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Tests of current models of intermolecular potentials against x-ray diffuse scattering in C60

Pascale Launois, Sylvain Ravy, and Roger Moret*
Laboratoire de Physique des Solides, URA 002 associe´e au CNRS, Baˆtiment 510, Universite´ Paris Sud, 91405 Orsay Cedex, France

~Received 25 July 1996; revised manuscript received 11 September 1996!

Diffuse scattering, which contains two-body information, is a rich source of knowledge on the interactions
between the C60 molecules. We present a mean-field theory for calculating the diffuse scattering in the
high-temperature phase of C60 from microscopic models of intermolecular interactions. The diffuse scattering
is calculated and discussed for most of the models available to date. It is compared with single-crystal x-ray
diffuse scattering data. Overall, the positions of the diffuse scattering maxima, corresponding to competing
instabilities, are found to be independent of the model of interactions. This suggests that these instabilities are
related to the shape of the large C60 molecule. No model is fully satisfactory for fitting the relative intensities
of the diffuse scattering features. The best fit is obtained with the Lamoen-Michel model, which accounts also
correctly for the Bragg peak intensity in the high-temperature phase. The physics of the models is discussed
and some improvements are proposed.@S0163-1829~97!07804-1#
te
of
o

-
te
A
is

l
-
re
le

g

e
y
th

o
e
ig

h
-
re
io

r

o
rin

ent
e-
eri-
ork
re-
iled
use
ed in
r
ble

for
the
ing
in
ted
d
els
er-
rges
2-6

ini-
n
ites

n
eri-
tive
ing

ve
ng
I. INTRODUCTION

C60 molecules have the novel shape of a trunca
icosahedron,1 with equivalent carbon sites and two types
C-C bonds~30 shorter ‘‘double-bonds’’ DB, that fuse tw
hexagons, and 60 longer ‘‘single-bonds’’ SB, that fuse
hexagon to a pentagon!. The efficient synthesis of solid crys
talline C60 ~Ref. 2! in 1990 opened the field of solid-sta
investigations, including structural and dynamics studies.
atmospheric pressure, the sequence of phase transitions
follows ~see, e.g., Ref. 3 and references therein!. At room
temperature, the molecules adopt a face-centered-cubic
tice, with space groupFm3m. They are reorienting very rap
idly about their centers of gravity in this plastic phase. Mo
over, diffuse scattering results give evidence of comp
short-range orientational intermolecular correlations.4–8 At
T0.260 K, a first order phase transition is induced by lon
range orientational order between the C60 molecules and the
symmetry is lowered to simple cubic with four molecules p
unit cell ~space groupPa3). There are two types of nearl
degenerate equilibrium orientations for the molecules. In
more energetically favorable one, a C60 molecule has six
pentagonal faces facing double bonds of neighboring m
ecules (P configuration!. In the less energetically favorabl
one, it has six hexagonal faces facing double bonds of ne
boring molecules (H configuration!. TheP configuration is
favored as the temperature is decreased in thePa3 phase,
down to a glass transition temperatureTg.80 K, where the
populations of the two configurations are frozen. While t
solid-state properties of C60 were investigated experimen
tally, improved models of intermolecular interactions we
proposed, mainly based on van der Waals–type interact
~Lennard-Jones, Born-Mayer, Buckingham potentials! and
on electrostatic interactions.9–17 A good knowledge of the
intermolecular interactions is important for C60 itself of
course, but also as the prototype of the bigger fullerenes o
the doped superconducting derivatives.

The present work aims at improving our knowledge
these interactions by using the analysis of diffuse scatte
550163-1829/97/55~4!/2651~15!/$10.00
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as a probe for current microscopic models. The differ
~published! models are presented in Sec. II. Section III r
calls the main characteristics of the diffuse scattering exp
mental data. Section IV presents the theoretical framew
allowing us to calculate the diffuse scattering, while the
sults of the calculations are described in Sec. V. Deta
comparisons between experimental and calculated diff
scatterings are presented. Calculation results are discuss
Sec. VI. One of the models15 fits the experimental data bette
than the others although it is not fully satisfactory. Possi
further improvements are discussed.

II. CURRENT MODELS OF INTERMOLECULAR
POTENTIALS IN C 60

The first intermolecular potentials for C60 were atom-
atom potentials derived from those already known
graphite.9,10 Such choices appear reasonable because
minimum distance between carbon atoms of neighbor
molecules is comparable with the interlayer spacing
graphite. Nevertheless, these models predic
orthorhombic9 or tetragonal10 low temperature phases instea
of the observed simple cubic one. Hence, improved mod
of potentials with additional van der Waals centers of int
actions and/or with electrostatic interactions between cha
on the molecules were proposed. For an atom-atom 1
Lennard-Jones potential~vdW model10,18!, the tetragonal
structure was characterized by a crossing of DB’s at m
mum separation. To avoid this, Sprik, Cheng, and Klei11

supplemented the 60 atomic 12-6 sites C with 30 12-6 s
located at the centers of the DB’s~SCK1 model!. This was
sufficient to stabilize thePa3 phase at low temperature. I
order to raise the transition temperature closer to the exp
mental one, they improved their model assigning a nega
chargeqD to the centers of the DB’s, and the compensat
charges~for the molecule neutrality! qC52qD/2 to the car-
bon atoms ~SCK2 model!. Independently, Lu, Li, and
Martin12 improved the vdW model by assigning an effecti
chargeqS to the centers of SB’s, and the compensati
charges (22qS) to the DB centers~LLM model!. They also
2651 © 1997 The American Physical Society
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TABLE I. Models of intermolecular potential, after Refs. 11,12,15, and 17;e is the absolute value of the
charge of the electron.

Model Form of Interaction Parameter
the potential centers values

vdW D3@(s/r )12 carbon D534.5 K
22(s/r )6] atoms~C! s53.8 Å

SCK1 D3@(sx2x8 /r )
12 x,x85C, DB D512 K, sC -C53.8 Å,

22(sx2x8 /r )
6] centers sC -DB53.93 Å,sDB -DB54.04 Å

SCK2 SCK1 x,x85C, DB D515 K, sames ’s as
1qxqx8 /r centers for SCK1,qC50.175e,

qDB520.35e
LLM vdW C -C x,x85 DB sameD ands ’s as

1qxqx8 /r and SB centers for the vdW model,qSB50.27e,
qDB520.54e

LM C1
x2x8exp(2C2

x2x8r) x,x85C, 3 centers BC -C5305 421 K Å6, othersB50,

2Bx2x8 /r
6 on DB’s (DBi ,i5123), C1

C -C51.2,C1
DBi 2DBj50.072,

1 center on SB’s C1
C -DBi50.1,C1

SB,C -SB50.22

C1
DBi 2SB

50,
in units 374 530 00 K

C2
C -C53.6,C2

DBi2DBj53.2,

C2
C -DBi53.4,C2

SB,C -SB53.6 Å21

PC C1exp(2C2r)2B/r6 x,x85C, charges C-C:B5155 000 K Å6,
1qxqx8 /r inside ~1! and C15209 814 23 K,C253.532 Å21,

outside~2! of the molecule q15q2520.27e,qC50.27e
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succeeded in stabilizing thePa3 phase at low temperatur
~an interesting discussion of the C60 phase diagram for mod
els derived from the SCK’s and LLM ones, within the fram
of a mean-field theory similar to that used here, is given
Heid18!. Burgos, Halac, and Bonadeo13 introduced another
charge model, placing 30 chargesqD on the DB’s and 12
charges @25/2(qD)# at the pentagon centers. Howeve
Yildirim, Harris, Erwin, and Pederson19 determined the
charge distribution of the C60 molecule fromab initio calcu-
lations, and they found that the charges carried by pentag
and hexagons are too different from each other for b
SCK2 and LLM models. The pentagon and hexagon char
differ too much also in the model of Burgoset al., so that it
has not been retained for calculating the diffuse scatterin
further motivation will be given in Sec. VI B 3.

While the SCK’s and LLM models were essential
elaborated to account for the C60 low temperature phase
other models were introduced in the light of more rec
experimental results, namely from crystallographic and
elastic neutron scattering studies. First, precise meas
ments of the Bragg reflections enabled the determination
the crystal-field energy, which acts on a molecule due to
neighbors, in the high temperatureFm3m phase. Lamoen
and Michel used these data to adjust the parameters
model ~LM model!14,15 in which they considered Born
Mayer repulsions and van der Waals attractions between
bon atoms but also between other interaction centers a
the DB’s and at the centers of the SB’s. Note that a sligh
different version of this model is now proposed by Mich
and Copley,16 but we will not focus on this most recent on
as it gives very similar results and leads to the same con
sions. Second, in order to fit the phonon dispersion cur
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measured by inelastic neutron scattering, Pintschovius
Chaplot17 introduced a new bond charge model~PC model!,
with a chargeq at the carbon atom position, and where t
DB charge (22q) is split in the radial direction in two
charges (2q) inwards and outwards of the surface of th
molecule.

The parameters of the interaction potentials to be d
cussed in the following are summarized in Table I.

III. C 60 DIFFUSE SCATTERING OBSERVATIONS
AT ROOM TEMPERATURE

While Bragg diffraction provides one-body information
diffuse scattering, i.e., the weak intensity distributed betwe
the Bragg peaks, contains two-body information. It is thu
rich source of knowledge on the correlations between ato
or molecules~see for instance the recent reviews of Welbe
and Butler20!.

Diffuse scattering in C60 at room temperature was firs
measured by powder neutron scattering, in the form of t
broad halos at wave vectors of about 3.3 and 5.3 Å21. These
halos could be well accounted for by assuming rotatio
diffusion of the molecules with no correlations.21 However,
scattering from powders only gives limited information o
correlations because of the angular average. C60 single crys-
tals of good quality became available in 1992, allowing t
first single-crystal diffuse scattering investigation to
made,4 using x rays and the monochromatic fixed-film
fixed-crystal photographic technique. Rich azimuthal mod
lations of the halos were found, evidencing intermolecu
correlations at room temperature. Subsequently, we
formed an extensive study of the diffuse scattering in the fi
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halo at room temperature,6 using CuKa x rays and a three
circle diffractometer that enabled quantitative 3D data c
lection. The results have been described in rec
papers6,22,23 and their main features are summarized bel
using characteristic 2D sections and linear scans of
modulated diffuse scattering intensity. The diffuse scatter
modulations can be analyzed in terms of maxima of scat
ing at the pointsX5(1,0,0),L5( 12,

1
2,

1
2), andG5(0,0,0) of

the Brillouin zone~BZ!, plus some extra scattering whic
does not present a maximum at a special point of the B
louin zone.X and L scatterings are visible in theh1k59
and h1k511 planes~Fig. 1!, where the distribution of
maxima in staggered rows of pointsX andL is clearly ob-
served; this can also be seen in the linear scan shown in
2~a!. Moreover, at the center of the planeh1k511, the dif-
fuse scattering takes the form of a thick ‘‘H,’’ which is
among the most intense extra-scattering features of
whole diffuse halo@see also the linear scan in Fig. 2~b!#. The
G scattering is evidenced in the linear scan in Fig. 2~c!. One

FIG. 1. X-ray diffraction patterns for the planes~a! h1k59, ~b!
h1k511 ~data are corrected for absorption and polarization
fects!. Large diffuse intensities correspond to dark areas. The b
and white dots shown in one quadrant pinpoint to the pointsX and
L, respectively. The solid lines indicate scan directions in Fig.
l-
nt

e
g
r-

l-

ig.

e

sees in Figs.1 and 2 thatX,L,G and extra-scattering intens
ties are of the same order of magnitude. They also co
spond to similar correlation lengths of about 5 Å~for the
‘‘ H ’ ’ scattering, this is measured perpendicularly to t
plane h1k511).6 We mention that theX-point scattering
was studied by Blaschkoet al.,5 that the rich scattering fea
tures in C60 have also been observed by Wochneret al.,8 and
that the existence of bothX andL point maxima has been
deduced independently from single-crystal neutron diffr
tion experiments by Pintschoviuset al., with, however,
larger correlation lengths~up to 40 Å!.7 The difference be-
tween x-ray and neutron correlation lengths may be att
uted ~i! to the chosen form of the correlation function
namely, particle size broadening function in Ref. 7 a
Ornstein-Zernike correlation function in Ref. 6, which in
duces a factor of;3 between the corresponding correlatio
lengths~we have chosen the Ornstein-Zernike form, which
appropriate in the case of pretransitional fluctuations!; ~ii ! to
energy resolution effects@in neutron experiments, the 40 Å
value corresponds to the small energy window, while
smaller value is measured for a broader window~Fig. 1 in
Ref. 7!#.

If X-point scattering had been observed alone, it wo
have been interpreted as pretransitional diffuse scatter
since pointsX correspond to positions of the superstructu
peaks in the low temperature phasePa3. However, the ob-
served complex diffuse scattering points towards much m
complicated local ordering and reveals the existence of c
peting fluctuations in C60.

6,16,18,22,24To clarify this point,
especially in terms of models of intermolecular potentia
elaborated calculations or simulations are necessary. M
Carlo or molecular dynamics simulations can be perform
allowing one to find the density-density correlation functio
in direct space and to calculate diffuse scattering pattern
reciprocal space. The main drawback of these approach
that they imply time-consuming calculations, and thus lim
on sample sizes. Molecular dynamics simulations based
the PC model have been performed by Pintschovius, Ch
lot, Roth, and Heger.7 On the other hand, the statistical a
erage of the correlation functions can be calculated ana
cally, within the framework of a mean-field approximatio
This method allows one to compute the diffuse scatter
more rapidly.25 But contrary to Monte Carlo or molecula
dynamics techniques, it does not easily allow direct sp
visualization. However, we have chosen this method for
reasonable computation times, which permits the compar
of different models of intermolecular interactions. Our fir
computations, for the vdW and SCK1 models, were p
sented in Ref. 22; similar calculations for the modified L
model have been done by Michel and Copley in Ref. 16

IV. THEORETICAL FRAMEWORK

In this section, we first recall the concepts underlying t
derivation of the scattering intensities, using the formali
of the symmetry-adapted functions. This powerful formalis
has been applied to several cases of orientationally di
dered solids26 and to C60 in particular.3,6,14–16,18,22,24,28–32It
leads to an expression of the diffuse intensity in terms
orientational pair correlation functions.3,6,28 Then, using a
mean-field approximation, we evaluate these pair correla

-
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FIG. 2. X-ray diffraction intensity~a! along a selected line o
the planeh1k59, from ~4.5,4.5,5.5! to ~8.5,0.5,1.5!, ~b! along a
selected line of the planeh1k511, from ~5.5,5.5,0! to ~5.5,5.5,4!,
and~c! in the @8,k,0# direction; the~8,0,0! Bragg peak contribution
is substracted@it is weak due to an accidental pseudoextinction: t
allows one to observe theG point diffuse scattering at anFm3m
Bragg peak position~Ref. 6!#. Data are corrected for absorption an
polarization effects. A constant background~200 counts! has been
substracted. The solid lines result from calculations with the exp
mental@U2# term only, as explained in Sec. VI B 2.
functions in terms of the intermolecular interactions.22 The
theoretical formulation is presented below. Special emph
is put on the mean-field theory for evaluating the pair cor
lation functions, which was not yet developed in detail
previous work.22

The angular part of the atomic density of a molecu
reads3,6,28

r~V!5 (
n51

60

d~V2Vn!5(
l50

`

glSl~Rv
21V!, ~1!

whereV stands for the polar angles (u,w) with respect to the
fourfold cubic axes. The first sum runs over the sixty ato
n of the molecule. The second sum is a development o
angular momentum componentsl . The functionsSl(V) are
the icosahedral harmonics, available from Refs. 27 and
The first harmonics arel50,6,10,12,16, and 18, the assoc
ated molecular form factors beingg0.16.9, g6.2.6,
g10.19.4, g12.7.9, g16.217.9, andg18.38.2. The orien-
tation of the molecule with respect to its standard orientati
represented in Fig. 6~a! in Ref. 6, is determined by the thre
Eulerian angle setv ~rotationRv).

The icosahedral harmonicsSl can be expressed in term
of the cubic symmetry-adapted functionsSl

t , given in Ref.
34 up tol512,

Sl~Rv
21V!5(

t
Ul

t~v!Sl
t~V!. ~2!

The indext stands for the combination (G,m,i ), whereG is
an irreducible representation of the cubic groupm3m, m
distinguishes between representations that occur more
once within a givenl manifold, andi labels rows of the
representation. The functionsUl

t(v) are named rotators
They are symmetry-adapted linear combinations of
Wigner rotation matrix elements, but they can also be
rectly calculated from the cubic symmetry-adapted functio
by

Ul
t~v!5

1

gl
(
n51

60

Sl
t~Vn!. ~3!

The x-ray C60 structure factor, deduced from the Fouri
transform ofr(V), reads3,28

F~Q!54p f C~Q!(
l

(
t
i lgl j l~QR!Sl

t~VQ!Ul
t~v!, ~4!

whereQ is the scattering wave vector of modulusQ, j l is the
spherical Bessel function of orderl , andR is the C60 mol-
ecule radius. The contribution of bond electrons is neglec
in this equation wheref C(Q) is simply the carbon atomic
scattering factor; this is justified by the agreement betw
analyses of neutron and x-ray crystallographic data, with
approximation for x-ray.29 The scattering consists of Brag
peaks at the reciprocal lattice vectorsG, and of diffuse scat-
tering at wave vectorsQ5G1q, whereq is the wave vector
inside the first BZ. From Eq.~4!, and following the calcula-
tions in Ref. 28, the Bragg and diffuse scattering intensit
in the high temperature phaseFm3m are6
i-
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I B~Q5G!}16p2N2f C
2 u(

l50

`

(
t5~A1g,m!

i lgl j l~QR!Sl
t~VQ!

3^Ul
t~v!&u2, ~5!

I D~Q5G1q;qÞ0!

}16p2NfC
2 (
l ,l 8>6

`

(
t,t8

i l2 l 8glgl 8 j l~QR! j l 8~QR!

3Sl
t~VQ!Sl 8

t8~VQ!^Ul
t~q!Ul 8

t8~2q!&, ~6!

whereN is the total number of molecules in the crystal a
where the Fourier transforms of the rotator site values
defined by

Ul
t~q!5

1

AN(
n

Ul
t~vn!exp~ iq–Xn!. ~7!

The representations involved in the expression of Bragg p
intensities are the identity—A1g—representations, the onl
ones for which the rotator mean values are nonzero. Mo
over, as expected, the diffuse scattering intensity in Eq.~6! is
expressed in terms of orientation-orientation pair correlat
functions or, more precisely, in terms of the pair correlat
functions of the Fourier transforms of the rotators. One n
needs to evaluate these pair correlation functions for the
ferent models of intermolecular interactions proposed
C60. This is done within the framework of a mean-field a
proximation, justified by the rather short extent of the cor
lations @;5 Å, ~Ref. 6!# compared to the range of the inte
actions (;10 Å, the nearest-neighbor distance!. Due to the
first order character of theFm3m-Pa3 phase transition, the
room temperature diffuse scattering is not critical in natu

The orientational energy in the high temperature ph
Fm3m is

E5
1

2(i , j V~v i ,v j !

5
1

2(i , j (
l ,l 8,t,t8

Jl ,l 8
t,t8~ i , j !Ul

t~v i !Ul 8
t8~v j !, ~8!

wherei and j label molecules in the crystal. The interactio

matrix elementJl ,l 8
t,t8 reads

Jl ,l 8
t,t8~ i , j !5(

I ,J
gl
Igl 8

J v l l 8tt8
i j IJ . ~9!

The form factorsgl
I ,gl 8

J are calculated for the distribution o
the interaction centersI and J ~such as van der Waals o
electrostatic interaction centers!, and the interaction term
v l l 8tt8
i j IJ can be expressed as14,15,27,28

v l l 8tt8
i j IJ

5E E dV idV jv
i j IJ ~r1 ,r2!Sl

t~V i !Sl 8
t8~V j !,

~10!

wherev i j IJ (r1 ,r2) is the microscopic interaction energy b
tween interaction centers of typesI and J at the positions
r1 and r2, located on the molecules labeledi and j . We
re

ak

e-

n
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underline that Eq.~10! is used as such when interaction ce
ter densities do not overlap between neighboring molecu
to avoid infinite values in the integral. This is the case for t
models studied in this paper~Table I!. For overlapping den-
sities, a special treatment is needed.24

The mean-field approximation consists in expressing
orientational energy in Eq.~8! in terms of the mean values o
the rotators and of the fluctuations around these mean va
and in neglecting the second order fluctuations,

E.2
1

2(i , j (
l ,l 8,t,t8

Jl ,l 8
t,t8~ i , j !^Ul

t~v i !&^Ul 8
t8~v j !&

1(
i , j

(
l ,l 8,t,t8

Jl ,l 8
t,t8~ i , j !Ul

t~v i !^Ul 8
t8~v j !&. ~11!

Since the terms containing only mean values of rotators
the l50 rotator (U051), would cancel out in the following
mean-field equations, we keep now an expression of
mean-field energy up to these constant terms; the total m
field energy is the sum of the mean-field energies of e
individual moleculei ,

EMF~v i !5 (
l>6,t

el ,MF
t ~ i !Ul

t~v i !, ~12!

with

el ,MF
t ~ i !5(

j
(

l 8>0,t8
Jl ,l 8

t,t8~ i , j !^Ul 8
t8~v j !&. ~13!

Note that in the high temperature phaseFm3m, and in the
absence of an external field,~i! all molecules are equivalen
@el ,MF

t ( i )[el ,MF
t #, and ~ii ! only the identity representation

remain:t5t85A1g,m . For l<12 ~multipole expansion will
be limited to l512 in the following!, there are four
el ,MF

t5A1g ,m terms: one forl56, one for l510, and two for
l512, because there are twoA1g representations belongin
to the l512 manifold (m51,2). The mean values of th
rotators^Ul

t(v i)& are obtained by solving the self-consiste
mean-field equations

^Ul
t~v i !&5

*dv iUl
t~v i !exp„2EMF /~kT!…

*dv iexp„2EMF /~kT!…
. ~14!

Introducing the fields conjugated to the rotators, the me
field energy becomes

EMF5(
i

(
l>6,t

@el ,MF
t ~ i !2hl

t~ i !#Ul
t~v i !. ~15!

The zero-field susceptibility matrix has components defin
by

x l ,l 8
t,t8~ i , j !5S ]^Ul

t~v i !&

]hl 8
t8~ j !

D
h
l 8
t8~ j !→0

. ~16!

Using Eqs.~14! and ~15!, Eq. ~16! becomes
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kTx l ,l 8
t,t8~ i , j !1S (k (

l 9,l-,t9,t-
Jl 8,l-

t8,t-~ i ,k!x l-,l 8
t-,t8~k, j !

2d l 8,l 9;t8,t9; i , j D @U2# l ,l 9
t,t950, ~17!

whered is the Kronecker symbol~equal to zero ifl 8Þ l 9 or
t8Þt9 or iÞ j ), and where the matrix@U2# is defined by

@U2# l ,l 8
t,t85^Ul

t~v!Ul 8
t8~v!&2^Ul

t~v!&^Ul 8
t8~v!&. ~18!

The brackets indicate averages over the mean-field energ
in Eq. ~14!. Introducing the Fourier transformed matric
@x(q)# and @J(q)# given by

@x~q!# l ,l 8
t,t85(

r
x l ,l 8

t,t8~r !exp~ iq–r !,

@J~q!# l ,l 8
t,t85(

r
Jl ,l 8

t,t8~r !exp~ iq–r !, ~19!

r corresponding to (i , j ) in Eqs.~9! and ~16!, we obtain

@x~q!#5†kT@U2#211@J~q!#‡21. ~20!

The pair correlation terms in Eq.~6! are related to the sus
ceptibility by the fluctuation-dissipation theorem

^Ul
t~q!Ul 8

t8~2q!&5kTx l ,l 8
t,t8~q!. ~21!

From Eqs.~6!, ~20!, and ~21!, we can express the diffus
scattering intensity at any point in reciprocal space,

I D~Q5G1q;qÞ0!

} f C
2kT (

l ,l 8>6

`

(
t,t8

i l2 l 8glgl 8 j l~QR! j l 8~QR!

3Sl
t~VQ!Sl 8

t8~VQ!~†kT@U2#211@J~q!#‡21! l ,l 8
t,t8.

~22!

We can now evaluate the diffuse scattering intensity for d
ferent models of intermolecular interactions. The succes
steps of the calculation are as follows. For a given mode
intermolecular potential, we calculate all the interacti
terms from Eq.~10! to get the @J(q)# matrix. The self-
consistent equations~14! are solved to derive the mean-fie
energyEMF(v i) @Eqs.~12! and ~13!# and then@U2#. Calcu-
lations are performed for the first-neighbor interaction ter
belonging toall representations up tol512, that is, for
59359 matrices.

To end this section, let us discuss the different levels
approximation which can be considered when evaluatingI D
@Eq. ~22!#, especially with respect to the multipole expa
sion. The radial component of the diffuse scattering inten
is given by the spherical Bessel functionsj l(QR) weighted
by the molecular form factorsgl . These are the only con
tributing terms for isotropic and uncorrelated molecular
tations. In that case, Eq.~22! reduces to

I D~Q!} f C
2(
l56

`

„gl j l~QR!…2. ~23!
as
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Our diffuse scattering experiments6 were performed in the
first diffuse halo located atQ1.3.3 Å21, for 2.64
Å 21<Q<3.96 Å21. We will thus restrict our calculations
to this halo. The first maximum ofj l(QR) occurring for
Qmax.l/R and j l intensity strongly decreasing fo
Q,Qmax,

3 the radial component of the first halo will b
described by only a few spherical Bessel functions. It
dominated by thel510 term in Eq.~23!, and it can be en-
tirely described by thel56, 10, and 12 terms. However,
may be necessary to calculate the@J# and @U2# matrices to
higher multipolar order, if for instance the coupling betwe
the l<12 terms and somel 8.12 terms was important. The

interaction strengthJl ,l 8
t,t8( i , j ) between interaction centers o

typesI andJ, belonging to moleculesi and j , respectively,
scales approximately as

gl
Igl 8

J S r I1r J
di j

D l1 l 8
, ~24!

wherer I and r J are the radii of the spheres on which inte
action centersI andJ are located, and wheredi j is the dis-
tance between moleculei and j centers of mass;35 this allows
one to restrict calculations up to a maximum valuelmax in the
multipole expansion and over a given distance betw
neighbors. Evaluating~24! for the various types of interac
tion centers in Table I, we conclude thatl<122 l 8.12 cou-
plings can be neglected, because thel2 l 8 or thel 82 l 8 terms
are sufficiently small„it is true for l.0, i.e., for the@J(q)#
matrix in Eq. ~22!, but also for theJl50,l 8 terms in Eq.
~13!…. This is true for all the models of interactions studied
this paper, even for the PC one, where greater values
(@r I1r J #/di j ) are obtained for the charges outside the m
ecules. Hence, to summarize, diffuse scattering calculat
in the first halo can be restricted tol<12. We need to con-
sider the interaction terms forall the representations with
l<12 ~this will be detailed in Sec. VI A!. Finally, evaluation
of Eq. ~24! for nearest neighbors, next-nearest neighbo
etc., shows that nearest neighbor interactions are cle
dominant, so that our calculations are restricted to nea
neighbors.

V. DIFFUSE SCATTERING CALCULATIONS FOR
CURRENT MODELS OF INTERMOLECULAR

POTENTIALS

A. Mean-field temperature scales

The previous mean-field approach predicts a second o
phase transition when the susceptibility@x(q)# diverges,
whereas theFm3m2Pa3 phase transition occurring a
T0.260 K is in fact a first order one. This approximatio
will give valuable results concerning the fluctuations in t
high temperature phase if the temperature at which calc
tions are performed is sufficiently far above the second or
~calculated! transition temperatureTC , so that the fluctua-
tions extend over the same distances as observed (;5 Å!.
For this reason, and because we use a mean-field approx
tion ~see below!, the absolute temperatures are unphysic
Hence, for simplicity, the lattice expansion with temperatu
is not taken into account: all calculations are performed
ing the room temperature lattice parameter.
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TABLE II. Second order transition temperatures and temperatures at which diffuse scattering calcu
are performed for the different models of intermolecular potentials.

Model Second order transition temperature Calculation temperature

vdW 140 K,Tc,150 K 300 K
SCK1 130 K,Tc,140 K 300 K
SCK2 320 K,Tc,330 K 500 K
LLM 610 K,Tc,620 K 800 K
LM 320 K,Tc,330 K 500 K
PC 1140 K,Tc,1150 K 1600 K
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To evaluate the transition temperature for each mode
interactions~Table I!, we solved the mean-field equation
~14! at different temperaturesT, and then studied the
susceptibility—Eq.~20!—eigenvalues: if they are all pos
tive, T.Tc , and when an eigenvalue becomes negat
T,Tc ; the second order phase transition corresponds
divergence of an eigenvalue of the susceptibility. The sec
order transition temperatures determined for the vdW, SC
SCK2, LLM, LM, and PC models are reported in Table
As usual the transition temperatures calculated within
mean-field theory are overestimated, because not all fluc
tions are taken into account. For instance, the mean-fi
second order transition temperatures areTc.135 K and
Tc.1145 K for the SCK1 and PC models, and mean-fi
first order transition temperatures—which could be obtain
developing the free energy up to fourth order terms—
even higher, whereas molecular dynamic calculations11,7

give transition temperatures of about 110 K and lower th
900 K, respectively. The mean-field second order transi
temperatures are reference values for the diffuse scatte
calculations, which must be done sufficiently far above.
determine the calculation temperature for each model,
calculated the diffuse scattering at different temperatu
above the transition, and then selected the most approp
temperature through a comparison with the experime
data; the calculation temperatures chosen for each mode
reported in Table II. This is illustrated for the LM model b
Figs. 3~a! and 3~b!, where the diffuse scattering plane
h1k59 calculated at 500 K and 350 K are reported: co
parison with experiment in Fig. 1~a! shows thatT5350 K is
much too close to the transition temperature~some diffuse
features are too sharp!.

B. Diffuse scattering calculations

We now present calculations of the diffuse scattering
the vdW, SCK1, SCK2, LLM, PC, and LM models for th
temperatures indicated in Table II. Our earlier results for
vdW or the SCK1 models have already been presente
Ref. 22. Diffuse scattering calculations within a mean-fie
theory are also performed by Michel and Copley, for
slightly modified LM model,16 which leads to results simila
to those of Fig. 3~b!.

The calculated diffuse scattering planesh1k59 and
h1k511 are displayed in Figs. 3~a! and 3~c!, for the LM
model. They were presented in Figs. 1 and 2~b! in Ref. 22 for
the vdW model. These models correspond, respectively
the most elaborated and to the simplest distributions of
der Waals–type interaction centers. In both cases, theX and
f

,
a
d
1,

a
a-
ld

d
d
e

n
n
ng
o
e
s
te
al
re

-

r

e
in

to
n

L point scatterings are clearly observed, together with
‘‘ H-shaped’’ extra scattering~compare with Fig. 1!. Similar
observations were made for the SCK1 model, as shown
Ref. 22 also. Actually this is the case for all models in Tab
I, including those with additional electrostatic charges, as
illustrated in the linear scans within the planesh1k59 and
h1k511, in Figs. 4~a! and 4~b!. Moreover, all models pro-
duce diffuse maxima atG points. The (8,0,0)G position is a
diffuse scattering maximum for the vdW, LLM, LM, and P
models; this is evidenced in Fig. 4~c!. It corresponds to a
minimum for the SCK1 and SCK2 models, but this is
accidental depletion: diffuse scattering patterns calculated
the SCK models generally presentG point maxima. Thus,
the existence of a complex diffuse scattering in C60, with
X,L,G point and extra scatterings, is predicted by all mod
of intermolecular interactions in Table I~see also Refs. 7,22
and 23!. This can be attributed to the high symmetry and t
numerous atoms of the C60molecule which create competin
pretransitional fluctuations, as further developed in S
VI A.

Examination of Figs. 4~a!–4~c! shows that the diffuse
scatterings calculated for the various models of interacti
differ by the relative intensities of theX,L,G point and extra
scatterings. Comparing with the observed intensities we
that, depending on the region of reciprocal space conside
opposite conclusions can be reached. For instance, the in
sity calculated for the SCK1 model is the best in Fig. 4~a!,
but it is the worst in Figs. 4~b! and 4~c!. Similarly, the inten-
sity calculated for the vdW model fits correctly the measu
one in Fig. 4~c!, but is the worst in Fig. 4~a!. The PC model,
which accounted fairly well for the diffuse scattering in
particular region,7 fails to reproduce its distribution in othe
regions of reciprocal space, as is evidenced in Fig. 4~a!, for
instance. These results prove that it is necessary to ana
the diffuse scattering in extended regions of recipro
space.22 Accordingly, one finds that the model for which th
diffuse scattering distribution is best simulated is the L
model. Indeed, it is the only one for which the experime
are at least correctly reproduced in Figs. 4~a!, 4~b!, and 4~c!
altogether@compare also Figs. 3~a! and 3~c! with Figs. 1~a!
and 1~b!#. The results of the diffuse scattering calculatio
for the LM model are discussed in more details in Secs. V
and VI C.

It is worth pointing out that the description of the diffus
scattering intensity distribution in terms ofX,L,G and extra
scatterings should be taken with caution because other t
of analyses may be equally or even more appropriate.
instance some diffuse streaks can be identified in
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FIG. 3. Calculated x-ray diffuse scattering patterns for the L
model:~a! planeh1k59, T5500 K, ~b! planeh1k59, T5350 K,
and ~c! planeh1k511, T5500 K. Large diffuse intensities corre
spond to dark areas.
FIG. 4. Calculated intensities~up to a model dependent multi
plication factor: 124 for vdW; 140 for SCK1, SCK2, and LLM; 13
for PC; and 125 for LM!: ~a! from ~4.5,4.5,5.5! to ~8.5,0.5,1.5!, in
the planeh1k59, ~b! from ~5.5,5.5,0! to ~5.5,5.5,4!, in the plane
h1k511, ~c! in the @8,k,0# direction. The observed intensities~Fig.
2! are shown for comparison.
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@1,21,61# and@0,0,1# directions in Figs. 1~a! and 1~b!. The
existence of diffuse streaks is also supported by the calc
tions as shown in Fig. 3~b! for the LM model, close to the
mean-field transition temperature, where narr
@1,21,61# and @0,0,1# streaks are visible. Hence, the di
fuse scattering in C60 is possibly even more complicate
than described previously in Ref. 6. It may combine 3D c
relations, producing theX, L, andG scatterings, 2D correla
tions, in relation with the line scattering, and 1D correlatio
possibly related to theH-shaped scattering, located in th
h1k511 plane. Complementary simulations to those p
sented here, namely, molecular dynamics or Monte C
ones, which give access to the arrangements of molecu7

could be very helpful to clarify this point.

VI. DISCUSSION

A. Existence of competing instabilities

Within the formalism of the symmetry-adapted functio
used in this paper, all physical quantities—pair correlat
functions, interaction, or susceptibility matrices—are dev
oped over angular momental and irreducible representation
t of the space group Fm3m ( l50,6,10,12;
t5A1g ,A2g ,Eg ,T1g ,T2g). The diffuse intensity is ex-
pressed in terms of rotator pair correlation functions, prop
tional to the mean-field susceptibility components@Eqs. ~6!
and ~21!#. All the 59359 pair correlation, or@x(q)#, com-
ponents contribute to the diffuse intensity. Indeed, in Ref
we showed that calculations restricted to theT2g

(3) ,l510 pair
correlation function—considered as dominant in previo
studies27,28—do not allow one to reproduce correctly the d
fuse scattering, and the same is true if only some of the
rotators are taken into account~we checked this, for instance
for all theT2g ones!. Note, however, that the eigenvectors
the susceptibility associated with its highest eigenvalues c
tribute more~especially if they have strongl510 compo-
nents, sincel510 terms are reinforced in the expression
the diffuse intensity by the molecular form factorg10).

Eigenvalues of the susceptibility@x(q)# are plotted in
Fig. 5, for the vdW and LM models, along some particu
reciprocal space directions. Maxima atX, L, andG points are
evidenced, which explain the corresponding diffuse scat
ing maxima. The related eigenvectors present definite s
metries. For instance, the eigenvectors associated with
highest eigenvalues at pointX have onlyTg (T1g andT2g)
components, for both the vdW and LM models. A seco
order transition associated with the divergence of these
genvalues would lead to a low temperature phase, the s
metry of which is related to the eigenvector symmetry;
Pa3 phase is related to the divergence of theTg representa-
tion at pointX.36 The part of theX point diffuse scattering
coming from these eigenvectors can thus be associated
pretransitional fluctuations of the low temperaturePa3
phase. Similar reasonings apply to all eigenvalues and ei
vectors of the susceptibility. Consequently, theX, L, andG
point diffuse scattering can be associated with pretransitio
fluctuations relative to competing phases, only one being
bilized belowT0.260 K: thePa3 phase. The same conclu
sion can be reached for the SCK, LLM, and PC models,
which the susceptibility eigenvalues also present maxim
pointsX, L, andG. A splitting of the heat-capacity anomal
la-
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aroundT0 has been observed recently, which may cor
spond to an intermediate ordered phase between theFm3m
andPa3 ones;38 this would corroborate our interpretation o
the diffuse scattering results in terms of competing fluct
tions.

The existence of several competing instabilities in C60
stems from the high symmetry of this large molecule, co
bined with van der Waals or electrostatic interactions, onl
function of the distances between interaction centers. T
produces various relative orientational configurations

FIG. 5. Upper part of the eigenvalue spectrum of the susce
bility @x(q)# along some reciprocal space directions,~a! for the
vdW model, atT5300 K; ~b! for the LM model, atT5500 K.
Irreducible representations associated with some eigenvectors
indicated, to illustrate the existence of competing instabilities.
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tween neighboring molecules with nearly degenerate e
gies. The fluctuations associated with these different c
figurations contribute to the complexity of the diffus
scattering.

B. Role of the †U2
‡ and †J„q…‡ terms

1. Slow and rapid diffuse scattering modulations

In Sec. IV, the diffuse scattering intensity is expressed
a function of quantities directly related to the intermolecu
interactions: the@U2# and @J(q)# matrices. These have i
fact somewhat distinct contributions to the diffu
intensity.39 Schematically, the@U2# term—related to the av
erage orientation ofonemolecule — gives slowly varying
modulations of the diffuse halo, extending over several B
while the @J(q)# term — related to correlationsbetween
molecules—gives more rapid variations of the diffuse sc
tering inside each BZ.22 If @J(q)# is set to zero, i.e., with
@U2# only, the diffuse intensity varies slowly in reciproc
space; introducing@J(q)# results in ‘‘rapid’’ modulations of
this slowly varying scattering, as illustrated in Fig. 6.

For the vdW model, the calculated diffuse intensity
much too weak at the top of the planeh1k59 @left parts of
the scans in Figs. 4~a! or 6#, while for the SCK1 model, it is
much too weak at the center of the plane@Fig. 3~b! in Ref.
22#. Note in Fig. 6 and in Ref. 22 in Fig. 3~b! that these
discrepancies are already present in the slowly vary
part—@U2# component—of the scattering. Note also that t
LM model yields the most convenient@U2# component,
when the comparison with the observed diffuse scatterin
performed in extended regions of reciprocal space, as m
vated in Sec. V B. This is a reason why the LM model is t
most satisfactory. Hence, an adequate@U2# matrix appears
as a prerequisite to simulate the diffuse scattering in C60.
The @U2# terms corresponding to single molecule rotato
averaged over the orientational mean-field energy@Eqs.~18!
and ~14!#, the prerequisite concerns in fact the orientatio
mean-field energy.

FIG. 6. Calculated diffuse intensity from~4.5,4.5,5.5! to
~8.5,0.5,1.5!, in the planeh1k59, for the vdW, SCK1, and LM
models. Calculations are made with and without (@U2# only! the
@J(q)# contribution.
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2. High temperature mean-field energy

The orientational mean-field energy can be determin
directly from Bragg peak intensity analysis, which gives a
cess to single molecule properties. Equation~5! allows one
to obtain the mean values of theA1g rotators from the Bragg
peak intensities. This was done by Schiebelet al.,29 Chow
et al.,31 and David et al.,32 for single crystal29,31 and
powder32 samples, using x-rays29,31or neutrons.29,32One can
then determine the orientational density distribution:3,29

f ~v!5(
l50

`

(
t5~A1g,m!

2l11

8p2 ^Ul
t~v!&Ul

t~v!, ~25!

and thus the single-molecule mean-field energy, up to a c
stant term:29

EMF~v!52kTln„f ~v!…. ~26!

The mean-field energies deduced from Refs. 29,31 and
are reported in Fig. 7~a!, for the rotation of the molecule
about one of its sixfold axes in coincidence with a crys
threefold axis~the constant terms are arbitrarily chosen
that the absolute minima of the mean-field energies in Fig
are zero!. The mean-field energies present two minima
primary one for the molecule with pentagons directed
wards nearest neighbors~pentagon orientation! and a second-
ary one for hexagons towards nearest neighbors~hexagon
orientation!; note that in the high temperature phase the p
tagons and hexagons do not necessarily face the nea
neighbor double bonds. The minima or barrier height valu
differ only slightly for Chowet al. or Schiebelet al., but a
little more for Davidet al. This may be due to the fact tha
powder experiments are less accurate than single cry
ones, and/or to different temperatures for the experime
~room temperature for Chow and Schiebel, but 270 K
David!. However, the results are in rather good agreeme
Note also that the mean-field energy results confirm the
lidity of restricting the calculations to multipolesl<12, as is
shown in Fig. 7~b!: the l512 terms are indeed needed for th
primary and secondary minima to be reproduced,14 while the
l516 and 18 ones only induce relatively minor chang
comparable to the scattering of the experimental results
Fig. 7~a!. Using the above experimental mean-field energ
obtained from certain studies,29,31,32we have calculated the
@U2# matrices. The corresponding slowly varying scatteri
~multiplied by a scaling factor of 125) is drawn in Fig
2~a!–2~c! for the neutrons~II ! results29 ~very similar results
are obtained from all the studies!. A comparison with the
observed diffuse scattering reveals that the slowly varying
or @U2#— component extracted from Bragg peak analys
provides a fairly good ‘‘background’’ for the diffuse scatte
ing intensity, further modulated, at the BZ scale, by t
@J(q)# intermolecular correlations.

We now turn to the mean-field energies calculated
solving the mean-field equations for the different models
intermolecular interactions@Fig. 8~a!#. They are normalized
with respect to temperature since the physical quantity
interest isEMF /T @see, e.g., Eq.~14!#. Most of the calculated
mean-field energies are inconsistent with the experiment
determined ones. For the vdW, LLM, and PC models,
primary and secondary minima are the hexagon and pe
gon orientations, respectively, instead of the pentagon
hexagon orientations. For the SCK models, theP and H
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orientations are maxima instead of minima. Accordingly,
the above models, the slowly varying part of the diffuse sc
tering does not present the right variations, as already sh
in Sec. VI B 1 for the vdW and SCK1 models@Fig. 6, and, in
Ref. 22, Fig. 3~b!#. The only model which correctly predict
the true primary and secondary energy minima is the
model, and correspondingly it is the one for which the slow
varying part of the diffuse scattering is the most adequ
@compare Figs. 6 and 2~a!#. Actually, the LM model was
worked out in order to fit the experimental Bragg pe
data.14,15,28 However, note that the LM model provides
satisfactory mean-field energy using a temperature of 35
@Fig. 8~b!#, close to that of Refs. 14 and 15, while the agre
ment with the ‘‘experimental’’ energy shown in Fig. 7~a! is

FIG. 7. ~a! Mean-field energy normalized to the temperature
a function of the rotation angle about a threefold crystal axis
molecular sixfold axis being aligned with this threefold crystal ax
from Eqs. ~25! and ~26!, for l<12, and from the results of the
crystallographic studies of Schiebelet al. ~Ref. 29! @three studies on
three single crystals: neutrons~I!, neutrons~II !, and x-rays#, Chow
et al. ~Ref. 31! ~one single crystal, x-rays!, and Davidet al. ~Ref.
32! ~powder sample, neutrons!. Temperatures were, respectivel
295 K, 300 K, and 270 K.~b! Mean-field energy for neutrons~II !
results, forl<10, l<12, andl<18.
r
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not as good~the barrier height is too small! for T5500 K,
which is on the other hand a more convenient tempera
for simulating the diffuse scattering, as indicated in S
V A.

Let us now discuss the mean-field versus crystal-field
proximations. The crystal-field energy is obtained by mak
a cruder approximation than for the mean-field one:
neighboring molecules are considered as spherical, wh
means that only their zero angular momentum is taken
account. Equations~12! and ~13! become

ECF~v i !5 (
l>6,t

el ,CF
A1g,mUl

A1g,m~v i !, ~27!

with

s
a
;

FIG. 8. ~a! Mean-field energies normalized to the temperatu
of calculations~Table II! as a function of the rotation angle about
threefold crystal axis, a sixfold molecular axis being aligned w
this threefold crystal axis. They are calculated for all models
Table I, and forl<12 @Eq. ~12!#. ~b! Mean-field and crystal-field
energies for the LM model, at 350 K and 500 K, forl<12 @Eq. ~12!
and ~27!#.
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el ,CF
A1g,m5123J

l ,l 850

A1g,m;A1g~ i , j ! ~28!

( j refers to any of the twelve nearest-neighbor molecules
i : the interaction matrix termsA1g2A1g are the same for al
of them!. Lamoen and Michel used this crystal-field appro
mation to refine their model of potential, but suggested tha
would be interesting to perform the mean-field calculatio
solving the self-consistent equations, i.e., taking into acco
the nonspherical components of the molecular dens
Mean-field and crystal-field energies for the LM model a
compared in Fig. 8~b!. One finds that solving the self
consistent mean-field equations only leads to renormal
tions of the crystal-field energies: the mean-field and crys
field energy main characteristics and orders of magnitude
the same.

3. Role of electrostatic charges

The influence of adding electrostatic interactions to
given model can be understood from the previous discuss
For charge densities which do not overlap between neigh
ing molecules—this is the case in all models of Table I—
crystal-field energy is unchanged, due to the global neutra
of the molecule14,15 @the l 850 form factor relative to the
electrostatic charge distribution being zero, the electrost
J
l ,l 850

A1g,m;A1g terms are null in Eq.~28!#. The mean-field energy
which is rather similar to the crystal-field one, does n
change much when adding charges. This is shown in Fi
for the SCK2, LLM, and PC models and for the correspon
ing models with zero charges. For the sake of simplicity,
have not discussed the charge model of Burgoset al.13 be-
cause its crystal-field energy is inconsistent with the o
determined experimentally~for instance, its primary and sec
ondary minima are the hexagon and pentagon orientati
respectively!. Adding electrostatic charges modifies the d

FIG. 9. Mean-field energies normalized to temperatures, a
function of the rotation angle about a threefold crystal axis, a s
fold molecular axis being aligned with this threefold crystal ax
These energies are calculated for all models with electros
charges in Table I, LLM, SCK2, and PC, and for the correspond
models without charges, at the same temperatures: vdW (T5800
K!, SCK1 (T5500 K!, and PC without charges (T51600 K!.
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fuse scattering:~i! the transition temperature is changed, a
thus the calculation temperature and the relative weights
the @U2# and @J(q)# matrices in the susceptibility, for in
stance;~ii ! the matrix@J(q)# is modified, now including also
electrostatic interactions. Nonetheless, introducing~non-
overlapping! electrostatic charges cannot significan
modify the slowly varying part of the diffuse scattering—th
@U2# component—which strengthens the previous argum
in Sec. VI B 1 that a correct mean-field energy is mandato

C. Remarks on possible improvements of the models
of interactions

As discussed above, the LM model14,15 fits the best ex-
perimental diffuse scattering in the plastic phaseFm3m.
This is because it has been elaborated on the criterion of
mean-field energy, i.e., of correctA1g2A1g interaction
terms, but it does not insure that other interaction terms
the @J# matrix, are adequate. Comparison of the diffuse sc
tering data and of its slowly varying part~experimental
@U2# term! in Fig. 2~a! shows that the contribution of th
@J(q)# terms must be large in the upper~and lower! parts of
the planeh1k59 @left side of Fig. 2~a!#. It appears that this
contribution is not sufficiently pronounced for the LM mod
@see Figs. 4~a! and 6#. It may indicate that the LM mode
does not fully account for the intermolecular interactions
C60.

Further improvements of the models could be obtain
using the C60 low temperature properties which should al
be reproduced satisfactorily. The properties we consider h
are the following~see, e.g., Ref. 3 and references therein!: ~i!
the low temperature energy presents nearly degene
minima in theP andH configurations, the lower for theP
configuration, energy differences being'11 meV; ~ii ! the
barrier height between them is of about 250 meV, but c
reach 500 meV for a threefold axis rotation depending
which assumptions are made from the experimental data~the
250 meV barrier may correspond to a twofold axis rotatio!;
~iii ! the absolute values of energy minima should be of ab
21.7 eV ~cohesive energy24!. These energies were~at least
partly! determined from single molecule reorientation ana
ses, and thus should be tested using the potential energy
single rotating molecule. However, theP andH configura-
tions being both present in thePa3 phase, there can be var
ous molecular environments. Still, the potential ener
should not strongly depend on them, at least for points~i!
and~iii !, because of the near degeneracy between theP and
H configurations. Figure 10 shows the potential energy
the Pa3 phase, of a molecule rotating about its local thre
fold axis with its twelve neighbors inP orientations. None of
the models of interactions in Table I satisfies the three ab
criteria ~see also Refs. 3,12,19,24 and 41–43!. Table III
shows that~i! energy differences betweenP andH configu-
rations are too important,~ii ! the barrier height is too smal
for the vdW and SCK models, and~iii ! the absolute value o
energy minimum is too small for the LM model.

Our calculations of the high temperature diffuse scatt
ing, together with the supplementary low temperature c
straints, clearly show that the physical or chemical arg
ments ~representation of multiple bonds by analogy wi
solid nitrogen,11 explicit differentiation betweens and p
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bondings,14,15tetrahedron bonding,17 etc.! used to build mod-
els for the interactions are still partly inadequate. Some
ditional ingredients are needed, which could come fromab
initio calculations of the electronic structure of th
molecule.28 Such calculations were done by Yildirim, Harri
Erwin, and Pederson.19 At first,19 they neglected the charg
density overlap between neighboring molecules, which le
to small Coulomb interactions between C60 molecules,
smaller than in Refs. 11 and 12, for instance. This res
motivated Lamoen and Michel to work mainly on improvin
the description of the van der Waals–like interactions15

However, Yildirim44 extended the calculations in Ref. 19 an
found that the small overlapping between charge densitie
neighboring molecules is not negligible. On this basis, Sa
Harris, and Yildirim24 have very recently elaborated a mod
of potential which, considering the preceding discussio
about low temperature properties, looks very promising. T
charge overlaps should ensure a more important role to

FIG. 10. Energy in the low temperature phasePa3, for all the
models in Table I; calculations are performed for domainA follow-
ing the notation of Ref. 40 and they are restricted to near
neighbor interactions; a central molecule is rotated about its lo
threefold axis, its twelve neighbors being inP orientations.
d-

s

lt

of
,
l
s
e
he

electrostatic interactions, with respect to the diffuse scat
ing ~the mean-field energy will now depend on electrosta
interactions, arguments in Sec. VI B 3 applying only to no
overlapping charges!; the role of van der Waals–type an
electrostatic interactions is more equilibrated. Test of
model of Savin, Harris, and Yildirim, based on diffuse sc
tering analyses, appears as highly desirable and will thus
the subject of forthcoming investigations.

VII. CONCLUSION

In this paper, a detailed analysis of room temperat
single crystal x-ray diffuse scattering data was presen
Diffuse scattering calculations were performed starting fr
microscopic models of intermolecular interactions,10–12,15,17

using a mean-field theory and the formalism of t
symmetry-adapted functions. The preliminary analysis p
sented in Ref. 22 for the vdW and SCK1 models10,11 has
been extended to most of the current models of interactio
This provides an overview of their relative worths with r
gard to the diffuse scattering. We have shown that the an
sis of the diffuse scattering is a good probe for the interm
lecular interactions in C60 ~which should of course be
combined with tests on the other available structural,
namical, and energetical properties!.

Our main results are the following:
~i! A prerequisite for any model to correctly fit the diffus

scattering is to give the right mean-field energy. If not, a
ditional electrostatic charges will not allow one to impro
sufficiently the calculated diffuse scattering~unless signifi-
cant overlap is considered24!.

~ii ! All models of interactions account for the basic fe
tures of the diffuse scattering (X,L,G point plus extra scat-
terings!. But none of them, even the best one with regard
diffuse scattering—the LM model15—is fully adequate when
comparison with experimental data is made over large
gions in reciprocal space.

~iii ! The very complex diffuse scattering in C60 is due to
the existence of pretransitional competing fluctuations. T
is related to the fact that the C60 molecule is a large and
highly symmetrical molecule.

The need for more physical and/or chemical constraint
understand these interactions is emphasized. In this respe
very recent model,24 based on electrostatic charge distrib
tion determined fromab initio calculations,19 is promising.

t-
al
ed for

TABLE III. Low temperature energy characteristics from experiments~cf. Refs. 3 and 24 for instance!

and for the different models of intermolecular interactions of Table I. The calculated values are obtain
a single molecule rotating about its local threefold axis, with all its neighbors inP orientation~cf. Fig. 10;
note that theH orientation is not a true minimum for the SCK1 model!.

Energy difference Barrier height Energy minimum
betweenP andH from P to H
orientations~meV! orientation~eV! ~eV!

Experiments 211 0.2520.5 21.7
vdW 134 ;0.09 ;21.7
SCK1 253 ;0.08 ;21.5
SCK2 287 ;0.15 ;21.9
LLM 2120 ;0.42 ;21.9
LM 266 ;0.28 ;20.7
PC 2123 ;0.48 ;21.4
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