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THE TOPOLOGICAL LIGAMENT IN SHAPE OPTIMIZATION: A CONNECTION
WITH THIN TUBULAR INHOMOGENEITIES

C. DAPOGNY!

1 Univ. Grenoble Alpes, CNRS, Grenoble INP', LJK, 38000 Grenoble, France.

ABSTRACT. In this article, we propose a formal method for evaluating the asymptotic behavior of a shape
functional when a thin tubular ligament is added between two distant regions of the boundary of a domain.
In the contexts of the conductivity equation and the linear elasticity system, we relate this issue to a perhaps
more classical problem of thin tubular inhomogeneities: we analyze the solutions to versions of the physical
partial differential equations which are posed inside a fixed “background” medium, and whose material
coefficients are altered inside a tube with vanishing thickness. Our main contribution from the theoretical
point of view is to propose a heuristic energy argument to calculate the limiting behavior of these solutions
with a minimum amount of effort. We retrieve known formulas when they are available, and we manage
to treat situations which are, to the best of our knowledge, not reported in the literature (including the
setting of the 3d linear elasticity system). From the numerical point of view, we propose three different
applications of the formal “topological ligament” approach derived from these expansions. At first, it is
an original way to account for variations of a domain, and it thereby provides a new type of sensitivity
for a shape functional, to be used concurrently with more classical shape and topological derivatives in
optimal design frameworks. Besides, it suggests new, interesting algorithms for the design of the scaffold
structure sustaining a shape during its fabrication by a 3d printing technique, and for the design of truss-like
structures. Several numerical examples are presented in two and three space dimensions to appraise the
efficiency of these methods.
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1. INTRODUCTION

In line with the growing interest raised by shape and topology optimization within the academic and indus-
trial communities, various computational paradigms have emerged, with competing assets and drawbacks;
see [92] for an overview. Among them, relaxation-based topology optimization frameworks feature designs
as density functions and (possibly) microstructure tensors, describing the local arrangement of material and
void at the microscopic scale; see for instance [30, 95] about the SIMP method, and [2] about the homog-
enization method. Another popular optimal design framework is that of “geometric” shape and topology
optimization, where the optimized shape is rather represented as a true “black-and-white” domain. Several
mathematical tools are then available to evaluate the sensitivity of the optimized criterion with respect to
variations of the design, notably the notions of shape derivative and topological derivative. This article
focuses on another, less considered type of sensitivity for functions of the domain which evaluates the effect
of gluing a thin tubular ligament to the optimized shape. The proposed approach to address this question
relies on a formal connection between this geometric shape and topology optimization setting and the math-
ematical field of small inhomogeneities asymptotics, which has been the focus of much attention from the
inverse problems community.

1.1. Foreword: various means to evaluate the sensitivity of a function with respect to the
domain

Let us consider a model shape and topology optimization problem of the form:

(1.1) Jnin J (),
where the objective function J(£2) depends on the optimized design 2, which is sought within a set Unq of
admissible shapes in R? (d = 2,3 in applications). A great deal of optimization algorithms dedicated to
the resolution of (1.1) (starting from the gradient method) rely on the “sensitivity” of J(€2) with respect to
“small variations” of £2. These notions are usually understood from two different, complementary viewpoints:
e Hadamard’s boundary variation method is perhaps the most popular framework for geometric shape
optimization. It features variations of a shape 2 of the form

Qg := (Id + 6)(Q), where 6 : R? — R? is a “small” vector field.

Intuitively, § encodes the deformation of Q (and particulary, its boundary 0f2) at each point; see
Fig. 1 (top, right). The shape derivative J'(2)(0) of J at  is accordingly defined as the Fréchet
derivative of the underlying mapping 6 — J(€y) at = 0, so that the following expansion holds in
the neighborhood of § = 0:

J(Q) = J(Q) + J'(Q2)(6) + o(#), where m — 0as 0 — 0;
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see Section 7.2.1 for a little more detailed presentation. We refer generally to e.g. [12, 70, 83, 98]
for the mathematical theory underlying Hadamard’s boundary variation method, and to [8, 93] for
implementation issues.

e The concept of topological derivative is based on variations of 2 of the form

Qgo.r = Q\ B(zo,r) where B(z,) is the open ball with center z( and radius 7.

In other terms, Q, , is obtained from €2 by nucleation of a hole centered at =y € Q with small radius
r > 0; see Fig. 1 (bottom, left) for an illustration. The topological derivative dJr(€2)(xo) of J at Q
is the first non trivial term in the asymptotic expansion of J(€, ) as r — 0; typically:

I (Qag,r) = J(Q) + 72 Ir () (o) + o(r?).

We refer to [26, 62, 97, 90] for more details about topological derivatives.

FIGURE 1. (Top, left) One shape Q C RY; (top, right) deformation Qg of Q via the diffeo-
morphism (Id + 6); (bottom, left) variation Qy, , of Q by nucleation of a hole with radius
r around xo; (bottom, right) variation Q, . of Q by addition of a thin ligament with base
curve o and thickness €.

There is also a third notion of sensitivity of J(§2) with respect to €, seldom considered in the literature,
which accounts for the addition to €2 of a ligament w, . with “small” thickness ¢ around a base curve o; see
Fig. 1 (bottom, right). More precisely, let o : [0,¢] — R? be a curve, whose endpoints ¢(0) and o (¢) belong
to 012, and which otherwise lies completely outside €2; one considers the variations 2, . of € defined by:

(1.2) Qe = QU wey e, where w, . 1= {x eRY, d(z,0) < 6} ,

the thickness ¢ < 1 of the ligament tends to 0, and d(z,0) = min,e, |z — p| is the usual Euclidean distance
from x to 0. One then looks for an asymptotic expansion of J(2, ) of the form:

(1.3) J(Qo,c) = J(Q) + e 1dIL(Q)(0) + o(e?).
Note that the decay rate ! of the first non trivial term in this expansion is proportional to the measure
|we.e| of the vanishing ligament as ¢ — 0. The sign of the “ligament derivative” dJi(2)(o) then indicates

whether grafting the thin tube w, . to Q is beneficial in terms of the performance criterion J(€2).
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Variations of a domain of the form (1.2), and the associated asymptotic expansions (1.3) of related shape
functionals, have been originally analyzed in the series of articles [35, 84, 86]. Unfortunately, the derivation of
an expansion of the form (1.3) is far from an easy task, especially when the shape optimization problem (1.1)
under scrutiny originates from mechanical applications: J(€2) then depends on Q) via the solution ug to a
partial differential equation posed on 2 (e.g. the conductivity equation, or the linear elasticity system), which
characterizes its physical behavior. In this spirit, the asymptotic analysis of partial differential equations
posed on domains of the form (1.2) has been considered in the seminal works [85, 84, 86], where expansions
of the form (1.3) are proved rigorously. The notion of “exterior topological derivative” constructed in there
involves partial differential equations posed on the product set of the shape 2 with the rescaled geometry
w1 of the ligament. The mathematical justification of expansions such as (1.3) is intricate; moreover, the
resulting formulas do not lend themselves to an easy use in numerical algorithms, as the authors themselves
acknowledge in [84].

1.2. From topological ligaments to thin tubular inhomogeneities

In the present article, we propose a formal change in viewpoints about the means to understand variations
of a shape of the form (1.2), which paves the way to approximate expansions of the form (1.3). These are
easier to calculate than their exact counterparts, and they are also much more amenable to use in numerical
practice.

In order to enter a little more into specifics, let us slip into the model context of the conductivity equation,
which is analyzed more thoroughly in Section 2 below. The considered objective function J(€2) of the shape
Q reads:

(1.4) J(Q) = /Qj(uQ) dez,

where j : R — R is a smooth function, and the physical state uq is the potential, solution to:

—div(yVugq) = f in Q,

ug =0 onI'p,
(15) 'yizau’r? =g on I'y,
VHE = on I,

and v(x) stands for the inhomogeneous conductivity inside 2. The parts T'p and T’y of 9 bearing homoge-
neous Dirichlet and inhomogeneous Neumann boundary conditions are non optimizable, and the functions f
and g stand for a body source and a heat flux entering €2 through I'y, respectively. The remaining, effort-free
subregion I' of 012 is therefore the only one subject to optimization. The perturbed version of (1.5) where a
thin ligament w, . of the form (1.2) is grafted to € is described by the system:

—div(yVuge) = f in QUuwe,

ug,e =0 on I'p,
(1.6) ,yalé?la — g on ].—‘N, - -
722 =0 ond(QUwe)\ (Tp UTR);

where homogeneous Neumann boundary conditions are imposed on the boundary of the grafted ligament
We e defined in (1.2).

In our analysis, we propose to approximate (1.5) and (1.6); we introduce a large “hold-all” domain D C R9,
containing §2, such that both regions I'p and I'y of 9 are also subsets of 9D, and we replace (1.5) by the
following “background” conductivity equation, posed on D as a whole:

—div(vVug) = f in D,

ug =0 on I'p,

1.7 u

(L.7) 70%29 only,
YoHe = on 9D\ (I'pUTy),



where ~(z) is an inhomogeneous conductivity coefficient. Formally, the solution wuy to (1.7) is a good
approximation of that uq to (1.5) when 7y is of the form

| > ifzeqQ,
(1.8) Yo(w) = { ny(x) otherwise,
with 77 < 1, thus mimicking void, or when vy(x) is a smoothed version of (1.8), as we assume thenceforth for
simplicity (see Remark 2.2 below about this point). This is the well-known ersatz material method in shape
and topology optimization: see for instance [2, 11, 30] and [18] about the consistency of this approach.

I‘D rD

D D

FIGURE 2. (Left) Graft of the ligament w, . with base curve o and thickness € to a shape Q;
(right) corresponding tubular inclusion inside an approzimate background medium occupying

the hold-all domain D.

As an approximation of (1.6), we then introduce the perturbed version of (1.7) where the thin tube
Wy € D in (1.2) is filled by a material with conductivity 1 (x); the perturbed potential u. then satisfies:

—div(y.Vues) = f in D,

ue =0 on I'p, _ [ @) ifr€w,
(1.9) ou _ g on Ty, where 7. (z) = { Yo(z) otherwise;
0

Ve on
Ve %f on 0D,

see Fig. 2 for an illustration.

Our strategy for calculating approximate topological ligament expansions such as (1.3) now outlines as
follows. We investigate the asymptotic behavior of the perturbed, smoothed potential u. as € — 0, and that
of an approximate counterpart J,(g) of the objective J(£2s) in (1.4) of the form:

(1.10) T, (e) = / j(ue) da.

D
More precisely, we search for a function u; : D — R and a real number J. (0) such that:
(1.11) ue = ug + e tug +o(e%71), and J, () = J,(0) + e 1TL(0) + o(e77T).

Finally, we retain J.(0) as an approximation of the ligament derivative dJp(2)(o) featured in the exact
expansion (1.3).

Interestingly, we could have considered a wide variety of “small” inclusion sets w. € D in the formulation
of the problem (1.9), beyond thin tubes we . of the form (1.2). For instance, w, . could be replaced by a ball
with radius €, or a collection of such.

The general study of the influence of low volume inclusions w. within a smooth background medium
has received a considerable attention in the literature. Since the analysis of the approximate asymptotic
expansions (1.11) conducted in the next sections relies heavily on results and techniques involved in these
investigations, we next present this topic with a little more details.
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Remark 1.1. The above strategy for evaluating approximately the sensitivity of a functional with respect to
the addition of a thin ligament to the domain is somehow reminiscent of the so-called “Moving Morphable
Components” method in structural optimization; see [67], and [71] in the context of density-based topology
optimization. In those works, designs are represented as collections of bars, parametrized by one of their
endpoints, their length and orientation. A smooth material coefficient is calculated thanks to the ersatz
material method, approximating the mechanical behavior of the design. Finally, the optimal design problem
is reformulated and solved in terms of these parameters. This idea could lead to an alternative way to
construct a perturbed, smoothed equation such as (1.9), and thereby a smoothed functional (1.10); see also
[27] where a similar process is analyzed in connection with shape and topological derivatives.

1.3. Sensitivity of a problem perturbed by small inhomogeneities

The effect of low-volume perturbations in the material coefficients of a partial differential equation has been
the subject of multiple investigations in the literature. In this section, we mention a few related facts and
interesting results, without claiming for exhaustivity.

The general structure of the expansion of the solution u. to the conductivity equation (1.9), when the
smooth background medium ~y(z) is perturbed by an arbitrary inclusion set w. with vanishing measure
|we|— 0 has been identified in the article [42]; it reads:

(1.12) te () ZUO(w)Jrlwe\/DM(y)Vuo(y)'VN(x’y) du(y) + of|we|)-

Here, du is a measure capturing the limiting behavior of the rescaled inclusions ﬁws, M(y) is a polarization
tensor, appraising the limiting behavior of the field u. inside w., and N(zx,y) is the fundamental solution
of the background conductivity operator in (1.7); see (2.9) below for a precise definition. These conclusions
have been extended to various physical contexts, such as those of the linear elasticity system in [31], or the
Maxwell’s equations in [66].

A few particular instances of the above general question have been thoroughly analyzed, where more
specific assumptions about the geometry of the vanishing inclusion set w. make it possible to determine

explicitly the limiting measure du and the polarization tensor M (y).
e The situation which is best understood is certainly that of diametrically small inclusions, where w,
is of the form
(1.13) we = Zo + ew, for some fixed zg € D and w € R%.

The limiting measure dyp turns out to be the Dirac distribution d,, at the point z¢ where w, shrinks,
and the explicit expression of the polarization tensor M(xg) involves the solution to an exterior
problem posed in R%\@; see Section 4 below for more precise statements. Among other contributions

in this direction, see [23, 43, 88] in the case of the conductivity equation, [21] as regards the linear
elasticity system and [24] when it comes to the Maxwell’s equations.
e Thin inhomogeneities have also been paid much attention: w, is then a thin sheet of the form
(1.14) we ={x €R, d(z,8) < e},

around a (open or closed) (d — 1) hypersurface S C R?. In this setting, the limiting measure du
corresponds to the integration over S and for y € S, the polarization tensor M(y) is diagonal in
a local frame obtained by gathering tangent and normal vectors to S at y; see Sections 2 and 3
below for a more precise account in two space dimensions. In this thin inhomogeneity context, we
refer to [35, 34] for the rigorous calculation of the expansion of the solution u. to the conductivity
equation based on variational techniques, and to [72] for an alternative method of proof based on
layer potentials. Interestingly, asymptotic expansions have been derived in the thin inhomogeneities
context which are uniform with respect to the conductivity v; filling w. (the latter may take values
arbitrarily close to 0 or co): see [52] in the case where S is closed, and the recent two-part paper
[44, 45] dealing with the challenging issue of open curves in 2d. Let us finally refer to [33] about thin
inhomogeneities expansions in the context of the linear elasticity equations in 2d.

e One last context of interest in applications is that of tubular inhomogeneities w, ., of the form
(1.2). This situation coincides with that of thin inhomogeneities when d = 2, but it turns out to
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be altogether different when d = 3. Then, to the best of our knowledge, the only rigorous result in
the literature arises in the context of the conductivity equation, under the assumption that the base
curve o is a straight segment; see [32].

In general, the mathematical analysis of such small inhomogeneities asymptotics can be conducted via
different techniques. On the one hand, variational methods rely on precise estimates (in the energy norm,
notably) of the field u. and the difference between wu. and ug or several intermediate quantities; see the
aforementioned works [34, 33, 43, 44, 45, 52, 88]. On the other hand, layer potential techniques rely on a
representation of the field u. as an integral over the boundary of the vanishing set Ow., and on asymptotic
expansion formulas for the fundamental solution N (x,y) of the background operator involved in this integral;
see for instance [22, 19].

From the numerical point of view, asymptotic formulas of the form (1.12) have been widely used for the
detection or the reconstruction of small inclusions w, inside a known background medium. Most of these
investigations arise in the context of electrical impedance tomography, where a known current g is injected
(or a collection of such), and the corresponding potential u., solution to (1.9) is measured either on all, or
only one part of the domain D, with the purpose to retrieve some of the features of w. (its diameter, the
position of its centroid, etc.).

e The reconstruction of diametrically small inhomogeneities has been extensively addressed in the
literature, and we refer to Chapter 5 in [18] for an overview. In a few words, a least-square algorithm
was originally proposed in [13] for the reconstruction of the parameters of the inclusion set w. at
play in the asymptotic formula (1.12) when the latter is a collection of balls (center, shape). More
robust approaches were then devised, using particular input currents g, such as constant [75, 23],
linear [18], or exponential functions [22]. The entries of the polarization tensor M and the locations
of the inclusions can then be inferred from the calculation of integral quantities involving the input
and measured data, namely, the values of g and the measured potential u. on dD. Let us also

mention the variant of the linear sampling method developed in [38] to deal with the identification
of diametrically small inhomogeneities.
e The reconstruction of thin inhomogeneities has been considered in [16] in the context of the 2d

conductivity equation; the authors use the knowledge of the first non trivial term in the expansion of
the potential u. to infer first the polarization tensor, thus the direction of the base curve, assumed to
be a line segment, then the endpoints of the curve, from the datum of two boundary measurements.
This idea is generalized in [17] to handle inclusions made from multiple segments in 2d.

e To the best of our knowledge, the identification of tubular inhomogeneities inside a three-dimensional
medium has only been addressed in [32] and [65], in the context of the conductivity equation. In
the former work, the asymptotic expansion of u. is rigorously calculated and used, in the particular
case where o is a straight segment; on the contrary, in [65], the author relies solely on the general
structure (1.12) of this expansion in order to construct an indicator W (z,n) which vanishes on D,
except at points x € D which are close to the sought curve ¢ and in the directions n which are
orthogonal to o at x.

1.4. Main contributions and outline of the article

The findings of the present article were partly announced in the preliminary note [49]; our purpose is twofold.

From the theoretical point of view, our main aim is to calculate the sensitivity of the solution u. to certain
partial differential equations—namely the conductivity equation and the linearized elasticity system— with
respect to perturbations of the background material properties inside tubular inclusions w, ., of the form
(1.2). As we have mentioned, these expansions have already been computed in a variety of situations, mainly
in 2d; their proof is however quite intricate, and we propose a formal method to achieve this, inspired by the
former works in [88, 52], and [82]. With a minimum amount of technicality, the presented argument allows
us to retrieve asymptotic expansions for thin tubular inhomogeneities in situations where rigorous proofs are
already available in the literature (the cases of the 2d conductivity and linear elasticity equations, and that
of the 3d conductivity equation when o is a straight segment); moreover, it allows for a formal calculation of
such expansions in situations which are, to the best of our knowledge, not reported in the literature (such as
that of the 3d linear elasticity system). Furthermore, we show that the expansions of u. obtained in these
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different contexts make it possible to calculate the asymptotic behavior of related observables J,(g) (see e.g.
(1.10)) in a convenient adjoint-based framework which is familiar in shape and topology optimization.

From the numerical point of view, we explore several applications in shape and topology optimization of
our asymptotic formulas for thin tubular inhomogeneities. We have indeed exemplified in Section 1.2 that
they make it possible to approximate the sensitivity of a function of the domain when a thin ligament is
grafted to the latter. We show how this strategy can be used to fulfill multiple purposes in the shape and
topology optimization context, such as:

e to add bars to structures in the course of a “classical” shape optimization process driven by shape
derivatives, thereby making the final design less sensitive to the initial guess;

e to calculate an optimized support structure for a shape showing overhang features, in readiness for
its construction by additive manufacturing;

e to predict a “clever” initial guess, made of bars, for the optimization of a truss-like structure (i.e.
whose outline resembles a collection of bars).

The remainder of this article is organized as follows. In Section 2, we discuss the problem of thin tubular
inclusions in the physical context of the two-dimensional conductivity equation. The main result, Theo-
rem 2.1, describes the first non trivial term in the asymptotic expansion of the perturbed state u.. Although
this situation is well-understood in the literature, we take advantage of its technical simplicity to explain
carefully how a simple and heuristic energy argument allows to retrieve the correct expression. The derivative
with respect to the vanishing thickness € of a functional depending on u. is then calculated in Section 2.3 by
means of a suitable adjoint method. In Section 3, we adapt these developments to the case of the 2d linear
elasticity system. Our next task is to obtain similar results in three-dimensional situations. It turns out
that this question shares much similarity with the treatment of diametrically small inhomogeneities. For this
reason, we expose in Section 4 how our heuristic energy argument also allows to handle this well-known case
in the literature. We are then in position to address the calculation of the asymptotic expansion of the field
ue in the case of tubular inhomogeneities in 3d, first in the case of the conductivity equation in Section 5,
then in the context of the linear elasticity system in Section 6. As we have mentioned, the ideas introduced
in this article give rise to various numerical algorithms in connection with the field of shape and topology
optimization. These are presented in Section 7, and illustrated with concrete physical examples. Eventually,
several theoretical perspectives of our work are outlined in Section 8, as well as promising applications.

2. ASYMPTOTIC EXPANSION OF THE SOLUTION TO THE CONDUCTIVITY EQUATION IN 2D

The analyses of this section take place in the setting of the 2d conductivity equation which we have already
encountered in Section 1.2, where the salient points of this article can be conveniently exposed, with a
minimum level of technicality.

2.1. Presentation of the model setting and statement of the results
Let D C R? be a bounded Lipschitz domain, filled by a material whose conductivity o € C°°(D) satisfies:
(2.1) Vz e D, y_ <7o(x) < vy,

for some fixed constants 0 < v— < v4. The boundary 9D is composed of three disjoint, open subsets: the
voltage potential is kept at constant value 0 on I'p, while a smooth heat flux g € C*°(T'y) is entering D via
the subset I'x; the domain D is insulated from the outside on the remaining part D\ (I'p UT x). Denoting
by f € C*°(D) a source acting in the medium, the voltage potential ug inside D is the unique solution in the
space

H} (D):={ue H'(D), u=0onTp}
to the following “background” conductivity equation:

—div(vVug) = f in D,

ug =10 on I'p,

2.2 u

(22) 70%29 only,
YoHe = on 9D\ (I'pUTy).



Let us already notice that the classical regularity theory for elliptic equations predicts that the solution wg
to (2.2) is smooth in the interior of D; see e.g. [37], §9.3

We now consider a version of the above situation where D is perturbed by a “thin” tubular inclusion we .
with width € > 0 around a base curve o:

(2.3) wo,e = {z € R?, dist(z,0) <e};

see Fig. 3 for an illustration. Here, we assume that o : [0,4] — D is a smooth (open or closed) connected
curve, parametrized by arc length (so that £ is the length |o| of the curve), which does not intersect 9D, and
is not self-intersecting. Throughout the article, with a slight abuse of notation, we identify the geometric
curve o with its parametrization s — o(s). The inclusion w, . is filled with another material with smooth
conductivity 71 € C>(D), which also satisfies (2.1) (up to modifying the values v_ and v, ). The potential
ue in this perturbed situation is the unique solution in H%D (D) to the following equation:

—div(y.Vus) = f in D,

us =0 onI'p, _f m@) iz cws,
@4) ’Yo% =g on I'y, where 7. (z) = { Yo(x) otherwise.
’Yoﬁ: on 8D\(FDUFN),

FIGURE 3. Setting of the perturbed conductivity problem (2.4) in the case of (left) a closed
base curve o and (right) an open base curve o.

We aim to understand the behavior of u. as the thickness ¢ of the inclusion vanishes. In this direction, a
fairly classical analysis yields the natural convergence result (see Lemma B.1 for a proof):
ue <22 uy strongly in Ht (D).

We then wish to identify the next term in the asymptotic expansion of u. as € — 0; the main result of
interest is the following and we refer to [34, 72] for rigorous proofs based on different techniques.

Theorem 2.1. The following expansion holds at any point x € D\ o:
(2.5) Uue(x) = ug(x) + euy (x) + o(e), where uy(z) = / M(y)Vuo(y) - VyN(z,y) dl(y),

and the remainder o(e) is uniform when x belongs to a fized compact subset of D\ o. Here, N(z,y) is
the fundamental solution of the background operator (2.2) (see Section 2.2.1), and for any point y € o, the
polarization tensor M(y) is a symmetric 2 X 2 matriz. Its expression reads, in the local orthonormal frame
(1(y),n(y)) of R? made of a unit tangent vector T(y) to o at y and its 90° counterclockwise rotate n(y):

2(m(y) —0(y)) 0
(2.6) M(y) = ( 0 290 (y) (1 B 1?83) > .




Remark 2.1. In the above expression, and throughout this article, we have denoted by df the line measure
on a (smooth enough) one-dimensional subset of R%, d = 2,3. This measure coincides with the surface
measure ds on a (d — 1)-dimensional hypersurface of R? when d = 2, and we shall use interchangeably either
notation in this situation.

Theorem 2.1 holds regardless of whether o be closed or open. While the latter situation is the most
interesting for our applications, its rigorous mathematical treatment is significantly more involved. Briefly,
one has to prove that the contribution of the endpoints of ¢ to the asymptotic behavior of u. is of order higher
than e. This fact is observed in all the situations handled in the literature, to the best of our knowledge:
see [34] for the case of the 2d conductivity equation, [33] for the case of the 2d elasticity system, and [32]
in the context of the 3d conductivity equation, under some technical assumptions. It even holds true when,
in the 2d conductivity case, the conductivity inside the inclusion is allowed to degenerate to 0 or co; see
[44, 45, 52].

In Section 2.2.3 below, we propose a formal method, which can be made rigorous in some cases, leading to
the correct expansion (2.5) from intuitive considerations. According to the previous discussion, for simplicity,
the presentation of our formal argument proceeds under the simplifying assumption that the curve o is closed.

Our second topic of attention in Sections 2.2 and 2.3 concerns the behavior as ¢ — 0 of a quantity of
interest J, (&) involving the perturbed potential u.. To set ideas, we consider a function of the form:

(2.7) J5(€) :/ Jlue) dz,
D
where j € C*(R) satisfies the growth assumptions:
(2.8) VueR, [j(u)] < C+[uf*), [7'(w)] < CQ+ul), and |5”(u)] < C,

for some constant C' > 0. Using Theorem 2.1, we prove in Section 2.3 that J,(¢) is differentiable at ¢ = 0,
with derivative

J(/T(O) = /Dj/(uo)ul dz.

This expression is somewhat awkward, since it involves the term u4 in (2.5), which depends on ¢ in a very non
trivial way. This makes difficult the identification of a curve o such that J. (0) be as negative as possible. To
overcome this drawback, we show that, thanks to the introduction of a suitable adjoint state py € H%D (D),
this derivative has the alternative form:

T.(0) = / M(x)Vug - Vpo di(z),
which is much more suitable for our purpose.

Remark 2.2. We believe that the aforementioned results, and notably Theorem 2.1, still hold true in the
case where the background conductivity o is only piecewise smooth, with jumps not aligned with the curve
o, and in the case where o does intersect 0D in a non tangential way. Although we have no proof of these
facts, we shall see in the examples of Section 7.3 that the use of our asymptotic formulas when o intersects
0D yields coherent numerical results.

2.2. Asymptotic behavior of the potential u,

Our purpose in this section is to retrieve the conclusion of Theorem 2.1 thanks to a simple formal argument
based on energy considerations, in the particular case where o is a closed curve. To this end, we first recall
some elementary facts about the fundamental solution to (2.2) in Section 2.2.1 and about the signed distance
function to a closed curve ¢ in Section 2.2.2.

2.2.1. Preliminaries about the fundamental solution to the background conductivity equation (2.2) in 2d

Let N(z,y) be the fundamental solution of the operator in (2.2), that is, for a given point x € D, the function
y +— N(z,y) satisfies:

N(z,y)) = 0y=, in D,

divy (70 (y)Vy L
(2.9) Yo(y) gfl\i (z,y) =0 on dD\ T'p,
N(z,y)=0 on I'p,



where 0, is the Dirac distribution at y = x. A simple adaptation of the proof of Lemma 2.36 in [60] reveals
that the function N(z,y) is symmetric in its arguments: N(x,y) = N(y,x). Moreover, it has essentially the
same singularities as the (modified) fundamental solution of the Laplace operator in the free space

(2.10) G(z,y) = ﬁlog@—m.

270
More precisely, the following decomposition holds:
(2.11) N(z,y) = G(z,y) + R(z,y),

where for x € D, the remainder y — R(x,y) satisfies:

divy (0 (1) VyR(2,Y)) = 5memy e - V0(y) 0 D,

W) S (@,9) = 22 R on 9D\ T,
R(z,y) = —m log |z — g onI'p.

Since the right-hand side of the above equation is in LP(D) for 1 < p < 2, it follows from classical elliptic
regularity that, for a given point z € D, the functions y — R(x,y) and y — N(z,y) are smooth on D\ {z};
moreover, for any compact subsets K, K’ € D, there exists a constant C' such that:

(2.12) sup ||R(z, ~)||Wz,p(K/) + sup ||R(z, ~)HH1(D) <,
zEK zeK

see [37, 64], and also [61] for a more thorough analysis of such fundamental solutions.

Let now 0 € D be a smooth, connected, open or closed curve which does not present self-intersections; we
denote by n(x) a smooth unit normal vector field to o, whose orientation may be arbitrary for the purpose
of this section. When a(z) is a discontinuous quantity across ¢ which is sufficiently smooth from either side
of o, we denote by

at(x) = lim a(x + tn(x))
t>0

the one-sided limits of a at © € . Accordingly,
[a](z) := aT(x) —a™ (v) and {a}(z) :=a"(z)+a (z)

are respectively the jump and the mean value of a across o; see again Fig. 3.
In the following, we shall require information about the following integrals, involving the fundamental
solution N (z,y) to (2.2) and a smooth enough density function ¢, say ¢ € C%!(c) for some 0 < [ < 1:

Vo € D\ o, Syp(z)= / N(z,y)e(y) ds(y),

ON

Ve € D\ o, Dyp(z) = / Wo(y)aT(%y)@(y) ds(y),

These quantities are respectively the well-known single and double layer potentials associated to ; see
[19, 60, 80] and references therein for related material, and also [73, 74] when o is open.
The single and double layer potentials S, and D, p satisfy the following jump relations on o:

(2.13) [So] =0, |:'7088n(8080):| =,
and

0
(2.14) [Doyp] = —¢, [%%(Dasﬁ)} =0,

both formulas being obviously independent of the chosen orientation for the normal vector n.
11



A straightforward calculation based on (2.13) and (2.14) reveals that the first-order term u; in the ex-
pansion (2.5) of the perturbed potential u. satisfies the following partial differential equation:

—div(yVu1) =0 in D\ o,
u; =0 on I'p,
(2.15) Yo = on D\ Tp,
] =-2(1-2)Ge on o,
[0%4] = —22 (1 —10)%2) ono.

The function u; is equivalently characterized by the integral representation (2.5) or as the solution to (2.15).
Note however that the functional setting for (2.15) differs, depending on the nature of o. When o is closed,
w1 is the unique solution in the space H%D (D\ o) to this equation. The case where o is open is more subtle;

see [73] for related issues. The function u; then satisfies the various components of (2.15) in the sense that
it belongs to C2(D \ @), that it has one-sided limits u3 (z) at every point  in the interior of o, and that it
has logarithmic singularities at the endpoints; see [16] for precise statements and proofs.

Remark 2.3. The exact counterparts of the above properties hold in the case of three space dimensions, up
to the fact that the (modified) fundamental solution G(x,y) in (2.10) then reads:

1
dryo(x)|x —y|

2.2.2. Preliminaries about the signed distance function to a closed curve in 2d

G(x,y) =

As we have mentioned, our formal calculation of the first-order asymptotic expansion of Theorem 2.1 is
considerably simpler when o is a closed curve. This situation can indeed be treated with the help of the
notion of signed distance function, whose main properties we recall for the convenience of the reader, referring
to e.g. [41, 53, (4] for details.

Let ¢ C R? be a smooth, connected, closed and non self-intersecting curve, which delimits an interior and
an exterior domain, O° and O respectively; see Fig. 3 (left). We denote by n = (n1,n2) : ¢ — R? the unit
normal vector to o, pointing outward O°, and by 7 = (na, —n1) the corresponding tangent vector, so that
for any point = € o, (7(z),n(x)) is a local orthonormal frame of the plane.

Definition 2.1.
e The signed distance function d, to the interior domain O° is defined by:
—d(z,0) ifze O,
Vo € R?, dy(z) := 0 if v € o,
d(z,0) ifze O
where
(2.16) d(x,0) = min|z — p|
pEOC
1s the usual Euclidean distance function to o.
e The points p € o achieving the minimum in the definition (2.16) are called the projections of x onto

o. When there exists a unique such point, it is denoted by p,(z).
o The skeleton X of o is the set of points x € R? having at least two projections on o.

Since o is smooth, there exists r > 0 such that the mapping
(2.17) (=r,r) x o3 (t,x) — =+ tn(z) € we,yr
is a smooth diffeomorphism onto the tubular neighborhood w, - of o defined in (2.3). Its inverse is:
Wor D — (do(2),ps(2)) € (—1,7) X 0}

see [14] or [99], Th. 20, p. 467. Throughout this article, we assume for notational simplicity and without
loss of generality that this property holds for some r > 1. As a consequence, the tangential and normal
vector fields 7(x) and n(x) can be extended from o to the whole set w, 1 via the formulas

(2.18) T(z) = 7(po(z)), and n(z) = n(ps(x)), = € we1,



a notation that we consistently employ in the following. In particular, it is possible to define the normal and

tangential derivatives % and % of a (smooth enough) function u : D — R on the whole neighborhood wy ;.

Also, when M : D — R?*2 is a matrix-valued function, we denote by

MTT MTTL
M= < Mnr My, )

its expression in the local basis (7,n), that is, for © € wy1: M- (z) = M(2)7(x) - 7(x), Mrp(z) = M(z)n(z)-
7(z), etc.

The derivatives of the signed distance function d, and the projection p, read:

1
(2.19) V& € wy1, Vdy(z) = xd:?(;()x) = n(pys(x)), and Vp,(z) = ( de'(g)’”"(z) g ) ,
where the latter matrix is expressed in the local basis (7(x),n(x)). Here, k : ¢ — R is the mean curvature of
o, oriented in such a way that x(x) is positive when 0Y is locally convex around z, and we take the shortcut
k() = k(po(x)) for x € wy 1.

In the following, it will also prove useful to recast integrals over the tubular neighborhood w, ; as nested
integrals over o and (—1,1); to this end, applying the coarea formula of Lemma A.1 with the mapping p,
and using (2.19) yields:

Proposition 2.1. For any function ¢ € L'(w,.1), it holds:

/wm1 o(z)dz = /(, (/11 (1+ ts(p)) f(p + tn(p)) dt) de(p).

We conclude this section with a few technical formulas involving the extended normal and tangential
vector fields n, 7 : w, 1 — R? in (2.18).
We first calculate the derivatives of n and 7. Differentiating the normalization identities |7|*> = |n|> = 1
and 7-n = 0 yields:
Vrlr =vnTn =0, and Vrin+ vnlr = 0.

Besides, the normal vector reads n = Vd,, and so the symmetric matrix Vn = V2d,, is given by:

—— 0
(2.20) Vn = < Hdos ) .
in the local basis (7,7n) of the plane; see e.g. [641], §14.6. Now, straightforward calculations yield:
Vrn-1=Vrir-n=0, Vin-n=V7rin-n=-Vnlr.-n=0,
as well as:
Vrr-r=0and Vrr-n=Vrin.r = —VnTT-T,

so that we obtain, in the local basis (7,n):

(2.21) Vr— ( P )

T 1+dok

Finally, let v : w, 1 — R? be a smooth enough vector-valued function; similar calculations based on the
previous formulas yield:

(2.22) V(v-n)-n=Voln-n+VnTv.-n=Von n,
and
(2.23) Vw-7)-n=Volr-n+Vriv.-n=Vun -7+ Vrn-v=Von- .
Likewise,

V(v-n)-7=(VnTv+Voln).-7=Vor-n+ T +Hda,€v - T,
and so:

K

2.94 ‘n = ‘n) T —
(2.24) Vor-n=V(@w-n) 7 1+damv T

13



Finally,
K

1+dg/<;v "

V(U~T)~T=VTTU-T—|—VUTT-T:VUT-T—l—VTT-v:VvT-T—
which yields:
(225) V’UT'T:v(’U'T)'T'FﬁU'n
Remark 2.4. Most of the above results actually extend to regions outside the tubular neighborhood wy 1 of

o. More precisely, the mappings d, and p, turn out to be differentiable on the whole set D\ ¥ (see again
[41, 53, 64]) and all the formulas in this section hold true in there.

2.2.3. Formal proof of Theorem 2.1 when o is a closed curve

We now describe how the asymptotic behavior of the potential u., solution to (2.4), can be inferred from
heuristic energy considerations. Let us notice that, however formal, this argument can be made rigorous
along the lines of our previous work [52], but this goes beyond the scope of the present article. To simplify
the presentation, we assume throughout this section that the considered curve o is closed; see the discussion
following Theorem 2.1 about this point.

Introducing the difference r. := é(us —ug) € H%D (D), we aim to prove that, as ¢ — 0, r. converges to
the function uy defined in (2.5). We proceed in three steps.

Step 1: We represent the error r-(z) at points x € D\ o in terms of the fundamental solution N(x,y) and the
values of r. inside w, . To this end, a simple calculation reveals that r. is the unique solution in H%D (D)
to the following problem:
—div(y.Vre) = Ldiv (Lo, (71 —70)Vuo) in D,
re =0 onI'p,
YoZe =0 on D\ Tp,

where 7. is defined in (2.4) and 1, is the characteristic function of w, .. The variational form of this
equation is:

1
(2.26) Yv € H%D(D)7 / Y.Vr. - Vode = —g/ (71 = v0)Vug - Vo da.
D w

o,e

Let 2 € D \ o be a fixed point; it follows again from elliptic regularity that r. is smooth in a neighborhood
of x for € > 0 small enough. That (2.9) hold in the sense of distributions now exactly implies that:

r@) = /D div, (0 (1) VN (2, 9)7- () dy,
(2.27) = —/ Y0(Y)Vre(y) - VyN(z,y) dy,
= —/Z%(y)Vrs(y)-VyN(w,y) dy+/ (M1 =) (@) Vre(y) - VyN(z,y) dy.

In order to rewrite the first integral in the above right-hand side, we wish to insert y — N(z,y) as test
function in the variational formulation (2.26) for r.. Unfortunately, this is is not directly possible since
N(z,-) is not a function in H} (D). More precisely, it follows from (2.10) to (2.12) that N(z,y) is in
WH(D) and that it belongs to H(D \ V), where V is an arbitrary open neighborhood of z. To achieve our
purpose nonetheless, we argue as in [42]: since = ¢ o, for a fixed and small enough ¢, there exists an open
neighborhood V C D of x such that:
Wee @D\ 'V,
and a sequence of functions vy € Hf: (D) satisfying:

vk € HY (D), wi(y) = N(z,y) for y € D\ 'V, and v,(y) == N(z,y) in W"L(D).

We may now use v = v, in (2.26) and take limits in the resulting expression because 7. is smooth on V. This
yields:
1
[ V) 9N @) dy == [ (n = 20) ) Vunly) - 9N )
D Wo, e
14



combining this with (2.27) finally results in:

229 @) =2 [ (=0T TN+ [ =00 VN @) d,

o, Wo,e
which is the desired representation formula for r.(x).

Step 2: We identify the behavior of the rescaled error inside the inclusion set ws .. This is the part where
our derivation becomes formal. Let us introduce the mapping m. : ws,1 — we.c defined by:

(2.29) Vi € Wo, Me(z) = po(z) 4 edy(x)n(py(z)).
Using the material in Section 2.2.2, the derivative of m. reads, in the local basis (7(z),n(z)) of R?:
Ltedq (@)r(z)
(2.30) Vme(z) = 1+da(6c)n<x) _
€

We now seek the limiting behavior of the rescaled error s, := 7. o m. inside the unit inclusion set wg,1; this
quantity will show up in the course of the third step below.

To this end, applying the classical Lax-Milgram theory to the variational problem (2.26) allows to char-
acterize r. as the unique solution to the following minimization problem:

1 1
(2.31) min  E.(u), where E.(u) := = / Ve |Vul* dz + = / (m1 —70)Vuo - Vudz.
ueH} (D) 2/p €

Wo,e

Our strategy now outlines as follows: we construct an equivalent minimization problem from (2.31), involves
both scales (r¢,s.) of the problem. The minimized objective F.(u,v) depends on functions u which are
defined “far” from w, . and functions v defined on the rescaled inclusion wy ;. We then obtain information
about the limiting behavior v of s, from the intuition that it should minimize the leading order terms of
F.(u,v) as € — 0.

More precisely, let us transform the integrals on we . in (2.31) into integrals posed over w, 1 by means of a
change of variables via the mapping m.: the couple (7, s¢) is then the solution to the two-scale minimization
problem:

2.32 in F(u,v),
2 iy, T

where the space V. is defined by:

v(z
V.= {(u,v) € H. (D) x H'(w,,1), Yz € 0, { ola

and the two-scale energy F.(u,v) reads:

1
F.(u,v) := 2/[)\

1
Yo|Vul? dz + 3 / (y1 o m2)|det Vi |(VmZ'Vm-T)Vu - Vo dx

Wo,1

1
+ - / ((y1 — 70) o me)|det Vme|(Vug) o me - (Vm;TVv) dz.
Wo1

An elementary calculation based on (2.30) yields:

1 1 1+edyk ov\?
F. == 2 — (/=) (=
(1:0) 2/1)\%,570'%' Wty /w Wlom)(Hdw) (8n> a
€ 14+ dyk ov\ 2 Oug ov
w3 e (i) (37) e [ =wremo (G ome) 5o

1 1+edsr Oug v
+ z /wa,1 ((v1 = 0) ome) (:H—dgli> <8n o ma) n dz.

15
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We now expect that the limiting behavior of (r¢, s:) as ¢ — 0, which we denote by (u,v), should minimize
in priority the terms weighted by é in the above expression of F.(u,v). In other terms, the limiting behavior
v of s, is the solution to the problem:

(2.33) min  F.(v), where

vEHY (ws,1)
—~ 1 1 ov\? 1 Ouyg ov
Fg(v) = i/w (’71 Opa) <l—|—dgf£> (an) dx + /WU~1 ((”Yl —’YO) Opa) <1—|—dg/-@> (871 OPa) % dx.

Writing down the associated Euler-Lagrange equation, we infer that, for any test function ¢ € H 1(wg’l):

1 Ov Oy 1 Oug oo .
/W (o) (1 T dm) anon T / ((n =) opo) (1 T dm) <an O“’) an =0

We now extract information about the desired limit function v from this equation. Applying the coarea
formula of Proposition 2.1 and using test functions of the form

o,1

¢(p+tn(p)) = ¢(p)C(t), p o, tel-11],
for arbitrary smooth functions ¢ € C*(¢) and ¢ € C*°([—1, 1]), we obtain:

[0 ([ Gewsmoneoa) aw s [ e -wmemieo ([ o) =

As a result, for any point p € o, the function (—1,1) 3 t — v(p+ tn(p)) is affine (i.e. %(v(p—i—tn(p))) =0),
and <(v(p + tn(p))) = 92(p + tn(p)) is the real value given by the relation:

1®) 2 (p+ tn(p)) + (1 (6) ~ 20(0)) 22 () =0,
that is:
(2.34) G0+ tn(p) = = (1) = 20(0) G 1),

Note that we have not fully characterized the limiting function v for s, inside we. 1, but the above information
is all that will be needed for our purpose; see Remark 2.5 and Section 5.4 about this point.

Step 3: We pass to the limit in the representation formula (2.28). Using a change of variables in (2.28) based
on the mapping m. immediately brings into play the rescaled function s.:

1
re) = [ e mil((n —0) o m)((Tua) om) - VyName () dy
+ | det Vime|((71 — v0) o me) VmgTng - VyN(z,me(y)) dy,

Wo, 1

:/ Lt edoti (0 o) ome)(Vuo) o me) - Vy Nz, me(y)) dy

1+dyk
%8—N(x e ))+1+5daﬁas€87N
“or or, y 1+dsk On On,

o,1

[ en—wem ( (avme(u) )

Wo,1

Now relying on the convergence result (2.34) of the second step, we obtain:

o1

e—0 1+dyk
1 ov ON

limre(c) = / L (1 = 70) 020) (Vo) 0 po) - Vy N (2, po (1)) dy
+ (71 — ) Opam%%(x,pg(y)) dy,

Wo,1

16



where v € H'(w,1) is the limiting behavior of s. derived in the course of the second step. Finally, it follows
from the coarea formula of Proposition 2.1 and (2.34) that:

lim 7. ()
e—=0
1
= 2 [ v 00T TN @) )+ [ =00 ([ Gl o) ) S o) e,
-2 (- WDVl i) )2 [ 1= (1 ; b 2 ]ja?<p>§g<x,p> aup),
= 2 [ =00 G0 G ) ) +2 [ o) (1= 228 ) S0 S ) o)

which is the desired expression.

Remark 2.5. As we have mentioned, the limiting behavior v of the rescaled error s. inside the unit inclusion
we s not completely determined by our analysis; only the normal derivative (2.34) is. The main reason
is that the “near field” v depends on the “far field” w, i.e. the limiting behavior of the error r. “far” from
o, in an non trivial way. Actually, injecting the information (2.34) back into the two-scale minimization
problem (2.32) and arguing as in [52] (in particular, pursuing the strategy of minimizing only leading order
terms as € — 0) would provide another minimization problem satisfied by the “far field” u, which is exactly
that associated to the equation (2.15) satisfied by the function uy in the expansion (2.5). As we shall see
in Section 5.4, a completely different phenomenon occurs in 3d, where the “near field” function v can be
explicitly characterized, independently of the “far field” w.

2.3. Asymptotic expansion of an observable involving the solution to the conductivity equation

In this section, we investigate more precisely the asymptotic behavior of the quantity of interest J, (&) defined
in (2.7) as € = 0. Let us start with a preliminary lemma.

Lemma 2.1. The function J,(g) is differentiable at € = 0 and its derivative reads:

(2.35) T(0) = / 7' (uo)uy da,
D
where uy is defined in (2.5).

Proof. Let us first deal with the differentiability of J, (&) at € = 0; a simple use of Taylor’s formula yields:

_ ! Ue — Ug
Jo(e) — J5(0) :/D/O 7 (uo + t(ue — ug))—= . dt dz.

e

Ue —Uo

Using the LP estimate of Lemma B.1 for controlling the quantity “<-*¢ and the growth condition (2.8), we
may apply the Lebesgue dominated convergence theorem in the above expression to pass to the limit as
€ — 0. As a result of Theorem 2.1, J,(¢) is differentiable at ¢ = 0, with derivative (2.35). O

The formula supplied by Lemma 2.1 is unfortunately difficult to handle, since it involves the function uq,
which depends on o either via the integral (2.5) involving the fundamental solution N (z,y), or in an implicit
manner, via the solution u; to (2.15) where o plays the role of a “parameter”. This classical difficulty in
shape optimization, and in optimal control in general, can be overcome thanks to the introduction of a
suitable adjoint state, which allows to make explicit the dependence of J.(0) on o.

Proposition 2.2. The derivative J.(0) rewrites:
dug Opo Oug Opo
0) = 2 1 J0) ZIPo 4, 2/ P e UV,
= /MVUO - Vpo d?,

o

(2.36)

where the polarization tensor M is that given in (2.6), and the adjoint state po € Hp (D) is the unique
solution to the equation:
—div(v0Vpo) = —j'(ug) in D,
(2.37) po=0 onl'p,
’yo%%l” = on 0D\ Tp.
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Proof. Injecting the integral representation (2.5) for u; into the formula (2.35) for J.(0), we obtain:

8’U,0 ON 8u0 ON
[ [ @ (20 - 0w G5 w2 ( Z2en =0 ) 005 0) 5o (w) ) et d,
ou 0 .
= 2 [ =G5 ([ diveevm)@N (e o) at)
+2 [ (26— 0) %) 2 [ aiveuTm)@)N(e.y) de) dety)
4 71— Y on yany D V{70 VPo )& T,y)dr Y)s
where the second line follows from the Fubini theorem and the first line in the definition (2.37) of py.

On the other hand, using the definition (2.9) of the fundamental solution N (z,y), and its symmetry with
respect to its arguments, it holds, for an arbitrary point y € o,

/D div(10Vp0) (@) N (2, y) dz = po(y).

Oug Opo Oug Opo
/
JG(O)_Z/U( )5 or dt 2/, (1 ) on 8ndé

which is the desired formula (2.36). O

J5(0)

Hence,

Remark 2.6. Interestingly, (2.36) can be derived from (2.35) by using the system (2.15) for characterizing
uy, instead of its integral representation (2.5), at least when the curve o is closed. Indeed, under this
assumption, injecting the definition of the adjoint state py into (2.35) and integrating by parts yields:

Jo(0) = D\idiV(VOVPO)ul da,

Opo

/ % ap [ur] df — / % Vpo - Vur da,

g duo 0
2/70 1— Jo ) S TPo dl — / YoVpo - Vuy dz.

- On on
Now using the variational formulation attached to (2.15) (and since po € H} (D) C Hp (D \ o)), we get:

0
/ YVuy - Vpodz = / {70 ;1] po de,
D o

0 Oug
= 2/087_<(’71 ’Yo)a )Podf

Combining both expressions, and using integration by parts on o in the last integral of the above right-hand
side, we retrieve (2.36).

Remark 2.7. The particular form (2.7) of functionals J, () considered in Proposition 2.2 is only a means to
set ideas, and multiple other functionals could be handled in exactly the same way, such as integral quantities
involving the trace of the perturbed potential u. on a fized region of 0D, or “stress-based” criteria based on
the gradient Vu,.

With a little anticipation on Section 7, let us finally comment about the practical interest of this result.
The quantities ug and py only depend on the “background” configuration, and the structure (2.36) makes
it easy to identify a curve o making the derivative J/ (0) negative, indicating that a tubular inclusion with
small enough width ¢, filled with a material with conductivity v; “improves” this background configuration,
as measured in terms of J,(¢). This task is made even easier by the straightforward reformulation of (2.36):

~ [ Plan(@) n)ita),
where P(z,-,-) is the bivariate, homogeneous polynomial of degree two defined for x € o by:

P(x,71,72) = B1(x)7] + Ba(x) 7172 + B3(2)73,
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with the explicit expression of the coefficients:

Oug Oy W\ Qoo 2o (Duo O Do Opo
g 71 (9332 (91‘27 2 Y1 m o 8$1 (9582 8332 (9371 ’

and

Y1 8.’E1 81'1 87‘%28$27

where the dependence with respect to x is omitted for brevity.

Jug O Jug O
B3 =27 (1_%> SR IR0 12y — o) e o2

3. THIN TUBULAR INHOMOGENEITIES IN THE CONTEXT OF THE 2D LINEAR ELASTICITY SYSTEM

In this section, we examine the effect of thin tubular inhomogeneities inside a background elastic medium.
Up to an increased level of technicality, our analyses are very close in spirit to those conducted in Section 2,
in the context of the 2d conductivity equation. In order to emphasize the parallel between both situations,
we reuse the notations in there insofar as possible.

3.1. Presentation of the 2d linear elasticity setting and statement of the main results
3.1.1. The background and perturbed linearized elasticity systems

In the present context, the bounded and Lipschitz domain D C R? represents a structure which is clamped
on a subset I'p of its boundary 8D; traction loads g : 'y — R? are applied on a disjoint subset 'y of OD,
and body forces f : D — R? are assumed. The structure is filled with an isotropic, linearly elastic material
with inhomogeneous, smooth Hooke’s tensor Ag(z): for any element e in the set So(R) of symmetric 2 x 2
matrices,

(3.1) Ap(x)e = 2up(x)e + Ao (x)tr(e)l,
where the Lamé coefficients p1o and \g belong to C>°(D) and satisfy in addition:
(3.2) Ve €D, v- < po(z) <4, and 7- < Ao(@) + po(z) < 74,

for some positive constants 0 < y_ < 4.
The displacement field ug € H%D (D)? in the above situation is the unique solution to the system:

—div(A4pe(ug)) = f in D,

ug =0 onI'p,
(3.3) Age(ug)n =g onl'y,
Ape(ug)n =0 on 0D\ (I'p UT'y),

where e(u) = %(Vu + Vu®) is the strain tensor associated to a vector field u : D — R2. Throughout the
sequel, we assume smooth enough data f, g; elliptic regularity then implies that the background displacement
g is smooth in the interior of D.

We now consider the situation where the medium Ag is perturbed by a thin tubular inclusion we . of
the form (2.3), filled by another elastic material with smooth, inhomogeneous Hooke’s law A;(x), whose
coefficients Ay, 1 € C(D) also satisfy (3.2). The perturbed elastic displacement u. € H{_(D)? is then
characterized by:

—div(Ace(ue)) = f in D,

u, =0 on I'p, | Ai(z) ifx€wype,
(3.4) Ace(u)n =g onl'n, where A.(z) = { Ao(xz) otherwise.
Ace(u)n =0 on 0D\ (I'p UT'y),

3.1.2. The fundamental solution to the linear elasticity system

Like in Section 2, our goal is to obtain an asymptotic expansion for the perturbed displacement field u. (and
a related quantity of interest) of the form:

Ue = ug + euy + o(e),
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where the first-order term w1 has yet to be identified. The precise statement of the result involves, again, the
fundamental solution N(z,y) of the background operator in (3.3). Here, N(z,y) is defined for = # y € D as
a 2 x 2 matrix; for x € D and j = 1,2, its j*® column vector y — N;(z,y) is the solution to:

divy (Ao(y)ey(Nj(z,y))) = 0y=2§; in D,
(3:5) Ao(y)ey(N;(z,y))n =0 on OD\Tp,
N](xay):() on I'p,

where ¢; is the 4t coordinate vector of R2.
The fundamental solution N (z,y) is naturally related to the (modified) Kelvin matrix I';;(z,y), given by:

ar(z) Br(z) (x; —yi)(w; —y;) -
Fij(xay):710g|x_y|5ij_ o |x_yj|2 L, r#yeR®, Q=12
where
1/1 1 1 /1 1
3.6 ar:=—-|(—+-—-—] and === —;
(3.6) P2 <M0 2M0+)\0> Pr 2 (,uo 2M0+/\0)
see [19, 68, 81] for properties of this matrix. More precisely, it holds

N(x,y) = F(Z‘,y) + R(x,y),

where the remainder R(z,y) is “smooth enough” — it satisfies (2.12), as in the case of the 2d conductivity
equation.

Again, the structure of the sought expansion of the perturbed displacement u. (see Theorem 3.1 below)
builds upon the layer potential operators associated to the base curve o. In this context, we introduce
the (vector-valued) single layer potential S, associated to a (vector-valued) density function ¢ € C%! ()2
0<i<l):

Vi€ D\ o, Soplz) = / Nz y)e(y) ds(y),

and the double layer potential Dy of ¢ is:
Vo€ D\ Daple) = | (Aoey (N ) n(w)e(s) ds(o)

In the above formula, (Aoey (N (z,y))n(y)) is by definition the 2 x 2 matrix where the conormal derivative
operator Apey(-)n is applied row-wise. Explicitly, using Cartesian coordinates:

Prpla)n = [

o

d d
6Nmi 6Nmi 3Nm‘
Ao (Z By, (x,y)) @ n+ o Z ( 0, (x,y) + 3y¢] (x,y)) nip; | ds(y);

i=1 ij=1

see [19] about these matters.
The jump relations for the single- and double-layer potentials read, in the present context:

(3.7 [Sop] =0, [Aoe(Ssp)n] =@, [Dop]=—¢ and [Age(D,p)n] =0 on o.

Remark 3.1. Again, the above considerations extend to the three-dimensional case, up to the different
definition of the Kelvin matriz:

cap(z) 1 o Br(z) (@ — i)z —y))
A e —y[ Y 4r |z —yl3

Pij(‘r7y) = ; 7’7.7 =123,

where ar and Br are still given by (3.6).
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3.1.3. Statement of the asymptotic expansion of the displacement u.

The asymptotic behavior of the displacement u. as the thickness € of the ligament w, . vanishes is described
in the following theorem, whose rigorous proof can be found in [33].

Theorem 3.1. For an arbitrary point x € D \ o, the following asymptotic expansion holds:
(3.8) ue(r) = uo(z) + cur(z) + o(e), where uy(x) = / M(y)e(uo) : ey(N(x,y)) dl(y),

and the o(e) is uniform when x is confined to a compact subset K C D\ . The polarization tensor M(y)
reads, for any symmetric 2 X 2 matriz e € Sa(R):

M(y)e = ar(y)tr(e)l + Br(y)e + yr(y) (et - 7)7 @ 7+ dr(y)(en - n)n @ n,
where the coefficients ar, Br,yr and 67 are given by:
Ao+ 2u0 o

Br = 4(p1 — po)—,

ar =2(A1 — A ,
T =2(M O)/\1+2M1 o

and

H1Ao — HoA1
pa (A +2p1)

One comment is in order about the notation employed in (3.8): M(y)e(ug) : ey (N(x,y)) is the vector
field with components:

(M(y)e(uo) : e(N(z,y))); = M(y)e(uo) : ey(Nj(z,y)), j=1,2;

i.e. the j*" component of M(y)e(uo) : e,(N(z,y)) is the Frobenius inner product between the strain tensors
of ug and the j*® column of the fundamental solution.

201 4 21 — Ao _ Mo

, op =4 —
M+ 20 Ml) T (ﬂl Mo)

Yr = 4(p1 — o) (

Equivalently, using the jump relations (3.7) for the single and double layer potential operators, the first-
order term u; in the above expansion can be seen as the solution to the system:

—div(Age(u1)) =0 in D\ o,
up =0 onI'p,
Ape(ui)n =0 on 0D\ Tp,
(3.9) fur - 7] = =4 (1= £2) e(uo)rn(@) on o,
[ug - n] = -2 (1 - gﬁ%i‘\?) e(uo)(2)nn — 2 (2111;);?1) e(ug)r-(z) on o,
[Ape(ur)n] -7 = —2%(3:) on o,
[Aoge(ur)n] - n = 2ka(x) on o,

where the scalar field a : ¢ — R is defined by:

— A A1 — U1 A1 — 1A
o= <4M1M1 Mo + A1 _2M0 1— M1 O)e(uo)TT—i—Q(HO 1— M1 O>€(uo)nn-

2/1,1 + )\1 2/1,1 + )\1 2/.L1 + )\1

Again, this solution is sought in H%D (D\ 0)? when o is a closed curve; when ¢ is open, the functional setting
is a little more involved, and similar to that outlined in Section 2.2.1 in the case of the conductivity equation.
We do not elaborate on these issues, since they are not needed in the following.

3.2. Formal derivation of the asymptotic expansion of u. when o is a closed curve

In this section, we show how the asymptotic expansion (3.9) can be derived from a simple adaptation of the
heuristic energy argument exposed in Section 2.2.3. Still under the assumption that o is closed, we follow
the same trail as in there, and for this reason, we only sketch the calculation.

Let us introduce the difference . := %(ug —ug) € HllD (D)?, which is the solution to the following
variational problem:
1
(3.10) Yo € HL (D), / Ace(re) s e(v) do = fg/ (A1 — Ag)e(ug) : e(v) da.
D Wo, e
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Equivalently, r. is the unique solution to the minimization problem:

(3.11) min  E.(u), where E.(u) := 1/ Ace(u) @ e(u) do + 1/ (A1 — Ao)e(uo) = e(u) de.
ueH] (D)? 2 Jp € Juwge

Like in Section 2.2.3, we proceed in three steps.

Step 1: We establish a representation formula for the error r.(z) at points x € D \ o in terms of the
fundamental solution N(z,y) in (3.5) and the values of ro inside wy .. A calculation analogous to (2.28)
yields, for either component j = 1,2 of the error r.(x):

/D divy (Ao()ey (N (2,))) - 72 (1) dy,
- / Ao()e(re)(y) : ey(N5(z,9)) dy,
—fAs(y)e(re)(y) : ey(Nj(xay)))der/ (A1 — Ao)(w)e(re)(y) : ey(Nj(z,y)) dy.

D Wo,e

re,(2)

Now repeating the argument used in the first step of our derivation in Section 2.2.3, we may “insert”
y — Nj(x,y) as test function in the variational formulation (3.10) for r.. The first integral in the above
right-hand side then rewrites:

/ Ac(y)e(re)(y) = ey(Nj(z,y))) dy = —é/ (A1 — Ao)(y)e(uo)(y) : ey(Nj(z,y))) dy,
D Wo, e
and so:
(3.12)
1
Te,j(z) = g/ (A1 — Ao)(y)e(uo)(y) : ey(Nj(z,y))) dy +/ (A1 — Ao)(y)e(re)(y) : ey(Nj(w,y)) dy,

which is the desired representation formula.

Step 2: We examine the limiting behavior of the rescaled error s. := r. o m. inside wy .. To this end, we
construct an equivalent two-scale minimization counterpart for the problem (3.15), satisfied by the couple
(re, Sc), thanks to a rescaling via the mapping m. in (2.29) and (2.30); we then simplify the involved energy
functional by retaining only the leading order terms as € — 0.

Before we do so, let us recall the following elementary fact from calculus: if ¢ : V — U is a smooth
diffeomorphism between two open sets V,U{ C R? and u : U — R? is a smooth vector field, then

e(u) o = % (V(wo o)V ' + Ve TV (uop)T), and (divu) o p = tr(V(uo p) V).

Hence, a change of variables yields, for an arbitrary vector field u € H%D (D)%
/ Are(u) : e(u) dz =
1 1
/ | det Vim,| (2,u12 (VovmZ !t +Vm_ TVvoT) 3 (VovmZ '+ Vm_TVvoT) + Altr(Vva51)2> dz,
Wo,1
where we have denoted v = u o m.. After some calculation, this rewrites:

(3.13) / Ase(u) :e(u) da =

1+ed, 1+dyr\2 1 1 1+d, ?
/ 2u1e te K<<1_:€d:€) (VUT~T)2+§(VUn-n)2+ <8an-7'—|—1_:r€d:$VvT-n) ) dz

1 1 1 2
—l—/ A +€dol€< +d0/€VUT~T+EV1}n-n> dx.

N | =

1€ 14+dok \1+edsk
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By the same token, we also get:

(3.14)
/ (A1 — Ag)e(ug) : e(u) do = / 2(p1 — po)e

1 d, 1+d
+ Edokt ( + Goks ((Vugom)r - 7)(Vor - 7')) dz,

1+doer \1+4edor
1 dy
+ /wa,l 2(p1 — po)e %dg: (E((Vuo omg)n-n)(Von - n)> dx
1+ ed, . -
+ /wa,l 2(p — ﬂo)s%dg: <(e(uo)m o me) (ZVon -7+ JT;WT . n)) "

1+edor, . 1+do !
+ /w (M — AO)E%LZ,,:“dWUO) o me) (I:_sdjzva T+ ngn : n) da.

Collecting (3.13) and (3.14), the couple (7., sc) is the solution to the following two-scale minimization prob-
lem:

1
(3.15) (uIil)iélv F.(u,v), where F(u,v) = gFal(u, v) + F2(u,v),

and we have denoted

1 14+ edyk
(316) Fsl (U,U) = 5 / m ((2#1 + Al)(VUn . n)2 + ul(an . 7—)2) dx
1+ edsk

T (e(ug)rn ome)(Von - 7) dz

[ 2= 0 T (Fug o man ) (Von ) dot [ 20— )

o1

+ / (M — A@%((divuo) ome) (Von -n) dz.

o,1

The quantity FZ2(u,v) in (3.15) is made of terms whose coefficients are of order O(1) as e — 0, and its
explicit expression is not needed in the following. The functional space V; is defined by:

V.= {(u,v) € HL (D)? x H'(w))?, Vz €0, { @ +en(@)) = v(z +n(z)) } .

u(x —en(x)) = v(z — n(x))

We now obtain information about the limiting behavior v € H'(w,1)? of s. by relying on the intuition that
v should minimize the leading order terms in the formulation (3.15), so that it actually solves the problem:

— — 1
(3.17) min  F.(v), where F.(v) := f/ ( 2p1 4+ A1) (Von - n)? + py (Von - 7)%) da

VEH (wy,1)2 2

1 1
+f 2 = o) (Vo o n)(Vum ) / o) (e)en 0 p2) (Vo 7)

+
/w 2h +1d ((divug) © po) (Von - n) dz.

As in Section 2.2.3, we glean the information needed for our purpose about v by writing down the Euler-
Lagrange equations for (3.17).
Using at first test functions of the form

Vpeo, te(=1,1), o(p+tn(p)) = Ct)(p)r(p),

where ¢ € C*(0) and ¢ € C*([—1, 1]) are arbitrary, and the coarea formula of Proposition 2.1, we obtain:

[ ([ G D0+ monoa) aw + [ 20 - w20 a) ) =

Here, we recall from (2.22) to (2.25) that for a sufficiently smooth vector-valued function v : R? — R2, it
holds:

(3.18) Von-n=V(v-n)-nand Von-7=V(v-:7)n.
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Taking now ¢ with compact support in (

—1,1), we see at once that t — (v-7)(p+tn(p)) is an affine function.
Using then arbitrary functions ¢ € C*°([—1,1

,1]), it follows that:

() < (070 + 0 (9) + 21 — 10)e0) (P = 0,

and so:

(3.19 s+ en) = (-2 (1= 2 eun)n ) ).

1231
Now writing down the Euler-Lagrange equation for (3.17) with test functions ¢ € H'(w,,1)? of the form
Vpea, te(=1,1), o(p+tn(p)) = 2(t)y(p)n(p),

we obtain similarly:

320) gl = (- ),

which is the needed information for our purpose.

A1 — Ao

_ m (E(UO)TT + 6(“0)nn)> (p)’

Step 3: We pass to the limit in the representation formula (3.12). Using again a change of variables via the
mapping m. in (3.12), we obtain:

o) = L[ detTml((s = Ag) o me)(elun) oma) : e (N;) (o) dy
+ | det Vme| (2(u1 — po) © me) % (VseVmZ' + VmZTVsIT) « (ey(Ny) (z, me(y))) dy
+ | det Vime| (A1 — Xo) o me) tr(Vs.VmZ 1) (div, N;)(x, me(y)) dy

= L+ LA+I2

with obvious notations.
A simple calculation based on (2.30) now yields:

1= [ A A oma) (o) o) ey (N )

and so, taking limits and using the coarea formula of Proposition 2.1:

it = [ (= A o) (el o) () o ()

= 2 [ (A Aoelua) ey (N (o) 2l

g

(3.21)

Note that, in the above expression, as often in the following, we omit the mention to the integration point
p when the latter is obvious, to keep expressions simple insofar as possible.
Likewise, it comes:

13:/

(5V5€T -n—+

2(p1 — po) o me <€(VSET - 7)(ey (N;) (@, me(y))7 - 7)+
1+ edyr
1+dsk

1+ edyk

o <Vssn~n><ey<Nj><x,ms<y>>n~n>> dy,

Vs ) (e (V;) (@, me ()7 m) +

so that, using again (3.18) and the convergence of s. to the function v satisfying (3.19) and (3.20) obtained
during the second step:

(3.22)
ti 2 = [ MR (e, () o )7 )+ 5 0 m) ey ) () )

= 2 [ 21— i) ) (50 NP7 1)+ 500y (N (o) ) A6
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Finally, by the same token,

Is = / (A1 — X)) ome (5ngT ST+ %V%n . n) (divy (N;) (2, me(y))) dy,
and so:
i _ Qi=Ao)ops O e N
(3.23) shi%lg o /‘*’0,1 1+d,k ; an( )(divy (N;) (2, ps(y))) dy,
=2 / (M1 = A0)(p) 5 - (v~ n)(divy (N (x,p))) dE(p)

Putting (3.21) to (3.23) together, and using the explicit expressions (3.19) and (3.20) for the derivatives

%(v -7) and %(v -n), a simple, albeit tedious calculation yields the desired asymptotic expansion (3.8).

3.3. Derivative of a quantity of interest depending on the perturbed displacement u,

In this section, we use the asymptotic expansion of u. obtained in Theorem 3.1 to appraise the limiting
behavior of a function J,(¢) of the form:

Jy(e) = /Dj(us) dzx,

where j : R? — R is a given smooth function, satisfying the growth conditions (2.8).
The result of interest is the next proposition; we omit the proof, since the arguments developped in
Section 2.3 in the context of the 2d conductivity equation can be carried out in an analogous way.

Proposition 3.1. The function J,(g) is differentiable at 0, and its derivative reads:
(3.24)

B0 = [ Ml s elun)
2
- /( o (4u1(u1 — o + A1) = 2(poA1 + 1 o) + 2X0(A1 — AO))e(pO)TTe(U'O)TT de

A — Ao
—i—/UZ(ZMO + )\0) (%_’_)\1) (e(po)we(uo)nn + e(p0>nne(u0)7'7') ds
210 + Ao

Ho
+ /8 1—— e nre(u m.der/22 + A <1 >e nne(Uo)nn d,
/U Mo( M1> (o) (uo) . (210 0) 2% + M (Po) (uo)

where M is the polarization tensor defined in the statement of Theorem 3.1, and the adjoint state pgy is the
unique solution in Hf: (D)?* to the system:

—div(Aoe(po)) = —j'(uo) in D,
(325) Pbo = 0 on FD7 _
Age(po)n =0 on 0D\ Tp.

As in the conductivity case described in Section 2.3, the derivative (3.24) can be rewritten in a way which
is easier to exploit in the context of shape and topology optimization:

10 = [ Plari(a),mlo) de(o),
where, for a given point z, P(z,-,-) is the homogeneous polynomial of degree 4 given by:

P(x,71,7) = B1(x)7} + Bo(2) 1370 + B(x) 7272 + Ba(2)Ti7s + Bs(x)T5.

Using the shortcuts e = e(ug) and f = e(pg) (in which the dependence with respect to the point z is also
omitted for brevity), the coefficients 8;, i = 1,...,5 read:

b1 = arerr fi1 + az(eaafin + €11 fa2) + aserafia + auean foo,

B2 = 20 (€11 fiz + e12fi1) + 2aa(—e12 fi1 — e11 fi2 + €22 f12 + €12 f22)
+ as(eiz(faz — f11) + fr2(e22 — €11)) — 2cu(eaa f12 + e12fa2),
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B3 = a1 (e11 foo + 4e1a fia + €2 fi1) + 2aa(e11 f11 + €22 foo — 4de12f12)
+ ag(—2e12f12 + (e22 — e11)(faz — f11)) + culerr foo + €2 fi11 + 4e1a fi2),

Bs = 2041(€12f22 + 622f12) =+ 20&2(611f12 +e12f11 — e1afor — 622f12)
—az(e12(foz — f11) + fiz(eze — e11)) — 2a4(ers fi2 + eiafi1),
and
Bs = auegn faz + aa(err foo + ez f11) + azera fia + auers fi1.

In the above, we have defined:

ap = m(4ﬂl(ﬂl — po + A1) — 2(poA1 + p1Xo) + 2X0(A1 — AO))?
)\1>\0> ( Mo) < 2Ho+>\0)
— 2020+ o) [ 22220 ) g = 8ug (1= ), and ay = 2(2u0 + Ao) (1 — 2HOT20 )
a2 = 22uo + Ao) (2M1 + A1 s = B H1 and aq = 2(2u0 + o) 2u1 + M

4. ASYMPTOTIC EXPANSIONS IN THE CONTEXT OF DIAMETRICALLY SMALL INCLUSIONS

As we shall see in more detail from the next Section 5, our mathematical treatment of three-dimensional tubu-
lar inclusions wey . (the three-dimensional version of (2.3)) somehow boils down to that of a two-dimensional
diametrically small inclusion, of the form (1.13), inside each 2d normal plane to the base curve o. For this
reason, we temporarily pause our discussion about tubular inhomogeneities to exemplify how our formal
energy argument allows to derive the asymptotic expansion of the field u. when the ambient medium bears
a diametrically small inclusion. For the sake of simplicity, we focus our attention on the physical context of
the conductivity equation in Sections 4.1 to 4.3; since the analysis is very similar, we handle both cases d = 2
and d = 3 simultaneously. The corresponding derivation in the linear elasticity setting entails no additional
difficulty, except that it is a little more involved as far as calculations are concerned. For this reason, we
simply state the results of interest in Section 4.4.

4.1. Diametrically small inclusions in the context of the conductivity equation

The physical setting of interest is exactly that of Section 2.1: the bounded and Lipschitz domain D is filled
with a material with smooth conductivity 7o satisfying (2.1), a smooth source term f : D — R is acting
inside the medium, and a smooth heat flux g is imposed on the region I'y C 0D; the voltage potential ug
inside D is the unique solution in HllD (D) to the equation:

—div(yVug) = f in D,
ug =0 on I'p,
(41 Yoo = on I'y,
Yo 87;0 = on 3D\(FDUFN).
Assuming that 0 € D for simplicity, a small inclusion w, := ew € D is present inside D, shaped from

a smooth bounded domain w C R, and filled by a material with smooth, inhomogeneous conductivity 7
which also fulfills (2.1). In this context, the perturbed potential u. is the solution in H%D (D) to the equation:

—div(y.Vues) = f inD
ue =0 onI'p | m) ifzew,.,
(4.2) ’Yo% =g onI'y, where 7. (z) = { Yo(x) otherwise.
Yo ;rf = on 8D\(FDUFN),

As we shall see, the main difference between the present situation and that tackled in Section 2 is that
the “near field”, i.e. the rescaled behavior of u. near w., no longer depends on the “far field”, away from w;.
This “near field” is a well-defined function, characterized as the solution to a partial differential equation
posed on the whole ambient space R?.
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The adapted mathematical setting to deal with such “exterior problems” depends on the space dimension,
and we introduce the weighted spaces

1
(1 + |a[?)2 log(2 + |a]?)

Wh—HR?) = {u € L. (R?), u € L*(R?), Vue L2(R2)} ,

and

Wh—HR3) = {u € L . (R%), u € L*(R?), Vue LQ(R?’)} :

(1 + Jaf?)?
Let us emphasize that functions u € W ~1(R3) vanish at infinity, while functions u € W~1(R?) do not in
general, since the latter space contains constant functions. To harmonize notations, we introduce the space

. WLL(R2) /R if d =2,
Wo ™ (R :{ le‘(l(R)‘“‘/) if d =3,

of functions in W1 ~1(R%) vanishing at infinity; see [37] §2.5 for further details about these issues.

4.2. Asymptotic expansion of the perturbed potential u.

The asymptotic behavior of u. as ¢ — 0 in the context of diametrically small inhomogeneities w. = ew
has been extensively studied in the literature, either by variational considerations or by layer potential
techniques; see for instance [43, 72, 88] or [19], Chap. 5. Our purpose in this section is to sketch how the
formal technique exposed in Section 2.2.3 may be adapted to handle this case. The result of interest is the
following theorem:

Theorem 4.1. For any point x € D \ {0}, the following expansion holds:
(4.3) ue(z) = uo(z) + e%uy (2) + o(e?), where uy(z) :== MVug(0) - V,N(z,0),

and N(z,y) is the fundamental solution of the background equation (4.1); see Section 2.2.1. In (4.3), the
polarization tensor M = (Mj)i j=1,...,4 is defined by:

(44) Ve € RY, ME= (11(0) —20(0)) [ (€+ Voe(w)
where for any € € R?, ¢¢ 1is the unique solution in Wol’_l(Rd) to the exterior problem:
—Ag¢e =0 in wU (RY\ @),
Lo g,
(4.5) 70(0) 5 — 71(0) % = —(70(0) —71(0)é - n on Ao,
|pe(y)] — 0 when y — 0.

Formal derivation of (4.3). We aim to analyze the limiting behavior of the remainder 7. := Z5(ue — ug) €
H%D (D) “far” from the point 0. Our starting point is again the observation that r. is the unique solution
to the following variational problem:

1
(4.6) Vo € HL (D), / YeVre - Vodr = — (71 —v0)Vug - Vo dz,
D We
or equivalently to the minimization problem:
1 1
(4.7) min  E.(u), where E.(u) := f/ Ve | Vu|? dz + —d/ (71 —v0)Vup - Vu da.
ueH} (D) 2Jp e Jo.

According to the formal method presented in Sections 2 and 3, we proceed in three steps.

Step 1: We represent the error ro(x) at a given point x € D\ {0} in terms of the values of re inside
we. Arguing exactly as in Section 2.2.3 — that is, using the fundamental solution N(z,y) in (2.9) for
the background equation (4.1), integrating by parts, and “injecting” y — N(z,y) as test function in the
formulation (4.6) to transform the resulting expression — we obtain:

@8 @ =2 [ (-0 @TVul) TN dt [ G- 0wV VN ) dy
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Step 2: We study a rescaled version of r. near the inclusion set w.. To this end, let us introduce the rescaled
error s, € HiFD(%D), defined by:

d—1

1 1
Se(z) =€ ro(ez) = g(uE —up)(ez), a.e. z € gD,

a quantity which will appear naturally in the course of the third step. The convergence of s. as € — 0 is the
subject of the next lemma, which is exactly Theorem 1 in [43]; we postpone the formal justification of this
formula thanks to our heuristic energy argument to the end of the proof of Theorem 4.1.

Lemma 4.1. The following expansion holds:
IV (se =v)llz2(2py < Ce,

where v(y) € Wy~ ' (R?) is the unique solution to the exterior problem:

—Av =0 in wU (RY\ @),
(4.9) 70(0) 25 —1(0) % = —(7(0) —71(0)) Vo (0) - ny)  on dw,
lv(y)| =0 as |y| — 0.

Remark 4.1.

o [t follows from the theory of exterior problems that (4.9) has a unique solution in Wol’fl(Rd); see
[37] §2.5.4. Without entering into details, let us solely mention that when d = 2, this fact holds true
because the compatibility condition

Vuo(0) - n(y) ds(y) =0
ow
is obviously satisfied by the data of the transmission conditions on Ow in (4.9).
o The function v(y) in (4.9) is evactly the function ¢y defined in (4.5).

Step 3: We pass to the limit in the representation formula (4.8). A change of variables in (4.8) brings into
play the function s.:

re(x) = / (11 —v0)(e2)Vup(ez) - VyN(z,e2) dz +/ (M —7)(€2)Vse(2) - VyN(z,ez) dz.
Then, applying Lemma 4.1 yields:

lim 7 () = / (71(0) = 10(0))(Vuo(0) + Vo(2)) - Vy N(2,0) dz,

e—0

which is the expected formula (4.3), in view of (4.4). O

We eventually provide the missing link in the previous argument.
Formal proof of Lemma /4.1. Using a change of variables in (4.7), the function s.(z) = €% !r.(ez) is the

unique minimizer in H1 T'p (1D) of the energy functional defined by:
1 (1 , 1 )
E.(v) = — 3 vo(e2)|Vv|* dz + 5 m (e2)|Vul*dz+ [ (v1 —70)(ez)Vug(ez) - Vudz | .
1D\w w w

Removing the multiplicative factor, retaining only the leading-order terms in E.(v), and replacing the func-
tion space HiFD (%D) by Wol’fl(]Rd), we expect that s. converges to the solution of the approximate mini-

mization problem:

min  E.(v), where
vEW, T (R?)

E.(v) := :[/Rd\vo(O)|Vv|2 dz + % / 71(0)|Vo|* dz —|—/ (71(0) = 40(0))Vue(0) - Vo dz.

2 w
Writing down the Euler-Lagrange equation associated to this minimization problem, it is easy to see that
its unique solution is the function v(y) defined by (4.9), which is the desired conclusion. O
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4.3. Asymptotic expansion of a quantity of interest involving u. and final comments

Again, the result of Theorem 4.1 allows to calculate the derivative of a function J,(¢) depending on the size
¢ of the inclusion via the perturbed potential u., say:

Ju(e) = /Dj(us) dz,

where j : R — R is a smooth function, satisfying the growth conditions (2.8). Since the proof is completely
analogous to those of Propositions 2.2 and 3.1, we state the following result without proof.

Proposition 4.1. The function J,(g) has the following expansion at € = 0:
(4.10) Ju(€) = J,(0) + €7, (0) + o(?),
where the “derivative” J/ (0) reads:

Jo,(0) = MVuo(0) - Vpo(0).

Here, M is the polarization tensor defined by (4.4), and the adjoint state py is the unique solution in H%D (D)
to:
—div(v0Vpo) = —j"(uo) in D,

po=0 on I'p,
o %’Z’ =0 on D\ Tp.
Remark 4.2. When d = 2 and w is the unit disk, one has |w| = 7, and a simple calculation based on

separation of variables yields, for any vector & € RY:

~70(0)—~1(0) .
dely) = s Y Fyew,
o M &Y otherwise
70(0)+71(0) Jy[? .

Then, the polarization tensor M 1is the isotropic matrix:

71(0) —%(0)
4.11 M = 27799(0) —=——==1,
ay 310 F200)
and so, (4.10) reads:

71(0) () uo(0) ol

which is a well-known topological derivative formula in the context of the two-phase conductivity equation;
see e.g. [25].

Jw(e) = Ju(0) + 5d27rv0(0)

4.4. Extension to the linear elasticity case

The above calculations and conclusions are readily adapted to the case where the scalar conductivity equation
(4.1) is replaced by the d-dimensional linear elasticity system (3.3). Along the lines of the previous pages, it
can indeed be proved that the following asymptotic expansion holds for the perturbed displacement wu.:

ue () = ug j(x) + Edulﬁj(x) + o(e?), where uyj(x) == Me(uo)(0) : ey(N;(z,0)), j=1,...,d
The polarization tensor M is defined by:

Ve € SR, Mé = (41(0) — Ao(0) (|w|§ + [ etz dz) ,

N(z,y) is the fundamental solution of the background linear elasticity operator in (3.3) (see Remark 3.1)
and ¢¢ is now the unique solution in WO1 “HR%) to the exterior problem:

—div(A4p(0)e(ge)) =0 in R4\ @
—div(A;(0)e(¢e)) = 0 in w
(4.12) Pg = d¢ on Qw
Ao(0)e(de)n® — A1(0)e(de)n™ = (A1(0) — Ap(0))én  on Ow
|¢(y)| =0 as [y| — oo.
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This polarization tensor M can be calculated explicitly when d = 2 and w is the unit disk:
Ve € S(RY), Me = agtr(e)l + Bge;

see [19] §10.3 or [20]. In the above formula,

2p10(p1 — p0) (Ao + 2p0) ) d
p1( Ao + 3po) + po(AXo + o)
_ to(Xo + 2p0) (11 — po)
Bs = ,
po(Ao + o) + p1(Xo + 3po)

(413) ag=m7 (()\0 + 2p0) (A1 + g1 — (Mo + o)) B
Mo + AL+ H1

and we have denoted \; = X\;(0), u; = u;(0) for short.

5. ASYMPTOTIC EXPANSION OF THE SOLUTION TO THE CONDUCTIVITY EQUATION IN 3D UNDER
PERTURBATIONS BY THIN TUBULAR INHOMOGENEITIES

In this section, we begin our investigations about thin tubular inclusions in 3d. The bounded, Lipschitz
domain D C R3 is filled by a material with smooth conductivity (), fulfilling the ellipticity assumption
(2.1), and the potential ug is the unique solution in H%D (D) to the “background” conductivity equation:

—div(yVug) = f in D,
Ug = 0 on FD,
(5:1) 70% =g onTy,
Yo G2 =0 on 0D\ (Tp UTy),

where the homogeneous Dirichlet boundary conditions are imposed on the region I'p C 0D, and f: D - R
and g : 'y — R are respectively a smooth source and a smooth flux entering through the region I'y C 0D
which is disjoint from I'p.

The constituent material vy in D is perturbed by an inhomogeneity

Woe = {a: e R?, d(x,0) < 5} € D,

taking the shape of a thin tube with width e around a smooth, non self-intersecting curve o : [0,¢] — R3,
which may be open or closed. The inclusion w, . contains a material with smooth conductivity i (z) which
also satisfies (2.1), so that the perturbed voltage potential w. is the unique solution in H%D(D) to the
following equation:

—div(y.Vue) = f in D,
Ue = on FD) _ ’Yl(l‘) ifxewo-757
(5.2) fm% =g only, where 7 (z) = { ~Yo(x) otherwise.
Yoo =0 on 0D\ (T'p UTy),

We are interested in the asymptotic expansion of u. as € vanishes. As we have mentioned, to the best of
our knowledge, this is still an open question in the literature, although the particular instance where o is
a straight line segment (and not a general curve) has been treated in [32]. In the next sections, we apply
our heuristic energy argument to calculate the asymptotic expansion of interest. As in Sections 2 and 3,
our presentation is simplified in the case where o is closed, which we shall assume throughout this section,
unless state otherwise. We are confident that the very same asymptotic formula holds when ¢ is open (and
we shall actually use this formula in this context in the numerical examples of Section 7), since we expect
the endpoints of o to contribute only to higher-order terms in the expansion of wu..

We initiate our study by recalling in Section 5.1 a few useful properties about the (unsigned) distance
function é, to o, before turning in Sections 5.2 and 5.3 to the derivation of the sought asymptotic expansions
of u. and related quantities of interest. We close this study with a few comparisons between the two- and
three-dimensional behaviors of tubular inhomogeneities in Section 5.4.
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5.1. The unsigned distance function to a three-dimensional closed curve

In this section, we collect some facts about the unsigned distance function to a closed curve in 3d; although
these are admittedly not new, they are not so easily found under this form in the literature. Throughout
this section, o : [0,¢] — R? is a smooth, closed and non self-intersecting curve. Recall that, without loss of
generality, o is assumed to be parametrized by arc length, that is: |o’(s)|=1 for all s € (0, ¢).

Definition 5.1.

o The unsigned distance function to o is defined by:

(5.3) Vr € R, 6,(z) = irelf |z — yl.
yEo

o The skeleton X of o is the set of points x € R for which the minimum in (5.3) is achieved at least
at two distinct points y1 # y2 € 0.
o When x ¢ X, the unique minimizer in (5.3), denoted by p,(x), is called the projection of x onto o.

The skeleton ¥ admits the following alternative characterization:

Proposition 5.1. The skeleton Y is exactly the set of points x € D where 62 fails to be differentiable. Since
o is a Lipschitz function, Rademacher’s theorem implies that 3 has null Lebesque measure.
Actually, the smoothness of o implies that the closure X also has 0 Lebesgue measure.

See [53] for a proof of the first part of the proposition, and [56] about Rademacher’s theorem. The final
point is delicate, and it is the only one in this statement which requires the smoothness of o; see [79].

Let us introduce a few additional objects attached to a point p = o(sg) € o; see Fig. 4 for an illustration:

e 7(p) = 0’(s0) is the unit tangent vector to o at p, with the orientation induced by the parametrization
s+ o(s).

e a(p) := 0" (sp) is the acceleration vector of o at p.

e N, ={z€R3 z-7(p) =0} is the (vector) plane of directions in R?* which are orthogonal to 7(p).

e P,(p) C N contains those directions z € N, (,) such that p + z has p as unique projection point:

P,(p) := {z € N;p)s Pol(p+2) :p}.

e By(p,7):=B(p,r)N{p+ 2, z € Ny} is the two-dimensional ball with center p and radius r in the
(affine) plane p 4 N ().

The next result of interest for our purpose is concerned with the smoothness of §, and p, near the curve

o. It is based on an argument using local charts, and a use of the implicit function theorem; see Th. 3.1 in

[14] or [13].

Theorem 5.1. There exists g > 0 such that, for 0 < e < gy,

e the squared distance function 82 is of class C* on the tubular neighborhood w, ..
o The projection p, : Wy, — 0 s well-defined and of class C*°.
e For every point p € o, one has B,(p,e) C P,o, that is, for any z € Ny with |z] <€, po(p+2) = p.

For convenience, and without loss of generality, we assume in the following that g > 1 can be chosen in
the above statement. Like in the case of the signed distance function in 2d discussed in Section 2.2.2; the
squared distance function 62 and the projection p, happen to be smooth on the whole set D \ ¥; see again
[41, 53, 64]. These facts allow, in particular, to define extensions of the tangent vector 7 and the acceleration
vector a from o to the neighborhood w, 1 (and actually D \ ¥):

Vr € w1, T(x) = 7(pe(x)), and a(z) = a(ps(z)),
a convention thatwe adopt throughout the following.

In the forthcoming sections, we shall need the expressions of the derivatives of d, and p,. Our first step
toward this goal is the following simple consequence of the first- and second-order optimality conditions for
(5.3):

Lemma 5.1. Let x € R3\ ¥ and p € o be its projection p,(x) onto o; then:
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(i) The vector (x — p) is normal to o at p:

7(p) - (z —p) =0.
(ii) The following inequality holds:
1—a(p) - (z—p)=0.

Proof. Let so € [0,£) be the parameter value such that p = o(sg); by definition, and since the curve o is
closed (and so, o : [0,¢] — R? can equivalently thought of as an /-periodic mapping o : R — R3), 50 is the
unique solution to:

5.4 i - 2,
(5.4) v, |z —o(s)]

The first-order necessary condition for optimality then reads:
a'(s0) - (x — a(sg)) =0,

which is exactly (7).
In a similar fashion, the necessary second-order optimality condition for (5.4) at s = s reads:

0" (s0) - (& = o(s0)) — |0’ (s0)[*< 05
after rearrangement, this yields (it). O
Let us now proceed with the calculation of the gradient of d,:

Lemma 5.2. Lete > 0 be as in Theorem 5.1, x be a point in R*\ (XU0), and p = p,(z); then, the gradient
Vi, (x) reads:

r—p

Vi, (x) = .

() 5. ()
Proof. This is a simple consequence of the theorem of differentiation of a minimum value with respect to a
parameter, see [53], Chap. 10, Th. 2.1. O

By analogy with the two-dimensional situation of Section 2.2.2, the unit vector field 52 &()z ) defined on
R3\ (X Uo0), pointing from o to z, is denoted by n(z); as a consequence of the definition and Lemma 5.2, it
holds:

Vn(z) = Vn' (z) = V35,.
We also introduce the unit vector field
b:R3\ (ZU0) = R b(z) =1(p) x n(x),
so that for any point z € R3\ (X U o), (7(p),n(z),b(x)) is a direct orthonormal frame of R®. Note that
(n(x),b(x)) is also the vector basis for the polar coordinates in the plane N, (,; see again Fig. 4.

The next result of interest is about the derivative of the projection mapping p,:

Proposition 5.2. Let x € R*\ ¥ and p = p,(x). Then, the derivative Vp,(x) reads, in any orthonormal
basis of R® with 7(p) as first coordinate vector:

1

=5, @@ 0 0

Vpo(x) = 0 0 0
0 0 0

Proof. We already know from Theorem 5.1 and the subsequent remark that ‘the mapping R3\X > 2 —
po(x) € o is smooth; hence, it is enough to calculate Vpy(x) for z € R3\ (X Uo), which we do. Using
Lemma 5.2, it holds, for x € R\ (X U o),

po() = — 0, (2)Viy (),
and so:

Voo (2) =1 = Vi, (2) @ Vig(x) — 65(2) V254 (2);
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in particular, Vp,(z) is a symmetric 3 x 3 matrix. Also, Theorem 5.1 implies that for any given vector
z € Ny(py and for s > 0 small enough, ps (2 + 52) = p, (), so that, for any such vector:

Vps(x)z = 0.
Therefore, the proof of the proposition is complete provided we show the following relation:
(5.5) Vz € R, Vp,(x)z-7(p) = 2 7(p)

~l—a(p)-(z—p)’
which is our next task.
To this end, differentiating the relation

7(po(2)) - (. = po(x)) =0
at z, in an arbitrary direction z € R? yields:
(5.6) (V7(p)Vps(2)2) - (x —p) + 7(p) - (2 — Vpo(x)2) = 0,
in which the directional derivative Vp,(z)z is a tangent vector to o at p. On the other hand, by definition,
for any tangent vector Z at o at p, it holds:

d

Vi) = grle(s)|
where ¢ : (—I,1) — o is an arbitrary local parametrization of o with ¢(0) = p and ¢/(0) = 2 = (2 - 7(p))7(p)-
Selecting a curve ¢ with constant velocity |¢/(s)| satisfying these properties, it follows from the definition of
a(p) that:

Vr(p)z = (2-7(p))a(p)-
In particular, taking Z = Vp,(z)z in the above identity, we obtain:
(5.7) V7(p)Vpe(2)z = (Vpo(2)z - 7(p)) alp).
Inserting (5.7) into (5.6) finally yields:

((Vps(2)2) - 7(p)) (alp) - (x — p)) + 7(p) - (z = Vo (2)2) = 0,

whence (5.5) follows, thus completing the proof of the proposition. O
It follows from Proposition 5.2 and the definition of n(z) that the derivative of the mapping = — n(x)

reads, in the local basis (7(p), n(x),b(z)):

—a(p)-n(z)

. =5, @apn@ 0 0
(5.8) Ve e R\ (XUo), Vn(z) = 0 0 0
0 0 5@

Likewise, exploiting the orthonormality relations within the basis (7, n,b), simple albeit lengthy calculations
yield the following formulas (in the same basis):

0 0 0 0 0 0
(59) VT(.’I?) = % 0 0 ) and Vb(!L') = 00 7501(1)
0 0 0 0 0 0

Let us now apply the coarea formula of Lemma A.1 to the mapping p, : R*\ ¥ — o:

Proposition 5.3. Let f € L*(D); then,

/D f(@) de = / ( /D IS EECRIOTED ds<z>> a(p).

In the above formula, as in the rest of this article, d¢ stands for the line measure on o (that is, the
restriction to o of the one-dimensional Hausdorff measure), while ds is the surface measure on each normal
plane N, (the restriction to N, of the two-dimensional Hausdorff measure).

‘We conclude this section with a few useful notations:
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(5.10)

FI1GURE 4. Illustration of the main objects attached to the 3d tubular inclusions considered
in Section 5.1.

The normal component vy of a vector field v : R? — R3 is given by:
Ve € R\ X, vy (z) =v(x) — (v(z) - 7(2))7 ().

Accordingly, the normal component V yu of the gradient of a smooth enough function u : R3 - R
is defined on R® \ ¥ by:
ou

Vyu=(Vu)y =Vu— ET.

The normal part en of a symmetric matrix e € S3(R) is:
en=ec¢—(eT) @7 —7Q (eT) + (eT - T)T R T.
The normal derivative V yv of a smooth enough vector field v : R?* — R3 is defined on R3 \ ¥ by:
Vyv=Vov— (Vur) T,

and so the normal strain tensor of v is:

en(v) = %(VN’U + (V) 1.
This strain tensor can be expressed in the local basis (n,b) of the plane N,(,) as:

en(v)=(e(v)n-n)n@n+ (e(v)b-b)b b+ (e(v)n-b)(Nn®b+ b n),

and with a small abuse of notations, we shall either consider ey (v) as a 3 X 3 symmetric matrix with
0 entries in the 7 indices, or as a 2 X 2 matrix.
Note that (5.8) and (5.9) imply immediately:

en(v) =en(vn).
Also, for smooth enough vector fields v, w : R3 — R3, it holds:

e(v) re(w) =en() : ex(w) +2(e(v)T)n - (e(w)T)Nn + (VoT - 7)(Vwr - 7).

34



5.2. Formal derivation of the asymptotic expansion of u.

In this section, we look for the asymptotic expansion of the perturbed potential u., the solution to (5.2),
as the thickness ¢ of the tubular inclusion w, . vanishes. As we have already emphasized, our argument is
formal; even though we believe that it could be made rigorous, along the lines of [52, 88], this goes beyond
the scope of this article. Since the next result has only been proved rigorously in the literature in a particular
case (see again [32]), we state it as a conjecture.

Conjecture 5.1. The following formula holds, for any point x € D\ o:
(5.11) ue () = ug () + e2up (z) + o(e?), where uy () := / M(p)Vuy(p) - VyN(z,p) dé(p).

Here, N(x,y) is the fundamental solution attached to the background equation (5.1); see Section 2.2.1 and
notably Remark 2.5. For p € o, the polarization tensor M(p) is the 3 x 3 matriz defined by the following
formula, expressed in any orthonormal basis of R3 with 7(p) as first coordinate vector:

(71 —7)(p) 0 >
5.12 M(p) = )
1 0= o
where the 2 x 2 submatriz My (p) is the polarization tensor associated to a disk-shaped, diametrically small
inclusion in 2d:
() — ()

Yo(p) +71(p) E

My (p) = 2m70(p)
see Section 4 and (4.11).

Formal argument: Let us, as usual, consider the error r. := E%(us —ug) € H}D (D), which is the unique
solution to the following variational problem:

1
Vo € HL (D), / VeVre - Vode = —;/ (M1 — v0)Vug - Vo dz,
D w

o,e

or equivalently, the solution to the minimization problem:

1 1
uelr{rii;l(D) E.(u), where E.(u) := 3 /D%|Vu\2 dz + = /wm (v —70)Vug - Vu dz.

We proceed in three steps.

Step 1: We write a representation formula for the error ro(x) “far 7 from o, in terms of the fundamental
solution N(x,y) to the background operator (4.1) and the values of r. inside wy . Considering an arbitrary,
fixed point x € D \ o, one obtains exactly as in the proofs of Theorems 2.1 and 3.1 that, for € > 0 small
enough:

(5.13) re(z) = E%/ (71 =) (¥ Vuo(y) - VyN(z,y) dy +/ (M1 =) (y)Vre - VyN(z,y) dy.

0,€ o,&

Step 2: We analyze the limiting behavior of a rescaled version of r. inside w, . In order to carry out this
formal part of our argument, let us introduce the mapping m. : wy,1 — we . defined by:

(5.14) me(z) = po(x) + €65 ()n(),
where we recall the notation n(x) = %&()I) from Section 5.1. According to Lemma 5.2 and Proposition 5.2,

the derivative of m, reads, at an arbitrary point = € wey 1:

1—ed, (x)a(z) n(x) 0 0
1-6,(z)a(z) n(z)
(5.15) Vime(z) = 0 e 0|,
0 0 €

in any orthonormal basis of R3 having 7(p) as first coordinate vector. What’s more, still using the material

from Section 5.1, m. can be extended to a mapping R*\ X — R3?\ ¥, and we introduce the rescaled remainder

Se 1= ere om,, which will naturally be involved during the calculations of the third step. In order to analyze
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its behavior near the unit inclusion set wy 1, we express s, as the minimizer of a rescaled version of the
energy functional E.(u), which we subsequently simplify by retaining only the leading order terms as ¢ — 0.
Using the coarea formula of Proposition 5.3, E.(u) rewrites, for an arbitrary function u € Hp_(D):

1
EA@Z%LK(Amawﬁl—wmwyn@»%@+wnvm%p+ada@>“@)
+ Eiz (/ (1 = |zla(p) - n(2)) (71 —70)(p + 2)Vuo(p + 2) - Vu(p + 2) ds(z)) dl(p).
o B, (p,e)

We now rescale both inner integrals in the above expression by means of the mapping m,; this yields:

&wzfl<

* / (/ (1 —elzla(p) - n(2)) (11 = 70)(p + €2)Vuo(p + £2) - (Vuome)(p + 2) ds(z)> dé(p)-
o \JB,(p,1)

/ (1 —elzla(p) - n(2))7=(p +2)[Vuome[*(p + 2) dS(Z)> dé(p)
(DNP-(p))

€

A simple calculation allows to see that the rescaled version v = euom, of an arbitrary function u € H, %D (D)
satisfies:

(Vu)om, = éVm;TV”U

11—-d,a-n [(Ov 1
= ————— | =— |7+ =Vyv.
el—¢edsa-n €

Hence, the energy functional E.(u) rewrites:

where we have defined:

(5.16) F.(v):=

2 v 2
L ([ e (I (04 et

Oug ov

-l—/(7 </Bg(p,1) (11 =) (p +e2) (zsﬁ(p + 52)5@ + 2)+(1 —¢lz|a(z) - n(2))VNug(p + ez) - Vno(p + z)) ds(z)) d(p).

Like in the situations tackled in the previous sections, we expect that the limiting behavior of the rescaled
remainder s, = er. om, “near” the rescaled inclusion set w, ; can be determined by looking at the solution
to the minimization problem

min F. (v).

Let us emphasize that the above formulation is not mathematically rigorous, and we deliberately do not
attempt to provide an adapted functional framework, which seems a difficult task. .

According to our methodology, we look after the minimization of the approximate energy functional F_(v)
obtained from F.(v) by retaining only leading-order terms:

— 1 N
a1 Fw)=5 [ [ 3aVaeP e+ ) dst:) detp)
o/ Nrp)
+// ( )(71 —70)(P)Vuo(p) - Vno(p + 2) ds(z) d(p),
o JB,(0,1
where we have defined, for p € o and z € N, (;):

Sin ) — ) np) if z€ Bs(0,1),
(P, 2) = { v (p) otherwise.
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Note that the formal simplification (5.17) from (5.16) — and notably the change in domains of integration
for the inner integrals, from 1(D N P,(p)) to the whole plane N, — tacitly relies on the intuition that for
a fixed point p € o, the function N, () > z — v(p + z) vanishes when |z| — oo.

That the coefficients of the energy F.(v) have a tensorized structure with respect to o x B,(p, 1) entices
us to search for the limiting behavior v of s, in the tubular region w,; as ¢ — 0 under the form:

\le € o, Vz € NT(p)7 58(p+ Z) ~ U(pv Z)a

for a function v : {(p,z) € 0 X R® 2z € Ny} — R to be determined. To achieve this task, we use the
Euler-Lagrange equations for the minimization of (5.17), with test functions of the form

Vp € 0, V2 € Ny, w(p +2) = p(p)Y(2),

for arbitrary smooth functions ¢ € C*(0), ¢ € C*(N,(;)). This immediately yields that for every point
p € o, the mapping N, () 3 2z = v(p, 2) is the solution to the following exterior problem posed on the plane
Nr(p):

—Av(p,2) =0 for z € N.(py \ 0B5(0,1),
(5.18) v(p,2)t =v(p, 2)” for z € 0B,(0,1),
' %0(P) 2= (p, 2) — 11 (P) 2 (9. 2) = — (70 — M) (P)Vivuo(p) - n(z) for z € 9B, (0,1),
[v(p,z)] = 0 when z — oo.

In other terms, we recognize that the function z — v(p, 2) is
’U(p, Z) = ¢VNUO(P)(Z)7

where for ¢ € R?, ¢ € Wy~ '(R?) is the (radial) cell function attached to a 2d diametrically small, disk-
shaped inclusion; see (4.5). Note that, in the above formula, (and in (5.18) before that), we have identified
the plane N.(,) with R? (that is, we have identified one orthonormal basis of the former plane with one of
the latter). Since both functions z — v(p, z) and ¢y 4, (p) have radial symmetry, this identification can be
performed in an arbitrary way, and the forthcoming considerations do not depend on this choice.

To conclude this second step, we note for further reference that the following identity holds:

(5.19) Muyn (0)V yuo() = (1(p) —70(p)) /

(VNUO(I?) + VNU(p7 Z)) dS(Z)7
Bo (p,1)

as a consequence of the expression (4.4) of the polarization tensor My n(p) and of (4.5) and (5.18).

Step 8: We pass to the limit in the representation formula (5.13). Rescaling both integrals in the right-hand
side of (5.13) by means of the mapping m. yields:

@) = o [ 1detTmoln — ) (me(2))(Vuo)me(2)) - Vy N, me(2)) da

Wo,1

+ (71 — 70)(me(2))] det(VmE)|VmgTV(rE ome) - VyN(xz,me(z)) dz,

= [ AR M) e () me(2) - N2

1—0,(2)a(z) - n(z) e o s )
+/ (71 — 70)(me(2)) (5 6578 377'3,(%77115(2)) + 1_56:(2,2)26?23):(22)) Vse - VNyN(a:,me(z))> dz,

g,

o,1

where we have used the expression (5.15) of the derivative of m. as well as the definition of s.. Now bringing
into play the approximation of s, by the function v in (5.18) inferred in the course of the second step, then
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using the coarea formula of Proposition 5.3, it follows:

. 1
Ehl}(l) TE(‘T) = /wa’1 1— 60<Z)a(2> . n(z) (’Yl - ’YO) Opd(vuo Opﬂ) ! VyN(I7p0(Z)) dZ

T opn 17 &,(z)i(z) TGy (1 T 0) 0o Vivy - Vi, N(@,po(2)) dz,
=) T(n) - TN ) )

+ (1 =1)(P)VNo(p, 2) - Vv, N(z,p) ds(z) dl(p),

o J Bs(p,1)
8u0 ON

|Bo(p, 1)[(71 — ’yo)(p)g(p)afw(wm) dé(p)

+ /a /Bo(m) (71 —0)(p) (VNuo(p) + Vno(p, z)) - VN, N(z,p) ds(z) dé(p).

Using finally (5.19) to reformulate the second integral in the above right-hand side in terms of the two-
dimensional polarization tensor My, we finally obtain:

lim 7 () =7T/U(71 —70)(19)%(17)@(%17) dé(p)+/gMNNVNUo(p)-VNyN(x,p) dé(p),

oty

which is the desired result.

5.3. Asymptotic expansion of a quantity of interest involving u.

We now consider the derivative of a functional depending on the small thickness € via the perturbed potential
ue in (5.2) of the form:

Jy(e) = /Dj(ug) dz,

where j : R — R is a smooth function satisfying the growth conditions (2.8). The result of interest is the
following proposition, whose proof is again omitted; see the proof of Proposition 2.2 if need be.

Proposition 5.4. The function J, () has the following asymptotic expansion as e — 0,
Jy(g) = J,(0) +2J.(0) + o(?),

where the “derivative” J.(0) reads:
(5.20) JL(0) = / MVuq - Vo de.

In the above formula, M is the polarization tensor defined in (5.12), and the adjoint state pgy is the unique
solution in Hi (D) to the equation:

—div(vVpo) = —j'(uo) in D,
po=0 on I'p,
VO% =0 on OD\Tp.

A more practical version of this result reads:

750 = [ Plari@). m(e) m(a) deo),
where for x € o, 7 = (71, 72, 73) — P(x, 71,72, 73) is the trivariate polynomial with degree 2:

(1 () + y0(x))?

71(x) — y0(x)
v @) @)

P(x,71,70,73) = 27Tfy0(:17)’y1 @) T 0(@) uo(z) - Vpo(z) + 7

(Vug(z) @ Vpo(z)) T - T
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5.4. Comparison between the 2d and the 3d cases

Let us conclude this study of thin tubular inhomogeneities in the context of the three-dimensional conduc-
tivity equation with a few remarks about the differences between the 2d case analyzed in Section 2 and the
present 3d situation.

However similar at first glance, the 2d and 3d asymptotic formulas (2.5) and (5.11) have actually quite
different structures. As we have seen indeed, the first non trivial term u; in the 2d expansion of wu. is
“variational”, insofar as it can be characterized as the solution to a fairly classical boundary value problem
(or as the minimizer of the corresponding energy functional) and it belongs to a functional space which is
inherited from that associated to u.; see the equation (2.15) and the comments thereafter.

On the contrary, in the three-dimensional case, u; cannot be characterized in the same fashion: intuitively,
curves in 3d are “too small” sets to bear boundary conditions in the context of a “standard” second-order
elliptic problem (they have zero harmonic capacity). This difference is reflected by the difference in order
(€2 rather than €) at which the correction u; comes up in (5.11).

Another interesting manifestation of this phenomenon lies in the study that we carried out during the
second step of the proofs of Theorem 2.1 and Conjecture 5.1, about the “far field” u and the “near field” v,
as the limiting behaviors of the error r. = Er,#_l(ug — up) and its rescaled version s, respectively. In our 2d
analysis, we have not completely determined the limit v of s. inside the unit inclusion set w,1 (and we did
not need to do so). In this case actually, the complete limiting behavior v would depend on the “far field” w;
see Remark 2.5. If we were to try and apply verbatim the methodology used in the context Conjecture 5.1
in the 2d case, we would have to consider, for each point p € o, an exterior problem posed on the normal
line to o at p, that is, a one-dimensional version of (5.18). This 1d exterior problem has no solution decaying
to 0 at infinity, but only solutions tending to constant values at infinity. These constants are exactly the
connection between the limiting behaviors of the “near field” v and the “far field” u that we observed in
the case of the 2d conductivity equation. On the contrary, we have seen that in 3d, the 2d exterior problem
(5.18) characterizing the “near field” v in each normal plane to ¢ has a solution which goes to 0 at infinity.
As a result, it is a completely determined function, independently of the “far field”.

6. THE LINEAR ELASTICITY CASE IN THREE SPACE DIMENSIONS

In this section, we adapt the previous considerations to analyze the effects of thin tubular inhomogeneities
in the context of 3d linearly elastic structures, a situation which has not been addressed in the literature, to
the best of our knowledge.

The physical setting is the exact three-dimensional counterpart to that described in Section 3.1.1. Inside
a bounded, Lipschitz domain D, the “background” and perturbed displacements ug,u. : D — R? are thes
solution to the 3d versions of the systems (3.3) and (3.4), respectively. The two isotropic materials featured
in these equations are physically described by Hooke’s laws Ay, Ay of the form (3.1), with respective Lamé
parameters Ao, o and Aq, 1.

Using our formal energy method, we derive the asymptotic expansion of the perturbed displacement
Ue € H%D (D)3 in terms of ug and a suitable polarization tensor M. Since the derivation is analogous to
that in the conducted in the 3d conductivity setting in Section 5 (up to an increased level of technicality),
we solely provide the main steps of the argument.

Conjecture 6.1. The following asymptotic expansion holds at an arbitrary point x € D\ o:
ue(z) = up(x) + uy () + o(e?), where uy(x) = / M(p)e(ug) : ey(N(z,p)) dl(p),

N(z,y) is the fundamental solution of the background operator in (3.3) (see Remark 3.1), and the polarization
tensor M(p) is defined at any point p € o by:

71'()\1 - )\0)()\0 + 2/10)
to + A1+ 1

(6.1) Ve,é € Sa(R), Me:é= Mynen : éx + <tr(eN)(éT )+ (er - T)tr(éN)>

(A1 — Xo)?

AM, (& 21 — A — Ag) — AL AT
Mo (erhy - @y o+ 7 (2 = o) + O =) = 20

) (er - 7)(ér - 7).
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Here, we have omitted the mention to the point p under consideration for brevity. We have also introduced
the two tensors M.y (p) and Mpyn(p), acting on two-dimensional quantities, defined by:

o M, n(p) is the 2 X 2 matriz describing the effect of a disk-shaped, diametrically small inclusion in
the 2d conductivity setting, where the conductivity coefficients at play equal po(p) and p1(p), namely:

mp) = po(p)

(6.2) Mo (p) = 2miiolp) p1(p) + po(p)”’

see (4.11).
o Mun(p) is the isotropic fourth-order tensor describing the effect of a disk-shaped diametrically small
inclusion in the linear elasticity setting; it is defined for any symmetric 2 X 2 matriz e by:

(6.3) Mnyn(p)e = as(p)tr(e)l+ Bs(p)e,
where the coefficients ag(p) and Bs(p) are given by (4.13); see Section /.4.

Formal argument. As usual, let us introduce the error r. := E%(us — ug), which is the unique solution in
H}. (D)? to the variational problem

Yo € Hf: (D)?, / Ace(r.) e(v)dz = —Eiz/ (A1 — Ao)(x)e(up) : e(v) d;

D o,e

equivalently, r. is the unique solution to the minimization problem

1 1
(6.4) ueHr%nLi)I}D)3 E.(u), where E.(u) := 3 /D Ace(u) : e(u) dz + 2 /wm (A1 — Ag)e(ug) : e(u) da.

Step 1: We construct a representation formula for the errorre(xz) “far” from w, . in terms of the fundamental
solution N(x,y) to the background equation (3.3) and the values of - inside w, . Considering a fixed point
x € D\ o and arguing exactly as in the proof of Theorem 2.1 (Step 1), we obtain, for j =1,2,3 and ¢ > 0
small enough:

(6.5)

1
Te,j(T) = ?/

Step 2: Asymptotic behavior of a rescaled version of r.. To conduct this formal step of our argument, let us
introduce the rescaled error s, := er. o m., where m. is the mapping given by (5.14). We aim to determine
the limiting behavior of s. near the rescaled inclusion set w,. 1, and to this end, we perform a rescaling and
a simplification of the energy functional E_(u) in (6.4).

At first, the coarea formula of Proposition 5.3 yields the following equivalent expression for the energy
E.(u) attached to an arbitrary function u € H} (D)%

(A1 = Ao)(y)e(uo)(y) : ey(N;(x,y)) dy +/ (A1 = Ao)(y)e(re)(y) = ey(N;(x,y)) dy.

o,e Wo,e

zzww=;A(ﬁmﬂwﬁl—wm@»n@MA&wwew»@+wdaw>M@)

+;/</ a—wmm%@mm—AMwwkwmpwwamw+m®@>M@.
o Bs (psg)

We then rescale both inner integrals in the above right-hand side owing to a change of variables involving
m; this yields:

&wzfl<

+/</ (L%AMMWQM&—AMpm@WM@+m%@WNm@@+@®@>M@-
o B, (p,1)

/ (1 —elzla(p) - n(2)) (A (e(u) o me) : (e(u) o me))(p + 2) dS(Z)> dé(p)
£(DNPy(p))

e
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Now, elementary calculations based on (5.14) allow to relate the strain tensor of a smooth enough vector-
valued function u : D — R3 to the derivatives of v := eu o m,:

(6.6)
e(u) ome
1
= 5 (V(u om)Vmzt + Vm TV (uo mE)T)7
1 Lodean o(y)r .7 L (igenvorn+ 1von 1) L ({50 Vor b+ LV 7)
e 2 (ﬁe%i%ivw -+ Von- T) se(v)n-n zse(v)n - ’
% (11—75560:11.-7:va7— b+ %V’Ub : T) ée(v)n b ée(v)b b

where the above matrix is expressed in the local basis (7,n,b) of the space. Similarly, it holds:

11-d,a-n

. di e = —————
(67) (divu) om el—eb,a-n

e(v)T T+ slg (e(v)n-n+e(v)b-b).

A series of simple, albeit tedious calculations reveals that:

where we decompose the quantity F;(v) in terms of the powers in € of the coefficients in the featured integrals:
Fe(v) = FZ (v) + eF2(v) + €2 F2 (v);

in the above identity, each contribution F}(v) has coefficients of order O(1) as ¢ — 0, and only the expression
of F}(v) will be needed for our purpose:

o
—
4

) =

N

/ </ 2ue ome(1 —glz|a - n) ((e(v)n n)% 4 (e(v)b - b)? + 2(e(v)n - b)* + %(an ST 4 %(va : 7)2) ds(z)> dé(p)
o \/ 1 (DNP;(p))

AL

+/U </Ba(p,1) 2(p1 — o) o me(1 —lz|a - n)((e(uo)n -n)(e(v)n - n) + (e(uo)b - b)(e(v)b - b)

/ A o me(1 —lzla - n) (e(v)n n+e(v)b- b)2ds(z)> dé(p)
L(DNP, (p)

€

+ (e(ug)T -n)(Von - 7) + (e(ug)T - b)(Vub - T)) ds(z)) dé(p)

+ /J (/B(,(p,l) (1 —¢lz]a-n) (A — Ao) o me(divug) o me (e(v)n ‘n+e(v)b- b) ds(z)) dé(p).

In the above integrals, as often in the forthcoming calculations, the mention to the integration point p + z
is sometimes omitted when it is clear, for the sake of brevity.

Our methodology then proceeds as in the case of Conjecture 5.1. We expect that the limiting behavior v
of s. near the rescaled inclusion set w, 1 be dictated by the minimization of the energy F!(v), and, in turn,

by that of a simplified version F(v) of the latter where only the leading-order terms as £ — 0 are retained.
More precisely, we consider the problem:

(6.8) min F1(v),
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21i(p, 2) ((e(v)n )% + (e(v)b-b)? + 2(e(v)n - b)* + %(Vun 1) 4 %(V’Ub . 7)2) ds(z)) d4(p)

S

+/U (/Bﬂ(m) 2(p — uo)(p)((e(uo)(p)n n)(e(v)n - n) + (e(uo)(p)b - b)(e(v)b - b)

~ 2
Ap, 2) (e(v)n -n+e(v)b- b) ds(z)) dé(p)

7(p)

+ (e(uo) ()7 - n)(Ton - 7) + (e(uo) (p)7 - b)(Vub - 7)) ds<z>> dt(p)

+ / ( / (A1 = 20)(p)(divuo)(p) (€(v)n - m -+ e(w)b-b) ds(z)) dé(p),
o Bs(p,1)
and we have defined, for p € o and z € N, (),

ooy o) iflzl <1
iip2) = { uo(p) otherwise.
Recall that it is quite unclear what would be a rigorous framework for this minimization, and we do not
elaborate on this issue. N
Taking advantage of (5.8) and (5.9), the energy F(v) may be reformulated in terms of the normal and
tangential components of v with respect to o:

69 Fw=5 /[ [

T(p)

+ /U /B,,(p,1) 2(p1 — po)(p) (eN(uON)(p) cen(vn) + e(ug)(p)T - Vv (v - 7.)) ds(z) dé(p)

(mm D (lenem)? +519x - 7)) +3(p,2) (tr(w(w)))Q) ds(=) dé(p)

+ /U /B(,(p,l) (A1 — o) (p)(divug) (p)tr(en (vn)) ds(z) dé(p).

At this point, judging from the tensorized structure of the integrals and coefficients in the above expression

of F}(v), we are enticed to seek the limiting behavior v of s. inside the rescaled inclusion w, 1 under the
form:

Vpeo, z€ B,(p,1), se(p+2)=v(p,2),

for a certain vector field v : {(p, 2)€EoxR3 2z € NT(p)} — R3 to be determined.

To achieve this purpose, we rely on the Euler-Lagrange equations associated to the resolution of (6.8). It
immediately follows from the expression (6.9) of the energy FJ(v) that this minimization can be conducted
in terms of the tangential and normal components v - 7 and vy of the unknown function v, independently.

Let us then write down the Euler-Lagrange equations for the minimization of (6.9) by considering only
variations of the tangential component v - 7: for each point p € o, the function N,y > 2+ (v-7)(p,2) €R
turns out to satisfy the following variational problem:

(6.10) Yw, /N

The above variational problem is well-posed when the unknown and test functions v and w are chosen in
the functional space VVO1 ’_1(R2) (see Remark 4.1). It exactly corresponds to the variational formulation for
the 2d profile (4.9) associated to a disk-shaped diametrically small inclusion in the conductivity setting, up
to the identification of the N.(,) with R?; see again the proof of Conjecture 5.1, and notably the discussion
immediately after (5.18). More precisely, v - 7 equals:

AVN(v-7) - Ve ds(z) + / 21 — 110) (p) (eluo) (p)7) - Voyw ds(z) = 0.

(p) B, (p,1)

\le € o, Vz € NT(p)7 (U ' T)(pa Z) = ¢26(u0)(p)‘r(p) (2)7
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where for a given vector £ € R?, the function ¢¢ € W(}’fl(Rz) is the solution to:

. ~Age =0 in (R2\ B(0,1)) U B(0,1),
10 (p) 2 — 11 (p) o5 = —(po(p) — i (p))(€-m) on DB(0, 1),
|¢§(z)\ -0 when |z| = oo;

which is exactly (4.5), in which ~4(0),v1(0) are replaced by po(p) and p;(p), respectively.
For further reference, we note that the 2 x 2 matrix M, n(p) in (6.2) satisfies the following identity:

(6.11) 2Men (p)(e(uo)(p)T)N = / (11(p) = 1o(p))(2(e(uo)(P)T)N + Vi (v - T)(p, 2)) ds(2).

Bs(p,1)

Let us now consider variations of the normal component vy in the minimization of the energy E(v) in
(6.9). For a fixed, arbitrary point p € o, the mapping N,y > z = vn(p, z) € N, satisfies:

Y, / (2ﬁeN(uN);eN(w)+Xtr(eN(vN))tr(eN(w))) ds(z)
N.

+/B o (2(#1 — to)(P)en (uon)(p) : en(w) + (A1 — )\o)(p)(divuo)(p)tr(eN(w))) ds(z) = 0,

and we decompose vy (p, z) as:
un (p, 2) = wi(p, 2) + w2(p, 2),
where w1 (p, z) and wa(p, z) are defined as follows:
e the vector field z — wi(p, 2) equals Ve (uoy)(p)(2), Where for any symmetric 2 x 2 matrix &, ve €
Wy ' (R2)? is the unique solution to the variational problem:

(6.12) /N (QﬁeN(vg):eN(w)+:\\tr(eN(v§))tr(eN(w))) ds(z)

7(p)
[ (2 - )€ exw) + O = Ao r(er(en(w)) ds() =0
By (p,1)

that is, ve is exactly the profile function (4.12) attached to the asymptotic expansion of the solution
to the 2d linear elasticity system in the situation of a diametrically small disk-shaped inclusion.
e The vector field z — wa(p, 2) equals We(yy)(p)r.r, Where for b € R, wy, is the unique solution in
VVO1 771(R2) to the variational problem:
/ (QﬁeN(wh) cen(w) + Xtr(eN(wh))tr(eN(w))) ds(z) —|—/ (A — Xo)(p)htr(en(w)) ds(z) = 0.
N

7(p) B (p,1)

By uniqueness of the solution to (6.12), it holds:

WhH = VU, A1 —Xg

2 u1—potA]—Xg hl

For further reference, we note that, for any symmetric 2 x 2 matrix &:
619 M@= [ (20— po) 0+ en(u) + O = Xo))r(e + ex(w)L) ds),
o (ps1

and so:
1 1

21 — o+ A1 —

(6.14) " tr(MNN(p)f) = /Ba(p,l) tr(€ + en(ve)) ds(z).

Finally, by the same token:
h A1 — Ao

6.15) — I)=
(6.15) 2#1*M0+)\1*)\0<MNN(p))

/B o (2(#1 — o) (p)en(wr) + (A1 — o) (p)(h + tr(eN(wh)))I> ds(z).
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Step 8: We pass to the limit in the representation formula (6.5). It follows from a change of variables based
on the mapping m. in (5.14) (see also (5.15)) that:

rej(r) = Eig/ | det(Vme)[(Ar — Ao)(me(2))e(uo)(me(2)) : ey (N;(2,me(2))) dz
(6.16) +/ | det(Vm.)[(A1 — Ag)(me(2))(e(re) ome) = ey(Nj(z,me(2))) dz,
=: IE1 +alé,

with obvious notations. It is now easy to see from the coarea formula of Proposition 5.3 that:

(6.17) lim 11 = / /B A A Bem)p) (N 7)) ds(2) )

e—0

As for the second integral I2, the formulas (6.6), (6.7) and the convergence of s. obtained in the first step
yield:

. 2 2(p1 — o) © Py on - 7)(e (x T-n vb-T)(e (x T
Elliz(l)le _/U;GJ 1_5a(y)a(y) n(y) ((v )( y(N]( apU(y))) )+(v b )( y(N]( apo(y))) b)

+(e(v)n - n)(ey (N; (2, po (y)))n - 1) + (e(v)b - b)(ey (N; (2, po ()b - b) + 2(e(v)n - b)(ey (N (z, po (y)))n - b)) dy

()\1 - Ao) O Do ) i
* /wﬂy1 1—d,(y)a(y) - n(y) (e(v)n -n+e(v)b- b) divy (N;(z, ps(y))) dy.

Using the coarea formula of Proposition 5.3, this rewrites:

(6.18)
i 12 = [ [ 2 @) (a0 (o)) (o) e, (N (1)) ds(z) )

e—0

+/U/B,,(p,1) (M = o) (p)tr(en (vn))divy (N, (2, p)) ds(z) dé(p).

Eventually, combining (6.17) and (6.18), we obtain:

li
e—0

mres@) = [ [ A 0)e) () <oy (Vo) ds(2) )
w2 ) (T (w-7) e N p)7) + extom) e, (N (w.p))) dst2) )
[ Onm A mtrenon i (N ) 5(2) )
We now rewrite the above expression by bringing into play the tensors My (p) and M, x(p) defined in

(6.2) and (6.3). To this end, expanding the first integral in the above right-hand side (and notably using
44



(5.10)) yields, after simple, albeit tedious calculations:

li e 0) = / / 21 — o) (B)(en (wr) + en (o) (p)) : e, (N;(x, p)) ds(z) dE(p)
e o J By (p,1)
+ / / (M1 — M) ()tr(en(wn) + ex (o) () x(en, (N (2. p)) ds(z) de(p)
o J Bs(p,1)
n / /B 2 ) Blen() e, (N, p) ds(z) )
+ / / (A1 — A0)(0) (x(en (w2)) + e(uo) (p)7 - )tr(en (N (z, p))) ds(z) d(p)
o JBs(p,1)
w20 ) (Ta )+ 2o - ey Ny )7 d5) )
s [ ] = et + exu)p)) (e, (Ve p)r - 7) ds(z) delp)
o JBs(p,1)
+ / / (201 — 10)(2) + (1 — 20)(P)e(uo)(p)7 - 7)(ey (N (. )7 - 7) ds(z) dl(p)
o JBs(p,1)
" / /B L 0w ey (N ) ) ds(2) )
8
= ;/(J'/;G(p,l) a;(x,p) ds(z) dé(p),
with obvious notations. We now calculate the integrands o (x,p), j = 1,...,8, omitting the mention to the

point p when it is clear:
e Using (6.13) yields:

(a1 + az)(@,p) = Myn(plen (uon)(p) : en(N;(z,p)).
e Using (6.15), we obtain:
1 A1 — Ao
2 11 — o + A — Ao
taking advantage of the expression (4.13) of the coefficients of My, this rewrites:
_ m(A1 = Ao) (Ao + 2p0)
po + A1+ pa

(a3 + ) (x,p) = (e(uo)T - 7) (MunT: en(N(w,p)) )

(a3 + ) (@, p) (e(uo)7 - 7) tr(en (N (2, p)))-

e On account of (6.11), one has:
as(x,p) = 2Mrn (2e(uo)T) N - (ey (Nj (2, p))7) N = dMrn (e(uo)T) N - (ey(N; (2, p))T)N
e From the relation (6.14), we infer that the sixth term equals:
1 A1 — o
21 — po+ A —
which yields, from (4.13),
7T(>\1 — )\0)()\0 + 2#0)
ag(x,p) = tr(en (u ey(N;(x, -T).
o(o.p) = TS0 L e (o)) ey (N )+

o The term a7 (z, p) does not need to be reformulated.
e Using again (6.14) and then (4.13), ag(x,p) rewrites:

(A1 — Ao)?
P ew) )T ) ey Ny ) )

This results in the desired expression. O

ag(z,p) = )\OtY(MNNeN(UON))(ey(Nj(xvp))T 7)),

ag(z,p) = —7

Remark 6.1. As we have already noticed in the course of the previous calculation, the component M,y of

the polarization tensor M in (6.1) coincides with the polarization tensor (4.11) attached to a disk-shaped,

diametrically small inclusion in the situation of the 2d conductivity equation, where the Lamé parameter
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plays the role of the conductivity coefficient. This echoes to the well-known two-dimensional reduction of the
3d linear elasticity system in the particular situation of antiplane shear; see for instance [96].

We conclude this study with the calculation of the asymptotic expansion of a quantity depending on the
thickness € via the perturbed displacement u., say:

To(e) = / j(ue) da,
D
where j : R3 — R is smooth and satisfies the growth conditions (2.8).

Proposition 6.1. The function J,(€) admits the following asymptotic expansion:
Jy(g) = J,(0) +2J.(0) + o(?),

where the “derivative” J,(0) reads:
J(0) = /./\/le(uo) s e(po) dl.

Here, M is the polarization tensor defined in (6.1), and the adjoint state py is the unique solution in H%D (D)3
to the following system:

—div(Aoe(po)) = —j'(uo) in D,
(619) bo = 0 on FD7 _
Ae(po)n =0 on 0D\ Tp.

Again, we provide a slightly different, more practical form of the “derivative” J’(0), emphasizing its
dependence on the curve ¢ and its tangent vector 7:

J5(0) = / P, (x), ma ), 73()) dl(z),

where at a given point « € o, 7 = (71, 72,73) — P(x,71,72,73) is the trivariate polynomial with degree 4
defined by:

P(x,71,72,73) = agtretrf + Bge : f + (_Qﬂs 4 gﬂuom_”o) (er - f1)

M1+ Ho
N (w()‘l — Xo)(Ao + 2p0)

— a5> (tre (fT-7)+trf (eT - 7))

to + A1+ 1
(A1 = Ao) (Ao + 240) M1 — Ho (A1 = Ao)? )
+( s+ Bs -2 — 870 2 27 (p1 — pro) + (M — No) — T— ) (er-T)(fToT).
(as Bs —2m ot Mt Wuou1+#0 m(1 = po) + (A — Ao) TR v (er-7)(fTT)

In the above formula, we have taken the shortcuts e = e(ug), f = e(po); the values ag and Sg depend on
1o, 11, Ao, A1 via (4.13) and the dependence of all the coefficients with respect to x is omitted for brevity.

7. NUMERICAL ILLUSTRATIONS AND APPLICATIONS

In this illustrative section, we discuss the practical use of the asymptotic formulas (1.11) for thin tubular
inhomogeneities considered in this article. After verifying the numerical accuracy of these formulas in Sec-
tion 7.1, we propose three different applications in shape and topology optimization. At first, in Section 7.2,
we introduce a methodology for grafting a thin ligament to a shape in the course of a more “classical” optimal
design process, with the aim to make the final design less sensitive to the initial guess. Secondly, Section 7.3
is devoted to an algorithm for computing an optimized set of pillars, serving as the scaffold structure of a
shape during its construction by means of an additive manufacturing technique. Eventually, in Section 7.4,
we present a strategy for the computation of a judicious initial design in view of the optimization of a
truss-like structure.

Before proceeding, let us already emphasize that these numerical methods are proposed as preliminary
“proofs of concept”, rather than as fully mature techniques. In particular, several algorithmic aspects have
not been paid much attention in the present article; see in particular Remark 7.1 and Section 8 for several
criticisms and leads towards improving their computational efficiency which will be considered in a future
work.
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7.1. Numerical validation

In this first example section, we appraise numerically the validity of our asymptotic formulas for thin tubular
inhomogeneities in the 2d and 3d conductivity and linear elasticity settings.

The physical configurations at stake are depicted in Fig. 5: in two space dimensions, the hold-all domain
D is the rectangle D = (—1,1) x (0,1), I'p is defined as the left-hand side of 9D and I'y is its right-hand
side. The base curve o C D of the considered tubular inclusions is the straight segment o = (—%7 %) X {%}
In three space dimensions, D is the unit cube D = (0,1)3 and the regions I'p and I'yy are the left-hand side
and the right-hand side of 0D, respectively; the base curve ¢ is defined by o = {%} X (%, %) X {%}

D

I'p

ANANNRNNNNNNNNNS
. ]

FIGURE 5. Numerical evaluation of the asymptotic formulas for thin tubular inhomo-
geneities in Section 7.1; (top) common physical setting of the test cases (left) in 2d, (right)
in 8d; (bottom) computational mesh where the inclusion wey ¢ is explicitly discretized (left)
in 2d for e = 0.02, (right) in 3d for e = 0.05.

7.1.1. The case of the conductivity equation in 2d and 3d

In the “background” situation, the domain D is filled by a material with conductivity 79 = 1; a flux g = —1
is applied on I' ;y and volumic sources f are omitted for simplicity. In the perturbed situation, several values
of the thickness ¢ are considered for the tubular inclusion w, ., as well as for the (constant) conductivity v1
inside the latter.

On the one hand, we evaluate the compliance of the domain D in the perturbed situation, that is, the
quantity:

C,(e) := / gue ds = / YeVue - Vu, dz,
Ty D

where u. is the solution to (2.4). The numerical computation relies on the use of the Lagrange P; finite

element method on a conforming mesh of D where the inclusion w, . is meshed explicitly — that is, a mesh

of w, . appears as a submesh of that of D; see Fig. 5, (bottom). We rely on the remeshing library mmg (see
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[50, 51]) for the construction of such a mesh, and on the FreeFem environment [69] for the finite element
calculations.

On the other hand, we compute the approximation of C,(¢) predicted by the asymptotic expansion of
Theorem 2.1 and Conjecture 5.1:

C,(0) +&%71C7 (0).

The solution ug to the background conductivity equation (2.2) and all the depending quantities involved in
the expressions (2.36) (in 2d) and (5.20) (in 3d) of the derivative C” (0) are calculated on a fixed reference
mesh of D.

The values of both expressions, associated to different conductivities v; = 10,100, or 1000 and different
thicknesses ¢ for the inclusion set are reported on Fig. 6 in the two-dimensional case, and on Fig. 7 in the
three-dimensional case.

—— Exact compliance

A —— Exact compliance —— Exact compliance
1.9 Asymptotic formula

Asymptotic formula 175 —— Asymptotic formula

1.8

h oot

I
Compliance

Compliance

1'10 00 0.01 0.02 0.03 0.04 0.05 0.000 0.001 0.002 0.003 0.004 0.005 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

Epsilon Epsilon Epsilon

FIGURE 6. FEwvaluation of the asymptotic formula for tubular inhomogeneities in the 2d con-
ductivity case of Section 7.1.1: comparison between Cy(g) and the formula C,(0) + eC’ (0)
forvo =1 and (left) v1 = 10, (middle) v1 = 100 and (right) v1 = 1000.
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FIGURE 7. Ewvaluation of the asymptotic formula for tubular inhomogeneities in the 3d con-
ductivity case of Section 7.1.1: comparison between Cy(g) and C,(0) + £2C? (0) for 4o = 1
and (left) v1 = 10, (middle) v, = 100 and (right) v1 = 1000.

As expected, the asymptotic formula C,, (0)+e?~1C” (0) provides a fairly good approximation of the exact,
perturbed compliance C,(g) when ¢ is sufficiently small (especially in 3d). Let us notice however that, for
a given value of the thickness e, the quality of the approximation deteriorates as the conductivity v, inside
wge (thus the contrast v1/v0) gets larger. This observation is in line with the conclusions of [14, 15, 52],
according to which the asymptotic formulas (2.5) and (5.11) for u. cannot hold uniformly with respect to
the contrast ;1 /70, i.e. the remainders o(¢) and o(¢?) in there depend on 71 /9. Actually, it turns out that
the limit of u. itself may differ from the background potential ug when the contrast v1 /vy degenerates to 0
or oo as € — 0. It would be interesting to appraise the use of the asymptotic formulas for u. derived in these
articles, which hold uniformly with respect to the ratio 71 /70 (and are unfortunately much more difficult to
derive and compute numerically) to get more robust approximation formulas for u. and C,(¢) with respect
to the values of ~;.
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7.1.2. The case of the linear elasticity system in 2d and 3d

We perform a similar analysis in the context of the linearized elasticity system: now, ug is the solution to
the background elasticity system (3.3), where the Hooke’s tensor Ag in (3.1) is characterized by the Lamé
coefficients Ay = 0.5769 and pp = 0.3846. In the perturbed situation, the displacement u. is the solution to
the system (3.4), and several values will be considered for the thickness € of the inclusion set wy . and the
Lamé coefficients A1, w1 of its constituent material A;. In all cases, body forces f are omitted; the surface
load reads g = (0,—1) in 2d and g = (0,0, —1) in 3d.

On the one hand, we calculate the perturbed displacement u., and the corresponding compliance

(7.1) Cy(e) := /F g-usds = /D Ace(ue) : e(us) dz

on a confoming mesh of D where w, . is explicitly discretized; see Fig. 5 (bottom row).
On the other hand, we evaluate the asymptotic formula

(7.2) Cy(0) +771C(0)

on a fixed mesh of D. The results associated to different values of the thickness ¢, and different values of
the Lamé coefficients A1, 1 are displayed on Fig. 8 in the 2d case, and on Fig. 9 in the 3d case.
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FIGURE 9. FEwaluation of the asymptotic formula for tubular inhomogeneities in the 3d elas-
ticity case of Section 7.1.2: comparison between Cy(g) and Cy(0) + e2C”(0) for values of

the ratio ﬁ = :\\—; equal to (left) 10, (middle) 100 and (right) 1000.

Again, a fine matching is observed between both quantities (7.1) and (7.2), which is, perhaps a little
surprisingly, better than in the case of the conductivity equation. As can be expected from the discussion
in the previous Section 7.1.1, for a fixed value of ¢, this correspondance deteriorates as the ratios % and i—;
increase (again, to a lesser extent than in the case of the conductivity equation).
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7.2. Topological ligament for elastic structures

The first application context of our asymptotic expansion formulas for thin tubular inhomogeneities is also
our initial motivation for the work of this article (see Section 1.1): we intend to use them in the course of a
structural optimization process, as a guide to insert now and then bars of material between distant regions
of the shape, in an optimal way with respect to a function of the domain.

7.2.1. Shape and topology optimization of elastic structures using the boundary variation method of Hadamard

We deal with the optimization of an elastic structure Q ¢ R? (d = 2,3), whose boundary 9 is composed
of three disjoint parts: 9Q = I'p UT'y UT. The structure is clamped on I'p, and surface loads g : I'y — R?
are applied on I'y; both regions are imposed by the context, so that the remaining, traction-free region I is
the only one subject to optimization. Omitting body forces for simplicity, the displacement ugq :  — R? of
the structure in these circumstances is the solution to the linear elasticity system

—div(Ae(ug)) =0 in Q,

ug =0 on I'p,
(7.3) Ae(ug)n =g on Iy,
Ae(ug)n =0 on T,
where the Hooke’s law A of the material reads:
(7.4) Ve € Sq(R), Ae =2ue + Mr(e)], with Lamé coefficients A = 0.5769, p = 0.3846.

Our purpose is to solve the shape optimization problem
(7.5) m(%n C(Q) s.t. Vol(Q) = Vp,

where C'() is the elastic compliance of © (or the work of external loads), namely:

(7.6) cQ) = / Ae(ugq) : e(uq) dx = / g - uq ds,

Q Tn
and Vol(Q2) = fQ dz is the volume, which is expected not to exceed the threshold value V. Note that the
choice of the compliance and the volume as the objective and constraint in (7.5) is only a matter of simplicity,
and that other functionals could be considered instead without much change to the forthcoming discussion:
least-square difference functions over the displacement, stress-based criteria, etc.

Our numerical resolution of (7.5) relies on the boundary variation method of Hadamard, which we have
already evoked in Section 1.1, and whose salient features we now briefly recall for the convenience of the
reader; see e.g. [12, 70, 83, 98] for further mathematical details and [8, 93] about implementation issues.

Variations of a given shape () are considered under the form

Qp := (Id + 0)(Q2), where § € W'(RYRY), [|0]| w100 (e gy < 1,

is a “small” vector field encoding the deformation of ; see Fig. 1 (top, right). The shape derivative of, say,
C(Q) is the Fréchet derivative C’(f2) of the underlying mapping 6 — C(Qg) at 6 = 0:

0(9) 0—0

(7.7) C(Qy) =C(Q) + C'(Q)(0) + o(#), where 0.
[101lw1. 00 (re ra)
The shape derivatives of C'(2) and Vol(f2) are well-known to be (see e.g. [11]):
(7.8) C'(Q)(0) = —/ Ae(uq) : e(ug) 0 -nds, and Vol (Q)(0) = / 0 -nds.
r r

This allows to calculate a so-called (negative) “shape gradient” 6 : RY — R for C(Q) (and similarly, a
shape gradient 6y for Vol(Q2)): 6¢ is a vector field such that the deformed version ;4. of § achieves a lesser
value C(Q4p.) < C() of the compliance for ¢ > 0 small enough. One such possibility, among others, is such
that:

Oc = Ae(uq) : e(ug)n on T,
as follows readily from (7.7) and (7.8). This information is the main ingredient of shape optimization
algorithms based on the method of Hadamard, a generic sketch of which is provided in Algorithm 1.
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Algorithm 1 Resolution of Problem (7.5) using the method of Hadamard.

Initialization: Initial shape Q°, intial values a%, oy, of the optimization parameters.
for n =0, ..., until convergence do

(1)  Calculate the elastic displacement ugn of Q™.

(2)  Calculate shape gradients 63 and 67, for the functionals C'(2) and Vol(§2), respectively.

(3)  Calculate the deformation

0" = adbt + a0y
(4)  Deform Q" along 0™:
Q"= (Id + 70™)(Q"),
where the pseudo-time step 7™ is chosen small enough so that:
akC(Q") 4+ Vol (Q" ) < aZC(Q™) + af Vol(2™).

5 Update the optimization parameters o and of.
p P P e} 1%

end for

return Q"

In Algorithm 1, the optimization parameters o, o, are updated so that the volume constraint is gradually
enforced, while decreasing the value of the compliance, insofar as possible. Several strategies are available to
this end, and in our practical implementation, we rely on the constrained optimization algorithm from [58].
As far as the numerical representation of shapes and their evolution are concerned, we rely on the level set
based mesh evolution method from [6, 7] (see also [57, 59] for recent developments). Grossly speaking, this
method couples a level set representation of the shape on a fixed computational domain D [11, | (see also
[91] for the seminal reference about the level set method) with remeshing operations using the open source
library mmg [50, 51] to ensure that the shape is meshed explicitly at each stage of the process: no ersatz
material approximation is needed in our numerical realization of Algorithm 1. Again, all the finite element
calculations considered in this article rely on the FreeFem environment [69].

One drawback of the method of Hadamard is that it does not, in theory, leave the room for topological
changes between iterations; indeed, the mappings (Id + 6) driving the update process are homeomorphisms.
As a result, the quality of the optimized design strongly depends on that of the initial guess Q°. In practice,
a little abuse of the above framework authorizes certain topological changes: for instance, two separate
holes can merge, but no hole can appear inside the bulk of the shape. To alleviate this problem, classical
shape optimization algorithms based on the method of Hadamard are often complemented with the use of
topological derivatives, as a mechanism to nucleate holes inside the optimized shape in an “optimal” way;
see again Section 1.1, and [9, 39].

In the next section, we present another mechanism to enrich the topology of a shape in the course of its
optimization via the method of Hadamard, namely the addition of a thin bar.

7.2.2. Insertion of a material bar

In this section, we explain how a thin bar can be added to a shape §2 arising in the course of Algorithm 1;
for notational simplicity, we drop the mention ™ to the particular iteration in the present discussion.

To achieve our purpose, we approximate the mechanical behavior of €2 by the displacement ug supplied
by the ersatz material method; the latter is the solution to the following system, posed on the whole
computational domain D:

—div(Ape(up)) =0 in D,
ug =0 on I'p,
Age(ug)n =g on 'y,
Ape(ug)n =0 on 9D\ (Tp UTy),
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A ifzeq,

(7.9) nA otherwise,

where Ag(z) = {



and 1 < 1 is a very small parameter (in all our examples, we take = 1072). Accordingly, the variation
Q5 = QU w, . where the thin tube w, . is grafted to 2 is described by the solution u. to:

—div(A4ce(us)) =0 in D,
us =0 onI'p, - A ifzeQUuwse,
Ace(us)n=g onI'y, where A.(z) = { nA otherwise.
Ace(us)n =0 on 0D\ (I'pUTy),

The compliance C(2,.) of the perturbed shape Q Uw, . is then approximated by the quantity:

| o (e) :z/DAEe(uE):e(ua)dxz/F g u. ds;

N

(7.10)

in particular, C,(0) is the approximation of C({) supplied by the ersatz material method. Relying on
Propositions 3.1 and 6.1, this quantity has the following expansion as ¢ — 0:

(7.11) C,(e) = C,(0) +471C7(0) + o(e?71);

note that the adjoint state po in (3.25) and (6.19) featured in those formulas for C7 (0) is simply po = —ug
in the present context where the compliance functional is considered; see also Remark 2.7.
On the other hand, the expansion of the volume Vol(£2, ) of the perturbed shape is easily calculated as:

(7.12) Vol(QU w,.) = Vol(Q) + % Ha| + o(e?1),

where |o] is the length of o.

The sensitivities (7.11) and (7.12) lead to a simple methodology to add a bar with thickness ¢ (of the
order of the mesh size in our applications) to the shape  in order to optimize its behavior with respect to
Problem (7.5). The proposed procedure is summarized in Algorithm 2.

Algorithm 2 Optimal insertion of a bar in the course of one particular iteration of Algorithm 1.

Initialization: Shape (), optimization parameters ac, ay, thickness parameter ¢.
(1) Calculate the solution ug to (7.10) in D.
(2) Calculate C”(0) for all the segments of the form o = [z1, 2?%], with z!,2% € 9Q.
(3) Retain the segment o where the quantity

ac (Co(0) +e*71CL(0)) + av (Vol(Q) + e |a])

is the most negative.
return Q; . :=QUuw,,.

Remark 7.1. The strategy of Algorithm 2, running through all segments of the form [x',x?], where x', x2

belong to (a discretization of ) O is admittedly naive: even though the evaluation of the asymptotic formula
(7.11) for C!(0) 4s cheap (the background displacement ug needs only to be computed once and for all,
independently of o), we expect that this procedure could become computationnally expansive when the size
of the mesh gets larger, thus raising the need for a more clever strategy (e.g. a randomized procedure); see
Section 8 for further comments about this point.

7.2.3. An example in 2d: the benchmark cantilever test case

The first numerical illustration of our topological ligament approach features the benchmark 2d cantilever
test case, whose details are reported on Fig. 10 (top, left): the shapes Q of interest are contained inside a
box D with size 2 X 1; they are clamped on their left-hand side I'p, and a unit vertical load g = (0,—1) is
applied on the region I'y in the middle of their right-hand side. Starting from the initial design of Fig. 10
(top, left), we solve the shape optimization problem (7.5) with a value Vi = 0.8 for the volume target, while
imposing symmetry of shapes with respect to the & direction.

In a first attempt, we rely on Algorithm 1, which solely uses the boundary variation method of Hadamard.
We intentionally select update rules for the optimization parameters a¢, aryy so that the volume constraint is
very rapidly enforced. It turns out that the optimized shape develops very early a trivial topology and the
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FIGURE 10. (From left to right, top to bottom) Iterations 0 (with details of the test case),
20, 40 and 200 in the 2d cantilever test case of Section 7.2.3 solved by using the boundary
variation Algorithm 1.

optimization path ends in a local minimum with a quite simple topology and poor structural performance:
the compliance of the final shape equals 3.09; see Fig. 10 where several intermediate shapes are represented.

We then conduct the same experiment, up to an additional ingredient: the optimization process of Algo-
rithm 1 is periodically interrupted every 10 iteration, from iteration 40 to iteration 100, in order to try and
graft a bar to the optimized shape, according to Algorithm 2. Several snapshots of this process are depicted
on Fig. 11, and the related convergence histories are reported on Fig. 12: obviously, the final shape has a
richer topology, showing a larger number of holes, and the compliance of the final shape equals 2.61, a lower
value than in the previous situation.

7.2.4. Optimization of the shape of a three-dimensional bridge

A similar experiment is conducted in the context of the optimization of a 3d bridge. As depicted on Fig. 13,
the shapes are contained inside a trapezoid D with dimensions 4 X 1 x 1. They are clamped on the reunion
T'p of four disjoint regions located on the side and bottom parts of their boundary, while a unit vertical load
g = (0,0,—1) is distributed on their upper side I'y. Starting from the initial shape of Fig. 14 (top, left), we
solve the problem (7.5), with the value Vi = 0.12 for the volume constraint, while imposing symmetry of
shapes with respect to the & direction.

We rely first on the boundary variation Algorithm 1, where we use an awkward rule for the update of the
optimization parameters ag, ay. Again, the volume constraint is imposed very rapidly, so that the shape
accidentally gets disconnected from two of the four clamping regions which compose 0D. The optimized
shape in this case has a poor structural performance, as reflected by the large value C'(2) = 29.66 of its
compliance; see Fig. 14 for several snapshots of the process.

In a second time, we perform the same experiment, up to the use of our topological ligament approach:
every 10 iteration from iteration 40 to iteration 100 of the procedure in Algorithm 1, we apply Algorithm 2
to try and add a bar to €, which either connects two points z!, 22 € 9, or one point z! € 9 and a point
22 € T'p. Several intermediate shapes of the process are represented on Fig. 15, and the convergence histories
are reported on Fig. 16. Obviously, the algorithm is able to detect that it is beneficial to insert bars between
the shape and the isolated components of the clamping region I'p; the resulting shape from this procedure
has a much lower compliance value C(€2) = 8.34 than in the previous situation.
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FIGURE 12. (Left) Evolution of the compliance in the course of the optimization of the 2d
cantilever in Section 7.2.3 with a combined use of Algorithms 1 and 2; (right) evolution of
the volume of the structure.

&1

FIGURE 13. Setting of the three-dimensional bridge example of Section 7.2./.

7.3. Optimal design of supports for additive manufacturing.

In this section, we apply our asymptotic formulas for thin tubular inhomogeneities to the computation of an
optimized collection of vertical pillars, serving as the support structure for a fixed shape 2 in the course of
its construction by an additive manufacturing technique.

We refer to [63] for a general overview of additive manufacturing techniques, and to the survey arti-
cle [78] for a description of the new issues and challenges they raise in connection with the field of shape
and topology optimization. Briefly, additive manufacturing (or 3d printing) is a common label for a whole
range of fabrication processes, which have in common that they begin with a subdivision of the constructed
shape into a series of horizontal slices; these layers are then constructed one atop the other, according to
the selected technology (Fused Filament Fabrication, Electron Beam melting, etc.). These additive manu-
facturing methodologies have recently become very popular in engineering since they are allegedly capable
of assembling arbitrarily complex shapes, such as the lattice structures whose optimality is predicted in a
wide variety of situations by the homogenization theory. Unfortunately, additive manufacturing methods
also impose limitations of their own on the constructed design €2; in particular, for various reasons, they all
experience difficulties when  shows large overhangs, i.e. nearly horizontal regions hanging over void. One
possible solution to cope with the presence of such features is to erect a support structure S at the same time
as ) (possibly made of a different, cheaper material) so as to anchor them to the build table; see [10, 55]
among other contributions.
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FIGURE 14. [terations 0, 40, 100 and 200 in the three-dimensional bridge test case of Sec-
tion 7.2.4 solved by using the boundary variation Algorithm 1.

In this section, we aim to optimize the design of a support structure S for a given shape ) containing
large overhangs. The optimized supports S should ease the construction of the total structure Q U .S, for a
minimum weight, so as to limit material consumption.

We rely on the model introduced in [3] for the fabrication process. The structure © to be assembled,
together with all the possible designs for the supports S are contained in a fixed computational domain D
of the form D = [0, M7] X ... x [0, M,], which stands for the build chamber. Since Q is fixed throughout
this section, the dependences of the various considered quantities with respect to ) are omitted for brevity.
The physical behavior of 2 U S during the construction stage is accounted for by the linearized elasticity
system, in the situation where Q U S is clamped on the ground Ty := {x = (21, - ,x4) € D, x4 =0}, and
is submitted to gravity loads, represented by a body force f : R* — RY. The displacement ug of QU S in
these circumstances is the solution to:

—divAge(us) = pf inQUS,
(7.13) ug =0 on I'y,
Ae(ug)n =0 on (QUS) \ L.

Here p is the density of material, which equals 1 inside the structure 2, and 0 inside the supports for
simplicity; the value of the Hooke’s tensor Ag inside 2 is that A in (7.4), as used in the previous section;
inside the support structure, Ag takes the weaker value A; = ngA (in practice, we use ng = 0.4).

We aim to solve the problem
7.14 in Vol(5) s.t. C(S) < C
(7.14) min Vol(S5) s.t. C(S) < Cr,
where Vol(S) := |, gdz is the volume of the support structure, and the compliance of the structure during
its manufacturing,

(7.15) c(S) = /QUS Ase(ug) : e(ug) de = s f-usdz

is required not to exceed the user-defined threshold C7p.

Remark 7.2.
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FIGURE 15. [Iterations 0, 40, 41, 51, 61, 71, 81, 100, 150 and 200 in the three-dimensional
bridge test case of Section 7.2.4 solved by using a combination of Algorithms 1 and 2.

o This model for the physical behavior of a shape Q and the companion scaffold structure S during
the fabrication process was proposed in [3]. It is a simplified version of the layer-by-layer approach
introduced in [5, 4, 15], where the compliance of each intermediate shape Qp = {x € Q, x4 < h}
(corresponding to the stage where § is assembled up to the level xq = h) is involved.
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FIGURE 16. (Left) Evolution of the compliance in the course of the optimization of the
three-dimensional bridge of Section 7.2.4 with a combined use of Algorithms 1 and 2; (right)
evolution of the volume of the structure.

o Other physical criteria than the compliance (7.15) could be used for evaluating the performance of
the structure S, such as criteria based on the steady-state heat equation, as a means to measure the
rapidity of heat evacuation or the accumulation of residual stress (see e.g. [10, 36]). The application
of the strategy described below to create an optimized set of pillars in view of Problem (7.14) in
this other context governed by the conductivity equation could make use of the asymptotic formulas
derived in Sections 2 and 5.

The optimal design problem (7.14) of a suitable support structure for Q was treated by means of a
boundary variation algorithm very similar to Algorithm 1 in [3]. In many practical situations, however, it is
desirable that the scaffold structure S resemble as much as possible a collection of vertical pillars (at the very
least, S itself should not feature overhang regions!) One idea in this direction is to rely on the asymptotic
formulas in this article to devise an optimized set of vertical pillars with respect to Problem (7.14).

To achieve this, as in Sections 1.2 and 7.2.2, we approximate the solution ug to (7.13) by that wug to the
approximate counterpart supplied by the ersatz material method:

—divApe(ug) = pf in D, A ifxeq,
(7.16) up =0 on Iy, where Ag(z) =< nsA ifzels,
Age(ug)n =0 on D \ Ty, nA  otherwise,

and the small parameter for the ersatz material equals 7 = 1073. Likewise, the mechanical behavior USUw,. .
of the total structure when a thin bar w, . is added to the supports .S is approximated by the solution u. to:

—divA.e(ue) = pf in D, A ifxeQ
(7.17) us =0 onTy,  where A.(v) = q nsd ifr € SUwspe,
Ac(ues)n =0 on 0D\ Ty, nA  otherwise,

We now replace the compliance C(S Uw, ) in (7.15) by the quantity

Cole) = [ Acelw) s etwyda = [ pf-uda,

whose asymptotic expansion
Cy(e) = C,(0) + %7107 (0) + o(e?71)

is supplied by Proposition 3.1 in 2d and by Proposition 6.1 in 3d.

Starting from an empty support structure S° = ), we repeatedly apply an easy adaptation of Algorithm 2
to insert a vertical bar with thickness £ > 0 and material properties A;, connecting one point x € 92 with
its projection % := (z1,...,24-1,0) on the base table I'y in an optimal way. While in concrete applications
the thickness ¢ of the inserted pillars should be set according to the capabilities of the machine tool, we
simply choose ¢ of the order of the mesh size in the model examples of this article.
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Depending on the capabilities of the machine tool, it may be possible to construct more general shapes
of supports than just pillars. In such a case, the optimized collection of pillars Siemp resulting from the
previous procedure may serve as a “good” initial guess for a subsequent resolution of (7.14) by means of a
more classical boundary variation algorithm, such as Algorithm 1 up to some minor adaptations, as in the
article [3].

These considerations lead to a two-stage optimal design process for the support structure S, which is
summarized in Algorithm 3.

Algorithm 3 Optimization of the support structure S for the construction of by 3d printing

Initialization: Shape (, intial support structure S° = (3, thickness parameter .
Step 1:
while C(S) > Cr do
(1)  Calculate the ersatz material approximation ug to the solution ug of (7.13).
(2)  For all point = € 99, calculate the quantity C? (0), where o = [z, ] connects x with its projection

Z=(x1,...,24-1,0) on T'y. and retain the segment achieving the most negative value.
(3) Update S by S Uwge.
end while

Intermediate result: Optimized collection of vertical pillar Siemp -

Step 2: Solve the shape optimization problem (7.14) by using (an adapted version of) the boundary
variation algorithm Algorithm 1, starting from Siemp.-

return Optimized support structure .S.

Remark 7.3.

o In practice, in the first stage of Algorithm 3, bars are inserted, regardless of their volume, until the
compliance constraint is fulfilled, before the true constrained optimization Algorithm 1, based on the
method of Hadamard, is used. Of course, it would be possible to rely on a constrained optimization
algorithm since the beginning.

o We sometimes interrupt the first stage when the compliance of the support structure S reaches a
slightly larger value than the imposed threshold Cr: we indeed observe that at some point, it is no
longer optimal to insert bars, but a better design is more easily obtained by switching to a boundary
variation algorithm such as Algorithm 1.

7.3.1. Optimization of the support structure of a 2d MBB beam

We first consider a 2d example where the shape € to be produced is the MBB Beam of Fig. 17 (top), which
has been optimized with respect to its elastic compliance; see Fig. 17 (top) (the details of this optimization
are not reported for brevity). Obviously, 2 presents large overhangs, and we solve Problem (7.14) so as to
calculate a suitable support structure S, which eases its construction by additive manufacturing. We use
Algorithm 3 to achieve our purpose, while imposing symmetry of the structure S in the direction &. The
numerical value f = (0,—9.8) is used for the body force representing gravity effects in (7.13), and we select
the threshold C' = 67 for the compliance constraint.

The optimized structures resulting from both stages are represented on Fig. 17 and the associated conver-
gence histories are in Fig. 18. The compliance C(S) decreases very rapidly in the course of the first stage,
and only 20 iterations are needed to obtain an intermediate structure Siemp such that C(Stemp) < Cr. The
second stage of Algorithm 3 proves also quite efficient in delivering a final support structure S which uses
a lesser amount of material for about the same compliance value as Siemp. Interestingly, S resembles much
the intermediate design Siemp resulting from the first, bar insertion stage.

7.3.2. Optimization of the support structure for a 3d chair

We apply the same methodology on a three-dimensional example, similar to one of those tackled in [3].
The constructed structure €2 is a chair, enclosed in a box D with size 0.7 x 0.5 x 1, which results from a
preliminary shape optimization process; see Fig. 19 (top, left) below.
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rithm 3 (in red); (bottom) optimized support structure S resulting from the second stage of
Algorithm 3.
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FIGURE 18. (Left) Evolution of the compliance C(S) in (7.15) of the support structure for
the MBB beam example of Section 7.3.1, during the first stage of Algorithm 3; (middle)
evolution of C(S) during the second stage of Algorithm 3; (right) evolution of the volume
Vol(S) during the second stage.

The body force f modeling gravity effects equals f = (0,0,—9.8), and the threshold value for the com-
pliance constraint is Cp = 1. No particular symmetry is imposed on the support structure S. We apply
Algorithm 3, and several snapshots of the optimization process are displayed on Fig. 19; the associated
convergence histories are reported on Fig. 20.

As in the example of Section 7.3.1, very few iterations of the first stage are needed to deliver a support
structure Siemp whose compliance satisfies the desired inequality in (7.14). The second stage also offers a
significant improvement of this intermediate design.
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chair example of Section 7.53.2, during the first stage of Algorithm 3; (middle) evolution of
C(S) during the second stage of Algorithm 3; (right) evolution of the volume Vol(S) during
the second stage.

trusses, that is, structures that are collections of straight members, connected at joints. Most often, the
optimal design of such structures is conducted by means of combinatorial, or sizing optimization algorithms.
One popular approach is the so-called “ground structure” method (see [54] for the seminal article), where the
optimized structure is initialized with a very large amount of bars, connecting all the nodes of a user-defined
set. The thickness of each bar is optimized with respect to a given measure of the mechanical performance
of the structure, and a vanishing thickness for a bar indicates that it should be removed from the structure.
One obvious drawback of the resulting optimal control formulation is that it typically features a very large
number of variables. Quite differently, truss-like structures have also been optimized by means of modern
continuous shape optimization methods (see e.g. [11]), with the risk that the resulting structure might be
too “bulky”, and lose its “truss-like” character. We refer to [29] for a general overview of the question of
truss optimization.

In this section, we propose a fairly simple variation of the bar insertion methodology of Section 7.2.2 to
address the model structural optimization problem

(7.18) innVol(Q) st. C(Q) < Cr,

in a context where the structure 2 is expected to resemble a truss. Here, as before, C'(2) stands for the elastic
compliance (7.6) of the structure 2, whose mechanical behavior is characterized by the elastic displacement
ug in (7.10), and Cr is a user-defined threshold.

Contrary to the “ground structure” approach, our algorithm starts with an empty structure 2. A set
N = {z',..., 2} of nodes is defined once and for all by the user within the computational domain D;
we then rely on the methodology of Algorithm 3 in Section 7.2.2 to iteratively try and enrich Q with bars:
the ersatz material method is used to produce an approximation C,(g) of the compliance C(€, ), where
variations of the actual structure Q are of the form Q, . = Q Uw, ., involving segments o = [z, 27] with
endpoints in . Relying on the asymptotic expansion of C,(g) supplied by Propositions 3.1 and 6.1, we
iteratively try and insert bars to decrease the value of the compliance until it gets below the threshold Crp.

As a complement to this bar insertion algorithm, and depending on whether the optimized structure 2
is required to be exactly a collection of bars, or this assumption might be relaxed slightly, it is interesting
to try and optimize further the resulting design Q¢emp from this first stage by means of the more classical
boundary variation Algorithm 1.

This optimal design methodology for truss-like structures is summarized in Algorithm 4.

7.4.1. Optimization of the layout of a crane in 2d

Our first optimization example of a truss-like structure is that of a two-dimensional crane, as depicted on

Fig. 21 (top, left). The considered shapes are enclosed in a box with size 5 x 4; two vertical loads g = (0, —1)

are applied on the front and rear parts 'y of the crane, mimicking the weight of the lifted object and the
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Algorithm 4 Optimization of a truss-like structure 2

Initialization: Initial shape Q = 0, set of nodes N = {xl, . ,xN} C D, thickness parameter .
Step 1:
while C(S) > Cr do
(1)  Calculate the ersatz material approximation ug to the solution ugq of (7.10).
(2)  For all pairs of nodes z*, 27 € N, calculate the quantity C’(0), for ¢ = [z, 27], and retain the
segment achieving the most negative value.
(3) Update Q by QU wg.
end while
Intermediate result: Optimized collection of bars Q¢emp-
Step 2: Solve the shape optimization problem (7.18) by using (an adapted version of) the boundary
variation algorithm Algorithm 1, starting from Qemp.
return Optimized truss-like structure Q.

counterweight, respectively. The optimization problem (7.18) is considered, with a value Cr = 120 for the
imposed threshold on the compliance of shapes.

We apply Algorithm 4 to the resolution of this problem. Several iterates of the optimization process
are depicted on Fig. 21, and the associated convergence histories are reported on Fig. 22. Interestingly, the
optimized shape resembles very much a truss and its outline is very reminiscent of the intermediate collection
of bars Q¢emp resulting from the first, bar insertion stage.

7.4.2. Optimization of the layout of a mast in 3d

We now turn to a three-dimensional example, that of the optimization of an electric mast. The physical
situation is represented on Fig. 23 (top, left): shapes are enclosed in a 3 x 1 x 3 T-shaped domain D and
they are clamped at their bottom side; surface loads g = (0,0,—1) are applied at the end of both arms.
Here, symmetry is imposed with respect to the & direction, and the considered threshold for the compliance
is Cr = 100.

Several intermediate shapes arising in the course of the optimization process are represented on Fig. 23,
and the associated convergence histories are reported on Fig. 24. Note that the resulting collection of bars
Qtemp from the first stage is connected, while no particular effort was paid during the optimization to enforce
this property.

8. CONCLUSIONS AND PERSPECTIVES

The investigations of the present article lie halfway between the fields of asymptotic analysis and shape and
topology optimization.

From the theoretical point of view, we have focused on the asymptotic expansion of the solution to a
“background” partial differential equation (particularly, the conductivity equation and the linear elasticity
system in 2d and 3d) when the ambient medium is perturbed inside a tube with vanishing thickness. Our
main contribution in this direction was to propose a simple, heuristic argument to conduct the analysis.
Albeit not perfectly rigorous, it allows to retrieve quite effortlessly existing formulas and also to deal with
settings which have not yet been addressed in the literature, to the best of our knowledge.

As regards applications, we have proposed a formal use of these asymptotic formulas for thin tubular
inhomogeneities in order to graft a bar to a shape in an “optimal” way. We approximate the sensitivity of a
function of the domain with respect to the addition of a ligament between two distant regions of the shape — a
question which was investigated in [85, 84, 86] from a different perspective. Taking advantage of the popular
adjoint method from optimal control theory, our approximate sensitivities can be given a very convenient
structure for numerical calculations. We have exemplified how this strategy may serve various purposes in
the field of shape and topology optimization with three different applications: it supplies a complementary
means to enrich the topology of a shape in the course of its optimization within the framework of Hadamard’s
method; it is also a natural ingredient in the optimization of the support structure of a shape constructed
by additive manufacturing, or in the optimization of truss-like structures.
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FIGURE 21. (Top) Iterations 0, 4 and 9 of the first phase; (bottom) Iterations 11, 91 and
200 of the second phase in the crane optimization example with design of a truss-like initial
guess, as considered in Section 7.4.1.

The present work opens the way to various perspectives, at first regarding the mathematical analysis. One
first lead for future work arises from the observations made in Section 7.1: it is natural to wonder in which
capacity our asymptotic analyses can be made uniform with respect to the contrast between the material
properties outside and inside the vanishing ligament w, . (7o and 1, Ag and A; in the conductivity and
elasticity settings, respectively). This is interesting for our applications, where these asymptotic formulas
are used with “very soft” background properties 79 or Ag. This may also help to make the connection
between our formal topological ligament approach and the rigorous expansions derived in [85, 84, 86]. In
this direction, let us mention that, in the conductivity setting, such asymptotic expansions of the potential
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FIGURE 22. (Left) Evolution of the compliance in the course of the first stage; (middle)
evolution of the compliance during the second step; (right) evolution of the volume during
the second step in the crane optimization example of Section 7.4.1
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FIGURE 23. (Top) Iterations 0, 3 and 7 of the first phase; (bottom) Iterations 0, 20 and 100
of the second phase in the T-shaped mast optimization example with design of a truss-like
initial guess considered in Section 7.4.2.

ue which are uniform with respect to this contrast have been derived in [38] in the context of diametrically
small inclusions and in [44, 45, 52] in the context of thin inhomogeneities.

On a different note, it would be interesting to conduct the investigations of this article in other physical
contexts, and notably that of fluid mechanics, as described by, e.g., the Stokes equations. We expect that
our formal energy argument would have to be adapted in a non trivial way to handle such situations, where
the physical partial differential equations at stake are no longer elliptic.
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FIGURE 24. (Left) Evolution of the compliance in the course of the first stage; (middle)
evolution of the compliance during the second step; (right) evolution of the volume during
the second step in the mast optimization example of Section 7.4.2.

As far as applications are concerned, besides those described in Sections 7.2 to 7.4, we believe that the
approximate sensitivity formulas considered in this article could be adapted to deal with a wide variety of
tasks, such as the following ones:

e Besides its mathematical interest, the extension of the present work to the context of fluid mechanics
would allow to optimize the outline of the cooling channels conveying the refrigerating liquid within
molds; indeed, these intrinsically take the form of tubes, although their base curve may not be a
straight segment; see for instance [102] and the references therein for more details about this problem.

e The techniques developped in this article naturally allow to address another requirement imposed on
a shape () constructed by means of a powder-based additive manufacturing process, such as Electron
Beam Melting (EBM) or Selective Laser Sintering (SLS): the powder used for construction has to
be removed at the end of the process, lest that it cause unnecessary material loss and potential
health hazard. Much of the effort in this direction has been directed towards designing structures
Q which are free from internal voids. As such, the article [77] introduces the so-called “virtual
temperature method” to enforce the simple connectedness of the optimized design. In a different
spirit, and following [100], our asymptotic formulas could help in identifying one channel connecting
an internal void of a structure €2 to its outer surface, which can be pierced as a post-processing of
the construction stage and which is “optimal” in the sense that it degrades as little as possible the
mechanical performance of €.

e Still about applications related to powder-based additive manufacturing, the techniques developped
in this article could be used to optimize the path of the laser in charge of fusing the processed metallic
powder, in order to e.g. evacuate heat as fast as possible; we refer to [36] for further details about
this question, where a totally different method is used.

e The thin tubular inhomogeneities considered in this article find another interesting application in the
optimization of cylindrical geometries in 3d, that is, structures that are described by a midsurface S
and with given thickness function in the normal direction. Such structures are ubiquitous in nature,
since they encompass elastic plates or shells (see e.g. [94]) or, for instance, micro-chip devices such
as those used in nanophotonics (see e.g. [70] and the references therein). The optimization of
such devices is often carried out as a 2d optimization on the midsurface, and so the calculation
of topological derivatives in the 2d midsurface boils down to a topological ligament asymptotic
expansion for the underlying, three-dimensional partial differential equation.

e Beyond the work of this article, and quite in the same spirit, it would be interesting to use “thin”
inhomogeneities (that is, sets which shrink to a hypersurface in R%, as in (1.14)) to add “walls” of
material to a three-dimensional shape.

Let us finally highlight a few potential algorithmic improvements of the methods presented in this article:

e One obvious improvement direction of the proposed method, which is crucial for realistic applications,
is the device of a procedure for locating the “optimal” bar to be inserted, which does not incur an
exhaustive search as in Algorithm 2. We believe that gradient methods based on the minimization
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of the expansion o + C,(0) + ?~1C’ (0) with respect to the endpoints of o, however cheap, would
be prone to end up in local minima with poor structural performance. One interesting alternative
might be to use stochastic optimization algorithms.

e Although the approximate sensitivities derived in this article account for the addition of not only
bars, but also curved ligaments to shapes, the optimization of such geometric entities is certainly a
more challenging algorithmic topic.
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APPENDIX A. THE COAREA FORMULA

For the reader’s convenience, we recall the following avatar of the coarea formula (a curved version of the
Fubini theorem), which is used in several different contexts in the present article; see [10]:

Lemma A.1. Let XY be two smooth Riemannian manifolds with respective dimensions m > n, and
f: X =Y be a surjective mapping of class C', whose differential dyf : T, X — Ti@)Y 1s surjective for
almost every x € X. Then, for any function p € L'(X), it holds:

A””ML<waf@hJMa*»m

where the Jacobian Jac(f) is defined by Jac(f)(x) := \/det(V f(z) V f(z))T.

APPENDIX B. TECHNICAL RESULTS

The following lemma gathers convergence results of the solution u. to the perturbed conductivity equation
(2.4) to the background potential ug in (2.2); we handle both cases d = 2,3 at the same time.

Lemma B.1. Let 0 € D be a (open or close) smooth curve which is not self-intersecting; let u. be the
perturbed potential in (2.4), and ug be the solution to the background equation (2.2). Then, for e > 0 small
enough,

(i) There exists a constant C' > 0, depending only on ug, such that ||ue — uo||m1(py < Ce%3t.
(i) For any exponent 1 < p < 2, there exists C > 0 depending on uy and p only such that:

Ueg — U

<C,

d—1
€ L?(D)

where the constant C > 0 is independent of €.

Proof. Proof of (i): The difference r. := u. —ug is the unique solution in H: (D) to the variational problem:

Vo € HE (D), / VeVre - Voder = 7/ (71 —70)Vug - Vo dz.
D w

o,e

Hence, taking v = r. as a test function and using the Cauchy-Schwarz inequality, we obtain:

|meﬂmdsc</

and the result follows from the Poincaré inequality and the smoothness of 4y on a neighborhood of w, . (see
again [37, 64]).
Proof of (ii): This is a variation of the classical Aubin-Nitsche duality argument; see [28, 89] for the original
references, and [17] in the context of the finite element method.
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At first, the remainder s, := “5=1 is the unique solution in H%D (D) to the variational problem:

1
Vo € HL (D), / VeVse - Vodr = _€d7*1/ (M1 — v0)Vug - Vo dz.
D w

o,e

The conclusion of (i) immediately implies that:

(B.1) IVsellzzpy < Ce™ =

Let now g > 2 be defined by the relation % + é =1 and z € L%(D) be arbitrary; we introduce the unique
solution vy € Hf (D) to the problem:

VvéH%D(D), /'yon(vad:r:/ zv dx.
D D

Classical interior elliptic regularity theory implies that there exists an open subset V € D containing w, .
for € small enough, as well as a constant C' > 0 such that vg € W249(V) and:

(B.2) l[vollzr1(py + llvollw2.a(vy < Cll2||La(D)-

A simple calculation then yields:

/zsE de = /’7{)V1}0-VSS dz
D

(B.3) = f%vvo - Vse dx + / (7o —7v:)Vg - Vs, dz
D D
1
= T / (71 = 70) Vo - Vg dz + / (70 — 71) Vg - Vs dz.

Now since ||Vug|| vy < C as a result of classical interior elliptic regularity, and ||[Vvo||z ) < Cllq||La(p)
owing to (B.2) and the Sobolev embedding theorem (see e.g. [1]), the first term in the above right-hand side
is estimated by:

1

(B.4) g/ (71 = 70) Vo - Vug dz| < C[|Vuo|| Lo vy || Vol L vy < Cl|2]|Le(p)-

As for the second term in the right-hand side of (B.3), we obtain:

/ (Yo =71)Vwo - Vscdz| < C||Vuoll20 | VsellL2(py,

o,e

(B.5) a1 Ue —u
< CeT ||Vupllre ) || ,
€ H(D)
< CllzllLapy,
where we have used (B.1).
Eventually, combining (B.3) to (B.5) yields the desired result. O
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