly, (IV.3b) expresses c′(u) as the cross-correlation of the sequence of deriva-
tives of f at u with the sequence h̃[t].

From our observation follows that the Z-transforms of the sequences satisfy

Zc̃(∞)(z) = Zh̃(1/z)Zf̃(∞)(z), (IV.4)

where Zh(z) =
∑∞
k=0 h[k]z−k denotes the Z-transform of a sequence h[t]. The

vector c̃(∞) can be recovered5 from (IV.4) by inverse Z-transform provided that
the regions of convergence of Zf̃(∞)(z) and Zh̃(1/z) intersect on a non-empty
circular band—this condition is to be linked to those of Theorem 2(i).

The conclusions of Theorem 2 lead us to consider, in the rest of Section IV,
approximations schemes no longer on R≥0, where the growth of the func-
tions {un} as u → ∞ causes divergence, but on finite intervals where the
series converge safely.

IV.2 Continuous cost functions

Assume now that the cost function f is continuous6, and partition the backlog
axis into an interval (0, τ) where f is approximated precisely (in virtue of the
Weierstrass approximation theorem) with respect to the uniform norm ‖f‖ =

supu∈[0,τ ] |f(u)| by a finite sum f̂ (n) of degree n, and its complement (τ,∞),
where unrefined bounds in Ξ are chosen for f . Bounds for the core function
can be inferred from the developments of Section III.3.

Notation 4 (W) Given τ > 0 and f̂ , ξ ∈ Ξ, we denote by W(f̂ ; ξ) the CVF

relative to the cost function f = f̂ 1(0,τ) + ξ 1(τ,∞).

Proposition 3 (Continuous cost) Consider the server model of Section II.2
with a cost function f meeting Assumption 3, continuous on a nonempty in-
terval (0, τ), and such that f ∈ [f ], where

[f ] = {f̂ (n) + [−η(n), η(n)]}1(0,τ) + [ξ] 1(τ,∞), (IV.6)

5 Conversely, inverting W (n) yields f̃ (n) = (I(n)/λ−X(n))c̃(n) and, as n→∞,

f̃k = c̃k/λ−
∑∞
t=0[c̃t+k/(t+ 1)!]E[Xt+1], (IV.5)

which provides us with a converse for Theorem 2, where the source cost function of a given
core function with germ {c̃k} can be recovered from c through (IV.5), on the condition
that c grows slower than the exponential type |pX |—where pX denotes the dominant pole
of X—, in which case (I(n)/λ − X(n)) c̃(n) converges as n → ∞. Similarly, Zf̃(∞) (z) =

(Zh̃(1/z))−1Zc̃(∞) (z), where (Zh̃(z))−1 is the Z-transform of δ[t]/λ− E[Xt+1]/(t+ 1)!.
6 Piecewise continuous functions can be treated similarly by partitioning R>0 into as

many intervals as required by their discontinuities.
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Algorithm 1: FPI with interval value functions7

Data: {(λ1, f1, [ξ1]), . . . , (λk, fk, [ξk])}, {εt} with εt ↓ 0

Input : (u, x) ∈ Rk≥0 × Rk≥0
Output: π ⊂ {1, . . . , k}

Initialization: t← 0, π ← {1, . . . , k}, [f̂i]← (−∞,∞) for all i ∈ π

While t ≤ tmax and |π| > 1 do
For i ∈ π do

1 τi ← arg infτ≥0

{∣∣[Ai] ([ξi(τ)] 1(τ,∞);u, x
) ∣∣ ≤ εt/2}

2 ni ← arg minn
{∣∣Ai (1(0,τi)

;u, x
) ∣∣ ≤ εt/(4η(n))

}
3 [f̂i]←

{
f̂

(ni)

i + [−η(ni), η(ni)]
}

1(0,τi)
+ [ξi(τi)] 1(τi,∞)

For i ∈ π do

4 If ∃j ∈ π\{i} such that [Ai]
(

[f̂i];u, x
)
> [Aj ]

(
[f̂j ];u, x

)
then

π ← π\{i}

in which f̂ (n) is a finite sum of degree n ∈ N, η(n) ≥ 0, [ξ] ≡ [ξ−, ξ+], and

f̂ (n), ξ−, ξ+ are real elements of Ξ. The core function satisfies

c ∈
[
W(f̂ (n) − η(n); ξ−),W(f̂ (n) + η(n); ξ+)

]
,

where W (cf. Notation 4) is computed as in Section III.3.

The FPI step can be implemented based on the interval bounds ([AC]) for [f ],
in place of the actual admission cost (AC’), provided that the parameters τ
and n chosen for the servers allow for it. Otherwise, the parameter values
should be refined (by increasing τ and n) until decision (D) can be made.

A pseudocode for the resulting procedure is given in Algorithm 1, where
the cost function fi of each server i is supplied with a continuum of bounding
interval functions [ξi] such that, for every τ > 0, fi(ui) ∈ [ξi(τ)](ui) if ui > τ .
Algorithm 1 infers the FPI decision π̂(u, x) at any state (u, x) by gradually
decreasing the error tolerance εt of the admission cost bounds at each server,
computed by (IV.6). To guarantee the error margin εt at a server i, the pa-
rameter τi is first taken large enough for the approximation error in the u > τi
window to be less than εt/2 (line 1), then the sum f̂ (n) is given enough terms
for the approximation error in the 0 < u < τi window to be less than εt/2

(line 2), so that the overall precision εt is secured for the bounds [f̂i] (line 3).
All servers with exceeding admission costs will be ignored (line 4) for the rest
of the procedure, which resumes with a smaller margin εt+1.

In Sections IV.2.1 and IV.2.3 we discuss the methods for deriving the finite
sum [f̂ (n)] when the cost function f is continuous on any support [0, τ ].

7 In Algorithm 1, the first argument of Ai (f ; ·, ·) (or [Ai] ([f ]; ·, ·)) indicates the cost func-
tion f (resp. the interval function [f ]) for which the admission cost at server i is computed.
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IV.2.1 Bernstein polynomials

The function f can be approximated on [0, τ ] by the Bernstein polynomial [4]

b(n)(u) =
∑n

l=0

(
n
l

)(u
τ

)l(
1− u

τ

)n−l
f (lτ/n) , ∀u ∈ [0, τ ]. (IV.7)

Notice that (IV.7) rewrites as b(n)(u) = E[f(Kτ/n)], where the random vari-
ableK ∼ B(n, u/τ) is distributed according to the binomial distribution with n
trials and success probability u/τ . The quantity K/n has mean u/τ and vari-
ance (u/τ)(1−u/τ)/n ≤ 1/(4n), which vanishes uniformly on [0, τ ]. It follows
from continuity arguments that E[f(Kτ/n)] converges uniformly towards f(u)
on that interval, [26, proof of Theorem 2.7]. So does (IV.7), with rate

‖f − b(n)‖ ≤ (3/2)ω
(
f ; [0, τ ]; τ/

√
n
)
, (IV.8)

[37, Theorem 1.2], where

ω(f ; [0, τ ]; δ) = sup{|f(u1)− f(u2)| : u1, u2 ∈ [0, τ ], |u1 − u2| ≤ δ}

defines the modulus of continuity of f on the interval [0, τ ], [24, §21]. To con-
form with (IV.6), we rewrite (IV.7) as8

b(n)(u) =
∑n

k=0
βn,ku

k, ∀u ∈ [0, τ ], (IV.9)

where βn,k = (−τ)−k
(
n
k

)∑k
l=0

(
k
l

)
(−1)lf(lτ/n), for k = 0 . . . , n.

From (IV.8) and (IV.9), we infer bounds for the value function.

Corollary 1 (Bernstein polynomials) Proposition 3 holds for f̂ (n) ≡ b(n)

defined by (IV.9) with the uniform error bound η(n) = 3/2ω(f ; [0, τ ]; τ/
√
n).

IV.2.2 Approximation by trigonometric sums

A better convergence rate for f̂ (n) can be obtained using trigonometric sums;
we refer to [37, §1.1] for details on this topic. Consider the continuous, 2τ -
periodic function f̌ : R 7→ R defined on [−τ, τ ] by f̌(u) = f(|u|). The Weier-
strass approximation theorem (see, e.g., [27, Weierstrass first theorem], [37,
Theorem 1.1], [26, Theorem 2.7]) claims that f̌ can be approximated by a
trigonometric sum with arbitrary precision with respect to the uniform norm
‖f‖ = supu∈[−τ,τ ] |f(u)|. This implies that for any ε > 0 one can find n < ∞
and a trigonometric sum t(n) such that η(n) = ‖f̌(u) − t(n)(u)‖ < ε. It then

8 The coefficients βn,0, . . . , βn,n can be computed recursively. Indeed, one show by induc-

tion that βn,k = (1/k!) f̌
(k)
n (0), where, for k = 1, . . . , n,

f̌
(0)
n (l) = f(lτ/n), f̌

(k)
n (l) = [(n− k + 1)/τ ]

[
f̌

(k−1)
n (l+1)−f̌ (k−1)

n (l)
]
, (l = 0, . . . , n−k).

(IV.10)
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follows that f ∈ [f ] = t(n) + [−η(n), η(n)]. Such a trigonometric sum is given
by the partial Fourier series, which for the real, even function f̌ reduces to

t(n)(u) = α̌0 + 2
∑n

k=1
α̌k cos(kπu/τ), (IV.11)

where

α̌k =
1

τ

ˆ τ

0

f(u) cos(kπu/τ) du, (k ∈ N). (IV.12)

are the Fourier coefficients. With the modulus of continuity of f̌ defined by

ω(f̌ ; δ) = sup{|f̌(u1)− f̌(u2)| : u1, u2 ∈ R, |u1 − u2| ≤ δ}, (IV.13)

the Fourier series (IV.11) converges towards the periodic function f̌ with rate
O(η(n)) = log(n)ω(f̌ ; τ/(nπ)), [24, §21]. Faster convergence can be obtained
by slightly modifying the Fourier coefficients in (IV.11). For this, consider

ť(n)(u) = %n,0 α̌0 + 2
∑n

k=0
%n,k α̌k cos(kπu/τ), (IV.14)

where %n,0, . . . , %n,n ∈ R. The choice of parameters proposed in [27, §3],

%n,0 = 1, %n,1 = cos( π
n+2 ), %n,k =

∑n−k
q=0 sin( q+1

n+2π) sin( q+k+1
n+2 π)∑n

q=0 sin2( q+1
n+2π)

for k = 2, . . . , n,

(IV.15)
lends (IV.14) the convergence rate

η(n) ≤ 6ω
(
f̌ ; τ

πn

)
, (IV.16)

(see [27, first Jackson Theorem], or [37, Theorem 1.3]). Since ť(n) ∈ Ξ and by
construction ω(f̌ ; ·) ≡ ω(f ; [0, τ ]; ·), ť(n) is a candidate finite sum for Proposi-
tion 3 and (IV.16) gives us bounds for the value function.

Corollary 2 (Trigonometric sums) Proposition 3 holds for f̂ (n) ≡ b(n)

defined by (IV.9) with the uniform error bound η(n) = 3/2ω(f ; [0, τ ]; τ/
√
n).

In particular, if for some α ∈ (0, 1] the cost function satisfies the α-Höldern con-
dition |f(u1)− f(u2)| ≤ h|u1−u2|α for all u1, u2 ∈ [0, τ ], then ω(f ; [0, τ ]; δ) ≤
hδα, and (IV.11) converges uniformly towards f on [0, τ ] with η(n) = O((τ/n)α).
If f is Lipschitz continuous on [0, τ ] with modulus L, then η(n) < 2Lτ/n.

IV.2.3 Near-optimal polynomial approximation

Alternatively, the convergence rate of Corollary 3 can be obtained using poly-
nomials. Set f̃ : R 7→ R to be the continuous, 2π-periodic function defined by
f̃(θ) = f(ũ(θ)), where ũ(θ) = (τ/2) (1 + cos(θ)). It follows from the (τ/2)-
Lipschitz continuity of ũ and the definition (IV.13) of the modulus of conti-
nuity, that ω(f̃ ; δ) ≤ ω(f ; [0, τ ]; τδ/2) for δ > 0. Proceeding as in (IV.14), we
consider the trigonometric sum for f̃ given by the modified Fourier series

t̃(n)(θ) =
∑n

k=0
%n,kβk cos(kθ), ∀θ ∈ R, (IV.17)
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where β0 = α̃0, βk = 2α̃k if k ≥ 1, and α̃k = (1/π)
´ π

0
f̃(θ) cos(kθ) dθ for

k ∈ N. Defining %n,k as in (IV.15), yields the uniform convergence rate

‖f − t̃(n)‖ =
(IV.16)

≤ 6ω
(
f̃ ; 1/n

)
≤ 6ω (f ; [0, τ ]; τ/(2n)) . (IV.18)

It remains to rewrite (IV.17) as a polynomial in u by returning to the back-
log domain. For this, we develop cos(kθ) = <

(
(cos(θ) + i sin(θ))k

)
and find

cos(kθ) = pk(cos(θ)), where the polynomial pk(x), characterized by its k real
roots located in (−1, 1), is defined by

pk(x) =

{∑k/2
q=0 ν(k, q)x2q, if k is even∑(k−1)/2
q=0 ν(k, q)x2q+1, if k is odd

}
, (IV.19)

where ν(0, 0) = 1, and

ν(k, q) = (−1)b
k
2 c−q

∑q
t=0

(
k

2(b k2 c−t)

)(
b k2 c−t
b k2 c−q

)
, (q = 0 . . . ,

⌊
k
2

⌋
, k ∈ N>0).

Since f̃(θ) = f(τ(1 + cos(θ))/2), a polynomial approximation of f on [0, τ ]
is obtained by setting cos(kθ) = pk(2u/τ − 1) in (IV.17), and we find, after
straightforward computations,

t̂(n)(u) =
∑n

k=0
γ(n, k)uk, ∀u ∈ [0, τ ], (IV.20)

where we define

γ(n, k) = (2/τ)k
∑n−k

t=0

( t+ k
k

)
(−1)t γ̄(n, t+ k), (k = 0 . . . , n).

and γ̄(n, t) =
∑
k∈σ̄(n,t) %n,k βk ν(k, bt/2c) for t = 0, . . . , n, in which σ̄(n, t) =

{t, t+ 2, t+ 4, . . . , n} if n− t is even, and σ̄(n, t) = {t, t+ 2, t+ 4, . . . , n− 1}
otherwise (0 ≤ t ≤ n). As for the Fourier coefficients of f̃ , they reduce to

α̃k =
1

π

ˆ π

0

f(ũ(θ)) cos(kθ) dθ
(IV.19)

=
1

π

ˆ τ

0

f(u)
pk( 2u

τ − 1)√
u(τ − u)

du, (IV.21)

where we have used the change of variable u = ũ(θ). For many cost functions,
the coefficients {α̃k} can be derived exactly. See Lemma D.1 for expressions
of these coefficients in the case when f is given as a quotient of polynomials.

From (IV.18), we infer the following bounds for the value function.

Corollary 3 (Near-optimal polynomials) Proposition 3 holds for f̂ (n) ≡
t̂(n) defined by (IV.20) with uniform error bound η(n) = 6ω(f ; [0, τ ]; τ/(2n)).

Without further assumptions on f , the convergence rate O(ω(f ; [0, τ ]; τ/(2n)))
guaranteed by (IV.20) is non-improvable. The performance of ť(n) and t̂(n) in
Corollaries 2 and 3 are then really close, and the choice of either approach (Sec-
tion IV.2.2 or IV.2.3), mostly dependent on the computability of the Fourier
coefficients (IV.12) or (IV.21), respectively, is left to the appreciation of the
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reader. The second approach nevertheless prevails in the event the cost func-
tion has a kth derivative f (k) on [0, τ ]. Then, the convergence rate in Corol-
lary 3 can be lowered to O(n−kω(f (k); [0, τ ]; τ/[2(n− k)])) by using the deriva-
tives as the targets of approximation, [37, Theorem 1.5]. This distinguishing
property of approach IV.2.3 stems from the fact that f̃(θ) retains the smooth-
ness of the cost function, whereas f̌(u) shows irregularities at u = (2k + 1)τ .
We refer to [37, §1.1] and references therein for further considerations on the
optimality of (IV.18) as a convergence rate for polynomial approximations.

Case study: quotient cost function. Let f(u) = u2/(a2 + u2), where a > 0
is a positive parameter. The Fourier coefficients (IV.21) for f are given by
Lemma D.1 with l(k) ≡ k. After computation of the residues at the complex
conjugate poles ia and −ia, (D.9) reduces to

α̃k =
√
π
∑k
q=0

ζ−q (−τ)q

q!Γ( 1
2−q)

−
√
a

4√a2+τ2

∑b k2 c
q=0 κ(k, τ, q) ν(k, q), (k ∈ N≥0),

where {ζ−q}kq=0 are the first k + 1 coefficients (i.e., those associated with
nonnegative powers) of the Laurent series at +∞ of f(u) pk(2u/τ − 1), equal
in this example to

ζ−q
(D.10)

=

 (−2
τ )q

∑ k
2

l=d q2 e
[∑l−d q2 e

t=0

(
2l
q+2t

)(−4a2

τ2

)t]
ν(k, l), if k even

−(−2
τ )q

∑ k−1
2

l=d q−1
2 e

[∑l−d q−1
2 e

t=0

(
2l+1
q+2t

)(−4a2

τ2

)t]
ν(k, l), if k odd


where we used {κ(k, τ, q)}b

k
2 c
q=0, defined for k even and q = 0, . . . , k2 by

κ(k, τ, q) = cos
( θ(a,τ)

2

)∑q
t=0

(2q
2t

)(−4a2

τ2

)t− 2a
τ sin

( θ(a,τ)
2

)∑q−1
t=0

(2q
2t+1

)(−4a2

τ2

)t
,

and for k odd and q = 0, . . . , k−1
2 by

κ(k, τ, q)=− cos
(θ(a,τ)

2

)∑q
t=0

(2q+1
2t

)(−4a2

τ2

)t
+ 2a

τ sin
(θ(a,τ)

2

)∑q
t=0

(2q+1
2t+1

)(−4a2

τ2

)t
,

in which θ(a, τ) = tan−1( τa ). The continuity modulus of f on [δ/2, τ − δ/2]
is given, for δ ∈ [0, τ/2], by ω(f ; [0, τ ]; δ) = f(u?(δ) + δ/2) − f(u?(δ) − δ/2),
where

u?(δ) = min
{√

( δ2 )2−a2+2
√
a4+a2( δ2 )2+( δ2 )4

3 , τ − δ
2

}
satisfies δ/2 < u?(δ) ≤ τ−δ/2. The cost function f is approximated by (IV.6),

with f̂ (n) ≡ t̂(n) given by (IV.20) and [ξ] set to

[ξ](u) =
[
f(τ),− (1− f(τ)) exp

{
−
( f ′(τ)

1−f(τ)

)
(u− τ)

}]
, u ≥ τ,

in which f ′(τ) = 2a2τ(a2 +τ2)−2. The intervals produced by Corollary 3 for f ,
and for its value function in the presence of jobs with exponentially-distributed
service times are displayed in Figure 4, for fixed τ and n = 1, . . . , 20. The
value function intervals shown in Figure 4(b) followed from (IV.20) and the
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0 τ ≡ a 2a

0

1

u

[f ](u)

(a) Cost function intervals.

0 τ ≡ a 2a

0

1

u

[v](u)

(b) Value function intervals (exponentially
distributed service times; ω = 2, λ = 1).

Fig. 4: Intervals for f(u) = u2/(a2 + u2) as per Corollary 3 (n = 1, . . . , 20).

0 a 2a u1
0

a

2a

u2

: π(u, x) = 1 : π(u, x) = 2

(a) π(u, x) for x = (1, 2).

0 a 2a u1
0

a

2a

u2

n? : 1 10 100 1000

(b) Minimum order n?(u, x) needed in (IV.20)
for decision, x = (1, 2).

Fig. 5: One-step policy improvement for a two-server system (1, 2) with arrival
rates (λ1, λ2) = (1, 1/2), exponentially distributed service times with param-
eters (ω1, ω2) = (2, 1), and cost function f(u) = u2/(a2 + u2).

developments of Examples C.3 and C.4. The interval gaps can be arbitrarily
reduced by increasing both n and τ , as in Algorithm 1.

Consider a system of two parallel servers 1 and 2, with server 1 twice faster
than 2. Feed the system a sequence of jobs with arrival rate λ = 3/2 and service
times exponentially distributed with parameters (ω1, ω2) = (2, 1). Assume
that the workload is initially balanced between the two servers, i.e., (λ1, λ2) =
(1, 1/2), and let f(u) = u2/(a2 + u2). Figure 5(a) depicts, for a particular
job with service times (x1, x2) = (1, 2) and for various backlog u = (u1, u2),
the FPI policy π(u, x) issued by Algorithm 1. The quantity n?(u, x) displayed
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in Figure 5(b) is the minimum order n required in (IV.20) for dispatching
at (u, x). This quantity was estimated by reporting the minimum order that
allowed for dispatching for a coarse grid of values of the parameter τ . It can
be seen that n?(u, x) grows with the distance to the origin u = (0, 0), and
increases abruptly near the frontiers of the dispatching policy π. The relatively
high orders rendered by Figure 5(b) are due to the conservativeness of the
uniform error bound η(n) ≡ 6ω(f ; [0, τ ]; τ/(2n)) for this particular choice of
the cost function (cf. Figure 4(a)). In practice, more accurate estimates of
the error bound would contribute to reducing the estimation orders. More
generally, building the function approximations from the k first derivatives
of f , as previously suggested, will significantly accelerate convergence.

V Discussion

Integral transformations of the Poisson equation g = Pg + f have the qual-
ity of simplifying the analysis, as they provide a principled framework for the
systematic derivation of solutions. Although it is known that the candidate
functions for closed-form solutions form a dense set where any f can be ap-
proximated with arbitrary precision, one should be cautious that a convergent
series for f does not always produce a convergent series for g; Taylor series
of f , in particular, are subject to tail effects and most likely to diverge af-
ter µW -integration with respect to the stationary probability measure of the
waiting times.

In the context of first-policy improvement, such tail effects can be avoided
by considering approximations of f on finite supports—preferably trigonomet-
ric sums, which for Lipschitz-continuous f achieve the convergence rate O(τ/n)
in the number n of approximation terms, improvable to O(τ/[(n− k)nk]) if f
is k-times continuously differentiable—, while using tractable bounds for the
larger backlog values. The availability of closed forms for bounding intervals
of this type with a diversity of service time distribution models gives the green
light to a systematized implementation of the FPI step.

We believe that the techniques developed in this study, combined with well-
chosen supervised learning methods, make it possible, in large multiple-server
systems, to devise efficient online algorithms for learning FPI policies gradu-
ally, as the incoming jobs are dispatched and the (possibly high-dimensional)
state space is visited. The design and assessement of FPI dispatching policies
in such systems is left to future work.
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17. Hyytiä, E., Penttinen, A., Aalto, S.: Size- and state-aware dispatching problem with
queue-specific job sizes. European J. Oper. Res. 217(2), 357–370 (2012)

18. Hyytiä, E., Righter, R., Aalto, S.: Task assignment in a heterogeneous server farm with
switching delays and general energy-aware cost structure. Perform. Eval. 75–76(0),
17–35 (2014)
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A Characterization of the value function

Before showing Propositions 1-2, and Theorem 1, we characterize W ∗ in the complex plane.

Proposition A.1 (Analycity of W ∗ and pole location) Under Assumption 1:

(i) The dominant singularity pW of W ∗ (i.e., that with largest real value) is a pole with
degree 1 lying on the negative real axis R<0. The dominant singularity pX of X∗ is real,
negative (possibly infinite) and satisfies pX < pW . X∗ is analytic on {s ∈ C | < (s) > pW }.

(ii) W ∗ is analytic on {s ∈ C0 | < (s) > pW }, where lims→∞ |W ∗(s)| ≤ 1.
(iii) One can find ε > 0 such that W ∗ is analytic on {s ∈ C0 \ {pW } |<(s) > pW − ε}.
(iv) W ∗ is analytic in a neighborhood of 0, where it rewrites as the series

W ∗(s) =
∑∞
k=0 wk (−s)k, ∀s ∈ {σ ∈ C0 : |σ − a| < |pW |}, (A.1)

in which the coefficients {wk} are given by (III.3) in Table 1, and satisfy wk = E[Wk]/k!,
for k ∈ N. The series {wk} is asymptotically geometric with asymptotic rate |pW |−1.

(v) At any point a ∈ C0 where W ∗ is analytic, W ∗ rewrites as the series

W ∗(s) =
∑∞
k=0 wa:k(a− s)k, ∀s ∈ {σ ∈ C : |σ − a| < ra}, (A.2)

where ra denotes the distance from a to the closest singularity of W ∗. The coefficients {wa:k}
are given by (III.4) in Table 1.
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Next, we derive the identities of Section III.1 for the value function.

Proof (Proposition 1) Start the queue at state u. The quantity V (u, t) appearing in (VF)
rewrites, for any T ≥ 0 and for t large enough, as V (u, t) = V (u, T ) + V (U(T ), t − T ),
where U(T ) denotes the backlog observed after time T . It follows from the Markov property
of the system and from the the definition VF of the value function that

v(u) = E[V (u, T )− λf̄T ] + E[v(U(T ))]. (A.3)

Now, consider the function

g(u, x) = limN→∞{
∑N
n=1 E

[
f(Un)− f̄

]
| (U1, X1) = (u, x)}+ f̄ , ∀u, x ∈ R≥0, (A.4)

which can be verified to satisfy Equation (PE) by application of the Markov property to
the MDP. The function g defined by (A.4) can be seen as a discrete-time counterpart of the
value function (VF), which follows from (A.4) by using the convention (U0, X0) = (u, 0) and
setting v(u) ≡ Pg(u, 0)− f̄ or, equivalently, from (A.3) by defining T as the arrival time of
the first job so that E[V (u, T )− λf̄T ] = −f̄ and E[v(U(T ))] ≡ Pg(u, 0). �

Proof (Theorem 1) A simple calculation reveals that ∆(u) = 0 if u < 0, and ∆(u) =

(P − P̂ )g(u, 0) = κe−λu, for u ≥ 0, with κ satisfying by

κ = E
[
g(0, X0)− λ

´ 0
−∞ g(u,X) eλu du

]
. (A.5)

We characterize the extended value function v̂ : u ∈ R 7→ v̂(u) = g(u, 0) − f(u) associated
with some g solution of (PE’). Note that, by construction, v̂ coincides with the value function
on R≥0, i.e., v̂(u) ≡ v(u) if u ≥ 0. Once v̂ is known, it will be possible to recover g using

g(u, x) = g(u+ x, 0)− f(u+ x) + f(u) = v̂(u+ x) + f(u). (A.6)

Consider s in the region of absolute convergence of Bv̂ , where the orders of integration in
our developments may be permuted. The two-sided Laplace transform of v̂ is given by

Bv̂(s) =
´+∞
−∞ v̂(u) e−su du

=
´+∞
−∞ [g(u, 0)− f(u)] e−su du

(PE’)
=
´+∞
−∞ [P̂ g(u, 0) + ∆(u)− f̄ 1[0,+∞)(u)] e−su du

=
´+∞
−∞ e−su du

´
g(t, x)P̂ (u, 0, d(t, x)) +

´+∞
0 κe−(s+λ)u du− f̄

s
(III.1)

= λE
[ ´+∞
−∞ e−su du

´ u
−∞ g(t,X)e−λ(u−t) dt

]
− f̄

s
+ κ
s+λ

= λE
[ ´+∞
−∞ g(t,X) eλt dt

´+∞
t e−(s+λ)u du

]
− f̄

s
+ κ
s+λ

(A.6)
= λ

s+λ

{
E
[ ´+∞
−∞ v̂(t+X) e−st dt

]
+
´+∞
0 f(t) e−st dt

}
− f̄

s
+ κ
s+λ

= λ
s+λ

{
X∗(−s)Bv̂(s) + Lf (s)− f̄

s
+ κ−f̄

λ

}
.

Solving the above equation for Bv̂(s) and using W ∗(−s) = 1 + λE[X2]/[2(1− ρ)]s + o(s)
yields, after computations,

Bv̂(s)
(PK)
=

λW∗(−s)
(1−ρ)s

[
Lf (s)− f̄

s
+ κ−f̄

λ

]
= λ

(1−ρ)sW
∗(−s)Lf (s)− λf̄

(1−ρ)s2 + ε
s

+
h(s)
s
,

(A.7)

where h(s) has no singularities on {s ∈ C | < (s) < −pW }, and ε is given by

ε = κ/(1− ρ)− X̂∗2 (λ)f̄/(1− ρ)2, (A.8)

with X̂∗2 (λ) := 1 − λE[X] + λ2E[X2]/2. Since v̂ is expected to be asymptotically flat for
u → −∞, the −λf̄/[(1− ρ)s2] term in (A.7) is necessarily due to a term −λf̄/(1− ρ)u
on R≥0 in the backlog domain. By inverse transformation of (A.7), we find

v̂(u) = v̂(0) + c(u)− λf̄
1−ρu1[0,+∞)(u) + r(u) 1(−∞,0)(u), ∀u ∈ R, (Ŝ)
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where r satisfies Lr(−·)(s) = −[h(−s) + ε]/s. The general form for g follows from (A.6), (Ŝ)
and v̂(u) ≡ v(u) on R≥0. The non-empty ROC of B∂+v̂ is the consequence of Assumption 3.

It remains to show that the function r is identical for all solutions or, equivalently, that
the quantity κ in (A.5) is the same for all g. To see this, consider a solution g1 of (PE’)
with associated value function v̂1 and jump ε1 at u = 0. The value function for every
other solution g2 rewrites as v̂2 = α + (v̂1 − ε2 + ε1)1R<0

+ v̂11R≥0
, where ε1, ε2 and α

are constants. We show that ε1 = ε2. If we successively compute the expression (A.8)
for ε1 and ε2, using (A.5), (A.6) and the extension of (PE), we get, after simplifications,
ε2 = ε1 − (ε1 − ε2)X∗(λ)/(1− ρ). Exploiting twice the strict convexity of e−x, we find
X∗(λ) = E[e−λX ] > e−λE[X] > 1 − λE[X] = 1 − ρ. Hence, X∗(λ)/(1− ρ) 6= 1 and,
consequently, ε1 = ε2. �

Proof (Proposition 2) (i) Consider s in the region of absolute convergence of Bv̂ . Since
B∂+c(s) = sBc(s), (C) rewrites as

[s+ λ(1−X∗(−s))]Bc(s)
(PK)
= λLf (s) + sLr(−·)(−s) [1 + λ/s(1−X∗(−s))] ,

while transformation of (Ŝ) gives Bc(s) = Bv̂(s) + λf̄/[(1− ρ)s2]. Besides,

X∗(−s)Bv̂(s) = E[esX ]
´+∞
−∞ v̂(u)e−sudu = E[

´+∞
−∞ v̂(u)e−s(u−X)du]

= E[
´+∞
−∞ v̂(t+X)e−stdt] =

´+∞
−∞ E[v̂(t+X)]e−stdt = BE[v̂(·+X)](s).

Combining the above with B∂+v̂(s) = sBv̂(s), we get, after computations,

B∂+v̂(s) = λ
[
Lf (s)− f̄/s+ BE[v̂(·+X)](s)− Bv̂(s)

]
+ h̃(s), (A.9)

where h̃(s) shows no singularity on {s ∈ C | < (s) < −pW }, and we have used Proposi-
tion A.1(i) and 1 +λ/s(1−X∗(−s)) = 1−ρ+ o(1). Inverse Laplace transformation of (A.9)
then gives, at every u ≥ 0 where v̂ is differentiable,

v̂′(u) = λ
(
f(u)− f̄ + E [v̂(u+X)− v̂(u)]

)
, (A.10)

which holds for almost every u > 0 by piecewise continuity of f . Since by construction
v(u) ≡ v̂(u) for u ≥ 0, we find (DE). From Theorem 1, we have

v̂(0) = g(0, 0)− f(0)
(PE’)

= Pg(0, 0)− f̄ (II.1)
= E[v̂(X0)] + f(0)− f̄ , (A.11)

which yields (BCa). Finally, we find (BCb) by taking the limit of (A.10) as u→ 0+,

v̂′(0) = λ
(
f+(0)− f̄ + E [v̂(X)− v̂(0)]

) (A.11)
= λ

(
f+(0) + E [v̂(X)]− E[v̂(X0)]− f(0)

)
.

(ii) Equation (S) follows directly from (Ŝ) and the fact that v(u) ≡ v̂(u) for u ≥ 0. It
remains to compute ∂+c. From Theorem 1, we get

B∂+c(s)
(C)
= λ

(1−ρ)W
∗(−s)Lf (s) = λ

(1−ρ)E[esW ]
´+∞
−∞ f(u)e−su du

= λ
(1−ρ)E[

´+∞
−∞ f(u)e−s(u−W ) du] = λ

(1−ρ)
´+∞
−∞ E[f(t+W )]e−s(t) dt

= λ
(1−ρ)BE[f(·+W )](s),

(A.12)

where we have used f(u) = 0 if u < 0. Equation (C) follows by inversion of (A.12). �

B Moments of the asymptotic waiting times and rates of growth

In Table B.1 we derive the coefficient sequence {wk} for standard service time distributions
(constant, exponential, Erlang), and study its asymptotic growth. The moments of W and
their growth rates can be inferred from those of {wk} using the identity E[Wk] = k!wk.
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Table B.1: Germ of W ∗(−s) at s = 0 for constant (M/D/1), exponentially-
distributed (M/M/1) and Erlang-distributed (M/Eq/1) service times.

M/D/1 (constant): X = x, with x > 0; E[Xk] = xk; W ∗(s) =
(1−λx)s

s−λ(1−e−sx)
; P(W ∗) ={

λ[1 + 1
λx

Wk

(
−λxe−λx

)
] | k ∈ Z0

}
; −pW = −λ[1 + 1

λx
W−1

(
−λxe−λx

)
];

wk =
[∑k

t=1

(
λx

1−λx
)t
φ(t, k + t)

]
xk, (k ≥ 1), (B.1)

where Wn denotes the nth branch of the product logarithm function, [9], and

φ(1, n) = 1
n!
, (n ≥ 2), (B.2a)

φ(m+ 1, n) =
∑n−2
p=2m

φ(m,p)
(n−p)! , (m = 1, . . . , bn−2

2
c, n ≥ 2), (B.2b)

φ(m,n+ 1) = m
n+1

[φ(m,n) + φ(m− 1, n− 1)], (m = 2, . . . , bn
2
c, n ≥ 4). (B.2c)

M/M/1 (exponential): F ′X(x) = ωe−ωx with rate ω > λ; E[Xk] = k!ω−k;

W ∗(s) =
(ω−λ)(s+ω)
ω(s+ω−λ)

; P(W ∗) = {λ− ω}; −pW = ω − λ;

wk = λ
ω(ω−λ)k

, (k ≥ 1). (B.3)

M/Eq/1 (Erlang): F ′X(x) = ω
(q−1)!

(ωx)q−1e−ωx, with shape q ≥ 1 and rate ω > qλ;

E[Xk] =
(k+q−1)!

(q−1)!
ω−k; W ∗(s) =

(1−λx)(s+ω)q

ωq
[
( s
ω

+1)q− λ
ω

∑q−1
k=0

(
q
k+1

)
( s
ω

)k
] ; |P(W ∗)| = q;

wk = 1
ωk

∑k
t=1

(
λ

ω−qλ
)t
ϕ(q)(t, k + t), (k ≥ 1), (B.4)

where

ϕ(q)(1, n) =
(n+q−1
q−1

)
, (n ≥ 2), (B.5a)

ϕ(q)(m+ 1, n) =
∑n−2
p=2m

(q+n−p−1
q−1

)
ϕ(q)(m, p),(m = 1, . . . , bn−2

2
c, n ≥ 2). (B.5b)

C Computation of core functions: examples

Example C.1 (Step cost function and identical service times) The cost function f = 1[τ,∞)

is considered with constant service times X = x > 0. The value function to this problem
was derived in [19] as a solution of (DE). We have f0 = 0, f1 = 1, Lf (s) = (1/s) e−sτ ,

ζ(s, τ) = 1/s, P(Lf ) = {0}, and pW = −λ [1 + (1/λx) W−1

(
−λxe−λx

)
] < 0, as detailed in

Appendix B.
For u ∈ (τ,∞), we find,

∂+c(u)
(III.10)

= λ
1−λxRess=0

(
1−λx

s+λ(1−esx)
es(u−τ)

) (III.6)
= λ

1−λx .

For u ∈ (0, τ), we inspect the positions of the poles and set γ ∈ (0,−pW ). Decompos-
ing W ∗(−s) as in (III.14), we find P(ζ(·, τ)) = {0}, Pu = {−λ}, and Pu = ∅. Since f0 = 0
and Pu is empty, the first and third terms in (III.13) both vanish and Wu needs not be
considered. We find,

c′(u)
(III.13)

=
∑
p∈{−λ,0} Ress=p

(
λm+1 es(u+mx−τ)

(s+λ)m[s+λ(1−esx)]

)
(C.1)
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where m = m̃1(u) = d(τ − u)/xe, We let g(n, k) = u+ (m− 1−n+ k)x− τ for all n, k ∈ N,
and set K(s) = es(u+mx−τ)/[s+ λ(1− esx)], the derivatives of which can be computed by
induction. At −λ, we find the derivatives

K(n)(−λ) = −(n!/λn+1)
∑n
k=0[(λg(n, k))k/k!] e−λg(n,k), (n ∈ N), (C.2)

and (C.1) reduces, for u ∈ [0, τ), to

c′(u)
(III.6)

= lims→0 s
(
λm+1

(s+λ)m
K(s)

)
+ 1

(m−1)!
lims→−λ

(
λm+1K(m−1)(s)

)
(C.2)
= λ

1−λx − λ
∑m−1
k=0

(λ(u+kx−τ))k

k!
e−λ(u+kx−τ).

Integrating the last expression from τ to u gives, for u ∈ [0, τ),

c(u) = c(τ) +
λ(u−τ)
1−λx − λ

∑m−1
k=0

´ u
τ−kx

(λ(t+kx−τ))k

k!
e−λ(t+kx−τ) dt

= c(τ) +
λ(u−τ)
1−λx − λ

∑m−1
k=0

´ u+kx−τ
0

(λξ)k

k!
e−λξ dξ

= c(τ) +
λ(u−τ)
1−λx +

∑m−1
k=0

(
e−λ(u+kx−τ)

∑k
q=0

(λ(u+kx−τ))q

q!
− 1
)

= c(τ) +
λ(u−τ)
1−λx − m̃1(u) +

∑m̃1(u)−1
k=0 e−λ(u+kx−τ)

∑k
q=0

(λ(u+kx−τ))q

q!
,

where c(τ) = λτ
1−λx + m̃1(0) −

∑m̃1(0)−1
k=0 e−λ(kx−τ)

∑k
q=0 (λ(kx− τ))q/q!, and m̃1(t) =

d(τ − t)/xe. Our result is coherent with [19, Theorem 2]. ◦

Example C.2 (Core function from a Taylor series) Assume that the service times for u > 0
follow the exponential distribution FX(x) = 1−e−ωx discussed in Appendix B, where ω > λ
in order to satisfy Assumption 1, and pW = λ−ω. Consider the cost function f(u) = 1−e−au,
with <(a) < ω − λ (Assumption 3) and a 6= 0. This cost function, which is given much
attention in [20], is entire (% = 1) of exponential type σ = |a|. Theorem 2 claims that the
derivation of the value function from a Taylor series at 0 is possible if |a| < |pW |. This can
be verified. Using the notations of Section IV.1, we find f̃n = δ[n] − (−a)n for n ∈ N and,
with the help of Appendix B,

Zf̃(∞) (z) = a
z+a

, Zh̃( 1
z

)
(B.3)
=

λ(z−ω)
z−(ω−λ)

, Zc̃(∞) (z)
(IV.4)

= λa
a+ω−λ

(
a+ω
z+a

− λ
z−(ω−λ)

)
,

with ROC(Zf̃(∞) ) = {z ∈ C | |z| > |a|}, ROC(Zh̃) = {z ∈ C | |z| > ω − λ} and, in con-

sequence, ROC(Zc̃(∞) ) = {z ∈ C | |a| < |z| < ω − λ}, which, as predicted, is nonempty
if |a| < ω − λ and empty if |a| > ω − λ. Picking W ∗ from Table B.1, the inverse Z-transform
of Zc̃(∞) then gives, for n ∈ N,

c̃n =
λ(a+ω)
a+ω−λ (δ[n]− (−a)n) + λ2a

(ω−λ)(a+ω−λ)
δ[n] = λ

1−ρ
(
δ[n]−W ∗(a)(−a)n

)
,

which is the n-th derivative at 0 of λ/(1− ρ)(1 − W ∗(a)e−au). It follows that (IV.3a)
converges for u ∈ R≥0, and we find, in accordance with Table 1,

c(u)
(IV.3a)

= [λ/(1− ρ)] [u−W ∗(a)(1− e−au)/a].

Interval bounds. Notice that f ∈ f̂ (n)+[r(n)] holds if we set [r(n)](u) = [0, an+1/(n+ 1)!]un+1

for n even, and [r(n)] = [−an+1/(n+ 1)!, 0]un+1 for n odd. The resulting interval [%(n)]
follows by inspection of Table 1. Figure 3 displays the interval bounds [c(n)] = ĉ(n) + [%(n)]
obtained for c for various real values of a. The sequence {c(n)} shows to converge towards c
for as long as a < ω − λ. The generation of such a sequence is, however, impossible when
a ≥ ω − λ, as the limit coefficients c̃k are then infinite. ◦

In the next two examples, we consider the piecewise cost function

f(u) =
∑n
j=0 ςju

j 1[0,τ)(u) + ξ(u) 1[τ,∞)(u), ∀u ∈ R≥0,

where ξ(u) = ς̄uke−au, n, k ∈ N, and a ∈ C.
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Example C.3 (Polynomial cost in an interval) Consider service times exponentially dis-
tributed with parameter ω > λ, i.e FX(x) = 1 − e−ωx, and the cost function (IV.6)
with ξ ≡ 0. For this problem we have f0(u) =

∑n
j=0 ςju

j , f1 = 0 and ∆ = −f0. Besides,

Lf0 (s) =
∑n
j=0 ςj

j!
sj+1 , ζ(s, τ)

(III.9)
= −

∑n
j=0 ςjj!

∑j
q=0

τq

q!sj−q+1 . (C.3)

Since P(Lf ) = ∅, (III.10) gives ∂+c(u) = 0 for u ∈ (τ,∞).

For u ∈ (0, τ): using (C.3), P(Lf0 ) = {0}, ρ = λ/ω, and the expression for W ∗ given in
Table B.1, (III.11) reduces, after straightforward computations, to

∂+c(u) = λω
ω−λ

n∑
j=0

j!ςj
[
Ress=0

(
W ∗(−s) e

su

sj+1

)
+
∑j
q=0

τq

q!
Ress=ω−λ

(
W ∗(−s) e

s(u−τ)
sj−q+1

)]
(III.6)

= λ
n∑
j=0

ςju
j + λ2

n∑
j=0

j!ςj
(ω−λ)j+1

(∑j
q=0

[(ω−λ)u]q

q!
− e−(ω−λ)(τ−u)

∑j
q=0

[(ω−λ)τ ]q

q!

)
.

(C.4)
Integration of (C.4) yields, for u ∈ R≥0,

c(u) = λ
∑n
j=0 ςj

[min(u,τ)]j+1

j+1

+λ2
∑n
j=0

j! ςj
(ω−λ)j+2

∑j
q=0

{
[(ω−λ) min(u,τ)]q+1

(q+1)!
− e(ω−λ)min(u,τ)−1

e(ω−λ)τ
[(ω−λ)τ ]q

q!

}
.

Example C.4 Consider service times exponentially distributed with parameter ω > λ, and
the cost function f(u) = uke−au 1[τ,∞)(u), i.e. (IV.6) with n = 0, ς0 = 0. We have f0(u) = 0

and f1 = ∆ = uke−au, so that

Lf0 (s) = 0, ζ(s, τ)
(III.9)

= k!e−aτ
∑k
q=0

τq

q!(s+a)k−q+1 . (C.5)

For u ∈ (τ,∞), we use Table B.1 and P(Lf ) = {−a}, and get

∂+c(u)
(III.10)

= k!λω e−aτ
ω−λ

∑k
q=0

τk−q
(k−q)! Ress=−a

(
W ∗(−s) es(u−τ)

(s+a)q+1

)
(III.6)

= λuke−au + k!λ2

(ω−λ+a)k+1 {
∑k
q=0

1
q!

[(ω − λ+ a)u]q} e−au.
(C.6)

Alternatively, (C.6) can be derived from (III.7) with cost function f1, or by inspection of
Table 1 for f1 via computation of (III.4).

For u ∈ (0, τ), we combine (III.11) with (C.5), P(Lf0 ) = ∅, and W ∗ (Table B.1) to get

∂+c(u) = − λω
ω−λk!e−aτ

∑k
q=0 Ress=ω−λ

(
W ∗(−s) τq

q!(s+a)k−q+1 e
s(u−τ)

)
= k!λ2e−aτ

(ω−λ+a)k+1 {
∑k
q=0

1
q!

[(ω − λ+ a)τ ]q} e(ω−λ)(u−τ).

Hence, if a 6= 0,

c(u) = k!λ2 e−(ω−λ+a)τ
(ω−λ)(ω−λ+a)k+1 {

∑k
q=0

1
q!

[(ω − λ+ a)τ ]q} (e(ω−λ) min(u,τ) − 1)

+ k!λ2

ω−λ
{∑k

q=0
1
q!

[a−(k−q+1) − (ω − λ+ a)−(k−q+1)] [τqe−aτ −max(u, τ)qe−amax(u,τ)]
}
,

and, if a = 0,

c(u) = k!λ2 e−(ω−λ)τ
(ω−λ)k+2 {

∑k
q=0

1
q!

[(ω − λ)τ ]q} (e(ω−λ) min(u,τ) − 1)

+λτk+1

k+1
([max(u

τ
, 1)]k+1 − 1) + k!λ2

(ω−λ)k+2

{∑k
q=0

[(ω−λ)τ ]q+1

(q+1)!
([max(u

τ
, 1)]q+1 − 1)

}
.
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D Proofs and auxiliary results

Proof (Theorem 2) (i) If % is the order of growth of the entire cost function f , and σ is its
type, then for any ε > 0, there is kε <∞ such that, [29, Lecture 1],

1
k!
|f (k)(0)| <

( e(%+ε)
k

) k
%+ε , ∀k > kε, (D.1a)

1
k!
|f (k)(0)| <

( e(σ+ε)%
k

) k
% , ∀k > kε. (D.1b)

Consider the quantity c̃k =
∑∞
q=0 wq f

(k+q)(0) introduced in (IV.2), as well as

c̄k = λ
1−ρ

∑∞
q=0 wq

∣∣f (k+q)(0)
∣∣ , ∀k ∈ N. (D.2)

Recall from Proposition A.1-(iv) in Appendix A that limk→∞ wk+1/wk = |pW |−1. Besides,
it can be seen (e.g. using Stirling’s approximation for the factorial) that

limk→∞
(k+1)!

(
esr

k+l+1

) k+l+1
r

k!
(
esr
k+l

) k+l
r

=

{
0, if r < 1
s, if r = 1
∞, if r > 1

}
, ∀l ∈ N. (D.3)

Equations (D.1a) and (D.1b) tell us that, under the assumptions of (i) and by taking ε
sufficiently small, one can find a dominant series for c̃k and c̄k that successfully passes the
ratio test for convergence due to (D.3), so that both c̃k and c̄k are finite for all k. The
finiteness of c̄k allows us to interchange the integration order in the computation of c̃k.
Noting that wq = E[W q ]/q! for all q (cf. Proposition A.1-(iv)), we apply Fubini’s theorem
and find, for k ∈ N≥0,

c̃k = λ
1−ρ

∑∞
q=0 E[f (k+q)(0)W

q

q!
] = λ

1−ρE[
∑∞
q=0 f

(k+q)(0)W
q

q!
]
(IV.1)

= λ
1−ρE[f (k)(W )].

(D.4)
Similarly, we introduce, for k ∈ N,

ĉk = λ
1−ρE

[∣∣f (k)(W )
∣∣] (IV.1)

≤ λ
1−ρE

[∑∞
q=0

∣∣f (k+q)(0)
∣∣ Wq

q!

]
= λ

1−ρ
∑∞
q=0 wq

∣∣f (k+q)(0)
∣∣ (D.2)

= c̄k.
(D.5)

and ĉk is finite as well. Suppose now that |(dk/duk)f(0)| < k!(esr/k)k/r for k > kε—in the
case (i), this holds either for some r < 1 or for r = 1 and some finite s—, and consider the
sequence

βk = λ
1−ρ

∑∞
q=0 (q + k)!wq

(
esr
q+k

) q+k
r , ∀k ∈ N. (D.6)

It is easy to see that the three sequences
∑∞
k=0 c̃ku

k+1/(k + 1)!,
∑∞
k=0 c̄ku

k+1/(k + 1)! and∑∞
k=0 ĉku

k+1/(k + 1)! converge wherever
∑∞
k=0 βku

k+1/(k + 1)! is convergent. Besides,

βk+1
(D.6)
= λ

1−ρ
∑∞
q=0

[
(q+k+1)!

(
esr

q+k+1

) q+k+1
r

(q+k)!
(
esr
q+k

) q+k
r

]
(q + k)!wq

(
esr
q+k

) q+k
r . (D.7)

In the conditions of (i), we infer from D.3 that the expression between brackets in (D.7)
tends to a finite quantity not larger than s, so that, for any ν > 0 one can find a kν
such that βk+1 ≤ (βkν+1 − βkν ) + (s + ν)βk for k > kν . It follows from the ratio test
that

∑∞
k=0 βkξ

k/k! converges for ξ ∈ R≥0, and so do
∑∞
k=0 c̃kξ

k/k! = ψ(u),
∑∞
k=0 c̄kξ

k/k!
and

∑∞
k=0 ĉkξ

k/k!. This last conclusion, together with (D.4), (D.5), and Fubini’s theorem
applied to set of natural numbers with the counting measure, yields, for u ∈ R≥0,

ψ(u)
(D.4)
= λ

1−ρ
´ u
0

∑∞
k=0 E[f (k)(W ) ξ

k

k!
] dξ = λ

1−ρ
´ u
0 E[

∑∞
k=0 f

(k)(W ) ξ
k

k!
] dξ

(IV.1)
= λ

1−ρ
´ u
0 E [f(ξ +W )] dξ

(CVF)
= c(u),
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C1/ε

Cε(0) Cε(τ)

P(fk)

τ 1
σ <(s)0

=(s)

ε

1/ε

Fig. 6: Singularities of fk(s) s−1/2]−π(s− τ)
−1/2

]−π (1− σs)−l(k) and compu-
tation of α̂k(σ) by contour integration.

where the last result follows from Proposition 2(ii). Since∑∞
k=0 c̄k

ξk

k!
= λ

1−ρ
∑∞
k=0

(∑∞
q=0 |wq f (k+q)(0) ξ

k

k!
|
)
<∞, ∀ξ ∈ R≥0,

Fubini’s theorem applies and one may interchange the order of summation in (IV.3a):

ψ(u) = λ
1−ρ
´ u
0

∑∞
q=0 wq

(∑∞
k=0 f

(k+q)(0) ξ
k

k!

)
dξ = λ

1−ρ
´ u
0

∑∞
q=0 wq f

(q)(ξ) dξ
(IV.3b)

= χ(u),

which holds for u ∈ R≥0.
(ii) Similarly, for any ε > 0, one can find growing sequences of naturals {lk} and {mk}

such that, [29, Lecture 1],

|f(lk)(0)|
lk!

>
( e(%−ε)

lk

) lk
%−ε , (k ∈ N≥0), (D.8a)

|f(mk)(0)|
mk!

>
( e(σ−ε)%

mk

)mk
% , (k ∈ N≥0). (D.8b)

Recall the series c̃k defined in (IV.2). By taking ε sufficiently small in (D.8a) and (D.8b) and
using (D.3), we find that the asymptotic ratio between the moduli of two terms of (IV.2)
with respective indices lq − k, lq+1 − k (in the case % > 1) or mq − k,mq+1 − k (in the
case % = 1, σ > |pW |−1) is greater than one for q taken large enough. Hence, one can find
a subsequence of terms of (IV.2) which grows in modulus, and c̃k diverges for all k. �

Lemma D.1 (Coefficients {α̃k} for quotients of polynomials) Let gm and hn be
polynomials of degrees m and n, and consider

f(u) =
gm(u)
hn(u)

, ∀u ∈ R≥0.

For τ > 0, recall (IV.19) and define fk(s) = f(s) pk(2s/τ − 1) under the assumption
P(fk) ∩ [0,∞) = ∅. The Fourier coefficients (IV.21) of f satisfy, for k ≥ 0,

α̃k =
√
π
∑l(k)
q=0

ζ−q (−τ)q

q!Γ( 1
2
−q)
−
∑
a∈P(fk) Ress=a

(
fk(s) s−

1
2 ]−π(s− τ)−

1
2 ]−π

)
, (D.9)

where l(k) = max(0,m−n+k) is the largest nonnegative integer l such that lims→0 slfk (1/s)
is finite, and {ζq} are the coefficients of the Laurent series at +∞ of the analytic continu-
ation of fk, i.e.,

ζq = 1
(l(k)+q)!

lims→0
dl(k)+q

dsl(k)+q

[
sl(k)fk

(
1
s

)]
, (q = −l(k), . . . ,∞). (D.10)
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A suggestion for deriving the coefficients {α̃k} in Lemma D.1 is to consider in the complex
domain the contour integral

γk(σ) = 1
π

�
C

(
gm(s) pk( 2s

τ
−1)

hn(s) (1−σs)l(k)

)
s−

1
2 ]−π (s− τ)−

1
2 ]−π ds

= 1
π

( �
C1/ε

+
ff
Cε(0)+

´ τ−ε
ε +

ff
Cε(τ)+

´ ε
τ−ε

)
fk(s) s

− 1
2 ]−π(s−τ)

− 1
2 ]−π

(1−σs)l(k)
ds,

where sα]−π = eα(ln |s|+i arg s]−π) denotes the principal branch of the complex exponentia-
tion, and the circles C1/ε, Cε(0), and Cε(τ) are understood as in Figure 6 with ε > 0 chosen
small enough so that 1/σ and the poles of fk all lie between the outer contour Cε and the
inner contour.

The computation of the residues in (D.9) is straightforward for every pole in P(fk). The
final result can be stated as a function of the derivatives of fk and of the function defined

by $(s) = s−1/2]−π(s− τ)−1/2]−π . The successive derivatives of $ can be obtained by
induction on t ≥ 2, using

$(1)(s) = −
(

2s−τ
2s2(s−τ)2

) √
s
]
−π
√
s− τ

]
−π ,

$(t)(s) = 1
2

{
(−1)tt!

∑t
j=0 s

−(j+1)(s− τ)−(t−j+1) −
∑t−1
q=1

(
t
q

)
$(q)(s)$(t−q)(s)

}
×
√
s
]
−π
√
s− τ

]
−π ,

which follows from the derivation of $(s)2 = s−1(s− τ)−1 using Leibniz’s product rule.
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