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Abstract—The understanding of tomograms can be a

difficult task when the observed scene is complex. The

Synthetic Aperture RADAR (SAR) ranging acquisition

induces geometrical distortions depending on the local slope

of the back-scattering surface. Over dense urban areas,

this particular geometry produces tilted facades instead

of straight buildings. Moreover the high dynamic in SAR

images of urban areas may lead to 3-D representation with

very bright voxels eclipsing other echoes. In this paper we

present a graph-cut approach adapted to any tomographic

reconstruction technique to segment the urban surface in a

3-D tomographic reconstruction. Results on real data from

a stack of 40 TerraSAR-X images are presented.

Index Terms—SAR, tomography, graph-cuts, urban ar-

eas
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I. INTRODUCTION

SAR tomography has been successfully used for dif-

ferent kind of applications over the last two decades.

Experiences over uniform environments such as forest

or glaciers [1]–[3] have produced 3-D models of the

scatterers density of reflectivity. With the increase of

resolution SAR tomography has been also experienced

over urban areas allowing to have global rendering of

observed cities.

The SAR tomography is basically the construction of a

synthetic antenna in the elevation direction, i.e. orthog-

onal to the line of sight. This new antenna is formed

by exploiting the different acquisitions available over a

given scene. The focusing in the elevation direction can

theoretically be done using a discrete inverse Fourier
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transform of the data in the stacking direction.

To improve the resolution, different super-resolution

approaches have been proposed. The Compress Sensing

(CS) technique [4], [5] based on `1-norm minimization

of the back-projection of the stack has shown very

promising results for dense urban areas. One recent

CS-like approach [6] proposes to perform the back-

projection of a 3-D cube corresponding to many pixels

at once. This last method also performs the inversion

directly in ground geometry to be able to use geometrical

priors (cf. Fig. 1).

Having the reconstruction expressed in ground geome-

try is first step to help a potential viewer locating typical

urban structures such as walls, ground and rooftops. The

concentration of scatterers, secondary lobes and outliers

however still produce ambiguities in the interpretation.

In this paper, we present a new graph-cut approach

performing the segmentation of the urban scene from a

tomographic reconstruction. The proposed method favors

smooth reconstructions along the (x, y, z) axis that are

faithful to the tomograms. The developed method is very

general and could be used with any 3-D reconstruction in

input as long as it corresponds to a physical representa-

tion of the signal (e.g. its amplitude or power). Here only

the 3-D inversion under a sparse prior is used to illustrate

the method due to its good performances on urban areas

and as it performs the inversion in the desired geometry.

Finally we present an algorithm that alternates between

a 3-D reconstruction and a surface segmentation step.

Through the iterations, the segmentation information is

used to improve the sparsity priors.

II. GROUND FRAME 3-D BACK-PROJECTION

The SAR tomographic stack defines a set of N Single

Look Complex (SLC) SAR images. After co-registration

and phase calibration processing, the complex value for

a pixel in the nth image located at the position (x, r) is

Fig. 1. Geometry of acquisition

given by the integration of the complex reflectivity u in

the corresponding radar cell:

vn(x, r) =

∫∫
(y,z)∈∆r

u(x, y, z)exp
(
−jξnz

)
dydz + ε

(1)

The variables x, y and z denote the coordinates in the

ground geometry. For sake of clarity the azimuth and x

axis are chosen the same. The random variable ε(x, r)

models the additive Gaussian thermal noise. The r-th

radar resolution cell is defined by: ∆r = { (y, z) | r −

δrange/2 ≤ ρy,z ≤ r + δrange/2 }, with δrange the step in

range direction. The parameter ξn = 4πbn
λr sin θ is the spatial

impulse associated to the sampling of the scene for each

baseline, bn is the n-th baseline, θ the incidence angle

of the master sensor and λ the radar wavelength.

For urban areas, CS has been successfully used to in-

verse the previous equation under a sparsity prior. It has

proved to achieve super resolution in scatterer unmixing

in dense urban areas [4], [5]. Similar to conventional

CS but able to process the estimation directly in ground

geometry the 3-D inversion proposed in [6] allows to

use geometrical priors. Here we will only use a sparse

prior and thus the estimation of the reflectivity for all

the scene is the solution of the problem:
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û = argmin
u

||Φu− v||22 + µ||u||1 (2)

The matrix Φ is the back-projection operator that

projects a scene expressed in ground geometry in the

SAR tomographic stack:

Φk,l+(n−1).N =

0 if ρ1;yl zl /∈ [rk − δrange

2 , rk +
δrange

2 ]

exp(−jξnzl) otherwise,

(3)

The parameter µ balances the importance of the sparsity

prior with respect to the data fidelity. The tuning of this

parameter is a key point to have a good estimation of

the reflectivity. However the knowledge of the additive

noise level is hardly enough to get rid of outliers and/or

side-lobes. As no prior information on the number of

scatterers in each cell is available this parameter is hard

to set. In the next part we present the graph-cuts based

segmentation of the urban surface which we will use to

refine the tomographic reconstruction.

III. GRAPH CONSTRUCTION AND URBAN SURFACE

SEGMENTATION

From a 3-D estimation of the reflectivity, we seek

for the back-scattering urban surface accordingly to the

following hypotheses:

1) The surface is located near the brightest voxel in

the reconstruction.

2) A ray from the sensor to the intersection of a

radar cell with the ground goes through the surface

exactly once.

3) The urban surface is smooth and piecewise uni-

form either along the z direction or alongside the

(x, y) plan.

4) The walls are straight and vertical.

To answer this segmentation problem we need to design

a cost function that increases as these hypotheses are

violated. From the first and second assumptions, for

each ray the cost function has to increase with the

size of the gap between the surface intersection and the

brightest voxel on a ray. When this criterion is minimized

the obtained surface is totally faithful to the original

reconstruction. Hypothesis 3 and 4 help do deal with

potential holes in the reconstruction or lobe spreading

along the elevation direction.

As the tomographic reconstructions are subjects to

outliers, rather than estimating for each ray the maxi-

mum of intensity that may be ambiguous, we use the

cumulative reflectivity functions defined as:

C−(rs) =

∫ rs

rmin

|u(r)|dr and C+(rs) =

∫ rmax

rs

|u(r)|dr

(4)

with rs being the range of the surface along the ray. If

the surface cuts the ray such as C−(rs) < C+(rs) then

too much reflectivity is left “under” it from the sensor

point of view. On the contrary having C−(rs) > C+(rs)

means that most of the bright voxels are located before

the surface. The quantity C−(rs) − C+(rs) is then an

indication on whether the surface is close to the median

of the reflectivity along the ray. The penalty we use for

the surface location is then given by:

D(r) =

∫ r

rmin

[
C−(rs)− C+(rs)

]
+

drs

+

∫ rmax

r

[
C+(rs)− C−(rs)

]
+

drs , (5)

with [.]+ being the Heaviside function. The only value

for which the two terms in equation (5) are both zero

correspond to r = requi the median of the reflectivity

along the ray. Moreover only one of the term is non-

zero as when r < requi, C−(rs) < C+(rs) and then

[C−(rs)− C+(rs)]+ = 0 and inversely when r > requi.

The penalty function D is then a monotonous increasing

function of the distance |r − requi|. Finally the data
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penalty is the sum of the penalization D for all the

possible rays going through the surface S :

Pd(S ) =

∫
τ∈R

Dτ (rτ→S ) dτ (6)

where rτ→S is the range position of the surface for the

ray τ and Dτ is the penalty function associated to this

ray.

To satisfy the third hypothesis and prevent the surface

to present to much oscillations, we apply a `1 penaliza-

tion on its variations. We define the spatial penalty as:

Ps(S ) =

∫∫∫
|∇S (x, y, z)|dxdy dz (7)

with ∇S (x, y, z) being the gradient of the surface. The

estimated surface is then the solution of the following

minimization problem:

Ŝ = min
S

Pd(S ) + βPs(S ) (8)

The parameter β balances the fidelity to the 3-D tomo-

graphic reconstruction and the spatial smoothness of the

surface.

After discretization of the surface and the set of

rays, the problem (8) can be equivalently formulated as

a maximum flow / minimum cut problem for a well

designed graph as presented in Fig. 2. Each node in

the graph corresponds to a voxel in the reconstruction

plus the source s and the sink t. The capacities of the

edges linking the node i to s and t are set respectively

to [C−(ri)− C+(ri)]+ and [C+(ri)− C−(ri)]+, with

ri being the distance from the sensor to the node i. The

capacities of two neighboring nodes is set equal to β.

Note that it is necessary to have the volume expressed

in ground geometry in order to favor the surface smooth-

ness along either z or (x, y). The minimum cut of this

3-D graph corresponds then to the surface separating

the less costly set of edges and corresponds to the

minimization of (8) up to the discretization of the scene.

We still have to address the last assumption of straight

walls. To avoid having snaking walls in the final esti-

mation, we add infinite capacity edges going from one

node to its upper neighbor along the z direction. As only

the capacities of the cut edges going from the source to

the sink are counted in the cut, this penalty prevents the

surface to present crenelation shape along a vertical line.

The construction of the graph and the computation of the

minimum cut is done using Boykov and Kolmogorov

graph-cuts library [7].

IV. ALTERNATED 3-D RECONSTRUCTION AND

SURFACE SEGMENTATION (REDRESS)

As stated in the introduction the sparsity parameter

is difficult to tune locally with CS methods. Here we

propose to use the 3-D knowledge provided by the

estimation of the urban surface to set the parameter µ

locally in the 3-D space. The tomographic reconstruction

and surface segmentation steps can then be repeated to

have refined estimation of the scene. For the kth iteration

the parameter µk ∈ RNx.Ny.Nz is computed as follows:

µk(x, y, z; S ) = µ0 +
b

(n− 1)2

(
k

n− k
d((x, y, z) ,S )

)2

(9)

where d((x, y, z) ,S ) is the Euclidean distance from

the point p = (x, y, z)T to the surface and n the total

number of iterations. µ0 is the first global value for the

parameter and is the one applied to points that lie on

the surface. To avoid penalizing too much points close

to the surface the square of the distance is used with an

increasing coefficient between 0 to 1. b corresponds to

the final coefficient applied to the square of the distance

and balances how fast the penalty increases through the

iterations. The REDRESS algorithm is then described

by:
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3-D tomographic reconstruction
 in ground geometry

3-D graph

Fig. 2. Construction of the graph from the 3-D tomographic estimation of the reflectivity in ground coordinate. Each voxel is associated to

a node and is linked to its direct neighbors plus the source s and the sink t. The blue edges have the capacity β and the red ones a infinite

capacity. On the right, two examples of a cut: a feasible one in green and an one with a infinite cost in red as an infinite capacity edge is going

from s to t.

while k < n do

û← 3-D Inversion(v,µ(S ))

S ← graph cut(û)

k ← k + 1

end while

V. RESULTS

The performances of the proposed algorithm are

demonstrated on a stack of 40 TerraSAR-X images of the

city of Paris. The baselines are non-uniformly sampled in

space and time. The baselines, the mean intensity SAR

image and the optical view of the area are shown Fig.

3.

The result obtained using the REDRESS algorithm as

well as the ground truth extracted from Google Earth

© are presented in Fig. 4. Five iterations were used for

the algorithm. The observed building is well represented

with correct height. Even details such as the oscillating

structure of the rooftop of pillars are visible in the

estimation. In the last version of this paper, results on a

bigger area will be presented.

VI. CONCLUSION

In this paper we present a new graph-cut based

urban surface segmentation method. This segmentation

Fig. 3. Data used for the inversion and surface segmentation. The

building seen correspond to the ministry of foreign affair in Paris.

From top to bottom, temporal intensity mean of the SAR pile, optical

image of the areas and baselines used.
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Fig. 4. On top ground truth, on bottom surface estimation for the

observed building

technique add a significant amount of information in

the interpretation of the 3-D data. This knowledge can

then be used to answer to the recurrent problem of

parameter tuning in sparse tomographic SAR reconstruc-

tion. The algorithm REDRESS alternates several steps of

tomographic estimation and segmentation to refine both

the sparse parameter tuning and the estimated surface.

Results on real data for dense urban landscape led to

interesting detailed results.
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