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Tests of current models of intermolecular potentials against x-ray diffuse scattering in Gy

Pascale Launois, Sylvain Ravy, and Roger Mbret
Laboratoire de Physique des Solides, URA 002 asscaieCNRS, Biment 510, Universitdaris Sud, 91405 Orsay Cedex, France
(Received 25 July 1996; revised manuscript received 11 Septembey 1996

Diffuse scattering, which contains two-body information, is a rich source of knowledge on the interactions
between the g, molecules. We present a mean-field theory for calculating the diffuse scattering in the
high-temperature phase of;&from microscopic models of intermolecular interactions. The diffuse scattering
is calculated and discussed for most of the models available to date. It is compared with single-crystal x-ray
diffuse scattering data. Overall, the positions of the diffuse scattering maxima, corresponding to competing
instabilities, are found to be independent of the model of interactions. This suggests that these instabilities are
related to the shape of the larggd@nolecule. No model is fully satisfactory for fitting the relative intensities
of the diffuse scattering features. The best fit is obtained with the Lamoen-Michel model, which accounts also
correctly for the Bragg peak intensity in the high-temperature phase. The physics of the models is discussed
and some improvements are propog&0163-18287)07804-]

I. INTRODUCTION as a probe for current microscopic models. The different
(published models are presented in Sec. Il. Section Il re-
Cgo molecules have the novel shape of a truncatedalls the main characteristics of the diffuse scattering experi-
icosahedror, with equivalent carbon sites and two types of mental data. Section IV presents the theoretical framework
C-C bonds(30 shorter “double-bonds” DB, that fuse two @allowing us to calculate the diffuse scattering, while the re-
hexagons, and 60 longer “single-bonds” SB, that fuse aSults of the calculations are described in Sec. V. Detailed
hexagon to a pentagpriThe efficient synthesis of solid crys- comparisons between experimental and calculated diffuse
talline Cg, (Ref. 2 in 1990 opened the field of solid-state Scatterings are presented, Calculation results are discussed in
investigations, including structural and dynamics studies. AS€C- VI- One of the modeffits the experimental data better
atmospheric pressure, the sequence of phase transitions istgén th_e others although it Is not fully satisfactory. Possible
follows (see, e.g., Ref. 3 and references thereit room further improvements are discussed.
temperature, the molecules adopt a face-centered-cubic lat-

tice, with space group m3m. They are reorienting very rap-
idly about their centers of gravity in this plastic phase. More-

over, diffuse scattering results give evidence of complex The first intermolecular potentials for g were atom-
short-range orientational intermolecular correlatibrisAt atom potentials derived from those already known for
To=260 K, a first order phase transition is induced by long-graphite®'° Such choices appear reasonable because the
range orientational order between thg;@olecules and the minimum distance between carbon atoms of neighboring
symmetry is lowered to simple cubic with four molecules permolecules is comparable with the interlayer spacing in
unit cell (space groupPa3). There are two types of nearly graphite. Nevertheless, these models predicted
degenerate equilibrium orientations for the molecules. In therthorhombid or tetragonadf’ low temperature phases instead
more energetically favorable one, agCmolecule has six of the observed simple cubic one. Hence, improved models
pentagonal faces facing double bonds of neighboring molef potentials with additional van der Waals centers of inter-
ecules P configuration. In the less energetically favorable actions and/or with electrostatic interactions between charges
one, it has six hexagonal faces facing double bonds of neiglen the molecules were proposed. For an atom-atom 12-6
boring molecules i configuration. The P configuration is  Lennard-Jones potentialvdW modet®3, the tetragonal
favored as the temperature is decreased inRb8 phase, ~Structure was characterized by a crossing of DB'’s at mini-
down to a glass transition temperatdig=80 K, where the ~Mum separation. To avoid this, Sprik, Cheng, and K“Fe”)
populations of the two configurations are frozen. While thesupplemented the 60 atomic 12-6 sites C with 30 12-6 sites
solid-state properties of § were investigated experimen- located at the centers of the DB(SCK1 mode). This was
tally, improved models of intermolecular interactions weresufficient to stabilize thé>a3 phase at low temperature. In
proposed, mainly based on van der Waals—type interactiorgrder to raise the transition temperature closer to the experi-
(Lennard-Jones, Born-Mayer, Buckingham potentildad  mental one, they improved their model assigning a negative
on electrostatic interaction’s!” A good knowledge of the chargeqp to the centers of the DB’s, and the compensating
intermolecular interactions is important forggitself of  chargedfor the molecule neutralifyqc= —p/2 to the car-
course, but also as the prototype of the bigger fullerenes or dfon atoms (SCK2 model. Independently, Lu, Li, and
the doped superconducting derivatives. Martin'2 improved the vdW model by assigning an effective
The present work aims at improving our knowledge ofchargeqs to the centers of SB’s, and the compensating
these interactions by using the analysis of diffuse scatteringharges {2qs) to the DB center§LLM model). They also

II. CURRENT MODELS OF INTERMOLECULAR
POTENTIALS IN C 4
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TABLE I. Models of intermolecular potential, after Refs. 11,12,15, andelig;the absolute value of the
charge of the electron.

Model Form of Interaction Parameter
the potential centers values
vdw DX[(a/r)*? carbon D=345K
—2(o/r)] atoms(C) =38 A
SCK1 DX[(oy_y /1)  x,x'=C, DB D=12 K, oc c=3.8 A,
—2(0y_yxr I1)] centers 0cpe=3.93 A, opg pg=4.04 A
SCK2 SCK1 x,x"=C, DB D=15 K, sameo’s as
+QyQy /1 centers for SCK1gc=0.17%,
Opg=—0.3%
LLM vdW ¢ ¢ x,x"= DB sameD ando’s as
+QyQy /1 and SB centers for the vdW modejgz=0.27,
Opg= —0.54%
LM C ¥ exp-Cs ¥y xx'=C, 3 centers Bc.c=305 421 K A8, othersB=0,
—By_y /18 on DB's (DB ,i=1-3), cfC=1.2c% "Pi=0.072,
1 center on SB’s CyPP=0.1,C5CS8=0.22
cDBi —SB_ 0,

1
in units 374530 00 K

cSC=36,C," PPi=32,

C-DB; _ C-SB_ -
C, 7=34C3PC =36 A1
PC C.exp(—C,r)—BIr®  x,x'=C, charges C-CB=155 000 K A8,

+ Oy /T inside (1) and C,=209 814 23 K,C,=3.532 A%,

outside(2) of the molecule q;=g,=—0.27,qc=0.27

succeeded in stabilizing thea3 phase at low temperature measured by inelastic neutron scattering, Pintschovius and
(an interesting discussion of the;gphase diagram for mod- Chaplot’ introduced a new bond charge modeC mode),

els derived from the SCK’s and LLM ones, within the frame With a chargeq at the carbon atom position, and where the
of a mean-field theory similar to that used here, is given byDB charge (2q) is split in the radial direction in two
Heid'®). Burgos, Halac, and Bonad€ointroduced another charges (-q) inwards and outwards of the surface of the
charge model, placing 30 charggg on the DB’'s and 12 molecule.

charges[—5/2(qp)] at the pentagon centers. However, The parameters of the interaction potentials to be dis-
Yildirim, Harris, Erwin, and Pedersdh determined the cussed in the following are summarized in Table I.

charge distribution of the g molecule fromab initio calcu-
lations, and they found that the charges carried by pentagons
and hexagons are too different from each other for both
SCK2 and LLM models. The pentagon and hexagon charges

lll. C g9 DIFFUSE SCATTERING OBSERVATIONS
AT ROOM TEMPERATURE

differ too much also in the model of Burges al,, so that it While Bragg diffraction provides one-body information,
has not been retained for calculating the diffuse scattering; diffuse scattering, i.e., the weak intensity distributed between
further motivation will be given in Sec. VIB 3. the Bragg peaks, contains two-body information. It is thus a

While the SCK's and LLM models were essentially rich source of knowledge on the correlations between atoms
elaborated to account for thegglow temperature phase, or moleculegsee for instance the recent reviews of Welberry
other models were introduced in the light of more recentand Butlef?).
experimental results, namely from crystallographic and in- Diffuse scattering in Gy at room temperature was first
elastic neutron scattering studies. First, precise measureaeasured by powder neutron scattering, in the form of two
ments of the Bragg reflections enabled the determination dfroad halos at wave vectors of about 3.3 and 5.3 AThese
the crystal-field energy, which acts on a molecule due to ithalos could be well accounted for by assuming rotational
neighbors, in the high temperatuFem3m phase. Lamoen diffusion of the molecules with no correlatioAsHowever,
and Michel used these data to adjust the parameters of stattering from powders only gives limited information on
model (LM model)***® in which they considered Born- correlations because of the angular averagg.sihgle crys-
Mayer repulsions and van der Waals attractions between catals of good quality became available in 1992, allowing the
bon atoms but also between other interaction centers alorfiyst single-crystal diffuse scattering investigation to be
the DB’s and at the centers of the SB’s. Note that a slightiymade? using x rays and the monochromatic fixed-film,
different version of this model is now proposed by Michel fixed-crystal photographic technique. Rich azimuthal modu-
and Copley'® but we will not focus on this most recent one lations of the halos were found, evidencing intermolecular
as it gives very similar results and leads to the same conclwsorrelations at room temperature. Subsequently, we per-
sions. Second, in order to fit the phonon dispersion curveformed an extensive study of the diffuse scattering in the first
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sees in Figs.1 and 2 th&tL,I" and extra-scattering intensi-
ties are of the same order of magnitude. They also corre-
[OI,O,II] | spond to similar correlation lengths of about 5 (for the

T “H scattering, this is measured perpendicularly to the
5 B planeh+k=11)® We mention that theX-point scattering
- C was studied by Blaschket al.® that the rich scattering fea-
3] - tures in G, have also been observed by Wocheeal.? and
o] N that the existence of botK andL point maxima has been
] | [45+h deduced independently from single-crystal neutron diffrac-
1 - 45-h,0] tion experiments by Pintschoviust al, with, however,

! 0_— __ larger correlation lengthéup to 40 A.” The difference be-
1] tween x-ray and neutron correlation lengths may be attrib-
2] K uted (i) to the chosen form of the correlation functions,
-37] C namely, particle size broadening function in Ref. 7 and
47 C Ornstein-Zernike correlation function in Ref. 6, which in-
-57] B duces a factor of-3 between the corresponding correlation

SRR SR | lengths(we have chosen the Ornstein-Zernike form, which is
4 8 2 4 0 1 2 8 4 appropriate in the case of pretransitional fluctuatipfig) to
(a) h energy resolution effectén neutron experiments, the 40 A

value corresponds to the small energy window, while a
smaller value is measured for a broader wind@g. 1 in
Ref. 7).

If X-point scattering had been observed alone, it would
have been interpreted as pretransitional diffuse scattering,
since pointsX correspond to positions of the superstructure
peaks in the low temperature phaBa3. However, the ob-
served complex diffuse scattering points towards much more
complicated local ordering and reveals the existence of com-
peting fluctuations in G,.5%182224Tg clarify this point,
especially in terms of models of intermolecular potentials,
elaborated calculations or simulations are necessary. Monte
Carlo or molecular dynamics simulations can be performed,
allowing one to find the density-density correlation functions
in direct space and to calculate diffuse scattering patterns in

(b) h reciprocal space. The main drawback of these approaches is
that they imply time-consuming calculations, and thus limits

FIG. 1. X-ray diffraction patterns for the planés h+k=9, ()  ©" sample sizes. Molecular dynamics simulations_ based on
h+k=11 (data are corrected for absorption and polarization ef-the PC model have been performed by Pintschovius, Chap-

7 . .
fects. Large diffuse intensities correspond to dark areas. The blackol: Roth, and Heger.On the other hand, the statistical av-
and white dots shown in one quadrant pinpoint to the ponend ~ €rage of the correlation functions can be calculated analyti-

L, respectively. The solid lines indicate scan directions in Fig. 2. cally, within the framework of a mean-field approximation.
This method allows one to compute the diffuse scattering

halo at room temperatufeysing CuKa x rays and a three- more rapidly?®> But contrary to Monte Carlo or molecular
circle diffractometer that enabled quantitative 3D data col-dynamics techniques, it does not easily allow direct space
lection. The results have been described in recenvisualization. However, we have chosen this method for its
paper&??23 and their main features are summarized belowreasonable computation times, which permits the comparison
using characteristic 2D sections and linear scans of thef different models of intermolecular interactions. Our first
modulated diffuse scattering intensity. The diffuse scatteringgomputations, for the vdw and SCK1 models, were pre-
modulations can be analyzed in terms of maxima of scattersented in Ref. 22; similar calculations for the modified LM
ing at the pointsX=(1,0,0),L=(3,3,%), and'=(0,0,0) of model have been done by Michel and Copley in Ref. 16.
the Brillouin zone(BZ), plus some extra scattering which
does not present a maximum at a special point of the Bril-
louin zone.X andL scatterings are visible in the+k=9
and h+k=11 planes(Fig. 1), where the distribution of In this section, we first recall the concepts underlying the
maxima in staggered rows of poinsandL is clearly ob-  derivation of the scattering intensities, using the formalism
served; this can also be seen in the linear scan shown in Figf the symmetry-adapted functions. This powerful formalism

2(a). Moreover, at the center of the plahe-k=11, the dif- has been applied to several cases of orientationally disor-
,6,14—16,18,22,24,28—3&

IV. THEORETICAL FRAMEWORK

fuse scattering takes the form of a thickH}” which is  dered solid® and to G in particular®
among the most intense extra-scattering features of thkeads to an expression of the diffuse intensity in terms of
whole diffuse haldsee also the linear scan in Figh?]. The  orientational pair correlation functiori$:?® Then, using a

I' scattering is evidenced in the linear scan in Fig)20ne  mean-field approximation, we evaluate these pair correlation
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600 ‘ ‘ ‘ functions in terms of the intermolecular interactiGAsThe
theoretical formulation is presented below. Special emphasis
is put on the mean-field theory for evaluating the pair corre-
lation functions, which was not yet developed in detail in
previous worlké?

The angular part of the atomic density of a molecule
reads 28

0
[=3
o

400

60 ©

p)=2, 80Q-0)=2 gSR,'Q), 1

300

Intensity (arbitrary units)

where() stands for the polar angle#,(@) with respect to the
fourfold cubic axes. The first sum runs over the sixty atoms
v of the molecule. The second sum is a development over
100 —— : — P . angglar momentum componeﬂt;The functionsS,(Q2) are
(4.5+5,4.5-5,5.5-0) the icosahedral harmonics, available from Refs. 27 and 33.
@ ' ’ The first harmonics ark=0,6,10,12,16, and 18, the associ-
ated molecular form factors beingy=16.9, g=2.6,
010=19.4,91,=7.9, g16=—17.9, andy,g=38.2. The orien-
tation of the molecule with respect to its standard orientation,
represented in Fig.(6) in Ref. 6, is determined by the three
Eulerian angle seb (rotationR,).

The icosahedral harmonic& can be expressed in terms
of the cubic symmetry-adapted functioB8§, given in Ref.
34 up tol =12,

200 ® Experimental

—— [U?]) terms only|

Extra scattelring ("H") ' L

n
(=}
o

Intensity (arbitrary units)

®  Experimental SI(R; IQ): 2 Ur(w)ST(Q) 2

—— [U?] terms only

100 |

The indexr stands for the combinatiod’(u,i), wherel is

an irreducible representation of the cubic grom@m, w

" 2 3 4 distinguishes between representations that occur more than

®) (5.5, 5.5,0) once within a givenl manifold, andi labels rows of the

representation. The functiond/(w) are named rotators.

N They are symmetry-adapted linear combinations of the

/ l Wigner rotation matrix elements, but they can also be di-
[}

400

rectly calculated from the cubic symmetry-adapted functions
by

) ° 1
300 .—’—‘_’\’ Vilew)= Egl S, @

The x-ray G, structure factor, deduced from the Fourier
transform ofp(Q), read$?®

®  Experimental
—— [U?terms only

Intensity (arbitrary units)

F<Q>=4wfc<Q)2I ET i'9j1(QRIST(Qo)U(w), (4)

200 . .
00 0.5 1.0 15 whereQ is the scattering wave vector of modul@sj, is the

(© (8,k.0) spherical Bessel function of ordér andR is the Cs, mol-

FIG. 2. X-ray diffraction intensity(a) along a selected line of ?CUI(? radlus._The Contrlbutlor_1 of _bond electrons is neglgcted
the planeh+k=9, from (4.5,4.5,5.5 to (8.5,0.5,1.5, (b) along a in this _equatlon _Wh.ers.fC(.Q).l.S simply the carbon atomic
selected line of the planie-+ k=11, from (5.5,5.5.0 to (5.5,5.5.4, scattering factor; this is justified by the agreement between
and(c) in the [8.k,0] direction; the(8,0,0 Bragg peak contribution N@lyses of neutron andgx-ray crystallographic data, with this
is substractefit is weak due to an accidental pseudoextinction: this@PProximation for x-ray: The scattering consists of Bragg
allows one to observe the point diffuse scattering at akmam  P€@ks at the reciprocal lattice vectds and of diffuse scat-
Bragg peak positiofRef. 6] Data are corrected for absorption and f€ring at wave vectorQ=G+q, whereq is the wave vector
polarization effects. A constant backgrouf00 counts has been  inside the first BZ. From Eq(4), and following the calcula-
substracted. The solid lines result from calculations with the experitions in Ref. 28, the Bragg and diffuse scattering intensities
mental[U2] term only, as explained in Sec. VI B 2. in the high temperature phagen3m aré
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» underline that Eq(10) is used as such when interaction cen-
IB(QzG)oc16a-r2N2fé|Z i'g|j|(QR)S{(QQ) ter densi_tie_s _do not ov_erlap k_)etween ne_ighboring molecules,
1=0 7=(A1g.1) to avoid infinite values in the integral. This is the case for the
X(UT())|? (5) models studied in this papéfable |). For overlapping den-
! ’ sities, a special treatment is needéd.
I5(Q=G+q;q#0) The mean-field approximation consists in expressing the

orientational energy in E|8) in terms of the mean values of

* ) the rotators and of the fluctuations around these mean values,
«16mNf2 >, > i'7"g,9,/1(QR)j 1 (QR) and in neglecting the second order fluctuations,
I,I'=6 7,7
T ' T T 1 e T !
XS(Qq)S (LUl (q)U), (—q)), (6) E:—EE > I LU (@) XU (@)

Lo

whereN is the total number of molecules in the crystal and

where the Fourier transforms of the rotator site values are iy o
defined by +2 2 I DUl (@) (U] (ep). (1D

[ W

- 1 - , Since the terms containing only mean values of rotators, or

Uy(a)= \/_N; Ui(wn)expiq-Xp). (M) thel=0 rotator U,=1), would cancel out in the following
mean-field equations, we keep now an expression of the

The representations involved in the expression of Bragg peainean-field energy up to these constant terms; the total mean-

intensities are the identityA,,—representations, the only field energy is the sum of the mean-field energies of each

ones for which the rotator mean values are nonzero. Moreindividual moleculei,

over, as expected, the diffuse scattering intensity in(Eqs

expressed in terms of orientation-orientation pair correlation

functions or, more precisely, in terms of the pair correlation Eve(w)= 2, e ye()U] (), 12

functions of the Fourier transforms of the rotators. One now 1=6r

needs to evaluate these pair correlation functions for the dif\'/vith

ferent models of intermolecular interactions proposed for

Cgo- This is done within the framework of a mean-field ap-

proximation, justified by the rather short extent of the corre- elfMF(i)ZZ E J|T’|Tr’(i,j)(U|Tr’(w,—))- (13

lations[~5 A, (Ref. 6] compared to the range of the inter- ' i =0

actions (~10 A, the nearest-neighbor distajcBue to the . ) — .

first order character of thEm3m-Pa3 phase transition, the NOt€ that in the high temperature phasm3m, and in the

room temperature diffuse scattering is not critical in nature 2bSence of an external field) all molecules are equivalent

The orientational energy in the high temperature phas€®/mr(1)=€luel, and (i) only the identity representations
Em3m is remain:7=1'=A,, ,. Forl<12 (multipole expansion will
be limited to =12 in the following, there are four
1 e,f?wﬁlg’“ terms: one forl=6, one forl=10, and two for
E= EZJ V(i ,0)) | =12, because there are twh, representations belonging
to the =12 manifold w=1,2). The mean values of the
rotators(U,(w;)) are obtained by solving the self-consistent
mean-field equations

1'=0,r

1 ! !
=52 2 DU (e), @)

WL

wher.el andj Iabely molecules in the crystal. The interaction ] Sdw;UT(w;)exp(—Eye/(KT))
matrix element)}} reads (Ul(w))= [dwexp—Epel(KT)) " (14)
! I
T )= lg? il Introducing the fields conjugated to the rotators, the mean-
e (1) IEJ 99 vz © field energy becomes
The form factorg, ,gf, are calculated for the distribution of
the interaction centers and J (such as van der Waals or Eme= Z e/ me()— /() ]U[ (o). (15
electrostatic interaction centgrsand the interaction terms b 1=6r

il

vlr., can be expressed'ds>2"?®

The zero-field susceptibility matrix has components defined
by
ol = [ [ sdopiusi)sto),

(10 X ()=
wherev'1(r,,r,) is the microscopic interaction energy be-

tween interaction centers of typésandJ at the positions
r, andr,, located on the molecules labeledand j. We  Using Egs.(14) and(15), Eq. (16) becomes

(16)

a<U|T(wi)>)
o () h7) ()—0
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Our diffuse scattering experimeftaere performed in the

; > I KX (k) first diffuse halo located atQ;=3.3 A~! for 2.64
|

KTy (i,))+
Ly ’ nomo_no_m
AT A~1<Q=<3.96 A 1. We will thus restrict our calculations

. to this halo. The first maximum of,(QR) occurring for
—5,,,|~;T/,Tn;i,j)[UZ]E’J, =0, 17 ma=I/R and |, intensity strongly decreasing for
Q<Qpax." the radial component of the first halo will be
where§ is the Kronecker symbdlequal to zero il ' #1” or ~ described by only a few spherical Bessel functions. It is
7' #7" ori#]), and where the matrixU?] is defined by QOmlnated .by thé =10 term in Eq.(23), and it can be en-
tirely described by thé=6, 10, and 12 terms. However, it
[U2]|T’|T,’=<U|T(w)U|T,'(w))—(Uf(w))(Ur,’(w)). (18) may be necessary to ca}lcula_te g and[U?] m{;\trices to
: higher multipolar order, if for instance the coupling between
The brackets indicate averages over the mean-field energy @se|<12 terms and somkE >12 terms was important. The
in Eq. (14). Introducing the Fourier transformed matrices

. interaction stren tI:i”,/ i,j) between interaction centers of
[x(a)] and[J(c)] given by g, (1)

typesl| andJ, belonging to molecules and |, respectively,
scales approximately as

[x(q)]rﬁ’=2r X[y (Dexpig-r),

g\t

99| —g— ) , (24

7,7’ 7 . i

3] =2 377 (Nexpliqer), (19 :

' wherer, andr ; are the radii of the spheres on which inter-

r corresponding toi(j) in Egs.(9) and(16), we obtain action centers andJ are located, and whem; is the dis-
tance between moleculeandj centers of mas%é, this allows
[x(@)]1=[KTIUZ] ™1+ [ 3] (200 one to restrict calculations up to a maximum vallyg, in the

multipole expansion and over a given distance between
neighbors. Evaluating24) for the various types of interac-
tion centers in Table I, we conclude tHat 12—1'>12 cou-

. W ! plings can be neglected, becauselthé¢’ or thel’—1’ terms
(UI(@UY (- @) =kTx;j’ (). @1 are sufficiently smallit is true forl>0, i.e., for the[J(q)]
From Egs.(6), (20), and (21), we can express the diffuse matrix in Eq. (22), but also for theJ,_y,, terms in Eq.

The pair correlation terms in E@6) are related to the sus-
ceptibility by the fluctuation-dissipation theorem

scattering intensity at any point in reciprocal space, (13)). This is true for all the models of interactions studied in
this paper, even for the PC one, where greater values of
I5(Q=G+q;q#0) ([ry+r;]/d;;) are obtained for the charges outside the mol-
o ecules. Hence, to summarize, diffuse scattering calculations
2 A=l ; : in the first halo can be restricted 1e=12. We need to con-
ochle ,2;6 TET: T a0 h (QRI(QR) sider the interaction terms faall the representations with
' By , | <12 (this will be detailed in Sec. VI A Finally, evaluation
XS(Q)S (Qo)(KTIU] ™ +[I(a) ]/, - of Eq. (24) for nearest neighbors, next-nearest neighbors,

etc., shows that nearest neighbor interactions are clearly
(22 dominant, so that our calculations are restricted to nearest

We can now evaluate the diffuse scattering intensity for dif-neighbors.

ferent models of intermolecular interactions. The successive

steps of the calculation are as follows. For a given model of \, pEFUSE SCATTERING CALCULATIONS FOR

intermolecular potential, we calculate all the interaction CURRENT MODELS OF INTERMOLECULAR
terms from EQ.(10) to get the[J(q)] matrix. The self- POTENTIALS

consistent equationd4) are solved to derive the mean-field

energyEyr(wi) [Egs.(12) and(13)] and ther[U?]. Calcu- A. Mean-field temperature scales

lations are performed for the first-neighbor interaction terms  The previous mean-field approach predicts a second order
belonging toall representations up tb=12, that is, for phase transition when the susceptibility(q)] diverges,

59X 59 matrices. whereas theFm3m—Pa3 phase transition occurring at

To end this section, let us discuss the different levels 0&02260 K is in fact a first order one. This approximation
approximation which can be considered when evaluating i give valuable results concerning the fluctuations in the
[Eq. (22)], especially with respect to the multipole expan- high 'temperature phase if the temperature at which calcula-
sion. The radial component of the diffuse scattering intensityjons are performed is sufficiently far above the second order
is given by the spherical Bessel function$QR) weighted (calculated transition temperaturd s, so that the fluctua-
by the molecular form factorg,. These are the only con- {iong extend over the same distances as observedl A).
tributing terms for isotropic and uncorrelated molecular ro-gq, this reason. and because we use a mean-field approxima-
tations. In that case, E¢22) reduces to tion (see below, the absolute temperatures are unphysical.

w Hence, for simplicity, the lattice expansion with temperature
| o f2 i (OR))2. 23 is not taken into account: all calculations are performed us-
o(Q) CIZEG @1(QR) 23 ing the room temperature lattice parameter.
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TABLE Il. Second order transition temperatures and temperatures at which diffuse scattering calculations
are performed for the different models of intermolecular potentials.

Model Second order transition temperature Calculation temperature
vdW 140 K<T.<150 K 300 K
SCK1 130 K<T.<140 K 300 K
SCK2 320 k<T.<330 K 500 K
LLM 610 K<T.<620 K 800 K
LM 320 K<T.<330 K 500 K
PC 1140 K<T.<1150 K 1600 K

To evaluate the transition temperature for each model of point scatterings are clearly observed, together with the
interactions(Table ), we solved the mean-field equations ** H-shaped” extra scatteringcompare with Fig. L Similar
(14) at different temperature§, and then studied the observations were made for the SCK1 model, as shown in
susceptibility—Eq.(20)—eigenvalues: if they are all posi- Ref. 22 also. Actually this is the case for all models in Table
tive, T>T., and when an eigenvalue becomes negativey, including those with additional electrostatic charges, as is
T<T,; the second order phase transition corresponds to @ustrated in the linear scans within the plartes k=9 and
divergence of an eigenvalue of the susceptibility. The secong k=11, in Figs. 4a) and 4b). Moreover, all models pro-
order transition temperatures determined for the_vdW, SCK1yyce diffuse maxima dt points. The (8,0,0]" position is a
SCK2, LLM, LM, and PC models are reported in Table Il. yig,qe scattering maximum for the vdW, LLM, LM, and PC

As usual the transition temperatures calculated within 3nodels: this is evidenced in Fig(d}. It corresponds to a
mean-field theory are overestimated, because not all fluctu 'inimu;‘n for the SCK1 and SCkZ.modeIs but this is an

tions are taken into account. For instance, the mean'ﬁe'accidental depletion: diffuse scattering patterns calculated for

second order transition temperatures dig=135 K and . .
T.~1145 K for the SCK1 and PC models, and mean-fielgin® SCK models generally presefitpoint maxima. Thus,

first order transition temperatures—which could be obtainec§he emstgnce of a complex @ffusg scatts—:-rmg 160 Cwith
developing the free energy up to fourth order terms—arg<L.I" pointand extra scatterings, is predicted by all models
even higher, whereas molecular dynamic calculatibhs of mtermolgcular mteracpons in Table(s.tee also Refs. 7,22,
give transition temperatures of about 110 K and lower tharf"d 23. This can be attributed to the high symmetry and the
900 K, respectively. The mean-field second order transitiofumerous atoms of the g molecule which create competing
temperatures are reference values for the diffuse scatteririjetransitional fluctuations, as further developed in Sec.
calculations, which must be done sufficiently far above. ToVIA. _ .
determine the calculation temperature for each model, we Examination of Figs. @-4(c) shows that the diffuse
calculated the diffuse scattering at different temperature§Catterin95 calculated for the various models of interactions
above the transition, and then selected the most appropriafffer by the relative intensities of the,L,I" point and extra
temperature through a comparison with the experimenta$catterings. Comparing with the observed intensities we find
data; the calculation temperatures chosen for each model af@at, depending on the region of reciprocal space considered,
reported in Table II. This is illustrated for the LM model by OPpOsite conclusions can be reached. For instance, the inten-
Figs. 3a and 3b), where the diffuse scattering planes Sity calculated for the SCK1 model is the best in Figa)4
h+k=9 calculated at 500 K and 350 K are reported: com-Put it is the worst in Figs. é) and 4c). Similarly, the inten-
parison with experiment in Fig.(4) shows thaff=350 K is Sty c;alcglated for the vdw modgl f|t§ correctly the measured
much too close to the transition temperatgseme diffuse  One in Fig. 4c), but is the worst in Fig. @). The PC model,
features are too sharp which accounted fairly well for the diffuse scattering in a
particular regior!, fails to reproduce its distribution in other
regions of reciprocal space, as is evidenced in Fg), 4or
instance. These results prove that it is necessary to analyze
We now present calculations of the diffuse scattering forthe diffuse scattering in extended regions of reciprocal
the vdw, SCK1, SCK2, LLM, PC, and LM models for the space?? Accordingly, one finds that the model for which the
temperatures indicated in Table II. Our earlier results for thediffuse scattering distribution is best simulated is the LM
vdW or the SCK1 models have already been presented imodel. Indeed, it is the only one for which the experiments
Ref. 22. Diffuse scattering calculations within a mean-fieldare at least correctly reproduced in Fig&)44(b), and 4c)
theory are also performed by Michel and Copley, for aaltogethefcompare also Figs.(8 and 3c) with Figs. 1a)
slightly modified LM modef*® which leads to results similar and Xb)]. The results of the diffuse scattering calculations

B. Diffuse scattering calculations

to those of Fig. &). for the LM model are discussed in more details in Secs. VI B
The calculated diffuse scattering planbs-k=9 and and VIC.
h+k=11 are displayed in Figs.(8& and 3c), for the LM It is worth pointing out that the description of the diffuse

model. They were presented in Figs. 1 afld)2n Ref. 22 for ~ scattering intensity distribution in terms &L,I" and extra

the vdW model. These models correspond, respectively, tecatterings should be taken with caution because other types
the most elaborated and to the simplest distributions of vawof analyses may be equally or even more appropriate. For

der Waals—type interaction centers. In both casesXtaed instance some diffuse streaks can be identified in the
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FIG. 4. Calculated intensitie@ip to a model dependent multi-
plication factor: 124 for vdW,; 140 for SCK1, SCK2, and LLM; 130
FIG. 3. Calculated x-ray diffuse scattering patterns for the LMfor PC; and 125 for LM: (a) from (4.5,4.5,5.5t0 (8.5,0.5,1.5, in
model:(a) planeh+k=9, T=500 K, (b) planeh+k=9, T=350 K, the planeh+k=9, (b) from (5.5,5.5,0 to (5.5,5.5,4, in the plane
and(c) planeh+k=11, T=500 K. Large diffuse intensities corre- h+k=11,(c) in the[8k,0] direction. The observed intensitiésig.

spond to dark areas. 2) are shown for comparison.
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[1,—1,=1] and[0,0,]] directions in Figs. (a) and Xb). The (1/2,1/2,1/2)
existence of diffuse streaks is also supported by the calcula- {0,0,0) (1,0,0) (1,1,0) (0,0,0)Q
tions as shown in Fig.(®) for the LM model, close to the ‘ : ' ‘ 1
mean-field  transition temperature, where  narrow § (T1g’T_29) §

~d
T

[1,—1,+1] and[0,0,1] streaks are visible. Hence, the dif-
fuse scattering in &, is possibly even more complicated
than described previously in Ref. 6. It may combine 3D cor-
relations, producing th¥, L, andI" scatterings, 2D correla-
tions, in relation with the line scattering, and 1D correlations,
possibly related to théd-shaped scattering, located in the
h+k=11 plane. Complementary simulations to those pre-
sented here, namely, molecular dynamics or Monte Carlo
ones, which give access to the arrangements of mole€ules,
could be very helpful to clarify this point.

(o]

[&)]

VI. DISCUSSION

A. Existence of competing instabilities

Susceptibility eigenvalues (10°K™")

Within the formalism of the symmetry-adapted functions
used in this paper, all physical quantities—pair correlation 3
functions, interaction, or susceptibility matrices—are devel-
oped over angular momenitaand irreducible representations

r of the space group Fm3m (1=0,6,10,12;

correlation function—considered as dominant in previous
studie$”?8—do not allow one to reproduce correctly the dif-
fuse scattering, and the same is true if only some of the 59
rotators are taken into accoumte checked this, for instance,
for all the T,4 ones. Note, however, that the eigenvectors of
the susceptibility associated with its highest eigenvalues con-
tribute more(especially if they have strong=10 compo-
nents, sincd =10 terms are reinforced in the expression of
the diffuse intensity by the molecular form factgy).
Eigenvalues of the susceptibiliyy(q)] are plotted in
Fig. 5, for the vdW and LM models, along some particular
reciprocal space directions. MaximaXgtL, andI” points are
evidenced, which explain the corresponding diffuse scatter-
ing maxima. The related eigenvectors present definite sym-
metries. For instance, the eigenvectors associated with the ‘
highest eigenvalues at poit have onlyT (T4 and T,g) b T X X r t
components, for both the vdW and LM models. A second g, 5. upper part of the eigenvalue spectrum of the suscepti-
order transition associated with the divergence of these eb;jity [y(q)] along some reciprocal space directiota) for the
genvalues would lead to a low temperature phase, the symyyw model, atT=300 K: (b) for the LM model, atT=500 K.
metry of which is related to the eigenvector symmetry; thejrreducible representations associated with some eigenvectors are
Pa3 phase is related to the divergence of Therepresenta- indicated, to illustrate the existence of competing instabilities.
tion at pointX.*® The part of theX point diffuse scattering
coming from these eigenvectors can thus be associated widround T, has been observed recently, which may corre-
pretransitional fluctuations of the low temperatuRa3 spond to an intermediate ordered phase betweeif thém
phase. Similar reasonings apply to all eigenvalues and eigeand Pa3 ones®® this would corroborate our interpretation of
vectors of the susceptibility. Consequently, ielL, andI”  the diffuse scattering results in terms of competing fluctua-
point diffuse scattering can be associated with pretransitionalons.
fluctuations relative to competing phases, only one being sta- The existence of several competing instabilities igyC
bilized belowTy=260 K: thePa3 phase. The same conclu- stems from the high symmetry of this large molecule, com-
sion can be reached for the SCK, LLM, and PC models, fobined with van der Waals or electrostatic interactions, only a
which the susceptibility eigenvalues also present maxima dtnction of the distances between interaction centers. This
points X, L, andI". A splitting of the heat-capacity anomaly produces various relative orientational configurations be-

7=A14,A29,Eq.T14.T2g). The diffuse intensity is ex- (1/2,1/2,1/2)
pressed in terms of rotator pair correlation functions, propor- (0,0,0) (1,00  (1.19) (0,00
tional to the mean-field susceptibility componefEsgs. (6) D (TygTay '

and (21)]. All the 59x 59 pair correlation, of x(q)], com- /
ponents contribute to the diffuse intensity. Indeed, in Ref. 6, 4 72 S N S
we showed that calculations restricted to T ,1 = 10 pair fi~—"

e
Lenrageatt

w

Susceptibility eigenvalues (10* K
\]
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500 : : : : : , 2. High temperature mean-field energy
The orientational mean-field energy can be determined
directly from Bragg peak intensity analysis, which gives ac-
cess to single molecule properties. Equatibnallows one
@ 40T to obtain the mean values of tig, rotators from the Bragg
€ peak intensities. This was done by Schiebehl,?® Chow
> etal,® and David etal,®® for single crystd®! and
= powder? samples, using x-rags® or neutrong®*2One can
g %) then determine the orientational density distributién:
z - 21+1
g o vawaok ] oA flw=2 > 2= (Ule)Ui(e), (25
E 200 O SCK1-300K =0 7=(Ajgu) OT
- A LM-500K \ . .
........ vdW (U2 only) and thus the single-molecule mean-field energy, up to a con-
-------- SCK1 (U2 only) k stant term?®
—— LM ([U?] only)
100 - ; . . s ‘ . Evr(w)=—KkTIn(f(w)). (26)
(4.5+8,4.5-8,5.5-5) The mean-field energies deduced from Refs. 29,31 and 32

are reported in Fig. (8), for the rotation of the molecule
FIG. 6. Calculated diffuse intensity from{4.5,4.55.5 to  about one of its sixfold axes in coincidence with a crystal
(8.5,0.5,1.5, in the planeh+k=9, for the vdW, SCK1, and LM threefold axis(the constant terms are arbitrarily chosen so
models. Calculations are made with and withot/{] only) the  that the absolute minima of the mean-field energies in Fig. 7
[J(q)] contribution. are zerg. The mean-field energies present two minima, a
primary one for the molecule with pentagons directed to-
tween neighboring molecules with nearly degenerate enefyards nearest neighbofisentagon orientatiorand a second-
gies. The fluctuations associated with these different conary one for hexagons towards nearest neightihexagon
figurations contribute to the complexity of the diffuse orientation; note that in the high temperature phase the pen-
scattering. tagons and hexagons do not necessarily face the nearest-
neighbor double bonds. The minima or barrier height values
B. Role of the[U?] and [J(g)] terms differ only slightly for Chowet al. or Schiebelet al., but a
little more for Davidet al. This may be due to the fact that
powder experiments are less accurate than single crystal
In Sec. 1V, the diffuse scattering intensity is expressed asnes, and/or to different temperatures for the experiments
a function of quantities directly related to the intermolecular(room temperature for Chow and Schiebel, but 270 K for
interactions: thg U2] and[J(q)] matrices. These have in David). However, the results are in rather good agreement.
fact somewhat distinct contributions to the diffuse Note also that the mean-field energy results confirm the va-
intensity3® Schematically, th¢U?] term—related to the av- lidity of restricting the calculations to multipoléss 12, as is
erage orientation obne molecule — gives slowly varying shown in Fig. 7b): thel =12 terms are indeed needed for the
modulations of the diffuse halo, extending over several BZsprimary and secondary minima to be reprodut&dhile the
while the [J(q)] term — related to correlationbetween |=16 and 18 ones only induce relatively minor changes
molecules—gives more rapid variations of the diffuse scatcomparable to the scattering of the experimental results of
tering inside each BZ? If [J(q)] is set to zero, i.e., with Fig. 7(a). Using the above experimental mean-field energies
[U?] only, the diffuse intensity varies slowly in reciprocal obtained from certain studié&**>we have calculated the
space; introducingJ(q)] results in “rapid” modulations of [U?] matrices. The corresponding slowly varying scattering
this slowly varying scattering, as illustrated in Fig. 6. (multiplied by a scaling factor of 125) is drawn in Figs.
For the vdW model, the calculated diffuse intensity is2(a)—2(c) for the neutrongIl) result$® (very similar results
much too weak at the top of the plahe- k=9 [left parts of are obtained from all the studjesA comparison with the
the scans in Figs.(4) or 6], while for the SCK1 model, itis observed diffuse scattering reveals that the slowly varying—
much too weak at the center of the pldifég. 3b) in Ref.  or [U?]— component extracted from Bragg peak analyses
22]. Note in Fig. 6 and in Ref. 22 in Fig.(B) that these provides a fairly good “background” for the diffuse scatter-
discrepancies are already present in the slowly varyindng intensity, further modulated, at the BZ scale, by the
part—{ U?] component—of the scattering. Note also that the[ J(q)] intermolecular correlations.
LM model yields the most convenierftJ?] component, We now turn to the mean-field energies calculated by
when the comparison with the observed diffuse scattering isolving the mean-field equations for the different models of
performed in extended regions of reciprocal space, as motintermolecular interactiongFig. 8@)]. They are normalized
vated in Sec. V B. This is a reason why the LM model is thewith respect to temperature since the physical quantity of
most satisfactory. Hence, an adequpté] matrix appears interest isE\:/T [see, e.g., Eq14)]. Most of the calculated
as a prerequisite to simulate the diffuse scattering jg.C mean-field energies are inconsistent with the experimentally
The [U?] terms corresponding to single molecule rotatorsdetermined ones. For the vdW, LLM, and PC models, the
averaged over the orientational mean-field engkgys.(18) primary and secondary minima are the hexagon and penta-
and(14)], the prerequisite concerns in fact the orientationalgon orientations, respectively, instead of the pentagon and
mean-field energy. hexagon orientations. For the SCK models, theand H

1. Slow and rapid diffuse scattering modulations
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FIG. 7. (a) Mean-field energy normalized to the temperature as
a function of the rotation angle about a threefold crystal axis, a FIG. 8. (&) Mean-field energies normalized to the temperatures
molecular sixfold axis being aligned with this threefold crystal axis; Of calculations(Table 1)) as a function of the rotation angle about a
from Eqgs. (25 and (26), for <12, and from the results of the threefold crystal axis, a sixfold molecular axis being aligned with
crystallographic studies of Schietet| al. (Ref. 29 [three studies on  this threefold crystal axis. They are calculated for all models in
three single crystals: neutrofi§, neutrons(ll), and x-ray$ Chow  Table I, and forl<12 [Eq. (12)]. (b) Mean-field and crystal-field
et al. (Ref. 3] (one single crystal, x-raysand Davidet al. (Ref. ~ energies for the LM model, at 350 K and 500 K, fex12[Eq.(12)
32) (powder sample, neutronsTemperatures were, respectively, and(27)].
295 K, 300 K, and 270 K(b) Mean-field energy for neutronl)
results, forl<10,1<12, andI<18. not as goodthe barrier height is too smalfor T=500 K,

ientati ima instead of mini A dinaly. f which is on the other hand a more convenient temperature
orientations aré maxima instéad of minima. Accoraingly, 1org, simulating the diffuse scattering, as indicated in Sec.
the above models, the slowly varying part of the diffuse scats

tering does not present the right variations, as already shown
in Sec. VI B 1 for the vdW and SCK1 moddlBig. 6, and, in
Ref. 22, Fig. 8v)]. The only model which correctly predicts
the true primary and secondary energy minima is the LM
model, and correspondingly it is the one for which the slowly
varying part of the diffuse scattering is the most adequat
[compare Figs. 6 and(®]. Actually, the LM model was
worked out in order to fit the experimental Bragg peak
datal*1>28 However, note that the LM model provides a N A1t
. . . EcH i) 2 € cE
satisfactory mean-field energy using a temperature of 350 K 156,
[Fig. 8(b)], close to that of Refs. 14 and 15, while the agree-
ment with the “experimental” energy shown in Fig(&f is  with

Let us now discuss the mean-field versus crystal-field ap-
proximations. The crystal-field energy is obtained by making

a cruder approximation than for the mean-field one: all

neighboring molecules are considered as spherical, which
means that only their zero angular momentum is taken into
Gccount. Equation&l2) and(13) become

U™ (ay), (27)



2662 PASCALE LAUNOIS, SYLVAIN RAVY, AND ROGER MORET 55

3 . — — fuse scattering(i) the transition temperature is changed, and
------- SCK2 (500K) ; thus the calculation temperature and the relative weights of
'''''''' ffl\ll(l1(8(§gigl)( ) P the [UZ]_. and[J(q)_] matriqes in t_hg susceptibility, for in-
vaW (800K) AN stance{ii) the matrix[ J(q) ] is modified, now including also

. igf‘n?g'f;rge (600K ‘;‘ ] electrostatic  interactions. Nonetheless, introducifign-

! overlapping electrostatic charges cannot significantly
modify the slowly varying part of the diffuse scattering—the
[U?] component—which strengthens the previous argument
in Sec. VI B 1 that a correct mean-field energy is mandatory.

C. Remarks on possible improvements of the models
of interactions

As discussed above, the LM modt® fits the best ex-
perimental diffuse scattering in the plastic phdse3m.
o L - This is because it has been elaborated on the criterion of the
0 8% 60 9 120 150 180 mean-field energy, i.e., of correch;;—A;, interaction
Rotation angle about 3-fold axis terms, but it does not insure that other interaction terms, in
the[ J] matrix, are adequate. Comparison of the diffuse scat-
FIG. 9. Mean-field energies normalized to temperatures, as gering data and of its slowly varying pafexperimental
function of the rotation angle about a threefold crystal axis, a six-[Uz] term) in Fig. 2@ shows that the contribution of the
fold molecular axis being aligned with this threefold crystal axis. J(q)] terms must be large in the upp@nd lowey parts of
These e_nergies are calculated for all models with electrostgti e planeh+ k=09 [left side of Fig. 2a)]. It appears that this
charges n Table |, LLM, SCK2, and PC, and for the ?OrreSpond'ngcontribution is not sufficiently pronounced for the LM model
models without charges, at theisame temperatures: Vw800 [see Figs. @) and 6. It may indicate that the LM model
K), SCK1 (T=500 K), and PC without chargesT €1600 K. does not fully account for the intermolecular interactions in

Mean-field energy / Temperature (+constant)

eflcgg‘=12>< JﬁfgfdAlg(iaj) (28) 6?:urther improvements of the models could be obtained
. . sing the Gg low temperature properties which should also
.(J refgrs to any of the' twelve nearest-neighbor molecules o e reproduced satisfactorily. The properties we consider here
I the interaction matrix iermAlg—Alg_ are the same for all . are the following(see, e.g., Ref. 3 and references therdin
of them. Lamoen and Michel used this crystal-field approxi- the low temperature energy presents nearly degenerate
mation to refine their model of potential, but suggested that iininima in theP andH configurations, the lower for the
would be interesting to perform the mean-field calculations onfiguration, energy differences bei,ngll meV: (i) the
solving the self-consistent equations, i.e., taking into accourEarrier heighi between them is of about 250 m’eV but can
the nonspherical components of the molecular denSityreach 500 meV for a threefold axis rotation depeifiding on
Mean-field _and _crystal-field er_lergies for the_LM model are,, vich assumptions are made from the experimental data
e e oo o e ek 250 meV bt maly corespond o & ofold s roton
. i S ' lii ) the absolute values of energy minima should be of about
tions of the crys_tal—field energies: the mean-field and_crystal-_1 7 eV (cohesive enerdy). These energies wef@at least
Tcli?eldszr;neggy main characteristics and orders of magnitude ar[gartly) determined from single molecule reorientation analy-

' ses, and thus should be tested using the potential energy of a
single rotating molecule. However, tlie andH configura-
tions being both present in tHea3 phase, there can be vari-

The influence of adding electrostatic interactions to apys molecular environments. Still, the potential energy
given model can be understood from the previous discussioghould not strongly depend on them, at least for poiits
For charge densities which do not overlap between neighboing (jii ), because of the near degeneracy betweerPtaed
ing molecules—this is the case in all models of Table I—they configurations. Figure 10 shows the potential energy, in
crystal-field energy is unchanged, due to the global neutralityye p a3 phase, of a molecule rotating about its local three-
of the mol_eculé > [the I”=0 form factor relative to the 44 axis with its twelve neighbors iR orientations. None of
electrostatic charge distribution being zero, the electrostalifhe models of interactions in Table | satisfies the three above
3,194,719 terms are null in Eq(28)]. The mean-field energy, criteria (see also Refs. 3,12,19,24 and 41)-4Bable Il
which is rather similar to the crystal-field one, does notshows thati) energy differences betwedhandH configu-
change much when adding charges. This is shown in Fig. gations are too importantji) the barrier height is too small
for the SCK2, LLM, and PC models and for the correspond-for the vdW and SCK models, ar(di ) the absolute value of
ing models with zero charges. For the sake of simplicity, weenergy minimum is too small for the LM model.
have not discussed the charge model of Burgpal® be- Our calculations of the high temperature diffuse scatter-
cause its crystal-field energy is inconsistent with the oneéng, together with the supplementary low temperature con-
determined experimentall§or instance, its primary and sec- straints, clearly show that the physical or chemical argu-
ondary minima are the hexagon and pentagon orientationspents (representation of multiple bonds by analogy with
respectively. Adding electrostatic charges modifies the dif- solid nitrogent! explicit differentiation betweernr and

3. Role of electrostatic charges
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00— Y electrostatic interactions, with respect to the diffuse scatter-
I SCK1 ing (the mean-field energy will now depend on electrostatic
e 1 SCK2 interactions, arguments in Sec. VI B 3 applying only to non-
04| — ELCM overlapping chargesthe role of van der Waals—type and
— M electrostatic interactions is more equilibrated. Test of the
061 \_/ model of Savin, Harris, and Yildirim, based on diffuse scat-
o8l tering analyses, appears as highly desirable and will thus be
"hexa" ., “penta” the subject of forthcoming investigations.

1.4

Low-temperature potential energy (eV)

40P
4.2}

Rotation angle of one molecule / 3-fold axis

VIl. CONCLUSION

In this paper, a detailed analysis of room temperature

iy D e single crystal x-ray diffuse scattering data was presented.
A6 o, f\\ s N e Diffuse scattering calculations were performed starting from
P I A 7 microscopic models of intermolecular interactidfist?>
181 e Mt using a mean-field theory and the formalism of the
2.0 . A ‘ ‘ symmetry-adapted functions. The preliminary analysis pre-
0 30 60 90 120 sented in Ref. 22 for the vdW and SCK1 mod&/K has

been extended to most of the current models of interactions.

(other molecules in "penta” configuration) This provides an overview of their relative worths with re-

_ _ gard to the diffuse scattering. We have shown that the analy-
FIG. 10. Energy in the low temperature pha2a3, for all the  sjs of the diffuse scattering is a good probe for the intermo-
models in Table I; calculations are performed for domaifollow- lecular interactions in @ (which should of course be

ing the notation of Ref. 40 and they are restricted to nearestrgmpined with tests on the other available structural, dy-
neighbor interactions; a central molecule is rotated about its Iocaﬁamical and energetical properties

threefold axis, its twelve neighbors beingfhorientations. Our main results are the following:

(i) A prerequisite for any model to correctly fit the diffuse
bondingst**°tetrahedron bondinY, etc) used to build mod-  scattering is to give the right mean-field energy. If not, ad-
els for the interactions are still partly inadequate. Some adéitional electrostatic charges will not allow one to improve
ditional ingredients are needed, which could come fraim sufficiently the calculated diffuse scatteriignless signifi-
initio  calculations of the electronic structure of the cant overlap is consider&b.
molecule?® Such calculations were done by Yildirim, Harris, (i) All models of interactions account for the basic fea-
Erwin, and Pedersol. At first,'® they neglected the charge tures of the diffuse scatteringd(L,I" point plus extra scat-
density overlap between neighboring molecules, which leadterings. But none of them, even the best one with regard to
to small Coulomb interactions betweengfmolecules, diffuse scattering—the LM mode—is fully adequate when
smaller than in Refs. 11 and 12, for instance. This resultomparison with experimental data is made over large re-
motivated Lamoen and Michel to work mainly on improving gions in reciprocal space.
the description of the van der Waals—like interactiths. (iii) The very complex diffuse scattering inggis due to
However, Yildirim®** extended the calculations in Ref. 19 and the existence of pretransitional competing fluctuations. This
found that the small overlapping between charge densities a§ related to the fact that the gg molecule is a large and
neighboring molecules is not negligible. On this basis, Savinhighly symmetrical molecule.

Harris, and Yildirint* have very recently elaborated a model  The need for more physical and/or chemical constraints to
of potential which, considering the preceding discussionsinderstand these interactions is emphasized. In this respect, a
about low temperature properties, looks very promising. Therery recent modet? based on electrostatic charge distribu-
charge overlaps should ensure a more important role to thgon determined fromab initio calculations'® is promising.

TABLE Ill. Low temperature energy characteristics from experiméatsRefs. 3 and 24 for instange
and for the different models of intermolecular interactions of Table I. The calculated values are obtained for
a single molecule rotating about its local threefold axis, with all its neighboBs dmientation(cf. Fig. 10;
note that theH orientation is not a true minimum for the SCK1 maodel

Energy difference Barrier height Energy minimum

betweenP andH from P to H

orientations(meV) orientation(eV) (eV)
Experiments —-11 0.25-0.5 -1.7
vdw +34 ~0.09 ~—=1.7
SCK1 -53 ~0.08 ~—-1.5
SCK2 -87 ~0.15 ~—-1.9
LLM -120 ~0.42 ~-1.9
LM —66 ~0.28 ~—-0.7
PC -123 ~0.48 ~—-1.4
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