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Urban surface recovery through graph-cuts over SAR tomographic reconstruction
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The understanding of tomograms can be a difficult task when the observed scene is complex. The Synthetic Aperture RADAR (SAR) ranging acquisition induces geometrical distortions depending on the local slope of the back-scattering surface. Over dense urban areas, this particular geometry produces tilted facades instead of straight buildings. Moreover the high dynamic in SAR images of urban areas may lead to 3-D representation with very bright voxels eclipsing other echoes. In this paper we present a graph-cut approach adapted to any tomographic reconstruction technique to segment the urban surface in a 3-D tomographic reconstruction. Results on real data from a stack of 40 TerraSAR-X images are presented.

I. INTRODUCTION

SAR tomography has been successfully used for different kind of applications over the last two decades.

Experiences over uniform environments such as forest or glaciers [START_REF] Huang | Under foliage object imaging using SAR tomography and polarimetric spectral estimators[END_REF]- [START_REF] Tebaldini | Imaging the Internal Structure of an Alpine Glacier via L-Band Airborne SAR Tomography[END_REF] have produced 3-D models of the scatterers density of reflectivity. With the increase of resolution SAR tomography has been also experienced over urban areas allowing to have global rendering of observed cities.

The SAR tomography is basically the construction of a synthetic antenna in the elevation direction, i.e. orthogonal to the line of sight. This new antenna is formed by exploiting the different acquisitions available over a given scene. The focusing in the elevation direction can theoretically be done using a discrete inverse Fourier August 28, 2020 DRAFT transform of the data in the stacking direction.

To improve the resolution, different super-resolution approaches have been proposed. The Compress Sensing (CS) technique [START_REF] Zhu | Tomographic SAR Inversion by L 1 -Norm Regularization ; The Compressive Sensing Approach[END_REF], [START_REF] Budillon | Three-Dimensional SAR Focusing From Multipass Signals Using Compressive Sampling[END_REF] based on 1 -norm minimization of the back-projection of the stack has shown very promising results for dense urban areas. One recent CS-like approach [START_REF] Rambour | SAR Tomography Of Urban Areas: 3D Regularized Inversion In The Scene Geometry[END_REF] proposes to perform the backprojection of a 3-D cube corresponding to many pixels at once. This last method also performs the inversion directly in ground geometry to be able to use geometrical priors (cf. Fig. 1).

Having the reconstruction expressed in ground geometry is first step to help a potential viewer locating typical urban structures such as walls, ground and rooftops. The concentration of scatterers, secondary lobes and outliers however still produce ambiguities in the interpretation.

In this paper, we present a new graph-cut approach performing the segmentation of the urban scene from a tomographic reconstruction. The proposed method favors smooth reconstructions along the (x, y, z) axis that are faithful to the tomograms. The developed method is very general and could be used with any 3-D reconstruction in input as long as it corresponds to a physical representation of the signal (e.g. its amplitude or power). Here only the 3-D inversion under a sparse prior is used to illustrate the method due to its good performances on urban areas and as it performs the inversion in the desired geometry.

Finally we present an algorithm that alternates between a 3-D reconstruction and a surface segmentation step.

Through the iterations, the segmentation information is used to improve the sparsity priors.

II. GROUND FRAME 3-D BACK-PROJECTION

The SAR tomographic stack defines a set of N Single Look Complex (SLC) SAR images. After co-registration and phase calibration processing, the complex value for a pixel in the n th image located at the position (x, r) is given by the integration of the complex reflectivity u in the corresponding radar cell:

v n (x, r) = (y,z)∈∆r u(x, y, z)exp -jξ n z dydz + (1) 
The variables x, y and z denote the coordinates in the ground geometry. For sake of clarity the azimuth and x axis are chosen the same. The random variable (x, r) models the additive Gaussian thermal noise. The r-th radar resolution cell is defined by: ∆ r = { (y, z) | rδ range /2 ≤ ρ y,z ≤ r + δ range /2 }, with δ range the step in range direction. The parameter ξ n = 4πbn λr sin θ is the spatial impulse associated to the sampling of the scene for each baseline, b n is the n-th baseline, θ the incidence angle of the master sensor and λ the radar wavelength.

For urban areas, CS has been successfully used to inverse the previous equation under a sparsity prior. It has proved to achieve super resolution in scatterer unmixing in dense urban areas [START_REF] Zhu | Tomographic SAR Inversion by L 1 -Norm Regularization ; The Compressive Sensing Approach[END_REF], [START_REF] Budillon | Three-Dimensional SAR Focusing From Multipass Signals Using Compressive Sampling[END_REF]. Similar to conventional CS but able to process the estimation directly in ground geometry the 3-D inversion proposed in [START_REF] Rambour | SAR Tomography Of Urban Areas: 3D Regularized Inversion In The Scene Geometry[END_REF] allows to use geometrical priors. Here we will only use a sparse prior and thus the estimation of the reflectivity for all the scene is the solution of the problem:

August 28, 2020 DRAFT û = argmin u ||Φu -v|| 2 2 + µ||u|| 1 (2) 
The matrix Φ is the back-projection operator that projects a scene expressed in ground geometry in the SAR tomographic stack:

Φ k,l+(n-1).N =      0 if ρ 1;y l z l / ∈ [r k - δrange 2 , r k + δrange 2 ] exp(-jξ n z l ) otherwise, (3) 
The parameter µ balances the importance of the sparsity prior with respect to the data fidelity. The tuning of this parameter is a key point to have a good estimation of the reflectivity. However the knowledge of the additive noise level is hardly enough to get rid of outliers and/or side-lobes. As no prior information on the number of scatterers in each cell is available this parameter is hard to set. In the next part we present the graph-cuts based segmentation of the urban surface which we will use to refine the tomographic reconstruction.

III. GRAPH CONSTRUCTION AND URBAN SURFACE

SEGMENTATION

From a 3-D estimation of the reflectivity, we seek for the back-scattering urban surface accordingly to the following hypotheses:

1) The surface is located near the brightest voxel in the reconstruction.

2) A ray from the sensor to the intersection of a radar cell with the ground goes through the surface exactly once.

3) The urban surface is smooth and piecewise uniform either along the z direction or alongside the (x, y) plan.

4) The walls are straight and vertical.

To answer this segmentation problem we need to design a cost function that increases as these hypotheses are violated. From the first and second assumptions, for each ray the cost function has to increase with the size of the gap between the surface intersection and the brightest voxel on a ray. When this criterion is minimized the obtained surface is totally faithful to the original reconstruction. Hypothesis 3 and 4 help do deal with potential holes in the reconstruction or lobe spreading along the elevation direction.

As the tomographic reconstructions are subjects to outliers, rather than estimating for each ray the maximum of intensity that may be ambiguous, we use the cumulative reflectivity functions defined as: penalty is the sum of the penalization D for all the possible rays going through the surface S :

C -(r s ) =
D(r) = r rmin C -(r s ) -C + (r s ) + dr s + rmax r C + (r s ) -C -(r s ) + dr s , (5) 
P d (S ) = τ ∈R D τ (r τ →S ) dτ (6) 
where r τ →S is the range position of the surface for the ray τ and D τ is the penalty function associated to this ray.

To satisfy the third hypothesis and prevent the surface to present to much oscillations, we apply a 1 penalization on its variations. We define the spatial penalty as:

P s (S ) = |∇S (x, y, z)| dx dy dz (7) 
with ∇S (x, y, z) being the gradient of the surface. The estimated surface is then the solution of the following minimization problem:

Ŝ = min S P d (S ) + βP s (S ) (8) 
The parameter β balances the fidelity to the 3-D tomographic reconstruction and the spatial smoothness of the surface.

After discretization of the surface and the set of rays, the problem (8) can be equivalently formulated as a maximum flow / minimum cut problem for a well designed graph as presented in Fig. 2. Each node in the graph corresponds to a voxel in the reconstruction plus the source s and the sink t. The capacities of the edges linking the node i to s and t are set respectively

to [C -(r i ) -C + (r i )] + and [C + (r i ) -C -(r i )] + , with
r i being the distance from the sensor to the node i. The capacities of two neighboring nodes is set equal to β.

Note that it is necessary to have the volume expressed in ground geometry in order to favor the surface smoothness along either z or (x, y). The minimum cut of this 3-D graph corresponds then to the surface separating the less costly set of edges and corresponds to the minimization of (8) up to the discretization of the scene.

We still have to address the last assumption of straight walls. To avoid having snaking walls in the final estimation, we add infinite capacity edges going from one node to its upper neighbor along the z direction. As only the capacities of the cut edges going from the source to the sink are counted in the cut, this penalty prevents the surface to present crenelation shape along a vertical line.

The construction of the graph and the computation of the minimum cut is done using Boykov and Kolmogorov graph-cuts library [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF]. Results on real data for dense urban landscape led to interesting detailed results.
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  rs rmin |u(r)|dr and C + (r s ) = rmax rs |u(r)|dr (4) with r s being the range of the surface along the ray. If the surface cuts the ray such as C -(r s ) < C + (r s ) then too much reflectivity is left "under" it from the sensor point of view. On the contrary having C -(r s ) > C + (r s ) means that most of the bright voxels are located before the surface. The quantity C -(r s ) -C + (r s ) is then an indication on whether the surface is close to the median of the reflectivity along the ray. The penalty we use for the surface location is then given by:

  with [.] + being the Heaviside function. The only value for which the two terms in equation (5) are both zero correspond to r = r equi the median of the reflectivity along the ray. Moreover only one of the term is nonzero as when r < r equi , C -(r s ) < C + (r s ) and then [C -(r s ) -C + (r s )] + = 0 and inversely when r > r equi . The penalty function D is then a monotonous increasing function of the distance |r -r equi |. Finally the data August 28, 2020 DRAFT
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 2334 Fig. 2. Construction of the graph from the 3-D tomographic estimation of the reflectivity in ground coordinate. Each voxel is associated to a node and is linked to its direct neighbors plus the source s and the sink t. The blue edges have the capacity β and the red ones a infinite capacity. On the right, two examples of a cut: a feasible one in green and an one with a infinite cost in red as an infinite capacity edge is going from s to t.