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[1] Monthly CO2 fluxes are estimated across 1988–2003 for 22 emission regions using
data from 78 CO2 measurement sites. The same inversion (method, priors, data) is
performed with 13 different atmospheric transport models, and the spread in the results
is taken as a measure of transport model error. Interannual variability (IAV) in the
winds is not modeled, so any IAV in the measurements is attributed to IAV in the fluxes.
When both this transport error and the random estimation errors are considered, the flux
IAV obtained is statistically significant at P � 0.05 when the fluxes are grouped into
land and ocean components for three broad latitude bands, but is much less so when
grouped into continents and basins. The transport errors have the largest impact in the
extratropical northern latitudes. A third of the 22 emission regions have significant IAV,
including the Tropical East Pacific (with physically plausible uptake/release across the
1997–2000 El Niño/La Niña) and Tropical Asia (with strong release in 1997/1998
coinciding with large-scale fires there). Most of the global IAV is attributed robustly to the
tropical/southern land biosphere, including both the large release during the 1997/1998
El Niño and the post-Pinatubo uptake.

Citation: Baker, D. F., et al. (2006), TransCom 3 inversion intercomparison: Impact of transport model errors on the interannual

variability of regional CO2 fluxes, 1988–2003, Global Biogeochem. Cycles, 20, GB1002, doi:10.1029/2004GB002439.

1. Introduction

[2] The concentration of CO2 in the atmosphere has been
monitored continuously since 1958 [Keeling et al., 1989] at
a growing number of sites. When deseasonalized, these
records show that global CO2 levels have increased mono-
tonically for the last 45 years, but at a rate that varies
strongly from year to year. Two human activities that add

large amounts of carbon to the atmosphere are thought to be
the main drivers of the increase: fossil fuel burning and
deforestation. Comparing this anthropogenic input to the
observed increase rate, it is found that about 55% of the
input does not stay in the atmosphere, but is apparently
taken up by sinks in the ocean and land biosphere. Since
fossil fuel burning has increased relatively smoothly across
this span, the large interannual swings in atmospheric CO2
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growth rates are apparently caused by interannual variability
(IAV) in these sinks, though IAV in the rates of deforestation
and biomass burning may be also important [Langenfelds et
al., 2002]. It is important to understand these variations in
order to gain insight into the processes underlying the CO2

fluxes and how they might change in the future.
[3] Over recent years a number of groups have used

various inversion methods to estimate the IAV of CO2

sources and sinks from atmospheric concentration data
[Rayner et al., 1999; Law, 1999; Bousquet et al., 2000;
Baker, 2001; Piper et al., 2001a, 2001b; Rödenbeck et al.,
2003]. These results are often similar when viewed as
integrals across broad latitude bands, but differences be-
tween them become marked when fluxes are partitioned
regionally inside these latitude bands. In general, it has been
difficult to reconcile the inconsistencies between inversion
results because of the different inversion methods, setups,
and transport models used by each group [Peylin et al.,
2002]. The TransCom 3 project was designed specifically to
assess how differences in atmospheric transport models
affect CO2 flux inversions.
[4] In the TransCom 3 project, CO2 flux inversions have

been performed in which the details of the method and
setup were fixed and only the transport model (and for
some models, the source of the winds) varied. The
TransCom 3 project has evolved through a number of
phases. The first phase focused on estimating 5-year
mean sources for 22 regions for 1992–1996 with 16
different transport models (G02 [Gurney et al., 2002];
G03 [Gurney et al., 2003]). It was found that source
uncertainty due to the use of different transport models
was generally comparable to or smaller than the estima-
tion uncertainties due to random errors in the limited CO2

data available. The sensitivity of the results to the a priori
flux uncertainties (G03) and to the choice of measurements
and data errors used [Law et al., 2003] was also examined.
[5] The second phase of TransCom 3 focused on estimat-

ing the mean seasonal cycle of sources across 1992–1996
(G04 [Gurney et al., 2004]). A smaller set of 12 transport
models, the ones submitting time-dependent response func-
tions to the project, were examined. It was found that the 1s
spread of estimated sources from the different models was
larger than the estimated uncertainty in the northern extra-
tropics but smaller than that uncertainty in tropical regions.
The largest model spread occurred during the growing
season for northern land regions.
[6] Here, in the third phase of the TransCom 3 project, we

focus on the interannual variability of the CO2 sources and
sinks. We solve for monthly CO2 sources for 1988–2003
for 22 regions using 13 different transport models (those
from G04, plus one). We assess the sensitivity of the
estimated IAV to the transport model used, and present
the mean IAV obtained across all the models.
[7] In section 2, we describe the setup of the problem,

outline the method, and specify how the flux interannual
variability is calculated. In section 3, we present our results,
starting with a brief comparison to previously published
long-term mean fluxes, then focusing on the interannual
variability of the fluxes. We use the standard deviation in
the results across the models as a proxy for transport model

uncertainty, then discuss the significance of the flux IAV in
light of these transport uncertainties and the random esti-
mation uncertainties. In section 4, we compare our results to
other published IAV results, discussing possible explana-
tions for the differences. For the robust features of our
inversion, we discuss physical mechanisms that may be
driving the system. Finally, in section 5, we summarize our
approach and results, and discuss the implications for future
inversion strategies and network design.

2. Method

2.1. Estimation Method

[8] We use Bayesian synthesis inversion [Enting, 2002] to
estimate CO2 sources and their uncertainties given a set of
atmospheric CO2 concentration data and their uncertainties.
The mathematical details of the Bayesian synthesis ap-
proach for the interannual case are given by Baker [1999,
2001]. Here we summarize the method and describe the
values used for the required input parameters.
[9] We specify the fossil fuel burning source and solve for

the natural sources from the ocean and land biosphere. The
anthropogenic input from biomass burning and deforestation
is not explicitlymodeled in the inversion, so that the estimated
net land flux includes the effect of biomass burning, as well as
corrections to the assumed fossil fuel burning and the effects
of any other nonmodeled processes over land (such as net
fluxes from reservoirs, rivers, or coastal zones).
[10] Surface fluxes are estimated for 22 predefined emis-

sion regions (Figure 1) for each month across 1988–2003.
For each region and month of the year, a prespecified flux
pattern (normalized to 1 PgC yr�1) is run forward through
the transport model (1 month on, subsequent months off) to
calculate its effect on atmospheric CO2 concentrations at
later times. These concentration ‘‘footprints’’ are sampled at
the measurement locations to obtain the columns of a matrix
H relating the modeled concentrations cmodel at the mea-
surement sites to regional flux magnitudes x as in cmodel =
cfwd + Hx. Concentrations cfwd, generated from transport
model runs using fine-scale prior fluxes ffwd (described
below), are presubtracted from measured concentrations
cobs. The inversion estimates regional flux magnitudes x̂,
which may be thought of as coarse-scale corrections to ffwd;
the fine-scale corrections to ffwd are given by Fx̂, where the
columns of F are given by the prespecified flux patterns
inside each region/month used to generate H. Both c and x
contain monthly average values for each month in the
measurement span (78 concentrations and 22 fluxes, respec-
tively), while x also contains fluxes for 35 months preceding
the first measurements plus a single concentration offset for
the full span.
[11] The optimal x̂ is solved for by minimizing a Bayesian

least squares cost function,

J ¼ cobs � cfwd �Hxð ÞTR�1 cobs � cfwd �Hxð Þ
þ x0 � xð ÞTP�1

0 x0 � xð Þ; ð1Þ

where cobs � cfwd are measurement mismatches between the
true observations and the concentrations given by the fine-
scale prior fluxes ffwd, R is the covariance matrix for the
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errors in cobs � cfwd, x0 is an a priori estimate of the flux
magnitudes, and P0 is the covariance matrix for the errors
in x0.
[12] The a posteriori regional flux estimate x̂ may be

solved for analytically as

x̂ ¼ HTR�1Hþ P0
�1

� ��1
HTR�1 cobs � cfwdð Þ þ P0

�1x0
� �

ð2Þ

and the a posteriori covariance P (quantifying the ‘‘estima-
tion uncertainty’’ in x̂) by

P�1 ¼ P0
�1 þHTR�1H: ð3Þ

The estimate is obtained numerically using an SVD-based
approach [Baker, 2001] that allows the conditioning of the
inversion to be easily assessed.

2.2. Transport Basis Functions and Presubtracted
Tracers

[13] The prespecified flux patterns in F used in generating
H for the land regions are set to annual mean net primary
productivity (NPP) patterns from the CASA land biosphere
model [Randerson et al., 1997], while those for the ocean
regions are spatially constant. The model run for each month-
long pulse is carried out for 35 months past the emission
month; subsequent months are approximated using exponen-
tial decay to the fully mixed state (with t = 24 months). A
total of 264 response functions (22 regions � 12 emission
months) was produced in this manner. In all these transport
model runs, as well as the ones to generate cfwd, a single
year’s set of winds and vertical mixing parameters was used
repeatedly for each year in the runs.When filling the columns
of H with the sampled response functions, this allows us to

use the runs for each emission month repeatedly, once for
each emission year estimated. Not modeling the IAV in the
transport fields in this way reduced the required model run
time by a factor 19 (the number of years estimated), allowing
more transport models to be used in our study. However,
because we used transport fields not matched to the actual
transport for each year in our span, our transport errors are
best thought of as those suffered in inversions done with
models driven by ‘‘climatological’’ winds.
[14] By not modeling the IAV in the transport, we assume

all the IAV in the CO2 measurements is due entirely to IAV
in the sources and sinks. The adequacy of this approxima-
tion is supported by the results of Dargaville et al. [2000]
and Rödenbeck et al. [2003]. Another study has found that
not modeling the transport IAV causes standard errors of
only about 0.2 PgC yr�1 in an interannual CO2 flux
inversion similar to ours (Prabir Patra, personal communi-
cation, April 2005). However, there are suggestions these
errors may be larger [e.g., Murayama et al., 2004]. Clearly,
to obtain the most precise flux results, the true winds and
vertical mixing should be modeled as well as possible, by
using reanalyzed meteorological fields to drive the transport
model. When computational resources permit it, a study of
the sort done here should be carried out using only transport
models driven by such fields in order to obtain more precise
transport error estimates.
[15] The fine-scale prior fluxes ffwd used to generate cfwd

are composed of the sum of three terms: seasonally varying
net ecosystem exchange (NEE = heterotrophic respiration �
NPP) from the CASA land biosphere model [Randerson et
al., 1997]; seasonally varying air-sea CO2 fluxes [Takahashi
et al., 1999]; and interannually varying fossil fuel fluxes. The
spatial pattern of the fossil fuel term is obtained by interpo-
lating in time between unitized versions of the 1990 field of

Figure 1. A map of the 22 emission regions and 78 CO2 measurement locations used in this study. Solid
circles indicate surface measurements, and open circles indicate aircraft measurements.
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Andres et al. [1996] and the 1995 field of A. L. Brenkert
(Carbon dioxide emission estimates from fossil-fuel burning,
hydraulic cement production, and gas flaring for 1995 on a
one degree grid cell basis, 1998, available at http://cdiac.esd.
ornl.gov/ndps/ndp058a.html). To obtain the three terms, four
global tracers (CASANEE, Takahashi ocean, 1990 and 1995
fossil fuel) are run through the transport model with the fluxes
turned on for one year and turned off for two more years;
subsequent years are given by the same exponential decay
described above. Interannual concentration time series are
then built up by applying these single-year response func-
tions to a priori emissions for each year in the span and for a
spin-up period of several years before; the annual land and
ocean flux totals were constant from year to year, while the
annual fossil fuel fluxes varied according to the values in
Table 1. As the oceanic and fossil fuel fluxes are not annually
balanced, cfwd contains an interannual trend that when
subtracted from the trend in cobs, allows the inversion to
constrain the total net land/ocean flux without any additional
constraints being applied.

2.3. Priors and Measurements

[16] The same seasonally varying a priori regional flux
magnitudes x0 used in G04 have been used here (see the
auxiliary material1).These regionally-integrated corrections
to ffwd include seasonally varying deforestation and re-
growth estimates not contained in the annually balanced
CASA NEE fields. Table 3 in section 3.1 gives the annual
mean of x0, with the contribution of ffwd added back on.
[17] Correlations between the errors for the different

regions and months in x0 are neglected here, so that the a
priori error covariance P0 is diagonal. Our a priori uncer-
tainties are loose enough that neglecting these correlations
should have a minimal impact on our results. The 1s a priori
regional flux uncertainties composing the main diagonal of

P0 are the seasonally varying ones of G04 for the land

regions, and a constant socn =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:50 PgC yr�1ð Þ2þs2L1

q
for

the ocean regions, where sL1 are the annual mean a priori
uncertainties used in G03. The monthly varying a priori
uncertainties used here are given in the auxiliary material,
while annual uncertainties computed from these are given in
Table 4 in section 3.1.
[18] We use CO2 data from 78 time series from

GLOBALVIEW-CO2 [2004] (locations given in Figure 1;
see auxiliary material for further details). GLOBALVIEW is
a data product in which quality-controlled flask and contin-
uous CO2 observations are fitted to give 48 synchronous CO2

values per year, with an extrapolation procedure used to fill
gaps in the observation records [Masarie and Tans, 1995].
Frequencies with features shorter than 40 days are filtered
out by the fitting procedure, yielding time series more easily
matched by models driven by climatological winds, such as
ours. We have selected sites at which valid observations are
available for at least 68% of the time across 1991–2000. We
generate the monthly concentrations in cobs by averaging
each four pseudo-weekly GLOBALVIEW values per month.
We use the extrapolated data from GLOBALVIEW where
data are missing, and increase the data uncertainties at those
times to reflect the errors in the extrapolation procedure.
[19] In Appendix A, we describe the measurement uncer-

tainties used in R. These vary seasonally and interannually
to account for changes in measurement density, while extra
errors have been added to some sites to account for site-
specific modeling inadequacies. All measurements are con-
sidered independent, so that matrix R is diagonal, with sdata

2

from (A1) on the diagonal (see the auxiliary material for
values). We have deliberately left certain spatially redundant
sites out of the inversion (i.e., choosing only a single time
series at any given measurement location) to reduce the
errors introduced by this no-correlation assumption. Our
averaging period (1 month) is long enough to keep time
correlations to a minimum; we would expect that it would
be more important to model these correlations when solving
at timescales shorter than a week, where synoptic-scale
transport errors would become more of a factor.

2.4. Computation of the Long-Term Mean,
Interannual Variability, and Seasonal Cycle of the
Fluxes

[20] Equation (2) yields flux magnitude estimates xmon for
each region and month in the 1988–2003 measurement
span; this is done separately for each transport model using
that model’s H and cfwd. Thirteen models submitting time-
dependent response functions to the intercomparison
(Table 2) have been used here (the 12 from G04, plus
PCTM). Figure 2a gives an example of what the flux results
look like for one region, Europe, for inversions done with
the 13 different models. For a clearer view of the IAV in the
result, it is useful to remove the seasonal cycle (Figure 2b).
We do this here with a compact running annual mean,
centered on the month in question,

xdeseasi ¼
Xiþ5

j¼i�6

wjx
mon
j þ

Xiþ6

j¼i�5

wjx
mon
j

 !
=2; ð4Þ

Table 1. Annual Fossil Fuel Burning Assumed, Taken as the Sum

of National Fossil Fuel Emissions, CO2 From Cement Production,

and a Bunker Fuels Term Averaging 0.09 PgC yr�1 Across 1988–

2003a

Year Fossil Fuel, PgC yr�1

1988 5.93
1989 6.04
1990 6.11
1991 6.19
1992 6.07
1993 6.08
1994 6.24
1995 6.38
1996 6.53
1997 6.63
1998 6.62
1999 6.67
2000 6.82
2001 6.92
2002 7.00
2003 7.00

aSum of national fossil fuel emissions is from Energy Information
Administration [2002]. Cement production is from Marland et al. [2003].

1Auxiliary material is available at ftp://ftp.agu.org/apend/gb/
2004GB002439.
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where wj are weights that account for the length of each
calendar month, and where we use the notation xj

mon to refer
to the subvector of xmon for month j. The time variability
obtained using the different models is similar, but each
model seems to have its own characteristic offset. These
offsets may be removed by subtracting off the long-term
means for each model, given by

xmean ¼ 1

N

XN
i¼1

xdeseasi ð5Þ

so that only a zero-mean IAV, xIAV, remains (Figure 2c).
With the long-term means removed, the similarity in the
IAV between the models becomes much clearer.
[21] Using equations (4) and (5) above, we split our a

posteriori monthly regional flux estimate into three parts,
the long-term mean, the zero-mean interannual variability,
and a time-varying seasonal cycle (zero-mean over any 12
months), as

xmon
i ¼ xdeseasi þ xseasi ¼ Exmean þ xIAVi þ xseasi ; ð6Þ

Figure 2. (a) Monthly flux estimates xmon (PgC yr�1) obtained for Europe using the 13 different
transport models; (b) the deseasonalized flux time series xdeseas obtained by passing a running annual
mean across the same monthly fluxes; (c) the same deseasonalized fluxes with their long-term mean
subtracted, giving the interannual variability (IAV) xIAV; and (d) the 13-model mean IAV, bounded by the
1s intermodel spread (dark gray), the 13-model RMS 1s estimation uncertainty (light gray), and the RSS
of the two (outer envelope).

Table 2. Description of the 13 Atmospheric Transport Models Used

Model Modelers
Wind Frequency, Resolution,
Source, and Year Longitude � Latitude � Levels

CSU Gurney online 5� � 4� � 17 sigma
GCTM Baker 6 hour ZODIAC GCM (256 km)2 � 18 sigma
JMA Maki 6 hour JMA, 1997 2.5� � 2.5� � 32 hybrid
MATCH:CCM3 Bruhwiler 6 hour NCAR CCM3 2.8� � 2.8� � 28 hybrid
MATCH:MACCM3 Law 6 hour MACCM3 5.6� � 2.8� � 24 hybrid
MATCH:NCEP Chen 6 hour NCEP, 1990 2.8� � 2.8� � 28 hybrid
NIES Maksyutov 12 hour ECMWF, 1997 2.5� � 2.5� � 15 sigma
NIRE Taguchi 6 hour ECMWF, 1995 2.5� � 2.5� � 15 hybrid
PCTM Zhu 6 hour GEOS-DAS3, 1987 2.0� � 2.5� � 25 hybrid
TM2 Bousquet, Peylin 12 hour ECMWF, 1990 7.5� � 7.5� � 9 sigma
TM3 Heimann 6 hour ECMWF, 1990 5� � 4� � 19 hybrid
UCB Fung, John 1 hour GISS GCM II’ 5� � 4� � 9 sigma
UCI Pak, Prather 3 hour GISS GCM II’ 5� � 4� � 9 sigma
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where E is a matrix that applies the long-term means to each
of the N months in xIAV. We briefly compare our xmean

results here to the earlier TransCom results of G03 and G04,
but we devote most of our attention to the IAV results given
in xIAV. We will present our seasonal cycle results xi

seas

elsewhere: they are similar to the seasonal results of G04.
[22] Equation (3) gives an a posteriori error covariance

matrix Pmon that reflects the uncertainty in the estimated
monthly flux magnitudes xmon. Corresponding covariance
matrices for the deseasonalized fluxes xdeseas, the seasonal
fluxes xseas, the interannual variability xIAV, and the long-
term mean fluxes xmean may be calculated as

Pdeseas ¼ D½ 
Pmon D½ 
T ;

Pseas ¼ I� D½ 
Pmon I� D½ 
T ;

Pmean ¼ M½ 
Pdeseas M½ 
T ;

PIAV ¼ I� EM½ 
Pdeseas I� EM½ 
T ;

ð7Þ

where D and M are matrices embodying the running and
long-term means in equations (4) and (5), such that

xdeseas ¼ Dxmon

xmean ¼ Mxdeseas:

ð8Þ

The uncertainties sdeseas and sIAV given by Pdeseas and PIAV

may be thought of as those in the estimated annual mean for
any given year in the span, while those given by Pmean are

for the over-all long-term mean (for 1988–2003, �
ffiffiffiffiffi
16

p

times smaller).
[23] In section 3, we present the results for the 22

estimated regions grouped into larger regions as shown in
Figure 3. If this grouping is represented with transformation
matrix T such that xgrouped = Tx, then the covariances for
the larger regions are found as Pgrouped = TPTT.
[24] In contrast to the estimated uncertainties discussed

above, which quantify random errors in the estimated fluxes
due to random errors in the measurement/model mismatch,
we may also calculate uncertainties in the estimate caused
by errors in the transport models. To do this we assume that
the 1s standard difference obtained in the estimated fluxes
across the 13-member sample of transport models is a useful
estimate of the difference between any one of these models’
estimates and the true fluxes. We may define 1s transport
uncertainties in xi

mon, xmean, xi
seas, xi

deseas, and xi
IAV as

trstypei;j

� 	2
¼ Var x

type
i;j

� 	
; ð9Þ

where type is ‘‘mon,’’ ‘‘mean,’’ ‘‘seas’’, ‘‘deseas,’’ or
‘‘IAV,’’ where i and j are the time and region indexes, and
where Var() indicates the sample variance across the 13
transport models. Examples of both the estimation uncer-
tainties and the transport uncertainties are given in Figure 2
d for the estimated flux IAV for Europe.

3. Results

3.1. Long-Term Mean Results

[25] Table 3 shows the 1992–1996 mean fluxes from
xmean for each region (averaged across all 13 models) from
our interannual inversion, compared with those of the Trans-
Com 3 annual-mean (G03) and cyclo-stationary (G04)
inversions for the same period. Note that these inversions
all used different sets of measurements (75 sites for G03 and
G04 versus a very different 78 sites here), transport models
(16 in G03, 12 in G04, 13 here), measurement uncertainties,
and a priori uncertainties. Despite this, the inversions give
quite similar results for the 22 regions, generally agreeing to
within the 1s uncertainties given in Table 4. Two regions, the
Tropical Indian Ocean and the Southern Ocean, differ by
more than 2s, both having less uptake in this study. At the
coarser scales, our results agree more closely with the
seasonal inversion of G04 than the annual mean inversion
of G03. Partially this is due to closer agreement in the set of
transport models used; however, we should also expect our
interannual inversion to give results closer to an inversion
that solves for the seasonal cycle (G04) than one that
specifies it beforehand (G03), since specifying an incorrect
seasonal cycle shape could lead to biases.
[26] On the coarsest scale, our global total flux (land +

ocean) differs significantly (by 2s) from that of both G03
and G04 due to differences in the average fossil fuel burning
input and atmospheric CO2 increase rate for 1992–1996
imposed on the inversions. In the annual mean inversion of
G03 and the seasonal inversion of G04, the atmospheric
increase rate must be imposed as an explicit constraint (since
the interannual trend in the data is removed in computing the

Figure 3. Grouping of the 22 regions used to get the
latitudinal results and the continent-/basin-scale results.
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average data for the inversion), while here this constraint is
implicit in the interannual trend contained in the data. The
global atmospheric increase rate implied by our weighted
CO2 time series is 0.30 PgC yr�1 smaller than that used in
G03/G04 (2.97 versus 3.274 PgC yr�1). Taken together with
a higher fossil fuel input rate (6.26 versus 6.10 PgC yr�1),
this implies a global total uptake 0.46 PgC yr�1 stronger than
in G03/G04. This appears in our inversion as 0.88 PgC yr�1

more uptake in the extratropics compared to the seasonal
inversion of G04 (with the north/south difference changing
little), counterbalanced by 0.41 PgC yr�1 more outgassing in
the tropics. In terms of the land/ocean breakdown, we find
0.88 PgC yr�1 more uptake by the land biosphere than
G04 (spread broadly across all latitudes), compensated by
0.39 PgC yr�1 less uptake by the oceans, mostly due to a
0.62 PgC yr�1 greater outgassing in the tropical oceans.
Though our ocean fluxes in both the tropics and extra-
tropics are closer to the Takahashi et al. [1999] estimates
than the G04 results are, the higher outflux in the tropics

Table 3. Long-Term Mean Flux Estimates From This Study

Averaged Across 1991–2000 and 1992–1996, Compared With the

1992–96 Means From the TransCom 3 Annual Mean Inversion of

Gurney et al. [2003] and Seasonal Inversion of Gurney et al.

[2004]a

Region Prior

1992–1996 1991–2000

G03 G04 IAV IAV

Boreal N America 0.00 0.28 0.20 0.20 0.14
Temp. N America �0.54 �0.82 �0.89 �1.26 �1.11
Tropical America 0.55 0.67 0.74 0.91 1.07
Temp. S America 0.00 �0.12 �0.24 �0.57 �0.64
Northern Africa 0.15 �0.01 0.79 0.40 0.50
Southern Africa 0.15 �0.29 �0.51 �0.58 �0.62
Boreal Asia �0.40 �0.60 �0.36 �0.37 �0.33
Temperate Asia 0.30 �0.42 �0.41 �0.24 �0.31
Tropical Asia 0.80 0.42 0.27 0.27 0.29
Australia 0.00 �0.15 �0.10 �0.09 �0.11
Europe �0.10 �0.61 �0.96 �1.03 �0.97
North Pacific �0.50 �0.25 �0.32 �0.44 �0.56
West Pacific 0.15 �0.15 �0.21 �0.10 �0.11
East Pacific 0.47 0.63 0.66 0.54 0.57
South Pacific �0.23 0.49 0.51 0.22 0.09
Northern Ocean �0.41 �0.30 �0.27 �0.23 �0.22
North Atlantic �0.29 �0.45 �0.29 �0.28 �0.29
Tropical Atlantic 0.13 �0.05 �0.10 0.09 0.09
South Atlantic �0.13 �0.04 �0.05 �0.12 �0.21
Southern Ocean �0.88 �0.47 �0.55 �0.28 �0.25
Tropical Indian 0.12 �0.34 �0.33 0.12 0.24
South Indian �0.56 �0.24 �0.39 �0.45 �0.41

Northern land �0.74 �2.16 �2.42 �2.69 �2.58
Tropical land 1.50 1.10 1.80 1.58 1.86
Southern land 0.15 �0.56 �0.85 �1.23 �1.37
Global land 0.91 �1.62 �1.46 �2.34 �2.09
Northern Oceans �1.20 �1.00 �0.88 �0.95 �1.06
Tropical Oceans 0.87 0.09 0.03 0.65 0.78
Southern Oceans �1.80 �0.26 �0.49 �0.65 �0.78
Global Oceans �2.13 �1.18 �1.34 �0.95 �1.06

Northern total �1.94 �3.16 �3.30 �3.64 �3.64
Tropical total 2.37 1.19 1.83 2.24 2.64
Southern total �1.65 �0.82 �1.34 �1.88 �2.14
Global total �1.22 �2.80 �2.81 �3.29 �3.15

aIAV, this study; G03, Gurney et al. [2003]; G04, Gurney et al. [2004].
Units are PgC yr�1. The annual mean a priori fluxes (Prior) assumed in all
three studies are also given.

Table 4. Transport and Estimation Errors in xIAV Computed for

Each Region, Plus the Significance of the estimated interannual

Variabilitya

Prior Post. Model
c0
2

Nind/(1 + s2)

Error Error Error 0.20 1.00 2.00

Boreal N. America 0.35 0.19 0.14 4.0 1.00 0.97 0.72
Temp. N. America 0.84 0.23 0.22 22.7 0.52 0.02 0.00
Tropical America 1.34 0.69 0.41 2.3 1.00 1.00 0.95
Temp. S. America 0.87 0.51 0.27 11.7 0.92 0.39 0.02
Northern Africa 0.77 0.50 0.28 13.1 0.88 0.29 0.01
Southern Africa 0.93 0.48 0.31 1.1 1.00 1.00 1.00
Boreal Asia 0.70 0.24 0.18 4.3 1.00 0.96 0.66
Temperate Asia 0.79 0.25 0.24 8.4 0.98 0.68 0.12
Tropical Asia 0.60 0.31 0.25 36.0 0.14 0.00 0.00
Australia 0.32 0.12 0.09 16.9 0.75 0.11 0.00
Europe 0.70 0.19 0.14 55.7 0.01 0.00 0.00
North Pacific 0.28 0.14 0.09 69.9 0.00 0.00 0.00
West Pacific 0.20 0.13 0.09 2.8 1.00 0.99 0.90
East Pacific 0.22 0.14 0.05 61.8 0.00 0.00 0.00
South Pacific 0.38 0.20 0.14 30.6 0.25 0.00 0.00
Northern Ocean 0.16 0.09 0.04 30.4 0.26 0.00 0.00
North Atlantic 0.18 0.13 0.06 3.5 1.00 0.98 0.81
Tropical Atlantic 0.18 0.14 0.05 5.2 1.00 0.92 0.49
South Atlantic 0.20 0.15 0.06 17.0 0.75 0.11 0.00
Southern Ocean 0.46 0.11 0.06 22.3 0.53 0.02 0.00
Tropical Indian 0.26 0.18 0.08 25.2 0.42 0.01 0.00
South Indian 0.21 0.12 0.06 2.9 1.00 0.99 0.89

North America 0.91 0.25 0.24 23.2 0.50 0.02 0.00
Eurasia 1.26 0.28 0.25 20.0 0.63 0.05 0.00
North Pacific 0.28 0.14 0.09 69.9 0.00 0.00 0.00
Atlantic 15�N+ 0.24 0.16 0.08 2.0 1.00 1.00 0.97
Africa 1.21 0.61 0.41 12.6 0.90 0.32 0.01
South America 1.60 0.66 0.43 2.9 1.00 0.99 0.89
Australasia 0.68 0.33 0.27 54.0 0.01 0.00 0.00
Tropical Pacific 0.30 0.18 0.11 23.0 0.51 0.02 0.00

Northern land 1.55 0.28 0.23 103. 0.00 0.00 0.00
Tropical land 1.66 0.69 0.46 56.8 0.01 0.00 0.00
Southern land 1.31 0.56 0.31 21.1 0.58 0.03 0.00
Global land 2.62 0.53 0.29 574. 0.00 0.00 0.00
Northern oceans 0.37 0.22 0.13 31.6 0.23 0.00 0.00
Tropical oceans 0.44 0.30 0.14 21.5 0.57 0.03 0.00
Southern oceans 0.66 0.27 0.19 19.5 0.65 0.05 0.00
Global ocean 0.88 0.47 0.27 36.4 0.13 0.00 0.00

Northern total 1.59 0.22 0.22 59.7 0.01 0.00 0.00
Tropical total 1.72 0.58 0.44 83.7 0.00 0.00 0.00
Southern total 1.47 0.45 0.30 25.8 0.40 0.01 0.00
Global total 2.76 0.25 0.13 6228. 0.00 0.00 0.00

aOn the left, the a priori and a posteriori flux estimation uncertainties
(1s) in xIAV are given for each region, along with the sample standard
deviation across the 13 models’ monthly xIAV estimates, taken as a proxy
for the transport model error (all three in units PgC yr�1). The a posteriori
and model errors are RMS values across 1991–2000. On the right, the
significance of the estimated IAV for each region is given as the probability
that the null hypothesis is correct according to the c2 test (v = 11). The null
hypothesis is that the estimated IAV in xIAV is consistent with that of a time
series with zero underlying IAV but with random errors having a 1s
uncertainty equal to the RSS of the model-dependent (‘‘transport’’)
uncertainties and the estimation uncertainties. Low probabilities suggest
that a true underlying flux variability may be discerned robustly above the
‘‘noise’’ of the estimation and transport errors. Prior is a priori, Post. is a
posteriori, Nind is the number of independent models in the 13-model
sample, s is the target signal-to-noise ratio tested for, and c0

2 is the
computed single-model value (Nind = 1) using s = 0.
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pushes our total ocean uptake to under 1 PgC yr�1; most
of the difference from the Takahashi et al. global totals is
due to a reduction of over 1 PgC yr�1 in the uptake of
the extra-tropical southern oceans.
[27] Table 3 also gives our mean flux results for 1991–

2000, a period that includes the global CO2 release associ-
ated with the 1997/1998 El Niñ o. The flu xes for this period
differ only slightly from the 1992–1996 interannual inver-
sion results, far less than the 1992–1996 interannual inver-
sion results differ from the 1992–1996 results of G03 and
G04, suggesting that the impact of the El Niño may be
smaller than the procedural differences between the inver-
sions. Comparing our 1992–1996 results with the latitudi-
nal totals for 1990–1996 from Figure 3.5 of Prentice et al.
[2001], we obtain greater tropical CO2 release and greater
extratropical uptake than the inversions compiled there.
Much of this difference is due to their broader definition
of the tropics (±30�) and the fact that most of our Southern
Land region lies north of 30�S. Our finding of nearly 3
times more land than ocean uptake in the extratropical north
is clearly quite different from their compiled results, though.

3.2. Interannual Variability Results

[28] The full time-dependent flux inversion outlined in
section 2 generates a sizable volume of output: 192 monthly
flux values and their accompanying estimation uncertainties
and correlations for 22 regions, for each of 13 different
transport models. We use model-mean time series plots like
that presented in Figure 2d to summarize our xIAV results
here, starting with the coarsest spatial scales first, then
moving to the finer scales. As in Figure 2d, the 1s inter-
model spread (our proxy for transport uncertainty) is given
by the dark error bands, while the 1s estimation uncertainty
from PIAV (which is generally greater) is given by the
lighter bands; the root-mean square (RMS) values for these
across 1991–2000 are given in Table 4. The root-sum-
square (RSS) of these two uncertainties, given as the outer
band, is used to assess the robustness of the estimated flux
IAV. As we examine the results at progressively finer scales,
we are interested in finding when these RSS uncertainties
become large enough to render the IAV results statistically
insignificant. For those regions with significant IAV, we
discuss what physical mechanisms might be driving it. We
discuss only the 13-model mean flux results here; the issue
of which individual models do the best job in explaining
the measurements will be left to a subsequent study.
3.2.1. The C

2 Significance Test for the Interannual
Variability
[29] The 1s transport and estimation uncertainties given

in Figure 2d (and in upcoming Figure 4–8) characterize
those we would expect for any one model in our set of 13.
Because of cancellation of errors, we would expect the
corresponding uncertainties in the 13-model mean to be
smaller; a c2 test is used here to test the significance of
these 13-model mean IAV results. The mathematical de-
scription of this test, its statistical meaning, and how it may
also be used to test the significance of any one model’s
results, are given in Appendix B. A flux time series’ IAV is
considered ‘‘significant’’ here if the test probability P �
0.01, ‘‘marginally significant’’ for P = 0.01–0.05, and ‘‘not

significant’’ for P � 0.05. Test probabilities P for each
13-model mean flux IAV time series are given in the
Nind/(1 + s2) = 1.00 column of Table 4; these will be
used in the discussion of the results below.
[30] In our significance test, we have not considered the

additional source of uncertainty due to the choice of
measurement sites used in the inversion. Gurney [2004]
assesses this uncertainty for TransCom 3 interannual inver-
sions similar to those presented here, and Baker [2001] and
Rödenbeck et al. [2003] have done so in the single-model
framework. The issue of station selection seems to impact
the seasonal and long-term mean results more than the IAV,
and is less important when larger numbers of sites are used,
as is the case here.
3.2.2. Total (Land + Ocean) Flux: Globally
and by Latitude
[31] The global total (land + ocean) flux is the most well-

constrained term in the problem, because it is set broadly by
the difference between the slowly varying anthropogenic
fossil fuel input and the well-measured accumulation rate of
CO2 in the atmosphere. The estimated total flux IAV
(Figure 4a) has a monthly estimation uncertainty of
�0.25 PgC yr�1, with an intermodel spread of only
�0.13 PgC yr�1. The high uncertainty in the deforesta-
tion and biomass burning input terms do not contribute to
this error, as these terms are lumped together with the
natural land biospheric source.
[32] Figures 4b–4d give the total flux (land + ocean) for

three broad latitude bands defined in Figure 3; both the
estimation uncertainties and the intermodel spread have
increased substantially over the global values. The estima-
tion uncertainties (Table 4) are low (�0.22 PgC yr�1) in the
extratropical north, higher (�0.45 PgC yr�1) in the extra-
tropical south, and highest (�0.58 PgC yr�1) in the tropics.
Intermodel differences (Table 4) are generally �30% lower
than the estimation uncertainties in the tropics and south,
and are about as strong as them in the north.
[33] Both the estimation and transport uncertainties are

low enough to permit the main features of the flux variabil-
ity for these latitudinal totals to be estimated. The global,
northern, and tropical total IAVs were highly significant (P <
0.0001), while the southern total wasmarginally significant at
P = 0.01 (Table 4). The outgassing spike seen globally at the
time of the 1997/1998 El Niño is allocated mainly to the
tropics, as is the global uptake following the Mount Pinatubo
eruption in mid-1991.
3.2.3. Land/Ocean Flux Partition: Globally and by
Latitude
[34] Figures 5b–5d give the flux results for the same

three broad latitude bands, partitioned into land and ocean
components as in Figure 3. The a posteriori estimation
uncertainties (Table 4) for the ocean bands in the tropics/
south are less than half those of the land bands in the
tropics/south. While part of this is due to the tighter a
priori uncertainties assumed over the ocean regions, most
of it is due to the stronger measurement constraint there
(almost all the sites measure marine air in those latitudes).
The estimation uncertainties for both land and ocean in the
north are low because of the greater measurement density
there than in the tropics/south. The highest estimation
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Figure 4. Total flux (land + ocean) interannual variability (PgC yr�1) from xIAV for the full globe, and
for the three latitude bands defined in Figure 3. The 13-model mean (black line) is bounded by the 1s
inter-model spread (dark shading), the 13-model RMS 1s estimation uncertainty (light shading), and the
RSS of the two (outer envelope).

Figure 5. Flux interannual variability (PgC yr�1) from xIAV for the full globe, and for the three broad
latitude bands defined in Figure 3, partitioned into land fluxes (solid lines) and ocean fluxes (dashed
lines).
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uncertainties are obtained for the tropical/southern land
regions; this is due not only to the lack of measurement
sites over these regions, but also to the prevalence of
convective motions there which transport the effect of the
fluxes away from the measurement sites, most of which
are at the surface.

[35] The 1s inter-model spreads are 30% to 50% lower
than the estimation uncertainties in this six-region partition,
except for the Northern Land region where they are more
closely equal. For that region, the estimation uncertainties
are kept low by the high measurement density, while the
intermodel spread is kept high by the strongly varying land

Figure 6. The 13-model mean CO2 flux IAV (PgC yr�1) from xIAV for several continents (solid lines)
and ocean basins (dashed lines) defined in Figure 3: (a) North Pacific and North America, (b) Atlantic
north of 15�N and Eurasia, (c) Australasia and Tropical Pacific, (d) Africa, and (e) South America (note
the different scales for Africa and South America).

Figure 7. The 13-model mean CO2 flux IAV (PgC yr�1) from xIAV for the 11 land regions shown in
Figure 1.
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biosphere there interacting with seasonal differences in
mixing out of the boundary layer between the models.
[36] The transport and estimation uncertainties are low

enough that the land and ocean flux IAV may be separated
robustly for most of these latitude bands (Table 4). The
IAV for all six regions is significant at P < 0.01 except for
the Tropical Oceans (marginally significant at P = 0.03)
and the Southern Land/Ocean partition (marginally signifi-
cant at P = 0.03/0.05).
[37] The IAV for the Northern Land is the most robust of

those for the six regions in this partition, not because it has
the largest variability, but rather because its combined
estimation and transport uncertainties are low. The IAV for
the Tropical Land is robust, however, not because its
transport and estimation uncertainties are any lower (they
are substantially higher) but because the variability found
there is so much greater. The inversion locates the outgassing
at the time of the 1997/1998 El Niño squarely in the tropical
land regions, and puts the post-Pinatubo uptake in 1992 there
as well. If the flux for South Africa was grouped with the
tropics (instead of in the south as it is here, following the
convention of G03 and G04) the 1997/1998 El Niño out-
gassing event would be an extra 0.5 PgC yr�1 stronger. The
IAV in the oceans, while significant, is not as strong as the
land variability. The tropical ocean variability shows a
moderate uptake immediately preceding the 1997/1998 El
Niño, and moderate carbon release after (with marginal
significance, P = 0.02). The southern land/ocean regions
(with marginal significance) show counter-balancing carbon
release/uptake events during the early part of the 1997/1998
El Niño, preceding the tropical land release event.

[38] When the land and ocean totals for the three latitude
bands are summed to give a global land/ocean partition
(Figure 5a), the resulting variability is highly significant
(P < 0.0001). The most notable feature is again the 1997/
1998 El Niño outgassing event attributed to the land,
preceded by a prominent ocean uptake in 1997. The overall
land IAV is about twice as strong as the ocean IAV, but this
is largely set by the relative tightness of the land/ocean a
priori uncertainties. When the a priori constraint on the
ocean regions is set as loosely as that for the land regions,
the global land/ocean partition is more equally divided;
the ocean IAV patterns remain similar, but their amplitudes
increase.
3.2.4. Continent- and Basin-Scale IAV Results
[39] Before examining the IAV for the 22 regions, we

consider the fluxes on the continent and basin scale: in the
north, for Eurasia, North America, the Atlantic north of
15�N, and North Pacific; in the tropics for the full Tropical
Pacific, Australasia, Africa, and South America (Figure 6).
For the four northern regions, the estimation uncertainties
and especially the transport uncertainties are large enough
that the longitudinal partition is of only marginal signifi-
cance (Table 4). The North Pacific variability is highly
robust (P < 0.0001), but the Eurasian and North American
variabilities are significant at only P = 0.05 and 0.02,
respectively. The variability for the Atlantic north of 15�N
is not significant, not because the uncertainties are high
there, but because the inversion found little variability. The
estimation uncertainties on these scales are small enough
that the transport uncertainty is often the larger of the two
error terms. The flux IAV for the North Pacific is dominated

Figure 8. The 13-model mean CO2 flux IAV (PgC yr�1) from xIAV for the 11 ocean regions shown in
Figure 1. Note that the scale here is twice as fine as in Figure 7.
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by a reduction in CO2 uptake in 1993–1994, trending to an
increased uptake in 2000–2001.
[40] In the tropics/south, the variability for Australasia

was highly significant, while that for South America and
Africa not at all; if South America and Africa are combined
into a single region, however, that variability is also highly
significant. The variability in the full Tropical Pacific
(East+West) is marginally significant at P = 0.02.
3.2.5. IAV Results for the Original 22 Regions
[41] The flux estimates for the original 22 regions are

given in Figures 7 and 8. For the most part, the estimation
and transport uncertainties (Table 4) are larger for the land
than the ocean regions. Because of this the land region
results are generally less significant than the ocean region
results, even though the IAV for the land regions tends to be
greater. The largest IAV is found in the tropical land regions
and Temperate South America, with secondary IAV in the
temperate northern land regions, the South, East, and North
Pacific, the Tropical Indian Ocean, Boreal Asia, and South
Africa. When significance is considered, however, the most
robust IAVon land is found in Tropical Asia and Europe (P <
0.01) with that in Temperate North America (P = 0.02) of
marginal significance (Table 4). The variability for the other
land regions (most notably in Africa and South America) is
not significant, although Australia (P = 0.11) is close.
[42] Significant IAV (P < 0.01) is found for the East,

North, and South Pacific regions, and the Northern Ocean,
while the IAV for the Tropical Indian and Southern Oceans
is marginally significant. The variability for the remaining
ocean regions is quite low and not significant. Note that the
scale on the y-axis of the ocean plots in Figure 8 has been
expanded to twice that of the land plots.

4. Discussion

4.1. Key IAV Results and Possible Physical Driving
Mechanisms

[43] Our inversion attributes the main features of the
global CO2 flux variability for 1988–2003, especially the
release of CO2 in 1997/1998 and the relative uptake of late
1991 to early 1993, to the tropics (Figure 4) and to the
tropical land regions in particular, both with high signifi-
cance. The variability in the extratropical north is 2 to 3
times less, though of even higher significance given the
lower uncertainty there (Figure 5). The partition of the
variability into latitudinal land and ocean totals is statisti-
cally robust, although marginally so for the tropical oceans
and extratropical south. When the latitude bands are parti-
tioned into individual continents and basins, the signifi-
cance of the variability becomes marginal in the north, and
is lost altogether in the tropics, except for the well-observed
Tropical Pacific and Australasia. On the scale of the 22
individual regions (Figures 7 and 8), Tropical Asia, Europe,
and (marginally) Temperate North America are robust on
land, while for the oceans, the North, East, and South
Pacific, the Northern Ocean, and (marginally) the Southern
Ocean and Tropical Indian are significant.
[44] For these regions that we believe have significant

variability (i.e., reflecting a real underlying flux signal, with
a signal-to-noise ratio s � 2 here), we may consider what

physical or biological processes may be driving it. Our
results for the East Pacific have a clear physical driver: the
increased uptake before and during the 1997/1998 El Niño
warm phase is consistent with the capping of the tropical
thermocline then, which reduces the usual outgassing of
CO2-rich waters. The increased CO2 release later agrees
with the opposite condition, the increased shoaling of the
thermocline there during the strong La Niña of 1999–2000.
The 0.4 PgC yr�1 reduction in East Pacific outflux we
obtain in 1997 compared to non-El Niño conditions agrees
well with a similar reduction of about 0.4 PgC yr�1

estimated from Table 2 of Feely et al. [2002] for that year
based on in situ measurements scaled up to the broader
equatorial Pacific. Our strong uptake during 1997/1998 in
the South Pacific suggests that this ENSO-driven effect may
act south of 15�S, as well.
[45] The highly significant variability in Tropical Asia is

also physically interpretable: the timing and magnitude of
the release of CO2 centered on early 1998 agrees well with
the large Indonesian fires observed at that time, driven by
ENSO-induced drought conditions (Page et al. [2002]
estimate a release of 0.81–2.57 PgC from the Indonesian
fires between June 1997 and March 1998). The relative
uptake of carbon there in 1992–1993 could be due to
effects of the June 1991 Pinatubo eruption, though the net
fluxes estimated in this analysis do not by themselves allow
us to distinguish between the possible causes (decreased
autotrophic or heterotrophic respiration, increased photo-
synthesis, decreased incidence of fires).
[46] Patterns of variability of equally high significance are

found, however, for some regions (the North and South
Pacific, and the Northern Ocean) for which there are no
obvious driving processes. For weakly constrained regions
with high variability like the South Pacific, having all the
constraining measurement sites on one corner of the region
may cause a sensitivity to the data that is not fully reflected
in the a posteriori uncertainties. This may be the case for the
Tropical Indian Ocean, as well: It is constrained largely by a
single station at Seychelles. As noted in Appendix A, we
have added an extra 1.0 ppm measurement uncertainty to
the Seychelles site for 1988–1996 to account for measure-
ment problems then. This value may still be too low: If this
extra uncertainty is increased to 1.5 ppm across the same
span, the variability for the Tropical Indian is reduced by a
factor of 2 beyond what is shown in Figure 8. Further
sensitivity studies are required to investigate such regions
that return significant variability with our current uncertainty
estimates, but for which no clear physical drivers have been
found.
[47] The largest IAVestimated in our inversions outside of

Tropical Asia, that for the four regions in South America
and Africa, is not significant on the scale of the original
regions, or when they are grouped into two continents: the
estimation uncertainty for these regions is too high, because
of the sparsity of measurement sites near them. If grouped
into a single Africa/South America region, however, the
variability is highly significant. If we understand that the
sparsity of data in the tropics primarily impacts these two
regions, then there is no need to disregard our tropical
results altogether: We may discuss robust variability of the
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well-observed Tropical Asia, Australia, and East Pacific
regions separately, and discuss the rest of the tropics
grouped together as necessary to obtain significant results.
With this approach, South America and Africa together
account for almost as much uptake as Tropical Asia post-
Pinatubo, and at least as much outgassing during the 1997/
1998 El Niño.

4.2. Comparison to Previous Studies

[48] As the uncertainties in the 13-model mean IAV
estimates discussed above are assumed here to be

ffiffiffi
5

p
times

lower than those in the IAV obtained using any one of the
models (assuming Nind = 5; see Appendix B for details), the
significance of the single-model IAVs is even less than
those discussed above. Using the Nind/(1 + s2) = 0.2 column
of Table 4 to test these single-model significances (as
described in Appendix B), we find that only 3 of the 22
emission regions have robust IAV: the North and East
Pacific, and (marginally) Europe. On the coarser scales,
only the northern and tropical land IAVs, the northern and
tropical total (land+ocean) IAVs, and (marginally) the
global land/ocean partition are significant. Since previously
published CO2 flux IAV studies have generally used mea-
surement and a priori constraints of approximately equal or
looser magnitude than those used here, one might expect
our low single-model significances to apply to their results,
too. To a large extent, this may explain why there has been
so little agreement between the results obtained from the
different studies.
[49] Bousquet et al. [2000] (B00) have attributed the

anomalous post-Pinatubo global uptake to the northern
extratropical land regions, especially North America. We
do find a sharp uptake spike in the combined North America
region (boreal+temperate) of 0.5 PgC yr�1 here, but it is in
1994, too long after the June 1991 eruption to be directly
related to it. Our uptake for Temperate North America is
roughly 0.6 PgC yr�1 greater before 1995 than after, but is
roughly constant across 1989–1995; no clear post-Pinatubo
signal is seen. In our results, the feature in the north most
likely to be related to the Pinatubo eruption is the 0.5 PgC
yr�1 uptake event in Europe in 1992. Part of the explanation
for the strong post-Pinatubo North American CO2 sink
found in B00 may be due to the TM2 model they used.
In our study here, the North American xIAV for the TM2
model was offset �0.4 PgC yr�1 across 1992–1994 com-
pared to the 13-model mean. Our global land flux total
looks broadly similar to theirs, but our global ocean total is
quite different: B00 have a negative ocean excursion in
1995–1996 and a positive excursion in 1997/1998, while
we have a large negative excursion in 1997 during the early
edge of the El Niño. Our Tropical Pacific results also look
broadly similar, with outgassing in 1989 trending toward
uptake by 1997, but our tropical land totals show little
resemblance to theirs: differences in station selection (we
use the Tokyo-Sydney flight data, they use the South China
Sea ship tracks) and the temporal coverage of the measure-
ment time series may be especially important for this
underconstrained area.
[50] Additional details on the B00 results have been given

by Peylin et al. [2005], including land and ocean totals for

three broad latitude bands. In general, there is little agree-
ment between our latitudinal land/ocean IAV results and
theirs; this may be partially due to the somewhat tighter a
priori uncertainties they apply to South America and Africa,
which may drive some of the IAVout of the tropics into the
north. Their results for the North Atlantic agree broadly
with ours, however, including uptake there in 1995.
[51] The most thorough study of regional CO2 flux

estimates for the full globe published to date is that of
Rödenbeck et al. [2003]. They used fewer measurement
times series than we do (from 16 to 35 CMDL sites in
overlapping fixed networks across 1986–2000) and solved
for more regions (�800, at the �8� � 10� resolution of the
model); thus more of an explicit a priori constraint was
required (i.e., in terms of explicit correlations between
neighboring regions in the a priori covariance matrix, rather
than implicitly in the shape of the prespecified fluxes inside
each region, as is done here). They used a priori uncertain-
ties proportional to net primary production (NPP) over land,
and flat uncertainty fields over the ocean, with interregion
correlations given by exponential decay with e-folding
lengths of 1275 km over land and 1912 km over the ocean.
This choice of a priori constraint allowed the largest devia-
tions from the prior where the local NPP was largest: over
the tropical land regions, and over Amazonia in particular.
Their strongest flux IAV was in fact obtained in the tropical
land regions, especially South America, with less in the
northern land and relatively little in the oceans (especially
after 1996 when they used the most sites). Our global land
IAV agrees well with theirs, though our ocean IAVs differ
more. We obtain ocean uptake in 1997, for example, that
they do not get. Interestingly, we both obtain a 1 PgC yr�1

ocean outgassing event in 1993–1994, though ours occurs a
few months earlier.
[52] At the continent/basin scale, the only areas for which

we clearly agree with Rödenbeck et al. [2003] are in North
America and Tropical Asia/Australia, both from the mid-
1990s on. We find the same timing of outgassing around the
1997/1998 El Niño from Tropical Asia, but have a some-
what larger response; they place more of the tropical
response at that time in South America than we do, perhaps
due to the different constraint approach and the fewer
number of tropical measurements used. On the scale of
our original 22 regions, we show fair agreement for the IAV
of Temperate North America going all the way back to
1991, and good agreement in Tropical Asia and Europe
back to 1996. Interestingly, these are also the only land
regions for which we feel our IAVs are significant. It is
perhaps also significant that the agreement in Tropical Asia
and Europe drops off before 1996, when Rödenbeck et al.
go from using 35 to 26 sites. For the ocean regions, we have
very good agreement for the Tropical Indian ocean across
the full span, but little similarity elsewhere, because of the
very low IAV they obtain. In particular, there is almost no
similarity in the East Pacific, a region where we feel we are
obtaining physically meaningful results. Given that the a
posteriori uncertainty estimates presented by Rödenbeck et
al. are generally higher than ours for similarly sized regions,
we suspect that the IAVs for at most only a few of their
regions would be considered significant according to the c2
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test performed here, even if lower transport uncertainties
more appropriate for a model driven by more accurate
analyzed winds were considered. Thus the disagreement
between most of our estimates is actually in agreement with
the low measures of significance given by our c2 test. The
agreement that we do have occurs only for those regions
with significant IAV according to the c2 test.
[53] Our finding that the tropical/southern land biosphere

is driving the largest features in the global flux IAV is
supported by the latitudinal CO2-

13C inversions of Piper et
al. [2001a, 2001b] and John Miller (personal communica-
tion, 2004), which attribute the global CO2 release of
1997/1998 to the tropical land biosphere, as well as
obtaining a secondary release peak in 1995 from the same
region. These inversions do not seek to separate the land
and ocean areas by geographical region, but rather in terms
of land and ocean flux totals inside each latitude band
using 13C. Despite this agreement, our inversion empha-
sizes the difficulty of separating the land and ocean by
region inside a given latitude band using the CO2 data
alone.

5. Conclusion

[54] Using identical measurements and inversion setup,
we have solved for sources and sinks of CO2 for 1988–
2003 using 13 different transport model/annual wind com-
binations. The range in results across the models gives us a
measure of the error in the CO2 fluxes due to the transport
errors in any one of the models. We use this transport
uncertainty here, in combination with the estimation uncer-
tainty, to test how much of the estimated flux IAV for each
region is likely due to the error ‘‘noise’’ versus any actual
underlying flux ‘‘signal.’’
[55] No attempt has been made to match the winds used in

the models to the actual winds for each year in the span; the
transport errors estimated here should therefore be larger
than what would be obtained in inversions using models
driven by analyzed meteorological fields. Our transport
errors also do not quantify any systematic errors affecting
all of the models in our sample. If the north/south gradient
in our forward modeled concentration field cfwd averaged
across all 13 of our transport models is too steep, for
example, then the 13-model mean uptake we obtain in the
north will we too strong, and the uptake of the southern
oceans too weak, compared to the real world. This bias in
our 13-model mean results will not be quantified by our
transport errors, though differences due to the spread in the
north/south gradient across the models will be.
[56] The uncertainty introduced into the inverted fluxes

by the transport error (inferred from the 1s between-model
spread) is found here to be less than that due to the random
estimation errors in the problem (Table 4), by 30–65% for
the ocean regions, 20–45% for the tropical/southern land
regions, and by 0–25% for the northern land regions. This
extra transport uncertainty has the largest practical conse-
quence on the IAV results in the north, where a regional
partition of the variability (Figure 6) that would be statis-
tically significant if only the estimation uncertainties were
considered is rendered only marginally significant when

transport uncertainties are included. If this transport error
could be reduced (for example, by using a good transport
model driven by analyzed winds and vertical mixing
parameters) then the possibility of partitioning the flux in
the north robustly between continents and ocean basins
would be re-introduced.
[57] For the tropical land regions, the random estimation

error in the problem remains the dominant error source:
Even if a perfect transport model were used, the utility of
the results would be limited by the random errors and only
the introduction of more measurements there would im-
prove the situation. For the oceans, the transport uncertainty
is generally less significant: usually only about half the
estimation uncertainty. The model-dependent differences
are greater over the land than the oceans, not only because
mixing out of the PBL is greater there, but because the
seasonal and synoptic variability of the underlying fluxes is
much larger and more difficult to model, as well.
[58] Our results suggest that an inversion done using a

single typical transport model driven by climatological
winds would obtain significant IAV estimates for only a
few of our 22 emission regions (Europe and Tropical Asia
on land, the North and East Pacific for the oceans) while for
the other regions the IAV would not be distinguishable from
the background noise with high statistical confidence. On
coarser scales, the northern and tropical land IAV and total
(land+ocean) IAV would be robust, but the southern vari-
ability and the IAV for the oceans by latitude would not be.
These significance results help explain why the published
IAV results show little resemblance to each other, except
broadly by latitude: these inversions generally used a priori
constraints similar to those used here, often with fewer
measurements, and so should experience errors at least
comparable to those obtained here, with the corresponding
lack of significance. What agreement there is occurs only
for the regions with the greatest IAV (e.g., Tropical Asia and
the East Pacific, two regions that have the most direct
response to the largest interannually varying climate driver,
the El Niño–Southern Oscillation), for very well-observed
regions with somewhat less variability, or else by chance.
This generally poor ability to pin down the regional flux
IAVs robustly could be improved by either adding more
measurement time series, improving the local fidelity of the
transport models, or solving for the fluxes at coarser
resolution (by assuming more about the spatiotemporal
patterns of the flux a priori).
[59] Here we have presented the mean flux IAV results

averaged across all 13 models in our sample. If the model-
dependent errors cancel out to the extent we have assumed,
then these 13-model means IAVs provide substantially more
information than the single-model results. Both land and
ocean components are at least marginally significant for all
three latitude bands. In the northern extratropics, the parti-
tion into continents and basins becomes at least marginally
significant. Of the 22 emission regions, the IAV for Tem-
perate North America, the South Pacific, Tropical Indian
Ocean, and the Northern and Southern Oceans becomes
significant.
[60] The key result of our inversion is the attribution of

the greater part of the globally observed IAV to the tropical
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land regions, especially the release of CO2 due to the 1997/
1998 El Niño and the post-Pinatubo uptake. Half of this
variability is robustly attributed to Tropical Asia, with the
remainder to Africa/South America. Significant IAV is also
obtained in the tropical East Pacific that agrees well with in
situ observations. We have found no clear physical mech-
anisms driving the IAV for the other regions with significant
results.
[61] To be able to robustly estimate net flux IAV at scales

similar to or finer than the 22 regions examined here, we
must both take more measurements in currently under-
sampled areas and improve the fidelity of our transport
models. Our results suggest that transport model improve-
ments would have the largest impact in the northern
extratropics, where there was a fair measurement density
already in the 1990s. In the tropics, improving the mea-
surement density is the more urgent problem, particularly
around Africa and South America. The dominance of
vertical mixing in the tropics suggests that a surface
measurement strategy may not be the most productive
there: mountain-top sites, aircraft flights, and column-
integrated measurements might provide more of a con-
straint. The potential for using either 13C or O2/N2 to help
partition the land and ocean variability longitudinally is
great in the tropics, if certain extra budget terms associated
with these additional tracers can be modeled sufficiently
well. For the southern extratropics, the lack of the strong
vertical motions seen in the tropics suggests that the
longitudinal partitioning of flux at the 22-region scale
examined here may be achievable with a modest increase
in surface measurement sites (the current network, circa
2005, may already be sufficient).

Appendix A: Data Error Specification

[62] Because the data error covariance matrix R reflects
the errors in cobs � cfwd, it must incorporate errors associ-
ated both with the measurement (instrument errors plus
errors in the GLOBALVIEW data fitting procedure) and
with the modeling of the measurement (including errors in
the winds used, in the vertical mixing scheme, in the ability
of a transport model to represent the site location, and in the
inability of coarse regions and monthly time blocks to
correct concentrations at finer scales [Kaminski et al.,
2001]). To reflect the fact that this measurement misfit error
may vary seasonally and interannually (as measurement
techniques change or data density fluctuates), we have
based our data errors on a variable part svar calculated
using values from the GLOBALVIEW variability (var) and
weight (wts) files, added to a constant part sconst meant to
account for the spatial aggregation and representativeness
errors, with additional errors sextra added for a few special
sites,

s2data ¼ s2var þ s2const þ s2extra: ðA1Þ

We use sconst = 0.30 ppm, and set sextra = 0 for all time series
except KEY_00D0 (2.50 ppm), LJO_04D0 (2.50 ppm),
CBA_04D0 (0.90 ppm) PRS_21D0 (0.70 ppm), PRS_21C0
(0.70 ppm), and SEY_00D0 (1.00 ppm for 1988–1996 only).
The extra errors on KEYand LJO account for the inability of

our models to properly treat the local flow near cities
burning large amounts of fossil fuel. Those for PRS are
added to de-weight the two overlapping time series there
by �

ffiffiffi
2

p
. We have added an extra 1.0 ppm to SEY for

1988–96 (only) because of some likely errors in the data
collection procedures there at that time (T. Conway,
NOAA/CMDL, personal communication, May 2004) that
are not accurately reflected in our data error computation
procedure.
[63] Seasonally and interannually varying data uncertain-

ties svar,i for month i are calculated as

svar;i ¼ sann
sseas;i
sRMS
seas

=
ffiffiffiffiffiffiffiffiffiffiffi
Nmeas

p
; ðA2Þ

where sann is the annually resolved residual standard
deviation of the individual measurements about the
GLOBALVIEW ‘‘smooth curve,’’ taken from the ‘‘rsd’’
column of the GLOBALVIEW ‘‘wts’’ file for the year in
question; sseas,i is the monthly resolved standard deviation
of the same residuals averaged over all years, taken from the
‘‘stdev’’ column of the GLOBALVIEW ‘‘var’’ file (sann
being used instead if the number of data points (from the
column labeled ‘‘#’’) used in determining the value for that
month is less than 8); sseas

RMS is the root-mean square of the
12 sseas,i values; and Nmeas is the effective number of good
data values for the month in question. Nmeas is given by

Nmeas ¼
Ngood � Nlost

gþ 1� gð Þ * b
; ðA3Þ

where Ngood is the number of measurements available for
the month in question; Nlost = 365/12/40 accounts for the
number of measurements effectively lost because of the
use of the ‘‘smooth-curve’’ fit, which has a 40-day
window half width; and g is the number of ‘‘weeks’’ of
data available for the month in question, ranging from 0 to 4
and based on the smooth curve values taken from the ‘‘S(t)’’
column of the GLOBALVIEW extended data (ext) file,
divided by the number of ‘‘weeks’’ of good data available
for the year in question. Finally, Ngood is approximated as
Ngood = Ngood, annual * g, where Ngood, annual is the number of
good measurements available for the year in question,
taken from the ‘‘#’’ column of the GLOBALVIEW
‘‘wts’’ file. The g + (1 � g)*b term in the denominator of
equation (A3) is meant to increase svar by

ffiffiffi
b

p
for that

portion of the month, (1 � g), for which the interpolated
GLOBALVIEW values are used; here we have used b = 2.

Appendix B: Testing the Significance of the
Flux IAV Results With a C

2 Statistic

[64] We assume that the flux IAV we estimate is com-
posed of a term reflecting the true flux variability of the
underlying carbon cycle, as well as a term reflecting the
integrated effect of monthly estimation errors and transport
errors. To have a useful estimate of the true variability, we
would like the true IAV ‘‘signal’’ to be discernible above the
‘‘noise’’ of the random errors, generally with a certain
signal-to-noise ratio s (the ratio of the variances of the
two signals), say s � 2.
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[65] The significance of the IAV for each estimated time
series is tested here using a chi-square statistic,

c2
0 ¼

1

12

X
i

xIAVi � xIAVi;test

� 	2
sIAVið Þ2þ trsIAVið Þ2

; ðB1Þ

summing over each month i across 1990–2001 (or 144
12

=
12 years), where si

IAV and trsi
IAV are the estimation and

transport errors in the estimate of xi
IAV described in

equations (7) and (9), and where xtest
IAV is a flux IAV time

series to which our estimate is compared. This statistic is
the average of 12 separate c2 statistics (one for each month,
January–December), each one of which measures the
variability of xIAV for the 12 different years. The 12 yearly
xIAV values are assumed to be independent in time for the
purposes of this test, as are the estimation and transport errors;
this gives thec2 statistic n = 12� 1 = 11 degrees of freedom.
[66] Using the c2 test, we try to reject the null hypothesis

that the estimated IAV could have been obtained from a
time series with zero underlying IAV (xtest

IAV = 0) but with
uncorrelated, Gaussian noise added with a magnitude
equal to the root-sum-square (RSS) of the random estima-
tion uncertainty and model transport uncertainty. Using a
type I error probability a = 0.01 as our threshold, if test
probability P � a = 0.01, then we would reject our
hypothesis, meaning that we would believe some other
source of variability beyond random estimation error and
transport error is present in the time series, which we would
take to be the true underlying IAVof the system. The test as
outlined above says nothing about how large this true
variability must be (it could still be small compared to the
noise) but merely that it exists. More broadly, we would like
the signal of the true variability to be distinguished above
the noise of the background error with some larger signal-to-
noise ratio s, say s � 2. We generalize the test here to
determine whether true underlying variability is present with
a given signal-to-noise ratio by increasing the variance of
the noisy test time series by a factor of 1 + s2. In statistical
terms, the signal-to-noise ratio s is the ratio of variances of
the estimated IAV time series to the estimated noise (the
RSS of the transport and random estimation uncertainties).
[67] In Figures 2 and 4–8, we plot the 1s intermodel

spread trsi
IAV as a proxy for transport error, as well as the

RMS of the 1s estimation error si
IAV across all 13 models.

These errors characterize those we would expect for any one
model in our set of 13. We would expect the errors on our
13-model mean results to be smaller, however, by as much as
a factor of

ffiffiffiffiffi
13

p
if the errors from eachmodel were completely

independent. We know that our models are not completely
independent, though:We have three versions of MATCH and
two versions of the GISS model in our set, for example, and
many of the models use similar winds, and vertical mixing
schemes. Also, that portion of the data error (the mismatch
between the true measurements and the model-dependent
estimate) that is not dependent on the transport model used,
the instrument error and the error caused by using flux
corrections over large regions to try to fit multiple measure-
ment time series, represented here by sconst in equation (A1),
will not be reduced by averaging across models. To account
for this poorly known error reduction, we define a parameter

Nind representing the number of independent models in our
13-model set (such that the 13-model mean errors are reduced
by a factor of

ffiffiffiffiffiffiffiffi
Nind

p
over the single-model errors) and give

significance results for different values of it.
[68] The c0

2 values from equation (B1) could be used to
test the c2 significance of the results of any one of our
models (Nind = 1) at the minimal (s = 0) signal-to-noise ratio.
To test the significance of the 13-model mean results at any
desired signal-to-noise ratio s, however, thesec0

2 values must
be multiplied by a factor Nind/(1 + s2). Table 4 gives the
basic (Nind = 1, s = 0) c0

2 value for each region, plus the
probability that the null hypothesis is true for various values
of cmean

2 (s) = Nind

1þs2
c0
2. To test the significance of the fluxes

for any single model in the set (Nind = 1) at a signal-to-noise
ratio of s = 2, for example, the Nind/(1 + s2) = 0.2 column
should be used. In discussing the 13-model mean flux IAV
results in the text, we test their significance at the s = 2 level
assuming an error reduction given by Nind = 5, using the
Nind/(1 + s2) = 1.0 column. The choice to use Nind = 5 is
subjective; we choose it here as a midrange value.
[69] Here, a flux time series’ IAV is considered ‘‘signifi-

cant’’ if the test probability P � 0.01, ‘‘marginally signifi-
cant’’ for P = 0.01–0.05, and ‘‘not significant’’ for P� 0.05.
Test probabilities P for each 13-model mean flux IAV time
series are given in the Nind/(1 + s2) = 1.0 column of Table 4.
At these levels, we should expect to make the (type I) error
of incorrectly calling the IAV ‘‘significant’’ or ‘‘marginally
significant’’ when it really is not only 5% of the time, or for
about one of the 22 emission regions (for only one of the
nine regions significant at this level in Table 4). Of course,
by choosing this relatively stringent level for significance,
we increase our risk of making a type II error [Sokal and
Rohlf, 1969]: calling the low IAVs for certain regions ‘not
significant’, when in fact they are. We choose to accept this
higher level of type II errors for low-IAV regions, since our
focus is on assessing the robustness of the high-IAV regions.
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