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Estimating the size of small populations from
incomplete lists via graphical models

Jérôme A. Dupuis

IMT, Université Paul Sabatier, Toulouse, France

Abstract

We consider the problem of estimating the size N of a closed
population from q incomplete lists. Estimation of N is based on
capture-recapture type models. We use graphical models to deal
with possible dependencies between lists. The current parametriza-
tion involves clique probabilities which have no simple concrete mean-
ing and are delicate to manipulate in a Bayesian context insofar as
hyper-Dirichlet distributions are used as priors. Our parametrization
involves marginal and conditional capture probabilities. We develop
our approach with q = 3. We show that there is a one-to-one and
onto correspondence between both parametrizations and that plac-
ing hyper-Dirichlet distributions on the clique parameter boils down
to place independent beta distributions on the capture parameters.
When N is small, the non informative Bayesian analysis encounters
difficulties. The posterior distribution of N may not exist for a par-
ticular graphical model: we give a necessary and sufficient condition
of existence for each. Moreover, it is highly desirable that the priors
on capture are compatible across the different models. Now, due to
the small size of N , fulfilling this requirement demands a particular
attention. We conclude by extending our approach to q = 4 lists.

Key Words. Bayesian model averaging; Capture-recapture; Graphi-
cal models; Hyper-Dirichlet distribution; Incomplete lists; Population
size estimation; Small populations.
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1 Introduction

Estimating the size N of a closed population is an important issue in sev-

eral scientific fields: such as medecine, ecology, computer science (eg Pollock,

1990). As far as human populations are concerned, estimating N is typically

based on q ≥ 2 incomplete lists and the resulting data are thus capture-

recapture type data: an individual which appears on a given list being, in

a way, ‘captured’ by this list (eg Hook and Regal, 1995; Chao et al., 2001).

Owing to this analogy, the satistical analysis uses capture-recapture type

models. The estimation of N can be based on two lists; but, in such a case,

it is not possible to take into account in the model a possible dependence

between the two lists, and then there is a risk of overestimating (or under-

estimating) N if such a dependence exists. In fact, at least three lists are

necessary to model dependences between lists (eg Chao, 2015), what under-

lines the fact that the value q = 3 is an important particular case on which

we will focus in this paper.

Two approaches have been proposed for modelling some possible depen-

dences between the lists: the one of King & Brooks (2001) which uses log-

linear models, and the one of Madigan & York (1997) which uses decompos-

able graphical models. The paper takes place in the latter. Graphical models

are a particularly attractive tool to formulate in a rigorous way all the con-

ditional (or marginal) independence assumptions between the different ran-

dom variables. Moreover, this tool allows to visualize such assumptions what

makes it very popular among the researchers; eg Dupuis (1995), Hojsgaard,

Edwards, and Lauritzen (2012). The graph of a graphical model m is deter-
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mined by its (maximal) cliques, and Madigan & York (1997) parametrize any

model by the corresponding cliques probabilities. This way of proceeding is

quite natural. However, most of researchers are used to work with capture

parameters which are quantities having a very concrete meaning (contrary

to clique probabilities). Hence the interest to examine in which extend it

is possible to reparametrize the approach of Madigan & York (1997) via

capture probabilities. We show that it is effectively the case and that both

parametrizations produce the same bayesian inference on N . Accordingly,

the theoretical results established in this paper will apply without any modi-

fication to the Madigan & York’s approach. As in Madigan and York (1997),

inference on N is based on a Bayesian model averaging which includes all

the possible decomposable graphical models (for fixed q).

The paper focuses on populations of which the size N is small; see for

example Wang et al. (2007) for motivations. In human populations, estimat-

ing the number of people affected by a rare disease typically enters in this

framework. When N is small, it may occur that one (or more) count associ-

ated with a particular capture-recapture history (different from the one of an

individual never captured) is null or very low. In such circumstancies, sta-

tistical difficulties may occur when one wishes to perform a non informative

Bayesian analysis of the data.

- A first difficulty, not mentioned in Madigan and York (1997), is related

to the existence of the posterior distribution of N when an improper prior

is placed on N (Jeffreys or uniform). Sufficient and necessary conditions

of existence are thus stated for each graphical model: our results extend

the result of Wang et al. (2007) which concerned only the simplest model
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(namely the independant model). A analoguous result of existence is also

stated for the Bayesian averaging model procedure.

- A second difficulty is related to the priors put on the capture parameters.

When inference involves several candidate models, it is strongly desirable

that the priors are compatible across the different models (eg Dawid and

Lauritzen, 1993). Here, the prior distribution on any capture parameter of

any sub-model is derived from the prior distribution put on the parameter

of the saturated model (afterwards denoted by θ
Sat

). This strategy is the

one adopted by Madigan and York (1997) to derive the prior distributions

on the clique probabilities. Standard non informative priors on θ
Sat

are the

uniform distribution on the 2q-simplex and the Jeffreys prior. Now, we note

that Madigan and York (1997) advice to use the uniform prior. But this prior

induces informative priors on the marginal capture probabilities since they

follow a beta (2q−1, 2q−1) which cannot be considered as non informative

when q ≥ 3 (especially when N is small).

- In fact these two difficulties are closely linked, since the prior adopted for

θ
Sat

plays a part in the condition of existence of the posterior distribution

of N (see Section 7). In this paper, we propose a distribution on θ
Sat

which

induces non informative priors on marginal and conditional capture probabil-

ities, and ensures - whatever the graphical model considered - the existence

of the posterior mean of N when the Jeffreys prior is adopted for N .

In conclusion, we briefly indicate how to extend our approach to the

particular case q = 4, and how to take into account a possible individual

heterogeneity at the capture level (see Section 6).
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2 Data description

For any individual i of the population of interest, we denote by xi the vector

(xir; r = 1, 2, 3) where xir = 1 if individual i appears on list r and zero oth-

erwise; xi is called the history of individual i. There are 8 possible histories,

namely: (0 0 0), (0 0 1), (0 1 0), (0 1 1), (1 0 0), (1 0 1), (1 1 0), (1 1 1).

The set of all these histories is denoted by H, and the set H minus the

history 000 is denoted by H∗. We denote by nh the number of individu-

als whose history is h. Note that the count n000 is not observable and that

d =
∑

h∈H∗ nh represents the number of individuals appearing in at least one

list. Data is denoted by y; thus, one has y = {nh;h ∈ H∗}.

3 Assumptions, models and parameters

We assume that the N random vectors X1, . . . ,Xi, . . . ,XN are independent

and identically distributed. Therefore, the probabilistic assumptions con-

cerning the components of the random vector Xi = (Xir; r = 1, 2, 3) do not

depend on i; and, for convenience, we will afterwards omit index i in Xir.

The assumptions on X1, X2, and X3 are formulated via graphical models. As

Madigan and York (1997), we consider eight models: the saturated model

and seven sub-models obtained by removing one or several arrows in the

graph of the saturated model.

- The saturated model is denoted by [123]. It is characterized by the fact

that no independence assumption concerning X1, X2, and X3 is made.

- A model which assumes a conditional independence assumption between

two nodes of the graph is said of type I. The model which assumes that
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Table 1: Characteristics of each type of graphical model (q = 3 lists)

model name assumption factorization

1

32 satured no p(x1, x2, x3)

1

32 type I X2 ⊥ X3|X1 p(x1)p(x2|x1)p(x3|x1)

1

32 type II X1 ⊥ (X2, X3) p(x1)p(x2, x3)

1

32 independent ⊥ (X1, X2, X3) p(x1)p(x2)p(x3)

X2 ⊥ X3|X1 is denoted by [12, 13]. The two other models of type I are

denoted by [23, 21] and [31, 32] (with obvious notation).

- A model which assumes a marginal independence assumption between one

node and the two others is said of type II. The model which assumes that

X1 ⊥ (X2, X3) is denoted by [1, 23]; The two other models of type II are

denoted by [2, 13] and [3, 21] (with obvious notation).

- The independant model denoted by [1, 2, 3]. It assumes that the three

random variables X1, X2, and X3 are independant.

The graphs of the above models appears in Table 1. In column 1, X1, X2,

X3 are, for convenience, respectively represented by 1 , 2 , 3 . Note that

all these graphs are decomposable. Let p(x1, x2, x3) be denote the probability

that X1 = x1, X2 = x2, X3 = x3 where x1, x2, x3 belongs to {0, 1}. For each

sub-model we can deduce from its graph a specific factorization of p(x1, x2, x3)
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given in Table 1. Each factorization induces a natural parametrization of the

sub-model in terms of marginal and conditional capture-recapture probabil-

ities. We thus introduce the following notation. Marginal capture probabil-

ities are denoted by θr which represents the probability that an individual

appears on list r ∈ {1, 2, 3}. Conditional capture probabilities are denoted

as follows: θs|r represents the probability that an individual appears on list

s given that he appears on list r 6= s, and θs|r represents the probability that

he appears on list s given that he does not appear on list r 6= s. We thus

define twelve conditional probabilities and three marginal probabilities.With

this notation, the independent model includes three parameters, namely θ1,

θ2, θ3. A Model of type I includes five parameters. For example, the param-

eters of model [12, 13] are θ1, θ2|1, θ2|1, θ3|1 and θ3|1. As far as models of type

II are concerned, two parametrizations are possible (both are natural). For

example, if one considers the model [1, 23], one can decompose p(x1, x2, x3)

as p(x1)p(x2)p(x3|x2) or as p(x1)p(x3)p(x2|x3). In the first case, the resulting

parametrization includes parameters θ1, θ2, θ3|2, θ3|2, and parameters θ1, θ3,

θ2|3 and θ2|3 in the second case.

The above notation concern the parameters of sub-models. The saturated

model is parametrized by the θh’s where θh denotes the probability that

an individual has h as history; thus, one has: θ
Sat

= (θ111, . . . , θ000). We

stress that this additional notation indexes θ by a capture-recapture history,

contrary to the one adopted in sub-models which indexes θ by the lists.
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4 Priors

4.1 Priors on the size N of the population.

We will use the greek letter π to designate any prior or posterior density,

continuous as well as discrete. Moreover, for a graphical model m, the set of

all the capture probabilities (marginal and conditional) is denoted by θm.

First, we assume that, for all models m, N and θm are a priori indepen-

dent, thus one has: π(N,θm) = π(N)π(θm). In the absence of any prior

information on N , one usually adopts either the Jeffreys prior π(N) = 1/N ,

or the uniform prior π(N) = 1 (eg Basu and Ebrahimi, 2001; Dupuis and

Schwarz, 2007). Note that both are improper and the existence of the pos-

terior distribution of N is thus not guaranteed (hence the study made in

Section 6).

4.2 Prior distributions on the capture probabilities

For each sub-model m, we assume that the elementary parameters present

in sub-model m are a priori independent; we mean by elementary parameter

any capture probability (marginal as well as conditional) present in model

m. For example, if m = [12, 13], we assume that θ1, θ2|1, θ2|1, θ3|1 and θ3|1 are

a priori independant. As in the paper of Madigan & York (1997), we adopt

for θ
Sat

a Dirichlet distribution with parameters (a000, . . . , a111), afterwards

denoted by D(a000, . . . , a111); thus, one has:

π(θ
Sat

) ∝
∏
h∈H

θah−1
h

where the ah are all stricly positive. In a non informative set-up, a standard

choice is the uniform distribution. The main alternatives to the uniform prior
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are the Jeffreys prior and the Perks prior which respectively corresponds to

a D(1/2, . . . , 1/2) and to a D(1/23, . . . , 1/23).

For j, k in {0, 1}, it is convenient to introduce the following notations:

θjk+ =
1∑

l=0

θjkl and θj++ =
1∑

k=0

θjk+.

Recall that θjkl denotes the probability that an individual has jkl as history.

Notations θj+l, θ+kl, θ+k+ and θ++l are defined similarly.

As far as a Bayesian model averaging procedure is implemented for esti-

mating N , it is strongly desirable that the priors are -as much as possible-

compatible across the different models. In particular, it is natural to require

that the prior distribution put on any fixed elementary parameter is the same

from model to model. A simple way to fulfill this requirement is to derive its

density from the one put on θ
Sat

, considering that all elementary parameters

express in function of the θh’s; for example, one has:

θ3 =
∑

j,k∈{0,1}

θjk1, θ2|1 =
θ110 + θ111

θ1++

and θ2|1 =
θ010 + θ011

θ0++

.

The following Proposition allows to derive the prior distribution on any

marginal and conditional capture probabilities from the one placed on θ
Sat

.

Proposition 1. For any j, k ∈ {0, 1}, we have: θj++ ∼ beta(aj++, a− aj++)

where a =
∑

h∈H ah and θjk+/θj++ ∼ beta(ajk+, aj++ − ajk+) with obvious

notations for ajk+ and aj++.

Proof. The first part of the Proposition is an immediate consequence of

the agregation property of the Dirichlet distribution. See Appendix A for the

second part.

Similar results of course hold for θ+k+, θ++l, and for all the possible ratios

similar as the one appearing in Proposition 1. Fixing the hyperparameters ah
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thus induces a prior distribution for all the marginal and conditional capture

probabilities. If we put a uniform distribution on θ
Sat

, the conditional cap-

ture probabilities follow a Beta (2, 2) and the marginal probabilities follow a

Beta (4, 4). These beta distributions cannot be considered as non informa-

tive. As far as marginal probabilities are concerned, the Jeffreys prior suffers

from the same drawback than the uniform prior (but to a lesser extent). On

the contrary, if we put a D(1/4, . . . , 1/4) on θ
Sat

, all the marginal and con-

ditional capture probabilities follow non informative distributions, namely a

uniform distribution for the former, and a Jeffreys distribution for the latter.

The Perks prior also induces non informative priors on capture probabilities;

but the Dirichlet D(1/4, . . . , 1/4) will turn out to be preferable to ensure the

existence of the posteriors (see Section 7).

5 The links with the Madigan & York’s paper

Proposition 2 below clarifies the links between the parametrisation of Madi-

gan and York (1997) which uses the notion of clique probability, and ours

which involves marginal and conditional capture probabilities.

Proposition 2. For each fixed sub-model m, there is a one-to-one and

onto correspondence between the clique probabilities parametrisation and

the capture probabilities parametrisation.

Proof. The proof appears in Appendix B.

Proposition 3 below clarifies the links exiting between the prior adopted

by Madigan and York (1997) for the clique parameter of model m and the

prior we put on the capture parameter present in model m.

Proposition 3. Sub-model m being fixed, if one adopts the hyper-Dirichlet
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distribution of Madigan and York as prior for the clique parameter of sub-

model m, thus the marginal and the conditional capture probabilites playing

a part in sub-model m follow independently beta distributions which are all

compatible; moreover the converse holds.

Proof. The proof appears in Appendix C.

In this Appendix we recall, for each model m, the density of the hyper-

Dirichlet distribution adopted by Madigan and York (1997). In Proposition

3, we mean by clique parameter of model m the set of the clique probabili-

ties present in model m (a similar definition is adopted for the term capture

parameter). Moreover, we mean by compatible beta distributions that the

prior distributions placed on the marginal and conditional capture probabil-

ities are derived from the Dirichlet distribution placed on θ
Sat

, as Madigan

& York (1997) did for the clique probabilities.

6 Conditions of existence of posteriors.

The graphical model being fixed, we provide a necessary and sufficient condi-

tion of existence of different posteriors: namely, the posterior distribution of

N , as well as the posterior mean and variance of N . We also give a necessary

and sufficient condition of existence of the averaged-model posterior mean of

N , that is of E[N |y]. In this paper, we focus on the posterior mean which

is the quantity the most often retained for estimating N ; see eg George &

Robert (1992), King & Brooks (2001); as well as Wang et al. (2007) for small

populations. Note that Madigan & York (1997) use the absolute quadratic

loss which yields an estimate of N different from the posterior mean.
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6.1 Conditions of existence of E[N |y,m].

Model m and data y being given, we have:

π(N |y,m) =
p(y|N,m)π(N)∑

N≥d p(y|N,m)π(N)
(5.1)

with

p(y|N,m) = Pr(Y = y|N,m) =

∫
Θm

L(θm, N ; y)π(θm) d (θm), (5.2)

where L(θm, N ; y) denotes the likelihood of (θm, N) under model m. Note

that the distribution of N |y,m will exist if and only if the integral appearing

in (5.2) is finite (for all N ≥ d) and the series of general term p(y|N,m)π(N)

converges. For obtaining L(θm, N ; y) we have to compute Pr(Y = y|θm, N).

The assumption of independence between the Xi’s (see Section 3) implies

that:

(N001, . . . , N111)|N,θm ∼ Multinomial(N ; θ001, . . . , θ111),

from which we deduce that:

L(θm, N ; y) =
N !

(N − d)!
∏

h∈H∗ nh!

[
1−

∑
h∈H∗

θh

]N−d ∏
h∈H∗

θnh
h . (5.3)

The expression of L(θm, N ; y) in function of the capture parameters present

in model m, is now easily obtained by taking into account the factorization

given in Table 1 (see Appendix D).

For obtaining p(y|N,m) one has to integrate L(θm, N ; y) over θm. This

integral, afterwards denoted by Im(N), can be write down in a closed form

(for each model m); see Appendix D. As stressed in this Appendix, Im(N)

exists for all model m, for all N ≥ d and for all data set y, because the ah’s are
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strictly positive. E[N |y,m] will thus exist if and only if the series of general

termNIm(N)π(N) converges. In Proposition 4 below, we provide a necessary

and sufficient condition so that this series converges; in our statement, λ = 1

is associated with the Jeffreys prior π(N) = 1/N , and λ = 0 with the uniform

prior π(N) = 1.

Proposition 4. The posterior mean of N exits:

- under the saturated model, if and only if, λ+ a− a000 > 2,

- under [12, 13], if and only if, λ+ n011 + (a− a000) + a011 > 2,

- under [1, 23], if and only if, λ+ d1 − n100 + (a+ a1++ − a+00) > 2,

- under [1, 2, 3], if and only if, λ+(d1 +d2 +d3)−d+a1++ +a+1+ +a++1 > 2.

Proof. It appears in Appendix E.

- If the existence of the posterior distribution of N is of interest, replace

2 by 1 in the right member of inequalities. For the posterior variance of N ,

replace 2 by 3.

- As far the model [1, 23] is concerned, the above result shows that

the obtained condition does not depend on the factorization adopted for

p(x1, x2, x3) since each of the terms n011, a000 and a011 remain unchanged

when one permutes the index k (related to list 2) and l (related to list 3).

- The conditions for models [23, 21], [31, 32], [2, 31], and [3, 12] are ob-

tained by an appropriate permutation of the indices j, k, l in ajkl and njkl.

We now briefly comment Proposition 4.

- Except for the saturated model, we observe that the left term which

appears in the inequalities decomposes in three parts: the first one (namely λ)

is related to the prior put on N , the second one is related to the data, and the

last one is related to the prior put on θ
Sat

. In small populations, it may occur
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that, for a given sub-model, the second term may be null and thus the choice

of the prior on θ
Sat

becomes crucial to meet the corresponding condition of

existence (it is the case for the two data sets considered in Section 7). For

example, if one adopts the Perks prior for θ
Sat

and the Jeffreys prior for N ,

the posterior mean of N does not exist under the model [12, 13] when n011

is null (in this configuration, only the posterior distribution of N exists). If,

always in this configuration, we replace the Perks prior by a D(1/4, . . . , 1/4)

thus the posterior mean of N will exist (recall that this Dirichlet ensures that

the priors on the capture proabilites are all non informative, see section 4.2).

- For the saturated model, comments are reported in Section 6.2.

6.2 Condition of existence of E[N |y].

In a Bayesian model averaging procedure, N is typically estimated by the

averaged-model posterior mean of N , that is by E(N |y); see eg Hoeting et

al. (1999). Now, one has:

E(N |y) =
∑
m

p(m|y) E(N |y,m) (5.1)

where p(m|y) represents the posterior probability of model m.

Proposition 5. E(N |y) exists if and only if λ+a−a000 > 2 where λ = 0

when π(N) = 1 and λ = 1 when π(N) = 1/N .

Proof. See Appendix F.

We note that data play no part in the condition given by Proposition 4;

the reason is that the condition λ + a − a000 > 2, which appears in Propo-

sition 2, is the stongest one (see Appendix F). Consequently, the result of

Proposition 5 is very general and applies to any type of data (relatively to
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the sizes of the nh’s). That means that basing inference on a Bayesian model

averaging procedure is possible only if appropriate priors are choose for N

and θ
Sat

. For example, if one adopts the Jeffreys prior for N , the Perks’s

prior cannot be used; on the opposite, the averaged-model posterior mean

of N will exist in all the other cases (that is with the uniform and Jeffreys

priors, as well as a D(1/4, . . . , 1/4)).

7 Generalizations and extensions.

• The parametrization in terms of marginal and conditional capture proba-

bilities can be extended to q ≥ 4 lists. In practice, the number of lists rarely

exceeds 4, and we will thus limit ourself (for brievety) to the case q = 4. Table

6 provides, for each type of graphical model, the corresponding conditional

and marginal independence assumptions. All these models are decomposable,

except the third (from top). For each model (except the third) we provide

the factorization of p(x1, x2, x3, x4) derived from its graph. The third model

has no factorization and will be typically removed from a Bayesian averaging

model. As for the case q = 3, the definition of the parameters is, for each

decomposable sub-model, derived from its factorization (details are omitted).

Note that the second and sixth models from top, involve conditional capture

probabilities where the conditioning is on two lists.

Concerning the averaged-model posterior mean of N , it is easy to check

that it exists if and only if λ + a− a0000 > 2 where the convention concern-

ing λ is unchanged (see Section 6). The proof proceeds as for q = 3 and is

omitted for concision. Concerning the prior placed on θ
Sat

we advocate to

use a D(1/2q−1, . . . , 1/2q−1) with q = 4, for two reasons. First, this choice
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Table 2: Characteristics of each type of graphical model (q = 4)

model assumptions factorization

4

1

3

2

none p(x1, x2, x3, x4)

4

1

3

2

2 ⊥ 4|(1, 3) p(x2|x1, x3)p(x4|x1, x3)p(x1, x3)

4

1

3

2

1 ⊥ 3|(2, 4) ; 2 ⊥ 4|(1, 3) no factorization

1 2

34 ⊥ (1, 2, 3)|4 p(x1|x4)p(x2|x4)p(x3|x4)p(x4)

1 2

34 1 ⊥ 3|2; 2 ⊥ 4|3; 1 ⊥ 4|(2, 3) p(x1|x2)p(x4|x3)p(x2, x3)

1 2

34 4 ⊥ (1, 2, 3) p(x1, x2, x3)p(x4)

1 2

34 4 ⊥ (1, 2, 3) ; 1 ⊥ 3|2 p(x4)p(x1|x2)p(x3|x2)p(x2)

1 2

34 (1, 2) ⊥ (3, 4) p(x1, x2)p(x3, x4)

1 2

34 2 ⊥ 4 ; (1, 3) ⊥ (2, 4) p(x1, x3)p(x2)p(x4)

4

1

3

2

⊥ (1, 2, 3, 4) p(x1)p(x2)p(x3)p(x4)
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ensures the existence of E[N |y] when π(N) = 1/N . Second, it ensures that

all the marginal and conditional capture probabilities follow non informative

prior distributions. Indeed, it is easy to check that: the marginal capture

probalities follow a uniform distribution, the conditional probabilities cap-

ture follow a Jeffreys distribution when the conditioning is on one list, and

a Beta (1/4, 1/4) when the conditioning is on two lists. The use of the uni-

form distribution will suffer, in a way more accute than for q = 3, from the

drawback mentioned in Section 4.2 since the prior on a marginal capture

probability will now follows a Beta(8, 8) (which is far from being able to be

considered as non informative). A similar remark applies to the Jeffreys prior

(though to a lesser extent).

• The approach developped in this paper assumes that the capture prob-

abilities do not depend on individual characteristics. To take into account

some discrete individual characteristics (for example, the sex) two approaches

have been considered. Hook and Regal (1985) propose to conduct separate

analyses (one for men and another one for women). Madigan and York (1997)

will include the individual variable (in our example, the sex) in the graph,

at the same level as the lists.

• In public health, it is important to know if a given disease falls within

the field of rare diseases, or not. For a population of interest P , a disease

is qualified of rare, if its prevalence (equal to the ratio of the number N

of people belonging to P and affected by this disease over the size of P) is

smaller than a threshold fixed by the competent authorities. Because the

size of P is known in practice, this issue can be addressed by the test:

H0 : N ≤ N0
′vs H1 : N > N0
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where N0 is the product of the above threshold by the size of P . We will

typically conclude for H0, if Pr(N ≤ N0|y) is enough high (typically 0.95);

see Robert (2007). Now, computing Pr (N ≤ N0|y) is straightforward since

Pr(N ≤ N0|y) =
∑
m

p(m|y) Pr(N ≤ N0|m,y)

and Pr(N ≤ N0|m,y) can be easily computed by the Gibbs sampling imple-

menting for obtainingE(N |m,y) because Pr(N ≤ N0|m,y) = E[1I(N≤N0)|m,y].
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Appendix A

From the agregation property we deduce that

(θ1−j,+,+, θjk+, θj,1−k,+) ∼ D(a1−j,+,+, ajk+, aj,1−k,+)

for all j, k ∈ {0, 1}. The second part of the Proposition uses the following

property: if

(α0, α1, . . . , αk) ∼ D(b0, b1, . . . , bk)

then
αj∑k
i=1 αi

∼ beta (bj,
k∑

i=j+1

bi)

for all j = 1, ..., k: see Kotz et al. (2004). From this property, we deduce that

if (α0, α1, α2) ∼ D(a0, a1, a2) then α1/(α1+α2) ∼ beta (a1, a2). Consequently,

one has θjk+/θj++ ∼ beta(ajk+, aj++−ajk+) since θjk+ + θj,1−k,+ = θj++ and

aj,1−k,+ = aj++ − ajk+.

Appendix B

We limit ourself to one model by type. The proof for the other models of

same type being similar, it has been omitted for concision.

1. The model [12, 13].

The graph of model m = [12, 13] includes two maximal cliques, we denote

by C1 and C2, where C1 = {X1, X2} and C2 = {X1, X3}. As Madigan and

York (1997), we denote the corresponding clique probabilities as follows:

θC1 = {θ00+, θ01+, θ10+, θ11+} and θC2 = {θ0+0, θ0+1, θ1+0, θ1+1}.

Due to the following constraints:

θ00+ + θ01+ = θ0+0 + θ0+1 = θ0++, θ10+ + θ11+ = θ1+0 + θ1+1 = θ1++.
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and θ0++ + θ1++ = 1, the clique parameter (θC1 , θC2) involves in fact five

unconstrained parameters, for example: θ1++, θ11+, θ01+, θ1+1, θ0+1 (all the

other parameters being redundant). Recall that the capture probabilities

parametrisation involves five parameters, namely: θ1, θ2|1, θ2|1, θ3|1, θ3|1.

Both parametrizations are linked as follows:

θ1++ = θ1, θ11+ = θ1θ2|1, θ01+ = (1−θ1)θ2|1, θ1+1 = θ1θ3|1, θ0+1 = (1−θ1)θ3|1.

Considering the above equalities, it is immediate to check that there is a

one-to-one and onto correspondence between both parametrisations.

2. The model [1, 23].

The graph of [1, 23] includes two maximal cliques {C1, C2} where C1 = {X1}

and C2 = {X2, X3}. We have thus two clique probabilities:

θC1 = (θ1++, θ0++) and θC2 = (θ+00, θ+01, θ+10, θ+11)

where

θ1++ + θ0++ = 1 and θ+00 + θ+01 + θ+10 + θ+11 = 1.

Due to these constraints, we have in fact four unconstrained parameters,

for example: θ1++, θ+01, θ+10, θ+11. As far as the capture probabilities

parametrisation is concerned, we have the choice between both parametrisa-

tions. Assume that we adopt the following parametrisation θ1, θ2, θ3|2 and

θ3|2. The clique probabilities parametrisation and the capture probabilities

parametrisation are linked as follows:

θ1++ = θ1, θ+01 = (1− θ2)θ3|2, θ+10 = θ2(1− θ3|2), θ+11 = θ2θ3|2.

It is clear that there is a one-to-one and onto transformation between both

parametrisations.
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3. The independant model.

The graph of the independent model includes three cliques {C1, C2, C3} where

C1 = {X1} and C2 = {X2} and C3 = {X3}. We have thus three clique

probabilities:

θC1 = (θ0++, θ1++), θC2 = (θ+0+, θ+1+), and θC3 = (θ++0, θ++1)

where

θ0++ + θ1++ = 1, θ+0+ + θ+1+ = 1, and θ++0 + θ++1 = 1.

The clique probabilities parametrisation thus involves only three parameters;

for example: θ1++, θ+1+ and θ++1. Since, the capture probabilities parametri-

sation involves the parameters θ1, θ2, θ3 it is clear that there is a one-to-one

and onto transformation between both parametrisations.

4. The saturated model.

The graph of the saturated model includes one (maximal) clique. One has

only one clique probability which coincides with θ
Sat

defined in Section 2.

Appendix C

For concision, we limit ourself to one model by type.

1. The model [12, 13].

The direct sens. The hyper-Dirichlet put on the clique parameter (θC1 , θC2)

is such that θC1 ⊥ θC2 |θS where θS = {θ0++, θ1++}. Its density is:

π(θC1 , θC2) ∝
∏

j,k θ
ajk+−1

jk+

∏
j,l θ

aj+l−1

j+l∏
j θ

aj++−1
j++

, (1)

See eg Dawid and Lauritzen (1993) for details. Margins satisfy:

θC1 ∼ D(a00+, a01+, a10+, a11+) and θC2 ∼ D(a0+0, a0+1, a1+0, a1+1)
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and are compatible with the prior placed on θsat since

θ
Sat
∼ D(a000, a001, a010, a011, a100, a101, a110, a111).

Recall now that the clique probabilities parametrisation involves in fact only

five unconstrained parameters, for example: θ1++, θ11+, θ01+, θ1+1 and θ0+1;

see Appendix B. Linked to this parametrisation, we introduce the transfor-

mation:

Φ :
(
θ1, θ2|1, θ2|1, θ3|1, θ3|1

)
7−→

(
θ1, θ1θ2|1, (1− θ1)θ2|1, θ1θ3|1, (1− θ1)θ3|1

)
.

Starting from the density of (θC1 , θC2), we deduce that π(θm) is proportional

to JΦ
T2T3

T1
where the Jacobian JΦ is equal to θ2

1(1− θ1)2 and where the term

T1 is equal to θ
a1++−1
1 (1− θ1)a0++−1, T2 is equal to[

(1− θ1)(1− θ2|1)
]a00+−1 [

(1− θ1)θ2|1)
]a01+−1 [

θ1(1− θ2|1)
]a10+−1 [

θ1θ2|1
]a11+−1

and T3 is equal to[
(1− θ1)(1− θ3|1)

]a0+0−1 [
(1− θ1)θ3|1)

]a0+1−1 [
θ1(1− θ3|1)

]a1+0−1 [
θ1θ3|1

]a1+1−1
.

Gathering the terms θ1, θ2|1, θ2|1, θ3|1, and θ3|1, it is easy to check that π(θm)

is proportionnal to D1D2|1D2|1D3|1D3|1 where D1 = θ
a1++−1
1 (1− θ1)a0++−1,

D2|1 = θ
a11+−1
2|1 (1− θ2|1)a10+−1, D2|1 = θ

a01+−1

2|1 (1− θ2|1)a00+−1

and

D3|1 = θ
a1+1−1
3|1 (1− θ3|1)a1+0−1, D3|1 = θ

a0+1−1

3|1 (1− θ3|1)a0+0−1,

from which we immediately deduce that θ1, θ2|1, θ2|1, θ3|1, θ3|1 follow in-

dependently beta distributions. Moreover, it is immediate to check (using

Proposition 1) that they are all compatible.
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The converse. It is now assumed that θ1, θ2|1, θ2|1, θ3|1, θ3|1 follow indepen-

dently compatible beta distributions. Compatibility and Proposition 1 im-

ply: θ1 ∼ beta(a1++, a0++), θ2|1 ∼ beta(a11+, a10+), θ2|1 ∼ Beta(a01+, a00+),

θ3|1 ∼ beta(a1+1, a1+0) and θ3|1 ∼ beta(a0+1, a0+0). Re-finding the density

of (θC1 , θC2) - as it appears in (1) - from the one of θ1, θ2|1, θ2|1, θ3|1, and

θ3|1 proceeds similarly as the direct sense of the proof; therefore, details are

omitted.

1. The model [1, 23].

The hyper-Dirichlet put on the clique parameter (θC1 , θC2) where

θC1 = (θ1++, θ0++) and θC2 = (θ+00, θ+01, θ+10, θ+11)

is such that θC1 ⊥ θC2 where θC1 follows a Beta(a1++, a0++) and θC2 follows

a D(a+00, a+01, a+10, a+11). Consequently, one has:

π(θC1 , θC2) ∝
[
θ
a1++−1
1++ (1− θ1++)a0++−1

] ∏
k,l∈{0,1}

θa+kl−1
+kl

. (2)

We have to prove that (2) is equivalent to θ1, θ2, θ3|2 and θ3|2 follows in-

dependently compatible beta distributions. If the other parametrisation is

of concern, one has to prove the same equivalence with θ1, θ3, θ2|3, θ3|2.

From now, we work with the former parametrisation (but similar develop-

ments hold with the latter). Recall that the clique probabilities parametri-

sation involves in fact only four unconstrained parameters: θ1++, θ+01, θ+10,

θ+11 and that there is a one-to-one and onto transformation between both

parametrisations (see Appendix B). Considering that θC1 ⊥ θC2 and that

θC1 ∼ Beta(a1++, a0++) it is clear that to prove Proposition 2, we have to

prove that θC2 ∼ D(a+00, a+01, a+10, a+11) if and only if θ2, θ3|2 and θ3|2 follows

independently compatible beta distributions.
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Assume that θC2 ∼ Dirichlet(a+00, a+01, a+10, a+11) and consider the trans-

formtion:

Ψ :
(
θ2, θ3|2, θ3|2

)
7−→

(
(1− θ2)θ3|2, θ2(1− θ3|2), θ2θ3|2

)
.

Starting from the density of θC2 , we deduce that π(θ2, θ3|2, θ3|2) is proportional

to JΨP where the product P is equal to

[
(1− θ2)(1− θ3|2)

]a+00−1 [
(1− θ2)θ3|2

]a+01−1 [
θ2(1− θ3|2)

]a+10−1 [
θ2θ3|2

]a+11−1

and where the Jacobian JΨ is equal to θ2(1 − θ2). By gathering the terms

θ2,θ3|2 and θ3|2 we deduce that π(θ2, θ3|2, θ3|2) is proportional to:

θ
a+1+−1
2 (1− θ2)a+0+−1 θ

a+11−1
3|2 (1− θ3|2)a+10−1 θ

a+01−1

3|2 (1− θ3|2)a+00−1

what means that θ2, θ3|2 and θ3|2 follows independently compatible beta dis-

tributions. The converse follows similar lines and is omitted for brievety.

3. The independent model.

The proof is trival since the hyper-Dirichlet distribution put on the clique

parameter (C1, C2, C3) is the product of 3 independant beta distributions.

Appendix D

In this Appendix we provide the expressions of the likelihood and of

Im(N) for each model m.

• Under the saturated model m = [123], the likelihood is the one given

by (5.2) and one has:

Im(N) =
N !

(N − d)!
∏

h∈H∗ nh!

Γ(N − d+ a000)

Γ(N + a)

∏
h∈H∗

Γ(nh + ah)

• Under the model m = [12, 13], the likelihood is proportional to:
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L(θm, N ; y) ∝ N !

(N − d)!
θd11 (1− θ1)N−d1 E2|1E2|1E3|1E3|1

where

E2|1 = θ
n11+

2|1 (1− θ2|1)n10+ E2|1 = θ
n01+

2|1 (1− θ2|1)N−d+n001

and

E3|1 = θ
n1+1

3|1 (1− θ3|1)n1+0 , E3|1 = θ
n0+1

3|1 (1− θ3|1)N−d+n010

Morever, one has:

Im(N) =
N !

(N − d)!
∏

h∈H∗ nh!
B1B2|1B2|1B3|1B3|1

where B1 = B(d1 + a1++, N − d1 + a0++),

B2|1 = B(n11++a11+, n10++a10+), B2|1 = B(n01++a01+, N−d+n001+a00+)

and

B3|1 = B(n1+1+a1+1, n1+0+a1+0), B3|1 = B(n0+1+a0+1, N−d+n010+a0+0).

• Under the model m = [1, 23], one has:

L(θm, N ; y) ∝ N !

(N − d)!
θd11 (1− θ1)N−d1θd22 (1− θ2)N−d2E3|2E3|2,

where

E3|2 = θ
n+11

3|2 (1− θ3|2)n+10 E3|2 = θ
n+01

3|2 (1− θ3|2)N−d+n100

and when one adopts the factorization: p(x1, x2, x3) = p(x1)p(x2)p(x3|x2).

Morever, one has:

Im(N) =
N !

(N − d)!
∏

h∈H∗ nh!
B1B2B3|2B3|2
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where B1 is defined above, B2 = B(d2 + a+1+, N − d2 + a+0+) and

B3|2 = B(n+01 +a+01, N−d+n100 +a+00) B3|2 = B(n+11 +a+11, n+10 +a+10)

• Under the independent model m = [1, 2, 3], one has:

L(θm, N ; y) ∝ N !

(N − d)!

3∏
j=1

θ
dj
j (1− θj)N−dj

and

Im(N) =
N !

(N − d)!
∏

h∈H∗ nh!
B1B2B3

where B1, B2 are defined above and B3 = B(d3 + a++1, N − d3 + a++0).

Appendix E

Recall that the posterior distribution of N (under model m) will be de-

fined if and only if the series of general term p(y|N,m)π(N) is convergent

where the expression of p(y|N,m) = Im(N) is given in Appendix E. The

results concerning the existence of N |y,m under models m = [12, 13] and

m = [123] (proved below) use the following result:

Γ(N + v)

Γ(N + u)
∼ N v−u.

where u and v denote reals which do not depend on N . To obtain this

equivalent, we start from the well known equivalent:

Γ(N) ∼
√

2πNN− 1
2 exp(−N).

from which we deduce that:

Γ(N + v)

Γ(N + u)
∼ (N + v)N+v−1/2

(N + u)N+u−1/2
exp−(v−u) .
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Now, it is easy to check that:

(N + v)N+v−1/2

(N + u)N+u−1/2
=

[
1− u− v

N + u

]N+u−1/2

(N + v)v−u.

Since, one has:[
1− u− v

N + u

]N+u−1/2

= exp

[
(N + u− 1/2) log

(
1− u− v

N + u

)]
it comes: [

1− u− v
N + u

]N+u−1/2

∼ exp(v − u).

The result follows from (N + v)v−u ∼ N v−u.

• We first consider the model m = [12, 13]. We have to examine the

series of general term Im π(N) where Im = N !
(N−d)!

∏7
h=1 nh!B1B2|1B3|1 and

π(N) = 1/N t. It is straightforward to see that one has actually to examine

the convergence of the series of general term wN = Nd−tT1T2T3 where

T1 =
Γ(N − d1 + a0++)

Γ(N + a)
and T2 =

Γ(N − d+ n001 + a00+)

Γ(N − d+ n001 + n01+ + a0++)

and T3 = Γ(N − d+ n001 + a0+1)/Γ(N − d+ n010 + n0+1 + a0++).

Using now the above equivalent of Γ(N + v)/Γ(N + u), one finds that:

wN ∼ Nd−tN−d1+a0++−aN−n01+−a01+N−n0+1−a0+1 .

By observing that d−d1−n01+−n0+1 = −n011 and that −a+a0++−a01+−

a0+1 = −a+ a000 − a011 it comes that:

wN ∼ N−(t+n011+a−a000+a011).

The posterior distribution of N thus exits if and only if: t+n011 + a− a000 +

a011 > 1.
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•We now consider the saturated model [123]. One has actually to exam-

ine the convergence of the series of general term:

wN =
N !

(N − d)

Γ(N − d+ a000)

Γ(N + a)

1

N t
.

Considering that
Γ(N − d+ a000)

Γ(N + a)
∼ N−(d+a−a000) ,

we deduce that

wN ∼ N−(t+a−a000).

The posterior distribution of N thus exits if and only if: t+ a− a000 > 1.

Appendix F

The averaged posterior mean of N exists if and only if the posterior

mean of N exists under each model m. Now, the condition which ensures

the existence of the posterior distribution of N under the saturated model is

the strongest. Indeed, it is clear that, on one hand, (d1 + d2 + d3) − d ≥ 0,

d1 − n100 ≥ 0 (idem for d2 − n010, and for d3 − n001) and that, on the other

hand, a1++ + a+1+ + a++1, (a + a1++ − a100), and (a − a000) + a011 are all

strictly greater than a− a000.
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