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An automatic framework to study the tissue
micro-environment of renal glomeruli in
differently stained consecutive digital whole slide
Images

Odyssee Merveille, Thomas Lampert, Jessica Schmitz, Germain Forestier, Friedrich Feuerhake, Cédric
Wemmert

Abstract— Objective: This article presents an automatic
image processing framework to extract quantitative high-
level information describing the micro-environment of
glomeruli in consecutive whole slide images (WSls) pro-
cessed with different staining modalities of patients with
chronic kidney rejection after kidney transplantation. Meth-
ods: This three step framework consists of: 1) cell and
anatomical structure segmentation based on colour decon-
volution and deep learning 2) fusion of information from
different stainings using a newly developed registration
algorithm 3) feature extraction. Results: Each step of the
framework is validated independently both quantitatively
and qualitatively by pathologists. An illustration of the dif-
ferent types of features that can be extracted is presented.

Conclusion: The proposed generic framework allows for
the analysis of the micro-environment surrounding large
structures that can be segmented (either manually or auto-
matically). It is independent of the segmentation approach
and is therefore applicable to a variety of biomedical re-
search questions. Significance: Chronic tissue remodelling
processes after kidney transplantation can result in in-
terstitial fibrosis and tubular atrophy (IFTA) and glomeru-
losclerosis. This pipeline provides tools to quantitatively
analyse, in the same spatial context, information from dif-
ferent consecutive WSIs and help researchers understand
the complex underlying mechanisms leading to IFTA and
glomerulosclerosis.
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[. INTRODUCTION

Kidney transplantation is performed at an annual rate of
more than 90 000 World—wid Kidney replacement therapy
after renal failure can restore renal function for many years,
thereby reducing the burden for individual patients and for
health systems that are associated with hemodialyis. In the past
decades, successful therapy strategies were developed to avoid
acute rejection, and substantially reduce the risk of chronic
rejection. This shifted the attention towards slowly progressing
fibrotic changes that can contribute to the decline of graft
function.

Chronic tissue remodeling is histologically characterised by
the appearance of Interstitial Fibrosis and Tubular Atrophy
(IFTA) and glomerulosclerosis. In recent years, works studying
the mechanisms leading to these pathologies have been carried
out [1], [2]. In particular, macrophages have recently been
identified as a key player in the inflammation and fibrosis
process [3]. Depending on their phenotype (“M1-like” or “M2-
like”), macrophages can be pro or anti-inflammatory and they
also play a role in the activation of fibroblasts inducing IFTA
and glomerulosclerosis.

A common approach in histopathology is the visual evalua-
tion of consecutive sections of a biopsy by trained pathologists
who integrate the information from several stainings, each one
providing specific information on the tissue (see Fig. [I)), into
a written report.

With the emergence of system biomedicine, there has been
an increasing trend to study complex mechanisms based on
quantitative data such as inflammation [4], [S], cancer clonal
evolution [6], or immune reactions [7]. In this context, Whole
Slide Images (WSI) with different stainings are studied sep-
arately, and the fusion of information from these different
stainings is required to obtain a comprehensive data set.
Pathologists mentally perform this fusion while analysing
a piece of tissue. This trivial task for trained pathologists

lwww.transplant-observatory.org/download/2017-activity-data-report
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Fig. 1: Example of three consecutives WSI of a kidney nephrectomy sample with three common stainings. Each staining
provide different information on the tissue: general structural information in PAS, distribution of T lymphocytes in CD3,
specific structures such as collagen or muscular fibres in Sirius Red.

is highly complex for computers and requires specifically
designed algorithms commonly referred to as slide registration.

WSI registration algorithms should indeed take into account
several specificities intrinsic to histopathology: the tissue shape
and orientation of two consecutive slides may vary because of
the sample preparation (fixation, embedding, sectioning, etc.);
the composition of the tissue between two slides can vary
significantly as the cells and structures may appear, disappear,
or have different structure depending on the sectioning level;
finally, the set of stainings used may highlight different struc-
tures or cells which results in slides that look quite different
(see Fig. [I).

Algorithms used for WSI registration in the literature usu-
ally apply non-rigid deformations resulting in visually pleasing
registration. Most methods use the mutual information simi-
larity metric to register two WSIs with different stainings [8]-
[10] as it relies on statistical relations between the intensities of
two stainings instead of direct correlations. Nevertheless, these
methods may fail for stainings with very different appearances
as they are only based on raw intensities. To overcome this,
Cooper et al. [11] proposed to rely on purely geometric
features for the registration. More recently, Song et al. [12]
developed an unsupervised content classification algorithm
that computes more complex features describing the structures
of each image. Even though these non-rigid methods yield
good visual registration, they introduce spatial deformations
that induce significant bias in geometric features extraction.

[I. PROPOSED APPROACH

This article presents an automatic pipeline to analyse his-
tology slides from patients with chronic renal graft rejection.
Many features quantifying the inflammation can be extracted
from this pipeline and used by pathologists for diagnosis
purpose. More complex features, like spatial correlations be-
tween cell populations, can also be extracted to describe the
tissue state and help researchers, clinicians and pathologists
to better understand the mechanisms leading to IFTA and
glomerulosclerosis.

Instead of applying non-rigid registration, we propose to
merge the information from consecutive slides by finding com-
mon landmarks across stainings and locally superimpose the
regions around these landmarks from each staining. Glomeruli

are spherical structures with a diameter of around 150 ym and
are one of the key functional units of the kidney, responsible
for the filtration of primary urine from the blood. They are
thereby good candidates for landmarks as they have a high
probability to be present in several consecutive slides (the
average slice of tissue is 3pm thick) and they present an
isotropic structure making them easily detected in each slide
whatever the cutting direction.

In order to merge the information from several consecutive
slides, we propose to match the glomeruli across slices and
then locally superimpose each glomerulus neighbourhood to
perform the multi-stain analysis. Thus, our framework is
threefold: 1) cell and structures segmentation, 2) glomeruli
matching, 3) feature extraction from different stainings in the
same spatial reference. An overview of this framework is
presented in Fig. 2|

Several contributions are presented in this article:

« A new staining registration strategy is proposed to avoid
tissue deformation based on glomeruli matching. This
matching algorithm is validated on real data showing
robust performance.

« An automatic pipeline able to extract quantitative fea-
tures from consecutive WSI with different stainings is
proposed. Combined with the matching algorithm, this
pipeline allow for the registration of features from dif-
ferent stainings in the same spatial context, leading to a
global multi-stain analysis pipeline.

The remainder of this article is organised as follows: Section
presents the glomeruli matching algorithm and Section
presents the complete analysis pipeline. Several experiments
are conducted in Section The validation of the proposed
matching algorithm both independently and in the context
of the pipeline; the application of the complete pipeline to
four consecutive nephrectomy WSIs; an illustration of several
interesting features that can be computed from such an analysis
framework.

[1l. GLOMERULI MATCHING

Instead of applying a non-rigid registration that would de-
form the shape of the structures and the statistical properties of
the neighbouring area, this section presents a novel glomeruli
matching algorithm in order to locally superimpose glomeruli
neighbourhoods between slices.
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Fig. 2: Overview of the proposed analysis framework. Glomeruli segmentation is performed on two consecutive WSI with
staining s; and ss. Glomeruli matching is then performed from s; to so (G — H) and from ss to s; (H — G). Only
matchings that are found in both directions are kept. Patches around each matched glomeruli are extracted and for each of
them several features are computed. Feature matrices from both stainings are concatenated so that in each column (i.e. for
each matched glomeruli) we have features extracted from the two stainings s; (in red) and s, (in blue).

A. Method

Let G be the set of glomeruli in a WSI and H be the set
of glomeruli in a WSI consecutive to it. The cardinality of a
set A is denoted |A|, such that |G| and |H| are the number of
glomeruli respectively in G and H.

Matching G to H can be seen as an inexact graph matching
problem. Let G = (G, Eg) and H = (H, Ep) be two graphs
where E¢ (resp. Epr) is a set of edges between the glomeruli
G (resp. H). The inexact matching problem is defined as

T =argmin » F(Gy,H,), 1
gm ; (G, Hy,) ()

where X € INIC| is the set of all possible matchings from G
to H and £ : G x H — R is a matching energy function.

Inexact graph matching is an NP-complete problem that
is usually solved by finding an approximate solution using
heuristic search strategies. In this work, the complexity of the
global inexact graph matching problem is reduced by incor-
porating prior knowledge regarding the solution and adopting
a subgraph assignment splitting strategy inspired by the work
of Raveaux et al. [13].

The largest contribution to the complexity of general graph
matching comes from the combinatorial problem of matching
the vertices in G and H, which is not constrained by relative
spatial locations. The position of the same glomerulus in two
consecutive slides, however, should be similar relative to the
surrounding tissue, assuming that the tissues in both slides
have been approximately rigidly registered.

Based on this observation, the global inexact graph match-
ing problem of G to H is transformed into |G| sub-graph
assignment problems. In the following, the general matching
strategy is first developed, then the assignment energy used to
match two glomeruli is presented.

From Global to Local Matching: Let G and H be embedded
in R?. We define the set of edges of both graphs such that
Eg = {(z,y) € G?>,D(z,y) < dw} and Ey = {(x,y) €
H? D(z,y) < dg} withdg, € Rand D: RxR — R a
function returning the Euclidean distance between two points
(vertices).

Instead of finding a global matching (Equation (1)), that
could lead to the matching of glomeruli far from each other in
consecutive WSIs, the problem is reduced to |G| sub-problems
defined by finding for each vertex g € G, its best match he
H, among all vertices of H that are close to g, such that

h= argmin FEuyuen(g, h), 2)
hEN ™ (g)

where Nime(g) = {h € H,D(h,g) < dmuen} and
Eracn(g, h) is the matching energy of h to g that will be
defined in the next subsection. An illustration of N/ I‘_il"“"““ (g) is
presented in Fig. [3]

Since a glomerulus of H can only be matched to one
glomerulus of G, the matching with the lowest energy Ematch
is retained for each g.

Assignment of Glomeruli Neighbourhood: It can be observed
in WSIs that although the shape and size of a glomerulus slice
may significantly vary between consecutive slides, its position
relative to neighbouring glomeruli is relatively constant (see
Fig. @). To constrain the matching strategy with this observa-
tion, the matching energy of two glomeruli slices g and h is
defined to be the minimal assignment energy of their respective
neighbourhoods. More formally, let Gi* = (Gi°, EZ}) be a
subgraph centered on g; € G such that

G;b = {gk € G7 (glagk) S EG} Ug“
ESC?i = {(xvgi) S EG, T e G}
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(a)

Fig. 3: Illustration of the glomeruli matching steps of two graphs G (a) and H (b). (a) Example of two subgraphs G5
in green of G. (b) The set of vertices of H that can be matched to go: N, Ic_ll’“““““ (92) = {h1, ha, hs, hq, hs, he}. (c) The

and G

©

in red

energy Eun(ge, g1, hs, h1) is computed based on the angle A(g1, hs,hq) and the distances D(hy, h3) and D(g1,g2). In the

example of matching G5° to HS®, the matching energy for N = 3 would be Euen (g2, h3)

_ pgiha gsha gahs
- Enb + Enb Enb .

Fig. 4: Tllustration of glomeruli matching on two consecutive WSIs. Consecutive glomerulus cuts may present different shapes
and sizes (cf. glomeruli number 1 and 7) but their position in the tissue relative to other glomeruli is similar.

Fig. @] presents examples of such sub-graphs.
Let G = G° \ g; be the set of vertices connected to g;.
The assignment of G5° to HS is define as follows:

Ematch (gia h])
(3)

= min
fEF”

N

RF (L (0. 5(@). 9€ GF).
where F/ is the set of all possible mappings of vertex of GY°
to vertex of H' ;b, and RF; is the rank filter of order 7 such that
RFy ((a;)ie1,n)) is the minimum and RF,, is the maximum.
The term Efghj is the energy of assigning two vertices, such
that

B 1 [D(gi>9) — D(hj, b))
E,gmJ N = _—A B ) YR 4
nb (ga ) 90 (gvgu )+ D(gi,g) ’ ( )
where A(g, gi, h) € [0, 180] is the angle ggih in degrees (see

Fig. [3).

As such, the energy Emnach(gi,h;) is the sum of the N
neighbour associations with the lowest Ey, with N < |G|
The parameter N allows flexibility in the neighbourhood
pattern matching, which is necessary as some neighbours can
appear or disappear between two slides. The higher N the
less flexibility allowed. This matching strategy is performed

bidirectionally, i.e. from G to H and H to G, to increase its
robustness. The matchings that are consistent between the two
are kept to form the set of matched glomeruli M.

B. Parameter values

The proposed algorithm has two parameters: the maximum
distance defining where a match can be found, dacn, and the
number of neighbour associations to compute the assignment
energy, IV; and a hidden parameter dg,, which is the distance
defining the subgraphs.

In practice, dg, is defined based on the glomeruli distribution
and the number of associations N required to compute the
assignment energy. As the assignment energy is defined based
on N associations, most glomeruli should have at least [V
neighbours. In practice dg, is defined such that most of the
glomeruli in the image have at least [V + 1 neighbours to take
into account the appearance and disappearance of glomeruli
between consecutive slides.

The robustness of this algorithm was experimentally as-
sessed on synthetic data (see supplementary materials).

IV. AUTOMATIC ANALYSIS PIPELINE

This section presents each step of the proposed analysis
pipeline. Section [[V-A] describes the dataset used in this work.
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TABLE |: Number of glomeruli per patient and stain. The
numbers in brackets for patient 2 are the number of glomeruli
before removing those situated in areas affected by staining
irregularities, please refer to the text for more information.

Patient ~CD3-CD68  CD3-CD163  CD3-CD206  CD3-MS4A4A
1 445 482 480 470
2 185 (271) 173 (255) 180 (267) 176 (253)
3 135 128 130 122
4 285 254 274 244
Total 1050 1037 1064 1012

The following sections present each step of the pipeline,
namely the glomeruli and cell segmentation (Section|[[V-B)), the
registration (Section [[V-C) and the feature extraction (Section

V-D).

A. Dataset

Tissue samples were collected from four patients who
underwent allograft nephrectomy for various reasons. Each
paraffin-embedded sample was cut into four consecutive 3 pm
thick sections, each being stained with one of the following
combination of immunohistochemistry markers using an auto-
mated staining instrument (Ventana Benchmark Ultra): CD3-
CD68 (T cells & macrophage lineage marker), CD3-CD163
(T cells & M2-like macrophages), CD3-CD206 (T cells &
M2-like macrophages), or CD3-MS4A4A (T cells & M2-like
macrophages). The 4 M2-like macrophage stainings detect
different subsets of M2 macrophages polarised along the large
spectrum of alternatively activated (“M2-like””) macrophages.
Whole slide images were acquired using an Aperio AT2
scanner at 40x magnification (a resolution of 0.253 pm/pixel).
All the healthy and sclerotic glomeruli in each WSI were anno-
tated by outlining them using Cytomine [14] and validated by
pathology experts. The number of glomeruli for each patient
and in each staining is summarised in Table [[| For technical
reasons (most likely due to uneven tissue fixation), staining
artefacts occurred in patient 2, that resulted in the need for
manual removal of some areas. As the affected tissue was
removed from the evaluation, Table [I| reports both the number
of glomeruli including the ignored tissue (in parentheses) and
the final corrected results. The WSIs and annotations of patient
1 are shown in Fig. 5] and larger scale crops in Fig. [6]

To validate the matching algorithnﬂ approximately 270
glomeruli were manually associated with each other between
the four slides of patient 1 (including 220 that exist within
all four slides), and approximately 185 glomeruli in patient 2
(including 169 that exist within all four slides).

B. Structure and Cell Segmentation

In order to compute high-level quantitative features describ-
ing the kidney tissue (shape, distances, correlations etc.), we
first need to analyse the tissue composition by detecting the
units of interest on each WSI. In this article we focus on
the glomeruli, which are important functional units of the

2The code will be made available upon acceptance.

kidney and our landmark for the fusion of information, and
the cells highlighted by the stainings in each WSI. We propose
a segmentation strategy for both that we refer to as glomeruli
segmentation and cell segmentation.

1) Glomeruli Segmentation: Two approaches can be taken
to segment the glomeruli slices in all stainings: develop a
segmentation model for each staining [15]-[21], or a stain
invariant/multi-stain segmentation model [22].

Computer vision approaches such as perceptual organisation
[15], histogram of gradients [16], colour profiles [16], local bi-
nary patterns [17], [23], and combinations of approaches [18]
integrate background knowledge into the task. Nevertheless,
there is no general consensus on the type of features to extract
and so data driven approaches have gained in popularity. Most
recently, deep learning approaches [19]-[21] have become the
de-facto standard for segmentation due to their state-of-the-art
performance, however, being data driven they require a large
amount of training data. To overcome this, pretrained networks
such as GoogleNet and AlexNet can be used [19].

The proposed matching framework is agnostic to the seg-
mentation algorithm used. In the demonstrated application,
segmentation is performed using a U-Net [24] as it has
been proven to be successful in biomedical imaging [25], in
particular in glomeruli detection [20].

Glomeruli segmentation is framed as a two classes prob-
lem: glomeruli and tissue. The slide background (non-tissue)
is manually removed from consideration. The input to the
network are patches centred on a glomerulus, and those that
do not contain a glomerulus, randomly sampled.

The U-Net was implemented as described in the original
article [24] using cross entropy loss. The following parameter
values were used: batch size of 8, learning rate of 0.0001, 60
epochs, and the network that achieves the lowest validation
loss is kept. The input patch size is 508 x 508 pixels,
which is sufficient to contain a glomerulus at a resolution of
0.506 pm /pixel.

The following data augmentation is performed with an
independent probability of 0.5:
elastic deformation: using the parameters 0 = 10, a = 100;
affine: random rotation sampled from the interval [0°,180°],
random shift sampled from [—205, 205] pixels, random mag-
nification sampled from [0.8,1.2], and horizontal/vertical flip;
noise: additive Gaussian noise with o € [0, 2.55];
blur: Gaussian filter with o € [0,1];
brightness enhance with a factor sampled from [0.9, 1.1];
colour enhance with a factor sampled from [0.9, 1.1];
contrast enhance with a factor sampled from [0.9,1.1].
These values were chosen to produce realistic images. All
samples are standardised to [0, 1] and normalised by the mean
and standard deviation of the training set.

Because of the relatively small amount of training data
in the experiements presented in Section [V} and the large
variance observed between the stainings and characteristics of
each patient, the U-Net used upsampling instead of transposed
convolution to reduce the number of learnable parameters.
Furthermore, the output of the U-Net was postprocessed by
removing the smallest connected components and closing
small holes.
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(a) CD3-CD68

(b) CD3-CD163

(c) CD3-CD206 (d) CD3-MS4A4A

Fig. 5: Fully annotated consecutive kidney nephrectomy WSIs used in this study (patient 1, see Table E) Each green disk is

an individual glomerulus.

132

(e) CD3-CD68 GT

(f) CD3-CD163 GT

o

(c) CD3-CD206

(h) CD3-MS4A4A GT

Fig. 6: Subsamples of the four consecutive kidney nephrectomy WSIs used in this study (Patient 1, see Table E)

2) Cell Segmentation: Our dataset is composed of 4 double-
stained consecutive WSIs for each patient, each staining high-
lighting different cell types (see Sec.[[V-A). In total, 5 different
cell types are highlighted: T cells (CD3) and 4 different
types of M2-like macrophages (CD68, CD163, CD206 and
MS4A4A). The goal of this step is to segment each cell type
resulting in 5 binary images that will be used to compute

features.

The image resulting from the digitisation of a WSI is a
mixture of the signals from two stains (e.g. CD3 and CD68)
and the counter-stain (e.g. haematoxylin). The classic method
to unmix the stains from an RGB image was proposed by
Ruifrok et al. and called colour deconvolution [26]. This
method transforms the RGB channels of the WSI into optical
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Fig. 7: After matching, the same glomerulus (in green) and surrounding tissue in two different stain modalities (a) and (b), the
cells of different types are segmented (in red and blue). Two types of features can therefore be computed: features depending
on each single WSI concatenated to obtain features relevant to the same glomerulus (c); and features that combine information

from both stain modalities (d).

densities of each staining that are linearly related to their
concentrations in the tissue. Once each slide is unmixed, a
simple thresholding of the channels of interest is enough to
segment the structures targeted by the main stain.

Colour deconvolution requires a predetermined stain vector
for each staining that represent the proportion of optical
densities of this staining in each RGB channel. In this work,
the stain vectors for each staining were measured from the
dataset, however, unsupervised methods have been proposed
for situations in which stain vector measurement is not an
option. These methods are based on singular value decompo-
sition [27], blind deconvolution [28], dictionary learning [29],
multilayer perceptron networks [30] or non-negative matrix
factorisation [31].

C. Registration

Using the matching algorithm presented in Section bi-
directional matching (i.e. WSI G to H, and H to G) is per-
formed on three image pairs (CD3-CD68 - CD3-CD163, CD3-
CD163 - CD3-CD206, and CD3-CD206 - CD3-MS4A4A).
This results in glomeruli associations between all four con-
secutive slides.

D. Feature Extraction

Once segmentation and matching across WSIs is complete,
the following two types of features that integrate information
derived from different stains in the same glomerulus neigh-
bourhood can be extracted from the corresponding segmenta-
tions, as illustrated in Fig. [7}

Multi-WSI features derived from multiple single WSIs,
for example mean MO macrophage (CD68) or M2
macrophage (CD163) densities inside each glomerulus.

Cross-WSI features, that combine information derived from
multiple slides, for example, the mean distance from MO
macrophages (CD68) to a subtype of M2 macrophages
(CD163).

V. RESULTS

In this section, the matching and segmentation are first
validated separately and then the results of the full pipeline
are presented.

The following metrics are used to evaluate matching per-
formance: Sensitivity (S = sz_ipFN), Precision (P = TPT—_,]_)FP),
and Specificity (SP = sxpp) and Negative Predictive Value
NPV = %) to account for the possibility of false
positive—a centroid incorrectly associated to another—and
true negative associations—unpaired centroids not associated
with another correctly. The values of TP, FP, and FN were
measured in terms of associations, such that a TP is a correct
association, an FP is an incorrect association, and an FN is
when no association is made incorrectly.

A. Validation on Glomeruli Ground-Truth Segmentation

The matching algorithm was first validated independently
of the pipeline, more specifically of possible segmentation
errors, by matching the glomeruli of the nephrectomy dataset
obtained by manual segmentation (Fig. [5). The results of these
experiments are shown in Table [l and Fig. [§]

The matching algorithm has little trouble finding correct
associations in all but a very few cases as shown by the very
high sensitivity and precision scores. Moreover the false asso-
ciations are usually understandable as they concern glomeruli
that are close and for whom the ground truth matching was
problematic even for experts (see Fig. 0). Most of the errors
of the matching algorithm concern false detections as shown
by the NPV score. The variation of the NPV is high as
it is computed on a small number of samples (one more
false negative association will decrease the NPV of a few
tens of percent). When a clear association can not be found,
the algorithm tends not to match the glomerulus, which is a
desired behaviour for the discussed applications. This ensures
that the associations made are reliable and will not bias further
statistics that could be built upon them.
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(a) Patient 1
CD3 - CD68 CD3 - CD163 CD3 - CD206 CD3 - MS4A4A

(b) Pati

ent 2

Fig. 8: A random subset of the glomeruli matchings between the four WSIs, in which TN matched glomeruli are in green, TP
in blue (the green line represents the correct associations between WSI), FN in purple, and FP in red.

TABLE II: Matching performance on ground-truth (GT) vs. on segmentation (Segm) with dacn = 300 and N = 4.

Stain Pair S SP P NPV
GT Segm GT Segm GT Segm GT Segm
CD3-CD68 — CD3-CD163  93%  86% 90% 89% 99% 97%  43%  58%
CD3-CD163 — CD3-CD206  98%  94%  100% 100% 100% 100% 75%  55%
CD3-CD206 — CD3-MS4A4A  96%  93%  100% 57% 100%  98%  43% 2%
Patient 1
Stain Pair S SP P NPV
GT Segm GT Segm GT Segm GT Segm
CD3-CD68 — CD3-CD163  95%  92% 94% 74% 99% 90% 80% T6%
CD3-CD163 — CD3-CD206  98%  93%  100% 67% 100% 94% 84% 57%
CD3-CD206 — CD3-MS4A4A  94%  95% 95% 85% 99% 95% 0% 82%
Patient 2

CD3 - CD68 CD3 - CD163
e 9
o5 & o

Fig. 9: False positive matching occurring in patient 1 between
CD3-CD68 and CD3-CD163 (in orange) when applying the
matching algorithm to the ground-truth segmentations. The
correctness of this association is debatable even for experts

B. Glomeruli Segmentation and Matching

The stainings in this study present similar visual character-
istics, see Fig. [6] which lends to training one ‘multi-stain’ U-
Net by combining the training sets of each stain and applying

the same network to all stains. To better utilise the limited
amount of data, one network was trained for each patient in
a leave-one-out fashion, such that the segmentor for patient 1
was trained using data from patients 2, 3, and 4; and patient
2 was trained using the data derived from patient 1, 3, and
4. The training set comprised patches centred on all glomeruli
from the training patients and seven times the number of tissue
patches (to account for the variance observed in non-glomeruli
tissue), 20% of this data was reserved for validation.

The segmentation performance of this approach is described
in Table [T

The centroids of each detected glomerulus were then ex-
tracted to form the sets G and H, which are the input to the
matching algorithm. Pairwise matching is then performed on
each consecutive image to determine the associations between
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all WSIs. These results are presented in Table [[T} The sensitiv-
ity and precision are still very high compared with the ground-
truth baseline which demonstrates the algorithm’s detection
robustness. The specificity sometimes drops significantly in
some staining associations. The high specificity drops without
a significant sensitivity or precision drop and is explained by
the very small number of negative matchings is these stainings.
Each single false positive match yields a large specificity drop.
This behaviour is not problematic in a global scale as the
number of false positive match remains very low.

C. Multi-WSI Analysis

At this stage of the pipeline, it is possible to register
each matched glomerulus and its surrounding, allowing the
superimposition of the segmentations from each consecutive
WSI. Fig. shows the result of this for a glomerulus of
Patient 1. With this, both Multi-WSI and Cross-WSI features
can be computed and used for diagnosis and research purpose.

VI. CONCLUSIONS

In summary, this article has presented a novel framework
for the study of tissue micro-environment of renal glomeruli
across multiple WSIs that allows their comprehensive evalua-
tion without technically challenging multiplexing, by integrat-
ing multiple staining modalities in consecutive tissue sections.
The framework involves segmenting glomeruli and cells in
each WSI, then matching them across the WSIs to integrate the
information contained within each. The result of this can then
be used to perform analyses on the glomeruli and surrounding
tissue.

The proposed framework is generic and independent of
the presented use-cases. It can be used for the analysis
of the micro-environment surrounding other large structures,
under the assumption that such structures are large enough
to exist across multiple WSIs and can be segmented (either
manually or automatically). Furthermore, it is independent
of the segmentation algorithm used and can therefore be
applied to a variety of biomedical research questions beyond
transplantation medicine, for example immuno-oncology and
other scientific fields working with biopsy samples.

In the future, this approach could support the diagnosis of
renal grafts by time-efficient quantification and evaluation of
glomeruli (e.g. fibrosis) and precise number and localisation
of infiltrating leukocytes (e.g. glomerulitis according to the
internationally used BANFF classification for renal grafts
[32]). Counting glomeruli with the described methods could
also be performed for 3D reconstruction (research purposes)
in consecutive tissue slides and thus enable an estimation of
glomeruli numbers in the whole kidney: reduced renal allograft
survival [33], hypertension and the risk of chronic kidney
disease [34] are associated with low glomeruli number.
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Fig. 10: Iustration of the segmentation of different cell types
around the same glomerulus through 4 consecutive slides.
(a) T cells (red) and MO macrophages (green) in CD3-CD38
WSI, (b) M2 macrophages (blue) in CD3-CD163 WSI, (c) M2
macrophages (pink) in CD3-CD206 WSI, (d) M2 macrophages
(yellow) in CD3-MS4A4A WSI, (e) superimposition of all
cell types in CD3-CD68 WSI. Note that each subtype of
macrophage is present in only one of the consecutive slides.
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SUPPLEMENTARY MATERIAL
A. Glomeruli matching synthetic validation

1.0

—_—— -

—— Sensitivity

~ — = Precision

0.9

0.84

0.7

0.6

0.5

0.4

0.34

[o}

——— Sensitivity

0.24 Specificity
— — Precision
- NPV
0.0 T T T T
0 10 20 30 40 50

%
(b) Simulated unpaired centroids

Fig. 11: The results of the matching algorithm on synthetic
data with dpaen = 80 and N = 3.

To evaluate the performance of the proposed algorithm to
variations in the data, a simulated dataset was created. Fifty
300 x 300 image pairs were generated, each pair representing
two consecutive slides. For each image in a pair, 30 centroids
were generated located at the same position in both images.
The following two variations to the centroids were analysed.
Shift — For each second image in a pair, the x and y

position of each centroid was shifted by values drawn
independently from a Gaussian distribution with p = 0
and o € {0...11} (that is 0 to 3.6% of the image size
in each dimension).

Unpaired — Spurious unpaired centroids were randomly
added to each image in a pair. The number of centroids
added to each image ranged from 0% to 50% of the initial
number of centroids in the image. An addition of 50%
means that both images in a pair contains 45 centroids
but only 30 should be matched.

The Shift experiment was designed to evaluate the normal
spatial variations of glomeruli slices in consecutive WSI
whereas the Unpaired experiment evaluates the algorithm’s
behavior to glomeruli appearance and disappearance between
slides, and to errors during glomeruli segmentation.

Sensitivity (S = %), and precision (P = TprFp) were

measured during the Shift experiment. The values of TP, FP,
and FN were measured in terms of associations, such that
a TP is a correct association, an FP is an incorrect associa-
tion, and an FN is when no association is made incorrectly.
During the Unpaired experiment, Specificity (SP = ix0rp
and Negative Predictive Value (NPV = %) were also
measured to account for the possibility of false positive—a
centroid incorrectly associated to another—and true negative
associations—unpaired centroids not associated with another
correctly.

The average measure (over the 50 repetitions of each setup)
for each experiment is presented in Fig.[TT} These experiments
show that the proposed algorithm is robust to shift and un-
paired centroids. It is interesting to see that precision remains
high with the increase of each parameter (shift and the number
of added centroids) even though the specificity decreases more
quickly. This means that the algorithm tends to avoid falsely
associating glomeruli, which is a highly desirable behavior
when the goal is to extract statistical measures based on
quantitative data extracted from image processing algorithms.
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