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Average state estimation in presence of outliers

Ujjwal Pratap∗, Carlos Canudas-de-Wit† and Federica Garin∗

Abstract— This paper addresses the problem of estimation
of the average state of an LTI network system where measure-
ments of only some of the states are available. We consider the
case where there is an outlier among the unmeasured states,
which is so different from the remaining states that it affects the
average value significantly. The goal of this paper is to detect
the outlier and to estimate the average of the unmeasured states
excluding the outlier.

I. INTRODUCTION

In recent years, there has been a lot of interest in the
problem of estimation in network control systems due to
its vast area of application such as power networks, com-
munication networks, and traffic networks to name a few.
In particular, in some networks, measurement of every state
is not possible or the measurements of some sensors are
unavailable. In such cases, measurements from dedicated
sensors placed at some position in the network are used to
estimate the remaining fraction of states or some function
of those states. For instance, [1] investigates the possibility
of estimating the average of the unmeasured nodes in the
network. In [2] and [3], authors propose designs of average
state observers. This approach is very beneficial in terms of
reducing complexity. However, there might be an outlier in
the unmeasured part which could be an error or an anomaly
under some special circumstances. So, in presence of these
outliers, the estimated average value obtained from these
estimation techniques may not be the value one is interested
in. Instead, one might look for an average value which
excludes the outlier. For example, in a power distribution
network, one might be interested in estimating the average
household consumption of an area using measurements from
sensors deployed at some dedicated position only. But in
case, there is an “industry” or a “research facility” in the
area, which is the major consumer, and its consumption
is not measured directly, then one might not be able to
get the desired value through average estimation since the
“power consumption of the industry” can affect the estimated
average household consumption significantly. Therefore, it
is natural to ask some questions: what if there is an outlier
in the unmeasured section of the network? How to apply
an estimation technique such that it filters the outlier and
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Fig. 1. Scenario considered in the paper and an outline of the proposed
method.

identifies it simultaneously? How to estimate the desired
function without the effect of such outliers?

Outlier analysis and detection is a very well studied
problem in statistics. Some of the classical works are [4],
[5]. The former defines the outlier as an observation which
deviates so much from the other observations as to arouse
suspicions that it was generated by a different mechanism
and the latter proposes different regression based detection
methods. Since then, research in this field has flourished and
some of the recent works include [6], [7], [8], [9] which
propose different detection methods such as detection by
active learning, k-nearest neighbour method, depth-based and
distance-based methods. However, the techniques used for
outlier detection in this literature cannot be applied in our
case because they consider only static data and also all the
measurements are available to them. On the other hand,
we have a dynamical system changing over time and have
limited measurements.
In dynamical systems also, there have been works such as
[10], [11], [12] which focus on outlier detection in sensor
networks. In these cases, the outlier is assumed to be present
in the measurements received from the sensors only. In
particular, [12] proposes a robust Kalman filter to detect and
exclude the outlier from the sensor measurements which is
somehow similar to our goal. However, the main difference
is that in our case the outlier is in the system itself, and
is an unmeasured state which is so different from the other
states that it affects their average significantly. Our goal is
to estimate the average of the unmeasured states and detect
the outlier simultaneously.

The scenario considered in this paper considers a con-
tinuous LTI system with dedicated sensors at some nodes
with an outlier state corresponding to an unmeasured node.



We propose a method to detect the outlier and estimate
the average excluding it simultaneously. As illustrated in
Figure 1, our approach is to run a bank of observers and
then compare the estimates so obtained in order to detect
the outlier. For this, at first, we provide a necessary and
sufficient condition under which a bank of scalar and a
tunable observer can be designed so as to estimate the
average of the unmeasured states excluding an element at
every possible position. Then, we define a distance-based
dissimilarity criterion to differentiate between the average
estimates so obtained. Finally, using a simple optimization
we detect the outlier and obtain the average estimate exclud-
ing it.

II. PROBLEM FORMULATION

Consider a network represented by a weighted directed
graph (G) = (V, E), where V = {1, 2, 3 . . . n} denotes the
set of the nodes and E ⊆ V×V denotes the set of edges. We
follow the convention that the edge (i, j) ∈ E is represented
as i ← j, since this edge will correspond to the influence
of state xj on the dynamics of state xi. Let A = [aij ] be
the associated weighted adjacency matrix, where aij is the
weight of the edge (i, j) ∈ E .

The dynamics of the network is described by{
ẋ = Ax+Bu

y = Cx.
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rn1 are the state vector, the
input vector and the output vector respectively. The system
matrices are A ∈ Rn×n, B ∈ Rn×m and C ∈ Rn1×n. We
assume to have bounded state trajectories.

We assume to have dedicated sensor measurements at n1
nodes, i.e., the output y contains the values of n1 states.
Without loss of generality, we order the states starting with
the measured ones, so that we have the state partition x(t) =
[xT1 (t), x

T
2 (t)]

T , where the vector y = x1(t) ∈ Rn1 contains
the measured states and x2(t) ∈ Rn2 contains the unmea-
sured states. Denoting by Is ∈ Rs×s the identity matrix of
size s, the block structure of the matrices corresponding to
the above-mentioned partition is

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
and C =

[
In1 0

]
. (2)

With this partition, the system can be rewritten as
ẋ1 = A11x1 +A12x2 +B1u

ẋ2 = A21x1 +A22x2 +B2u

y = x1.

(3)

Having given the system description, we define the outlier
in consideration as follows.

Definition 1. A state is called an outlier if its value differs
from all the other states by such a large value that their
average value changes significantly.

In the next subsection we present an example to motivate
the reader towards the problem. This example shows how
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Fig. 2. A network system with an outlier at node 7. The nodes in
green circles are the measured nodes and the nodes in red squares are the
unmeasured nodes with the outlier in a darker red shade.

an outlier affects the average value. The same example has
been used in subsequent sections to illustrate the proposed
outlier detection method.

A. Motivating Example

Example 1. Consider the network depicted in Figure 2. The
dynamics of the network is described as in (1). The input is
given by u(t) = 0.2∗sin(0.1t), and the corresponding system
matrices A,B,C according to the partition in (2) are

A11 =
−3.253 0.9843 0.8439 0 0 0
0.6147 −3.332 0 0 0 0

0 0 −3.525 0.4813 0 0
0 0 0.2488 −3.05 0 0
0 0 0 0.1325 −1.689 0
0 0.5427 0 0 0.8452 −2.178



A12 =


0.345 0.345 0.345 0
0 0 0.7607 0.7607
0 0.22 0 0

0.2288 0 0 0.2288
0.1647 0.1647 0 0

0 0.3452 0 0

 ,

A21 =


0 0 0 0 0 0.020844
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

A22 =


−0.02784 0 0 0
0.0234 −1.4 0 0

0 0.639 −1.159 0
0 0 0.3983 −1.999

 ,
B =

[
1 1 1 1 1 1 1 1 1 1

]T
and

C =
[
I6 0

]
.

Here, in this example, we have a network of n = 10 nodes
depicted in Figure 2. The sensor measurements are obtained
from the nodes {1, . . . , 6} denoted by the circle nodes and
the nodes {7, . . . , 10} are the unmeasured nodes denoted by
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Fig. 3. State trajectories of the network in Figure 1 in response to u(t) =
0.2∗sin(0.1t). Here, it can be seen that the outlier state (in red) is behaving
very differently than the other states.

the square nodes. Here, n1 = 6 and n2 = 4. We have an
outlier at node 7 pointed as the shaded node. It can be seen
in Figure 4, where the averages of the unmeasured nodes
with and without the outlier have been computed, that there
is a significant difference in the average value because of the
outlier. Hence, we must find ways to estimate the average in
such a way that it excludes the outlier.

B. Problem statement

Consider a network with the dynamics as (1) with the
assumption that there exists an outlier in the unmeasured part
of the system. Using only the measurements y(t) = x1(t),
how is it possible to construct the average of the unmeasured
states x2(t) without the outlier if its position may or may
not be known? In addition, is it possible to construct a
scalar observer to estimate such an average with arbitrary
rate of convergence? Moreover, if the position of the outlier
is unknown, how is it possible to detect it and compute the
average excluding it simultaneously?

III. OUTLIER AT A KNOWN POSITION

In this section, we consider the case when the position
of the existing outlier is known. We define jo as the true
position of the outlier in the set of unmeasured nodes. In the
network, the position jo refers to the node n1 + jo. At first,
we recall the necessary and sufficient condition to design a
scalar and tunable observer to estimate the average of all
but one element j in the set of unmeasured nodes. Then,
we provide an explicit construction of the observer. Such
observer is then used in this section with j = jo (jo being
known), and will also be reused in the next section for all j,
when the position jo is to be found. In the end we illustrate
the estimation using Example 1.

Let cj ∈ Rn2 , be a vector of all ones but zero at the j−th
position. Let us define qj = 1

n2−1cj , so that the average state
of the unmeasured nodes excluding the element at the j−th
position be denoted as

xav
2,j(t) = qTj x2, (4)
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Fig. 4. Trajectories of the average of the unmeasured states with and
without the outlier, demonstrating the effect of an outlier on the average.

where x2 is the vector of unmeasured states. Again, the node
in j−th position among unmeasured nodes is the node (n1+
j).

To reconstruct the average xav
2,j(t), we consider a scalar

observer, namely a system of the form{
ẇj(t) = −αwj(t) + hTj y(t) + gTj u(t)

x̂av
2,j(t) = wj(t) + `Tj y(t).

(5)

where wj(t) ∈ R is the state of the observer, while α ∈ R,
`j , hj ∈ Rn1 and gj ∈ Rm will be suitably designed. Let
ej(t) = xav

2,j(t) − x̂av
2,j(t) be the estimation error. We say

that (5) is an observer if the parameters α, hj , gj and `j can
be chosen such that ej(t) → 0 as t → ∞. Moreover,
we are interested in designing an observer with an arbitrary
rate namely that the error ej(t) → 0 as t → ∞ with a
desired rate of convergence. The condition under which this
is possible is studied in [3].

Theorem 1. [3, Theorem IV.1] A scalar and tunable ob-
server of the form (5) to estimate xav

2,j(t) for a given j exists
if and only if

rank

 A12

qTj A22

qTj

 = rank[A12]. (6)

Proof. For proof see [3].

Now, assuming that the condition (6) holds, we give the
explicit design of the observer:

Choose an arbitrary α > 0 ∈ R and compute the
parameters `Tj , gTj and hTj as

`Tj = qTj (A22 + αIn2
)A†12, (7a)

gTj = qTj B2 − `Tj B1, (7b)

hTj = qTj A21 − `Tj (αIn1 +A11), (7c)

where A†12 is the Moore-Penrose pseudo-inverse of A12.

Now, we show that with above choice of the parameters,
the observer (5) has the error dynamics ėj(t) = −αej . For
that, let us consider the error dynamics ėj(t). From (3), (4)
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Fig. 5. For the network system in Example 1, where the outlier is node
7 (i.e., jo = 1): estimated (x̂av
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and (5) , we have

ėj(t) = −αej(t) + (−α`Tj + qTj A21 − `Tj A11 − hTj )x1(t)
+(qTj A22 − `Tj A12 + αqTj )x2(t)

+(qTj B2 − gTj − `Tj B1)u(t).
(8)

Assuming that condition (6) holds, and with `j , hj and gj
as in (7) we will now show that the following conditions are
satisfied:

qTj A21 − α`Tj − `Tj A11 − hTj = 0, (9a)

qTj A22 + αqTj − `Tj A12 = 0, and (9b)

qTj B2 − gTj − `Tj B1 = 0. (9c)

and hence ėj(t) = −αej(t). It can be seen that if the
condition (6) holds, then the row vectors cj and cTj A22 lie
in the row space of A12. Then, the vector αqTj +qTj A22 also
lies in the row space of A12 for any α ∈ R. Therefore, it
holds that (αqTj + qTj A22)(I −A†12A12) = 0. Hence,

αqTj + qTj A22 = (αqTj + qTj A22)A
†
12A12. (10)

It can be seen that with the choice of `j in (7a), (10) is
equivalent to (9b). Finally, it can also be seen that with the
choice of gj and hj in (7b) and (7c), the conditions (9a) and
(9c) are satisfied.

Now, we illustrate the estimation using Example (1).

Example 1 (Continued). Here, we have the knowledge
that the outlier is at node 7, which is the first node in
the set of unmeasured nodes, i.e., jo = 1. We want to
estimate xav

2,1. Note that the condition (6) with j = 1

is satisfied, as rank

 A12

qT1 A22

qT1

 = 4 = rank(A12), where

qT1 =
[
0 1

3
1
3

1
3

]
. Therefore, we can design an observer

of the form (5) to estimate xav
2,1 with an arbitrary rate of

convergence. We fix α = 1.2 for observer (5) and `1, g1
and h1 are computed by (7). We initialize the observer
with w1(0) = 0. Notice that this gives x̂av

2,1(0) = w1(0) +
`T1 y(0) = −0.8491 6= 0, as it can be seen in Figure 5.

Obs n2

Obs d

Obs 2

Obs 1

Dissimilarity

̂o x̂av
2,̂o

argmax
j

n∑

k=1
k 6=j

Djk

x̂av
2,n2

D

x̂av
2,d

x̂av
2,1

x̂av
2,2

...

...

Fig. 6. Structure of the estimation and detection algorithm presented in
Section IV for the identification of the outlier and estimation of the average
excluding it. Here, obs stands for observer and D is the dissimilarity matrix.
̂o and x̂av

2,̂o
are the detected position of the outlier and the average estimate

excluding the outlier respectively.

It can be seen in Figure 5 that our observer is able to
estimate the average xav

2,1, i.e., the average of unmeasured
states excluding the outlier at node n1 + 1 = 7.

IV. OUTLIER AT AN UNKNOWN POSITION

In this section, we consider the case when the position
of the outlier i.e., jo is unknown. We propose a method to
estimate the average of the unmeasured states excluding the
outlier and detecting it simultaneously. Our approach is to
estimate the averages xav

2,j for all possible j ∈ {1, . . . , n2}
using a bank of scalar observers of the form (5) and then
compare the estimates in order to detect the outlier. For the
comparison, we propose a dissmilarity criterion inspired by
the distance based dissimilarity used in signal processing.
Figure 6 illustrates the process we use for the detection of
the outlier which also gives us the required average estimate.
At first, we provide a necessary and sufficient condition for
the design of the observer of the form (5) for every possible
j ∈ {1, . . . , n2}. Then we define a dissimilarity criterion to
differentiate between the estimates. After that, we define a
very general optimization problem to detect the outlier. At
the end, we illustrate the method with the help of Example 1.

A. Existence condition for the bank of observers

In order to design observers of the form (5) to reconstruct
xav
2,j for all j, the condition in Theorem 1 must be satisfied

for all j ∈ {1, . . . , n2}. The resulting condition can be stated
as the following theorem.

Theorem 2. A tunable and scalar observer for xav
2,j exists

for all j ∈ {1, . . . , n2} if and only if

rank(A12) = n2. (11)

Proof. From Theorem 1, to estimate xav
2,j for all j, a tunable,

scalar observer exists if and only if (6) holds for all j.



This is equivalent to

rank



A12

qT1 A22

...
qTn2

A22

qT1
...
qTn2


= rank[A12]. (12)

Now define Q = (In2 − 1n21
T
n2
), where 1n ∈ Rn denotes

the vector of all ones, and P =

 q
T
1
...
qTn2

 = − 1
n2−1Q, so that

the left-hand side of (12) is equal to

 A12

PA22

P

. We can see

that rank(P ) = n2 by showing that rank(Q) = n2 and we
show rank(Q) = n2 by showing that detQ 6= 0.
For this, notice that[
In2 0
1Tn2

1

] [
Q −1n2

0 1

] [
In2 0
−1Tn2

1

]
=

[
In2 −1n2

0 1− 1Tn2
1n2

]
.

Taking determinant of matrices on both the sides, we have
det(Q) = 1− n2 6= 0.
Therefore, rank(Q) = n2 and hence, rank(P ) = n2.

Finally, since rank(P ) = n2, we have rank

 A12

PA22

P

 =

n2. Therefore, (12) holds if and only if rank(A12) = n2.

Now we present some remarks on how restrictive the
condition in Theorem 2 is.

Remark 1: It can be seen from (2), that A12 ∈ Rn1×n2 and
the condition (11) is rank(A12) = n2. It implies n1 ≥ n2,
that is the number of measured nodes must be greater than
or equal to the number of unmeasured nodes.

Remark 2: From the condition (11), A12 is full column
rank so it cannot have an all zero column. Therefore,
Theorem 2 requires that for every unmeasured node, there
exists an edge pointing to some measured node, i.e., for every
unmeasured node j there is an edge (i, j) with i a measured
node (recall that the edge (i, j) is depicted as an arrow j → i,
representing an influence of state xj on the dynamics of state
xi).

Now, we proceed towards the problem of detection of the
outlier in the next section. For this, we propose to run a bank
of observers and then compare the estimates we obtain.

B. Outlier detection

In this subsection, we define a dissimilarity matrix and an
optimization problem in order to detect the outlier.

1) Dissimilarity criterion: Here we define a dissimilarity
criterion in order to differentiate between the estimates
obtained in the previous section with a goal in mind to pick
the one which is without the outlier. Dissimilarity criteria of
this kind are used in signal processing. For instance, [13]

defines dissimilarity as pairwise Euclidean distance between
two signals.

Consider the estimates x̂av
2,j(t) ∀j ∈ {1, . . . , n2} obtained

in the previous section, we define their dissimilarity at time t
as

Djk(t) =

∫ t

0

e−β(t−τ) | x̂av
2,j(τ)− x̂av

2,k(τ) | dτ for β > 0,

(13)
where x̂av

2,j(τ) is the estimated average of the unmeasured
nodes except node j, at time τ . The matrix D = [Djk] so
obtained is called the Dissimilarity matrix. Note that, D is a
non-negative, symmetric matrix with zero diagonal elements.
Here, the idea is to measure how far are the estimates from
each another.

Note that the system is assumed to have an outlier at jo,
i.e., there is a significant difference between the average
xav
2,jo

excluding jo and the average xav
2,k excluding any

other node k. Moreover, the outlier is unique. Hence, for
any j and k different from jo, |xav

2,jo
− xav

2,k| is large and
|xav

2,j − xav
2,k| is small (at least as an integral over time,

as in the dissimilarity matrix). Recall from Section III that
each estimate x̂av

2,j converges to the corresponding correct
average xav

2,j , therefore we also have that |x̂av
2,jo
− x̂av

2,k| is
large and |x̂av

2,j− x̂av
2,k| is small, except possibly for an initial

transient. For this reason, we can say that ̂o(t) is the detected
position of the outlier at time t if ̂o(t)−th row sum of the
dissimilarity matrix at time t is the largest. In particular,

̂o(t) = argmax
j

n∑
k=1
k 6=j

Djk(t). (14)

The above processes as depicted in Figure 6 can be put
altogether as follows:

1) Using a bank of n2 observers of the form (5), obtain
the average estimates x̂av

2,j(t) for all j from 1 to n2.
2) Compute the dissimilarity matrix Djk(t) defined in

(13).
3) From the dissimilarity matrix, detect the outlier ̂o(t) at

time t given by (14). Then choose the corresponding
average estimate x̂av

2,̂o
(t) obtained from the bank of

observers, which excludes xn1+̂o .
Now, we illustrate the method with the Example 1. We will
see that indeed ̂o(t) converges to jo, the true position of the
outlier.

Example 1 (continued). The position of the outlier in
Example 1 is jo = 1 but here we assume that this information
is unknown. We want to detect the outlier position and
obtain the average estimate excluding the outlier. Note that
the condition (11) is satisfied with rank(A12) = 4 = n2.
Therefore, we can design a bank of n2 observers of the
form (5) each of which estimates the average of all but one
unmeasured state at a time. Here, each observer is designed
with α = 1.2, and the parameters `Tj , g

T
j , h

T
j computed with

(7) and initialization wj(0) = 0. The estimates obtained by
this bank of observers are depicted in Figure 7. We compute
the dissimilarity matrix as in (13) and then follow the process



0 2 4 6 8 10 12 14 16 18 20
−1

0

1

x̂av
2,1(t)

x̂av
2,4(t)

x̂av
2,2(t)

x̂av
2,3(t)

x̂av
2,̂o

(t)

time (s)

Fig. 7. Estimated trajectories of the averages of unmeasured states in
Example 1 excluding one node at a time i.e. x̂av

2,j ∀j ∈ {1, . . . , n2},
the output of the bank of observers. The dash-starred line is x̂av

2,̂o
(t), the

estimated average without the detected outlier at time t. It can be seen that
x̂av
2,̂o

(t) converges to x̂av
2,1(t) as the outlier is at jo = 1.

0 2 4 6 8 10 12 14 16 18 20

1

2

3

4

jo

̂o(t)

time (s)

un
m

ea
su

re
d

no
de

s

Fig. 8. Detected position of the outlier in the set of the unmeasured nodes
at time t i.e. ̂o(t) in Example 1. jo = 1 is the true position of the outlier. At
first, the method identifies unmeasured node 4 as the outlier but it converges
quickly to the true position of the outlier that is jo = 1.

described above to detect the outlier using (14). With β = 10
in (13), we compute D and detect the outlier along with the
estimation of averages using (13) and (14). Figure 8 shows
that indeed the proposed method is able to detect the outlier
position jo = 1, i.e., node n1 + jo = 7 in the network
depicted in Figure 2. In Figure 8, it can be seen that at
first the method identifies unmeasured node 4 (node 8 in the
network) as the outlier but it converges quickly to the true
position, i.e., jo = 1 (node n1 + jo = 7 in the network).
One possible reason of this delay in detection could be the
delay in convergence of the estimated value to the true value.
Note that we already have the average estimates x̂av

2,j(t)
∀j ∈ {1, . . . , n2} obtained from the bank of observers. From
them, we obtain x̂av

2,̂o
(t), which is initially equal to x̂av

2,4 and
then equal to x̂av

2,1, as illustrated by the dash-starred black
line in Figure 7. This is consistent with the quantity we aim
at reconstructing: the average estimate of the unmeasured
states excluding the outlier, i.e., x̂av

2,1.

V. CONCLUDING REMARKS

Average state reconstruction with the help of some sensor
measurements can give unexpected results if there is an
outlier among the unmeasured nodes. A method to estimate
the average excluding the outlier has been proposed. For that,
design of a scalar and tunable observer has been given along
with the condition under which a bank of these observers
can be designed to estimate the average of the unmeasured
states while excluding an element at every possible position.
Moreover, the problem of detection of the existing outlier has
also been addressed by proposing a dissimilarity based ma-
trix inspired from the euclidean distance based dissimilarity
matrix used in signal processing.

Future works will be focused on cases where the system
matrices are not fully known or there are multiple outliers.
Moreover, sequential group testing methods can be investi-
gated in order to reduce the number of observers.
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