
HAL Id: hal-02924766
https://hal.science/hal-02924766v1

Submitted on 28 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual age models with time-dependent covariates: A
framework for simulation, parametric inference and

quality of estimation
Léa Brenière, Laurent Doyen, Christophe Bérenguer

To cite this version:
Léa Brenière, Laurent Doyen, Christophe Bérenguer. Virtual age models with time-dependent co-
variates: A framework for simulation, parametric inference and quality of estimation. Reliability
Engineering and System Safety, 2020, 203 (November), pp.107054. �10.1016/j.ress.2020.107054�. �hal-
02924766�

https://hal.science/hal-02924766v1
https://hal.archives-ouvertes.fr


Virtual Age Models With Time-Dependent Covariates:

A Framework for Simulation, Parametric Inference

and Quality of Estimation
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Abstract

A repairable system faces some failures and imperfect maintenances throughout its lifetime.
If several identical and independent systems are considered together, some differences may
arise between the systems, such as the geographical location or the maintenance team for
example, which are constant information, or the weather conditions, which vary with time.
This observed heterogeneity will influence more or less the failure process. In this paper,
we include these data in a generalized virtual age model with the use of covariates. Then
we estimate simultaneously the effect of the maintenances, that of the covariates, and the
intrinsic wear of the systems. We also propose two simulation methods as well as a numerical
estimation procedure. Then we assess the quality of the estimation of the parameters with
a thorough simulation study.
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Notations

T1, . . . , Tn n first failure times of a single repairable system, with T0 = 0
N = (Nt)t≥0 counting process of failures
λ = (λt)t≥0 failure intensity
Ht− history of the failure process just before t
h(·) hazard rate of the first time to failure
Vi(t), t ≥ 0, i ≥ 0 virtual age at time t after i observed failures
Xt, t ≥ 0 time-dependent covariates at time t
Fi+1(·), i ≥ 0 conditional cumulative distribution function of Ti+1 knowing the

past of the process and of the covariates
H(·) cumulative hazard rate of the first time to failure: primitive integral

of h(·) with H(0) = 0
F−1
i+1(·), i ≥ 0 generalized inverse of Fi+1(·)
V −1
i (·), i ≥ 0 generalized inverse of Vi(·)
H−1(·) generalized inverse of H(·)
L number of constant steps of the covariates
τl, 0 ≤ l ≤ L− 1 discontinuity points of the covariates, with τ0 = 0
χl, 1 ≤ l ≤ L values taken by the covariates on the constant steps
l(t), t ≥ 0 number of the covariate step at time t, i.e. l(t) =

∑L−1
l=0 1{τl≤t}

T fixed end of observation time of the systems
L log-likelihood for one observed system
ςk, 0 ≤ k ≤ NT − + L time either of jump of the covariate or of failure
`k, 0 ≤ k ≤ NT − + L number of the current covariate step, i.e. `k =

∑L
l=0 1{τl≤ςk} = l(ςk)

ık, 0 ≤ k ≤ NT − + L current number of failures, i.e. ık =
∑NT −+1

i=1 1{Ti≤ςk} = Nςk

K K ∈ {0, . . . , NT − + L} such that ςK+1 = TNT −+1

η, β scale and shape parameters of a PLP
ρ efficiency parameter of a virtual age model
γ coefficient of influence of the covariates
θ, θ0, θ̂ a model parameter, its true value used in simulation, its estimation
MSE(θ̂(M)) MSE of a parameter θ

nMSE(θ̂(M)) normalized MSE of a parameter θ

1. Introduction

1.1. Context

An industrial system can face several failures and repairs throughout its whole lifetime,
rather than dying with its first and last breakdown. This is the point where survival analysis
becomes recurrent data analysis: we no more have a sample of the dates of death of some
independent systems, but successive failure times for each system. Here, we will consider
that these failure times also correspond to the repair times, i.e. the durations of the repairs
themselves are not taken into account and are considered to be negligible.
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When a repair is performed on a system, we can think of an operator only switching
on again the system, without doing more. It is for example the case when a computer is
rebooted after a bug or when a circuit breaker is reset after it tripped. Then the system is
As Bad As Old (ABAO), since its wear is the same as just before the failure. Conversely, one
could decide to replace the system with a new but identical one, i.e. to renew the system:
then the system is As Good As New (AGAN). Some repair actions might match with one or
the other situation, but in most cases, they are likely to fall in between, with a reduction of
the wear of the system that does not bring it into an AGAN state. This is called imperfect
maintenance or repair.

Important models dealing with imperfect maintenances are the Type I and Type II
Kijima’s models [1]. These models work with a quantity called the virtual age or effective
age of the system. Let T1, . . . , Tn be the n first failure times of a system, with T0 = 0. At
some time t ∈ [Ti−1, Ti], 1 ≤ i ≤ n, the system is supposed to be in the same state as
an unmaintained system that never failed up to time Vi(t). Vi(t) is called the virtual age.
For these models, Doyen and Gaudoin [2] have proposed different parametrizations in which
the virtual age is reduced by a quantity depending on a scalar ρ, which corresponds to the
efficiency of the maintenance. In particular, they proposed the Arithmetic Reduction of
Age (ARA) models. This way of dealing with virtual age models is generalized by Doyen et
al. [3], where other imperfect maintenance models such as the Quasi Renewal (QR) model
of Wang and Pham [4] are included within the same framework. Simulation of datasets and
parameter estimation are also considered. For these models, Chauvel et al. [5] proposed
goodness-of-fit tests wih a parametric bootstrap approach. Other models were designed,
generally with an estimation procedure, for example by Dauxois and Maalouf [6], Dauxois
et al. [7], Dijoux et al. [8], Doyen et al. [9], and Peng et al. [10]. Some models also include
preventive maintenances, as those exposed by Peng et al. [11], Said and Taghipour [12]
and Salles et al. [13]. Preventive maintenances are carried out without the occurence of a
failure. They can also be imperfect, which leads to additional consideration for example
when optimizing the time interval between two planned preventive maintenances. Imperfect
models for preventive maintenances were studied by Hu et al. [14], Huynh [15], Mercier and
Castro [16], Mullor et al. [17] and Yang et al. [18].

Covariates are known data recording factors that have a potential influence on the failure
process. In the reliability context, it can be for example the geographical location of the
system, which is a constant information, or the weather conditions in which it works, which
varies with time. With the growing availability of information from sensors or automatic
data collecting, a new field of research has appeared to study the heterogeneity existing
between apparently identical systems. Many articles deal with the addition of covariates in
survival analysis. For example, Aramesh et al. [19], Man and Zhou [20] and Man and Zhou
[21] study covariates with survival data and give an estimation procedure. The simulation of
survival times under the influence of covariates is studied by Bender et al. [22]. The difference
between constant and time-dependent covariates is discussed by Fisher and Lin [23]. Zhou et
al. [24] provide a joint modelling where the degradation becomes a time-dependent covariate
of the hard failure process.

Recurrent events data are also associated with covariates in some articles. For example,
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Liu and Pan [25] discuss Big Data issues when many covariates are available. We can cite
Fosen et al. [26], Zhao et al. [27], Giorgio et al. [28], Novák [29], Li et al. [30], where ABAO
maintenances with static covariates are studied and estimation procedures are given and
evaluated. Other designs were given by He et al. [31], Maitra et al. [32], Ning et al. [33] and
Xu et al. [34]. Recurrent events data along with terminal event and covariates are discussed
by Andersen et al. [35], Han et al. [36], Han et al. [37], Kim [38] and Sun et al. [39]. Frailty
are sometimes also included such as in the work by Deep et al. [40], Lee et al. [41], Lin et
al. [42] and Slimáček and Lindqvist [43]. In the four articles, an estimation method was
provided. We can also cite Akacha and Ogundimu [44], who perform sensitivity analysis
with missing recurrent event data influenced by covariates. However, none of these articles
deal with imperfect maintenances. They all assume ABAO or AGAN repairs.

Very few articles work with models that include both covariates and imperfect main-
tenances. Wu and Scarf [45] consider the ARA models with dynamic covariates, but no
estimation procedure is given. Peña [46] derives asymptotic properties of the estimator of
the effect of the covariates without estimating the effect of the maintenances. Syamsundar
and Naikan [47] estimate the effects of both covariates and maintenances. However, they
only deal with two particular models and this procedure is not evaluated. Moreover, they
only consider covariates that are constant between two failures. Claudio et al. [48] propose
a maximum likelihood estimation with time-dependent covariates in the case of the Linear
Extended Yule Process, which is an imperfect maintenance model different from the virtual
age models. Li and Hanson [49] use Kijima’s models along with step-wise constant covari-
ates, but the covariates act on the maintenance effect, which will not be the case in this
paper. Moreover, they use Bayesian inference. The generic model proposed by Doyen et
al. [3] includes static covariates. They use the virtual age models in the same way as we
do in this paper, providing methods for simulation and estimation. However, they do not
study the statistical performance of the proposed model, and they only deal with constant
covariates. Their framework was extended by Brenière et al. [50], who worked on virtual
age models including both constant and time-dependent covariates, but without providing
any in-depth nor thorough study of the quality of estimation. As an extended version of the
work by Brenière et al. [50], the present article answers to this missing performance study: it
develops a more detailed presentation of the proposed modeling framework and estimation
methodology and, through numerical experiments, it investigates more in-depth the quality
of estimation in the given mathematical framework. From an application point of view, this
work contributes to a better understanding of the possibility to use virtual age models in
presence of diverse and varying environments, represented by covariates; it considers thus
closer-to-reality conditions and it can be considered as a step towards an enhanced appli-
cability of these models, which is important for on-field application of advanced reliability
modeling approaches.

1.2. Scope of this work

Here, we propose a way to include time-dependent covariates in a generic virtual age
model. These covariates are linked to the failure process by an exponential factor in the
conditional failure intensity. After recalling some useful definitions, in particular about
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virtual age models, we set a mathematical framework. Each covariate is associated to
a scalar, which intends to measure the influence of this covariate. The use of such an
exponential factor is exposed by Cox [51]. Under this framework, we set up two simulation
methods. The first one assumes that the covariates are step-wise constant to perform the
exact inversion of the cumulative distribution function, while in the second one, the algorithm
approximates the probability for the system to face a failure at each node of a fine time grid,
to avoid an explicit inversion.

The other theoretical part of this paper deals with the estimation of the parameters of the
model. These parameters are the ones of the baseline hazard rate (which characterizes the
intrinsic wear of the systems), the scalar measuring the efficiency of the maintenances and the
vector of the coefficients of the covariates influence. Our proposed estimation method works
under the step-wise constant covariates assumption. It relies on the numerical maximization
of the log-likelihood.

Finally, an extensive numerical study is conducted in order to assess the quality of
estimation in the above-mentioned framework. In both the cases of constant covariates or
time-dependent covariates, the focus is placed either on the influence of the parameters
values, with large datasets, or on the influence of the data size, i.e. the number of systems
in the dataset and the number of failures per system. We mainly use the Mean Squared
Error (MSE) to analyse the quality of estimation of the model parameters.

Section 2 describes the theoretical framework, with first the mathematical writing of the
model, then the description of the two simulation algorithms, and finally the estimation
method. Section 3 is dedicated to the numerical study of the quality of estimation, with the
constant and the time-dependent cases. We give a conclusion of this work and some future
research prospects in Section 4.

2. Virtual Age Model With Covariates

2.1. Mathematical Framework

2.1.1. Definitions

Let us assume that we observe the n first failure times of a single repairable system
T1, T2, . . . , Tn, with T0 = 0. Let N = (Nt)t≥0 denote the counting process of failures. A
stochastic model for this process of recurrent events is completely characterized by the
intensity λ = (λt)t≥0 of the failure counting process defined, for all t ≥ 0, in Equation (1):

λt = lim
∆t→0

1

∆t
P(Nt+∆t −Nt− = 1|Ht−), (1)

where Ht− is the past of the process just before t and Nt− represents the left-hand limit of
Nt.

An imperfect maintenance model is composed of two parts. The first part of the model
is the initial intensity, which corresponds to the hazard rate of the first time to failure and
expresses the intrinsic wear of the new system before the first maintenance. Usually, the
first failure time is assumed to follow a Weibull distribution, so that the initial intensity is
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the intensity of a Power Law Process (PLP), h(t) = β
η

(
t
η

)β−1

, for t ≥ 0 and η, β > 0. β

is a shape parameter while η is a scale parameter. The system is wearing for β > 1 and
improving for β < 1. The second part of the model characterizes the maintenance effect on
the system. The repair can be minimal, in which case the system is ABAO and the counting
process is a Non Homogeneous Poisson Process of intensity λt = h(t), t ≥ 0. The repair can
also leave the system AGAN. The corresponding counting process is a Renewal Process of
intensity λt = h(t− TNt−

), t ≥ 0.
Between these two extreme cases, there is a wide range of models corresponding to

imperfect maintenances. In this paper, we will focus on models that can be expressed in
terms of virtual age, as defined by Doyen et al. [3] in Equation (2), for all t ≥ 0:

λt = V ′Nt−
(t)h(VNt−

(t)). (2)

After the ith failure, the system behaves like a new system which has not failed until Vi(t), for
t ≥ Ti. This quantity is called the virtual or effective age of the system. Therefore, to define
a model, we need to specify the initial failure intensity (also called baseline hazard rate) h
and its parameters, and the virtual age after the ith failure, Vi(t), which we make depend on
an efficiency parameter ρ. With this generic model for the effect of the maintenances, we can
consider ABAO maintenances with Vi(t) = t and AGAN maintenances with Vi(t) = t− Ti.

2.1.2. Covariates

In order to take into account the observed heterogeneity between identical and inde-
pendent systems, we introduce covariates in the virtual age model. The covariates are the
recorded values of some indicators such as the geographic position of the system, which is
a static information, or the temperature of the system while it is functioning, which can
be measured continuously. Different systems exhibit different values of covariates, reflecting
their heterogeneity. However, all the observed differences between the systems do not have
the same influence on the failure process. This is why the covariates are associated to coeffi-
cients, that are constant over all the systems. A large (either positive or negative) coefficient
indicates that the associated covariate has a great influence on the failure process. The sign
of the coefficient tells us whether this influence is beneficial or harmful for the systems.

The covariates and their coefficients are included in the failure intensity via an expo-
nential function like in the Cox’s regression model [51]. Our generic model is written as in
Equation (3), for all t ≥ 0:

λt = V ′Nt−
(t)h(VNt−

(t)) exp(γ′Xt), (3)

where Xt are the time-dependent covariates and γ are the coefficients associated to these
covariates. If we only need static information, i.e. covariates that are constant with respect
to time, we denote these static covariates X.

2.1.3. Some particular virtual age models

The main models we will consider here are the ARA models, in the way they are de-
fined by Doyen et al. [3]. In the ARA∞ model developed by Doyen and Gaudoin [2], that
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corresponds to the Type II Kijima’s model [1] with deterministic constant maintenance
effect, the repair is supposed to reduce the virtual age Vi−1(Ti) by a factor ρ ≤ 1, i.e.
Vi−1(Ti)−Vi(Ti) = ρVi−1(Ti). The corresponding virtual age is given in Equation (4), for all
0 ≤ i ≤ n and t ≥ Ti:

Vi(t) = t− ρ
i−1∑
k=0

(1− ρ)kTi−k, (4)

with the convention that the sum is null if i = 0. In the ARA1 model developed by Doyen
and Gaudoin [2], that corresponds to the Type I Kijima’s model [1] with deterministic
constant maintenance effect, the maintenance is supposed to reduce only the supplement of
age since the last failure Vi−1(Ti) − Vi−1(Ti−1) by a factor ρ ≤ 1, i.e. Vi−1(Ti) − Vi(Ti) =
ρ(Vi−1(Ti) − Vi−1(Ti−1)). The corresponding virtual age is given in Equation (5), for all
0 ≤ i ≤ n and t ≥ Ti:

Vi(t) = t− ρTi. (5)

Between the ARA1 and ARA∞ models lie the ARAm models, for m ∈ N∗ (the memory of
the model), with virtual age given in Equation (6), for all 0 ≤ i ≤ n and t ≥ Ti:

Vi(t) = t− ρ
Min(m−1,i−1)∑

k=0

(1− ρ)kTi−k. (6)

In all ARA models, the value of ρ represents the effect of repair. If ρ ∈]0, 1[ the repair is
efficient, if ρ = 1 the repair is perfect (AGAN), if ρ = 0 the repair is minimal (ABAO) and
if ρ < 0 the repair is harmful. In this paper, we will not consider harmful repairs so that
ρ ∈ [0, 1].

Another usual imperfect maintenance model is the QR model, proposed by Wang and
Pham [4], which considers that the times between two successive failures decrease or increase
geometrically, depending on whether the system wears or rejuvenates. Under the QR model,
the interfailure times verify the relation in Equation (7), for all i ∈ {1, . . . , n}:

Ti − Ti−1 = ρi−1Yi, (7)

where (Yi)i∈{1,...,n} is a sequence of independent identically distributed random variables
with hazard rate h(·) and ρ > 0 is a parameter characterizing the effect of the repair. The
corresponding counting process is also known as the geometric process as defined by Yeh
[52] and its virtual age is given by (8), for all 0 ≤ i ≤ n and t ≥ Ti:

Vi(t) =
t− Ti
ρi

. (8)

The case ρ = 1 corresponds to the AGAN model. If ρ ∈]0, 1[, the system deteriorates due
to stochastically decreasing interfailure times and if ρ > 1 the system improves. The last
situation can occur when failed components of the system are replaced by new components
built with new technologies.
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2.2. Simulation of a dataset

We want to simulate failure times of systems with our model. A classical way to simulate
realizations of a random variable is to compute the generalized inverse of its cumulative
distribution function. Doyen et al. [3] simulate successive failure times by inverting the
conditional cumulative distribution function, since the successive failure times of a system
are not independent.

2.2.1. Simulation with constant covariates

Assuming the covariates X are constant, the conditional cumulative distribution function
of Ti+1 (the (i + 1)th failure) knowing the past (Ht−) of the process and the covariates is
given in Equation (9):

Fi+1(t) :=: FTi+1|Ht− ,X(t) := P(Ti+1 ≤ t|Ht− ,X) = 1− exp

(
−
∫ t

Ti

λsds

)
(9a)

= 1− exp

(
−
∫ t

Ti

V ′i (s)h(Vi(s)) exp(γ′X)ds

)
(9b)

= 1− exp (− exp(γ′X)(H(Vi(t))−H(Vi(Ti)))) , (9c)

where H(t) =
∫ t

0
h(s)ds. Then we can compute the generalized inverse of Fi+1. Let U be a

random uniform number between zero and one. We apply the generalized inverse of Fi+1 on
U in Equation (10):

Ti+1 = F−1
i+1(U) = V −1

i (H−1(H(Vi(Ti))− exp(−γ′X) log(1− U))), (10)

where V −1
i (·) is the generalized inverse of Vi(·) and H−1(·) is the generalized inverse of H(·).

We use this expression to simulate the successive failure times of a system.

2.2.2. Simulation with time-dependent covariates

When we consider time-dependent covariates, the expression of the cumulative distribu-
tion function is the same as in Equation (9a). Again, we would like to compute F−1

i+1(U)
where U ∼ U [0, 1]. In the general case, because of the exp(γ′Xt) factor, which is time-
dependent, in the intensity, we cannot explicitly invert the cumulative distribution function.
Since Fi+1 is non decreasing, we could use a simple incremental algorithm. To achieve this,
we must be able to evaluate Fi+1 in any point t. But when {Xs}s≥0 depends on the time, we
cannot explicitely compute the integral. The integral could be computed numerically, but
one integral has to be evaluated at each step of the inversion algorithm, which is too costly.
To solve this issue, we propose two approaches.

First method. We make the following hypothesis: the covariates are piece-wise constant
with respect to time, with a finite number L of constant steps. The discontinuity points of
{Xt}t≥0 are deterministic and known. We note them τl, for all 0 ≤ l ≤ L− 1 (with τ0 = 0).
The values taken by {Xt}t≥0 on the constant steps for a realization (system-dependent) are
written χl, 1 ≤ l ≤ L, with the mapping given in Equation (11):

∀l ∈ {1, . . . , L− 1}, ∀t ∈ [τl−1, τl[, Xt = χl, (11a)
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∀t ∈ [τL−1,+∞], Xt = χL. (11b)

Thus, with the convention τL = +∞, we can write Equation (12):

Xt =
L∑
l=1

χl1[τl−1,τl[(t). (12)

It is important to notice that the {χl}1≤l≤L are random variables. The realization of χl is
different for each system.

Thanks to our hypothesis, we can decompose the conditional cumulative distribution
function as in Equation (13):

Fi+1(t) = 1− exp

(
−

L∑
l=1

exp (γ′χl)

∫ min(t,τl)

max(Ti,τl−1)

V ′i (s)h(Vi(s))ds

)
. (13)

The computation of Fi+1(t) depends on the discontinuity points τl−1 and τl between which
Ti and t lie. Between two discontinuity points, the covariates are constant and their value
can be taken out of the integral so that the integrand no longer depends on l. We then
introduce this notation: l(t) ∈ {1, . . . , L} is such that t ∈ [τl(t)−1, τl(t) [, i.e. l(t) =

∑L−1
l=0 1{τl≤t}

is the cumulative number of covariate steps at time t. After some computations, which are
detailed in Appendix A, we can write Equation (14):
if l(Ti) = l(t),

Fi+1(t) = 1− exp
(
− exp(γ′χl(Ti)) (H(Vi(t))−H(Vi(Ti)))

)
; (14a)

else,

Fi+1(t) = 1− exp

(
−

l(t)−1∑
l=l(Ti)+1

exp(γ′χl) (H(Vi(τl))−H(Vi(τl−1)))

− exp(γ′χl(Ti))
(
H(Vi(τl(Ti)))−H(Vi(Ti))

)
− exp(γ′χl(t))

(
H(Vi(t))−H(Vi(τl(t)−1))

))
, (14b)

the sum being eventually empty if l(Ti) = l(t) − 1.
Then we perform the exact inversion of the conditional cumulative distribution function.

A random uniform number U between zero and one is drawn. After having computed the
number of the covariate step where the last failure time lies (l(Ti)), we take it as a starting
point for the search for the covariate step where the next failure will occur. This step
corresponds to l(t). To achieve this, since FTi+1

is non-decreasing, we iteratively compute its
value at each discontinuity point of the covariates τl, l(Ti) ≤ l ≤ L − 1. When this value
exceeds U for the first time, at the point denoted τl(t) , we know that the next failure time

will occur within the covariate step l(t). Then we can explicitly compute F−1
Ti+1

(U) as in
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Equation (15):
if l(Ti) = l(t),

F−1
Ti+1

(U) = V −1
i

(
H−1

(
H(Vi(Ti))− exp(−γ′χl(Ti)) log(1− U)

))
; (15a)

else,

F−1
Ti+1

(U) = V −1
i

(
H−1

(
H(Vi(τl(t)−1))− exp(−γ′χl(t))× (S + log(1− U))

))
, (15b)

where

S =

l(t)−1∑
l=l(Ti)+1

exp(γ′χl)
(
H(Vi(τl))−H(Vi(τl−1))

)
+exp(γ′χl(Ti))

(
H(Vi(τl(Ti)))−H(Vi(Ti))

)
. (15c)

Second method. In case we can record the values of the covariates continuously, we can use
the previous simulation method with a discretization of these covariates. We propose another
method for failure times simulation in which there is no need to perform the inversion of the
conditional cumulative distribution function. We postulate that we know the values of the
covariates at each time of the form k∆t, k ∈ N∗. Then we suppose that the possible time
of the next failure is also of the form k∆t, k ∈ N∗. If we assume that the failure intensity
is constant on a short time interval of length ∆t, we can approximate the probability of the
next failure time to be ∆t later with Equation (16):

P(Ti+1 ≤ Ti+k∆t|HTi , Ti+1 > Ti+(k−1)∆t) = 1−e−
∫ Ti+k∆t

Ti+(k−1)∆t
λsds ' 1−e−λTi+k∆t∆t. (16)

To know whether a failure occurs in Ti + k∆t, we draw a random variable with a Bernoulli
distribution of parameter 1−e−λTi+k∆t∆t. With this simplification, we can set up an algorithm
for the simulation of the next failure time, which is displayed in Listing 1.

Listing 1: Alternative simulation algorithm

initialization: k=0, D=0;
while (D==0) do:

k ← k+1;
λ(k) ← λTi+k∗∆t;
D ← draw of a random variable with a Bernoulli

distribution of parameter 1-exp(-λ(k)∗∆t);
end while;
Ti+1 ← Ti + k∗∆t;
output: Ti+1;
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nb. of failures scale of PLP shape of PLP efficiency of maint. coef. of covariate

n = 15 η = 0.5−1/3 β = 3 ρ = 0.35 γ = 0.3

Table 1: Parameters of the simulated dataset given in example

2.2.3. Example of a simulated dataset

In order to illustrate the simulation algorithm with the influence of covariates, a simulated
dataset is shown here. We simulated three systems of failure times influenced by a covariate,
with the first method exposed in 2.2.2. They all have been simulated with the ARA∞ model
and with the same parameters, that are displayed in Table 1. Only the values of the covariate
change with the system. The covariate is a jump process that jumps at times {2, 3, 4, 6, 8}.
Each jump is a realization of a random variable with Gamma distribution with rate 1 and
scale α, where α is the length of the step multiplied by 1, 2 or 4 respectively for the three
systems. For the first system, the covariate grows slowly. For the third one, the covariate
increases quickly. The second system lies in between. In Figure 1, the values of the covariate
are represented versus time, for each system. In Figure 2, we see the corresponding simulated
failure times. The counting process is represented versus time.

Figure 1: Example of three covariate paths considered for failure times simulation

We can clearly see the influence of the covariate on the failure process. The main goal
now is to extract information from data both about the maintenance model and about the
covariate influence.

2.2.4. Comparison of the two simulation methods

We compared the two methods exposed in this subsection. In what follows, we refer
as ”the first method” to the one where the exact inversion of the cumulative distribution
function is performed, and as ”the second method” to the one where the failure probability
is approximated at each covariate step.

We compared the simulation speed of the two methods. We found that with a covariate
that jumps with a high frequency, the second method is about 3.5 times faster than the first
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Figure 2: Counting process of the failures for the three considered covariate paths

one. Conversely, if we have a covariate with a low jump frequency, it is two times faster to use
the first method with one value per jump than the second method with a covariate constant
for some steps. It is not recommanded to use the second method with large covariate steps
since it would not be accurate in this case.

2.3. Estimation of the model parameters

The estimation of the parameters of the virtual age model with covariates is done by
maximizing numerically the log-likelihood of the model with the given data.

2.3.1. Method

We write here the computations for a single system, the total log-likelihood being merely
the sum of the log-likelihood of each system, keeping in mind that the values of the covariates
and of the virtual age depend on the system. We observe the system either until a fixed
time T or until it reaches a fixed amount of n failures, i.e. T = Tn. With TNT −+1 = T , the
log-likelihood can be written as in Equation (17):

L =

NT∑
i=1

(log(λTi))−
∫ TNT −+1

0

λsds. (17)

The issue is fundamentally the same as in the simulation: the value of the covariates depends
on the time.

Computation of the log-likelihood. The computation of the sum, given in Equation (18), is
rather simple if we find l(Ti) ∈ {1, . . . , L} for 1 ≤ i ≤ NT such that Ti ∈ [τl(Ti)−1, τl(Ti) [:

NT∑
i=1

(log(λTi)) =

NT∑
i=1

log(V ′i−1(Ti)) +

NT∑
i=1

log(h(Vi−1(Ti))) +

NT∑
i=1

γ′χl(Ti) . (18)

In order to compute the integral, we set a partition of the time composed by the failure
times and the discontinuity points of the covariates. Indeed, each time there is a new failure,
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the value of the virtual age changes and each time we reach a discontinuity point, the values
of the covariates change. Since these two quantities are involved in the computation of the
failure intensity λs, we need to trace these modifications. First, we gather all the change
points in a single ordered vector ς = (ςk)k∈{0,...,NT −+L}. We introduce two counters: `k =∑L

l=0 1{τl≤ςk}, which is the number of the current covariate step, and ık =
∑NT −+1

i=1 1{Ti≤ςk}
which is the current number of failures, where k ∈ {0, . . . , NT − + L} is the number of the
segment in the partition. A graphical example is given in Figure 3, displaying the values of
k, `k and ık on some segments, where ςk is the lower bound of the kth segment.

Figure 3: Here is an example of the way failure times and discontinuity points of covariates can lie. On this
graph, they are evenly placed, while in fact it is not necessarily the case.

We always have ς0 = 0 (time begins at zero), `0 = 1 (it is the first step of the covariates)
and ı0 = 0 (no failure occurred before the end of the first segment). Then the integral is the
sum of the integrals restricted to each segment, until we reach TNT −+1, as in Equation (19):

∫ TNT −+1

0

λsds =
K∑
k=0

exp(γ′χ`k) (H(Vık(ςk+1))−H(Vık(ςk))) , (19)

where K ∈ {0, . . . , NT − + L} is such that ςK+1 = TNT −+1.
Equations (18) and (19) provide a general computable expression for the log-likelihood.

Maximization of the log-likelihood. The way of optimizing the log-likelihood is taken from
Doyen et al. [3]. We assume that the baseline hazard rate is a function of time with two
parameters: β, a shape parameter; and α, a scale-like parameter that is a factor in the
baseline hazard rate. For example, the Weibull distribution can be rewritten as in Equation
(20), with α = 1/ηβ, where η is the true scale parameter of the Weibull distribution:

h(t) =
β

η

(
t

η

)β−1

= αβtb−1. (20)

We denote h̃(t) := h(t)/α, t ≤ 0. Therefore, the model parameters to estimate are α, β, ρ
and γ. Then, from Equations (18) and (19), we get Equation (21):

L = NT logα− αS1(β, ρ, γ) + S2(β, ρ) + S3(ρ) + S4(γ), where (21a)
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S1(β, ρ, γ) :=
K∑
k=0

exp(γ′χ`k)
(
H̃(Vık(ςk+1))− H̃(Vık(ςk))

)
, (21b)

S2(β, ρ) :=

NT∑
i=1

log(h̃(Vi−1(Ti))), (21c)

S3(ρ) :=

NT∑
i=1

log(V ′i−1(Ti)) and (21d)

S4(γ) :=

NT∑
i=1

γ′χl(Ti) . (21e)

The unique value of α maximizing the log-likelihood is equal to NT /S1(β, ρ, γ). Therefore,
the optimization can be performed only over β, ρ and γ with the formula given in Equation
(22):

(β̂, ρ̂, γ̂) = argmax
β,ρ,γ

L(β, ρ, γ), where (22a)

L(β, ρ, γ) = NT (logNT − logS1(β, ρ, γ))−NT + S2(β, ρ) + S3(ρ) + S4(γ) and (22b)

α̂ = NT /S1(β̂, ρ̂, γ̂). (22c)

2.3.2. Example of parameters estimation

In subsection 2.2, we have simulated a dataset of failure times, with ν = 3 systems
facing n = 15 failures each, with the first method exposed in 2.2.2. The underlying model is
the ARA∞-PLP model with one covariate. We recall its failure intensity in Equation (23),
keeping in mind that each system is linked to different values of the covariate:

λt =
β

η

1

η

t− ρNt−−1∑
k=0

(1− ρ)kTNt−−k

β−1

exp(γ′Xt). (23)

These systems are under the influence of an increasing step-wise constant covariate.
In Figure 4, in the left part, we have represented the contour of the log-likelihood of

the ARA∞-PLP model for this dataset with respect to the coefficient of the covariate and
ρ, while β is supposed to be known. In the right part, we have represented the same log-
likelihood but with respect to β and ρ, while the coefficient of the covariate is supposed to
be known. On both plots, we can clearly see a maximum point. This is the point we are
looking for: the maximum likelihood estimation of the parameters.

For the same simulated dataset, we have numerically maximized the log-likelihood of the
ARA∞-PLP model. We can either perform a partial estimation, which matches Figure 4,
or a total estimation of all the parameters. We find the estimates given in Table 2. These
estimations are quite satisfying, especially if we recall that the dataset is not very large (only
three systems) and that we have four parameters to estimate.
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Figure 4: Example of log-likelihood contour versus the values of the coefficients of the covariate and efficiency
(left) and versus the values of the parameters of the virtual age model (right)

η β ρ γ
simulation values 1.26 3 0.35 0.3

estimated values when{
β known 1.66 � 0.22 0.32
γ known 1.58 2.91 0.22 �

all unknown 1.88 3.42 0.23 0.36

Table 2: Simulation values, partial estimations and total estimations of the four parameters of the model

3. Quality of estimation of the model parameters: comprehensive numerical
study

The aim in this section is to evaluate the statistical performance of the estimation method
exposed in Subsection 2.3. To achieve this, a numerical study has been set up. It consists
in simulating a large number of datasets with a virtual age model and fixed parameters,
which was done here with the first method exposed in 2.2.2 and, from the obtained datasets,
estimating the parameters of the model as if the true parameters were not known. The
numerical maximization of the log-likelihood was performed with the Nelder-Mead method
[53], that does not require to compute the gradient of the objective function. The initial
values were β = 2.1, ρ = 0.55 for the ARA models, ρ = 0.82 for the QR model and γ = 0.
The result is a collection of estimations, which have to be compared to the true values used
for the simulation. A common statistic for the evaluation of the quality of estimation is the
Mean Squared Error (MSE), which balances the bias of the estimations with their standard
deviation. The empirical formula of the MSE for a set θ̂(M) := (θ̂m)1≤m≤M of M estimations
of a parameter θ0 is given in Equation (24):

MSE(θ̂(M)) = s2
θ̂(M)

+ (mθ̂(M)
− θ0)2, (24)

where mθ̂(M)
is the empirical mean of θ̂(M), s

2
θ̂(M)

is its empirical variance and θ0 is the true

parameter used for simulation. The parameter η0 is a scale parameter. In the time-dependent
covariate case, we fixed its value in the simulations so that all the 20 failures of each system
occurred approximately within the same range of time, which consists in the range of the
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jump times of the covariate. To achieve this, we simulated a dataset with several systems
and we computed the mean of the 20th failure times of the systems. It corresponds to the
empirical expectation of the 20th failure time. This mean was expected to lie around the
time of the last covariate jump. We repeated this procedure while changing the value of
η0 until the mean fell approximately on the last jump time of the covariate. Therefore, the
values taken by this parameter are very heterogeneous and depend on the considered model
and on the value of the other parameters. For example, in the situation of Section 3.2.1,
we have η0 = 0.02 for the ARA1 with β0 = 1.5 and ρ0 = 0.1, and η0 = 0.0006 when β0 = 3
and ρ0 = 0.1. In order to analyse the quality of estimation without being biased by the true
value η0, all the MSE of this parameter have been normalized. The normalized MSE are
denoted nMSE and are computed as in Equation (25):

nMSE(θ̂(M)) =
1

θ2
0

MSE(θ̂(M)). (25)

The study focuses on the ARA1, ARA∞ and QR models, with a PLP initial intensity of
scale parameter η0 and shape parameter β0. However, in most cases, the results with the two
ARA models are quite similar. Therefore, the graphs do not display the two models, but only
the ARA∞ model. The model includes a unidimensional covariate which is simulated either
as a uniform random variable (constant covariate), as a cumulated sum of such variables
(time-dependent covariate), or as a random variable that takes its values in a finite state
space.

In all graphs of this section, µ is a shortcut for 10−6.

3.1. Constant covariate

In this subsection, we work with a constant covariate. The first part of the study is
devoted to the influence of the shape parameter β of the Weibull distribution, the efficiency
parameter ρ of the virtual age model and the coefficient of influence γ of the covariate on
the quality of estimation. For each configuration, M = 10000 datasets have been simulated,
with a fixed number of systems per dataset and a fixed number of failures per system, and
then used in estimation. In order to focus on the influence of the model parameters on the
quality of estimation, this part is done with large datasets with fixed size: the number of
systems per dataset is fixed to ν = 50 and the number of failures per system to n = 20. With
such datasets, it is expected to get results that are not polluted by a too small data size.
The second part of the study is devoted to the influence of the data size. The parameters of
the model are fixed but the number of systems per dataset and of failures per system varies.

3.1.1. Influence of the parameters of the virtual age model and of the baseline hazard rate

Settings. A time-constant covariate was simulated as a uniform random variable between 0
and 1 for each system. The true coefficient of influence of this covariate was set to γ0 = 1.
The Weibull scale parameter was set to η0 = 1/(0.11/β0). Its shape parameter β0 varied in
the set {1.5, 1.75, . . . , 3} and the efficiency parameter ρ0 varied in the set {0.1, 0.2, . . . , 0.9}
in case of an ARA model, and in {0.7, 0.75, . . . , 0.95} in case of the QR model. We recall
that, in the virtual age model, the higher ρ0 is, the more efficient the maintenance is. In
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particular, when ρ0 = 1, the process described by the ARA models and the QR model is a
Renewal Process, which means the system is left AGAN after each maintenance. However,
in the case of the QR model, if ρ0 is too far from 1, the failures occur within a very short
time range. This is easily understandable when looking at Equation (7), which gives the
distribution of the interfailure times: stochastically, they exponentially decrease. Moreover,
in the baseline hazard rate, the higher β is, the faster the system is wearing.

Heatmaps. Heatmaps of the empirical MSE obtained in this setting are given in Figure 5.
These MSE are computed for each of the four estimated parameters: β and η, respectively
the shape and scale parameters of the Weibull distribution, are on the upper part. γ, the
coefficient of the covariate, is on the lower left, while ρ, the efficiency of the maintenances,
is on the lower right. In each of these quadrants, there are two heatmaps: the one on the
left is for the ARA∞ model, the other one is for the QR model. As stated in the beginning
of this section, the ARA1 model is not displayed in the heatmaps, since it exhibits patterns
that are very similar to the ones of the ARA∞ model.

General results. The first thing to notice on Figure 5 is that the results seem very satisfying:
all the values of the MSE are reasonably low, and so are the biases: no more than 0.018 for
β, 0.06 for ρ and 0.011 for γ, and the standard deviations: no more than 5 % of the true
value for β, 9 % for η, 12 % for γ. The standard deviations of ρ highly depend on its true
value and on the value of β0 in the case of the ARA models (it is no more than 0.4 % for the
QR model): the higher ρ0 and β0 are, the lower the relative standard deviation is. We did
the same study without any covariate in order to have reference values. It turned out that
for β, η and ρ, the MSE are very similar when looking at the pattern of the heatmaps and
that for the parameter η, the MSE are generally a bit higher in the case of the QR model,
but almost the same with the ARA models, and with all models for β and ρ. This means
that the simultaneous estimation of the effect of a covariate does not affect significantly the
estimation of the parameters of the baseline hazard rate and of the virtual age model.

Influence of the parameters. Finally, we can analyse the variations of the MSE versus the
true values β0 and ρ0: within the ARA∞ model, β is better estimated when ρ0 is high, and
also slightly better estimated when its own true value is low. This may be due in most
configurations to the mere scale of the parameter, and in fact we observe for example that
the MSE for β0 = 1.5 are higher than one fourth of the ones for β0 = 3. Within the QR
model, the higher ρ0 is and the lower β0 is, the better the estimations are.

The shape parameter of the Weibull distribution β0 has a clear influence on the quality
of estimation of the scale parameter of this distribution within the ARA models: the nMSE
of the estimations of η are far lower when β0 is high. ρ0 does not have such an obvious
influence, but it looks like high values of this parameter are correlated with slightly better
estimations of η. Within the QR model, there is also a slight improvement of the estimations
when β0 is high, but above all, the higher ρ0 is, the better the estimations are. We already
pointed out the fact that if ρ0 is too far from 1 within the QR model, the interfailure times
are very small, making the estimation of the parameters more difficult.
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The true values of β and ρ have almost no influence on the quality of estimation of γ.
The MSE may be slightly lower within the ARA models when ρ0 is high, but the difference
is not very big: from 0.0137 to 0.0158.

Regarding the quality of estimation of ρ, we can say that the higher β0 is, the better the
estimation of ρ is, regardless of the model (except for ρ0 = 0.7 within the QR model). The
true value ρ0 also impacts its quality of estimation within all models. Higher true values are
preferable in the QR model. It is the reverse with the ARA∞ model for ρ0 ≤ 0.7. For lower
values, the quality of estimation is again slightly better.

For β, η and ρ, we find that within the ARA models, the standard deviation weights
more than the bias in the value of the MSE, whereas the weights are more or less the same
within the QR model.

Figure 5: MSE of the estimations of the four parameters in the case of a constant covariate, versus the true
values of β0 and ρ0

3.1.2. Influence of the coefficient of the covariate

We focus here on the influence of γ0 on the quality of estimation. This time, only the
case η0 = 1/(0.11/2.5), β0 = 2.5, ρ0 = 0.7 for the ARA models and ρ0 = 0.9 for the QR
model was considered while γ0 varied in the set {−3,−2, . . . , 3}. Plots of the empirical MSE
obtained in this setting are given in Figure 6. We see again that the results are satisfyingly
good, with even better results in the case of the QR model. We find no significant influence
of the true value γ0 on the quality of estimation of the three other parameters. Moreover,
the biases are very low for all parameters (at most 0.016 for β, 0.060 for η, 0.0018 for γ and
0.0020 for ρ), as well as the standard deviation for β, η and ρ (at most 0.010 for β, 0.018
for η, 0.17 for γ and 0.032 for ρ), with respect to the true values of the parameters.
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The plot for γ in Figure 6 is very intriguing: its symmetrical look tells us that the
influence of the covariate weights equally whether γ0 is positive or negative. The more the
absolute value of γ0 increases, the higher the MSE is. The curves have a quadratic look,
but we cannot directly infer such a conclusion. However, we have to recall that the MSE
is composed of the squared bias and of the variance. Therefore, its value has the order of
magnitude of the squared true value of the parameter. The variation of the MSE in function
of the true value γ0 could be mathematically studied in future works. We point out that
this variation comes mostly from the standard deviation, since the biases of γ are 10 to 600
times lower than the standard deviations. Within the ARA models, the biases show a very
slight trend to underestimate (in absolute value) γ. Nevertheless, these biases are very low,
always under 0.02, for a true value of γ0 = 1.

The plot for γ in Figure 6 also exhibits an interesting feature: the three curves, corre-
sponding to the three studied models, meet in a single point at γ0 = 0. This may also be a
mathematical property worth being studied, as well as the fact that the quality of estimation
of the other parameters is not impacted by the value γ0.

Figure 6: MSE of the estimations of the four parameters in the case of a constant covariate, versus the true
values of γ0
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3.1.3. Influence of data size on the quality of estimation

Settings. This part of the numerical study intends to analyse how the dimensions of the
datasets influence the quality of estimation. The dimensions of a dataset are the number of
identical and independent systems that are observed, which is denoted ν, and the number
of failures that each system faces. Here, we chose to observe each system (i.e. to run
the simulation) until a fixed number of n failures happened. Other possibilities can be
encountered: each system can be observed until reaching its own fixed number of failures,
or until the end of a fixed observation time.

We allowed these two parameters to vary in the set {5, 10, 15, . . . , 50}. With this choice,
we were able to compare the performances with a fixed number of systems and a varying
number of failures, and vice versa, or with a fixed total number of failures. For example,
10 × 10 (10 systems with 10 failures each), 5 × 20, or 20 × 5 datasets all correspond to
a total number of failures of 100. In order to focus on the data size, we chose the model
parameters among ones that showed good results: ρ0 = 0.7 for the ARA models, ρ0 = 0.9
for the QR model, η0 = 1/(0.11/2.5), β0 = 2.5, γ0 = 1. The constant covariate was simulated
as previously as a uniform random variable between 0 and 1. For each pair of ν and n, we
simulated M = 10000 datasets.

Heatmaps. Heatmaps of the empirical MSE obtained in this setting are given in Figure 7.
These MSE are computed for each of the four estimated parameters: β and η are on the
upper part. γ is on the lower left, while ρ is on the lower right. In each of these quadrants,
there are two heatmaps: the one on the left is for the ARA∞ model, the other one is for the
QR model. Each heatmap displays the MSE versus n, the number of failures per system, on
the horizontal axis, and ν, the number of systems, on the vertical axis. The look of Figure 7
is immediately satisfying: we see a clear trend to get better estimations when the data size
increases, either in terms of number of systems or of number of failures.

Parameters of the Weibull distribution. For β, we observe a symmetrical heatmap with the
QR model, but with the ARA∞ model, this is not the case. We find it is easier to estimate
β with more systems than with more failures per system. For example, the MSE of β with
datasets of 5 systems and 15 failures is approximately 0.20, whereas with datasets of 15
systems and 5 failures, the MSE is approximately 0.12, i.e. only about 60 % of the former.
A natural explanation for this is that β is the shape parameter of the baseline hazard rate,
which corresponds to the failure intensity of the first failure time of a system. Therefore, we
have more information about β when we have several systems. We observe the same thing
for η, which is the scale parameter of the baseline hazard rate, and it is visible even with
the QR model.

Efficiency of the maintenances. It is interesting to see the reverse is true for ρ within the QR
model: since ρ corresponds to the maintenance efficiency, it is coherent that its estimations
are better with more failures per system. Quite surprisingly, it does not happen with the
ARA∞ model. As a possible explanation, we may say that the better estimations of ρ with
the ARA∞ model when there are more systems are linked to the better estimations of β an η
that happen in this case. Indeed, β and ρ compensate for each other in the virtual age model:
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a system which wears slowly (i.e. with a low β) with poorly efficient maintenances (i.e. a
low ρ) may exhibit a realization of the failure process similar to the one we could get with a
system that wears quickly (high β) with more efficient maintenances (high ρ). Therefore, if
for example β is overestimated for a dataset, it may be linked to an overestimation of ρ for
the same dataset. This would explain why we have better estimations of ρ with the ARA∞
model when there are several systems. The QR model does not show the same trend, but
we can postulate that this is due to a distinctive feature of this model: the interfailure times
are distributed as independent and identically distributed random variables multiplied by
the successive powers of ρ. Consequently, it is easy to estimate ρ with a small number of
failures per system: we see that we have very good results starting from only 10 failures per
system, whatever the number of systems is.

Coefficient of the covariate. Regarding γ, we find that the estimations are far from being as
good as with large datasets. We see that the results are better when there are more systems
than when there are more failures per system. Within the ARA∞ model for example, with 5
systems facing 25 failures each, the MSE of γ is about 0.13, whereas with 25 facing 5 failures
each, the MSE is about 0.06, i.e. less than a half of the former. This is also true with the QR
model. A way to explain this is to consider the size of data useful for the estimation of γ.
With only one system, it is impossible to estimate γ, since it is undistinguishable from the
scale parameter η. The need of the covariate comes from the presence of several identical and
independent systems. Each system corresponds to a single value of the covariate. With one
constant covariate as it is the case here, we only have one data point per system, whichever
the number of failures is. In the previous example, in order to estimate γ, we only have 5
data points in the former case, and 25 in the latter. In comparison, the estimation of η and
β relies on all the 25×5 = 125 data points, and on 24×5 = 120 or 25×4 = 100 data points
for ρ (the first failure time carries no information on ρ, since there has been no maintenance
yet).

For all parameters, the standard deviation weights more in the value of the MSE than
the bias. The biases are in all cases very satisfying, but can we observe an interesting
phenomenon for the parameters η and ρ. Within the ARA models, the biases are lower
when there are more systems whereas within the QR models, the biases are lower when
there are more failures per system.

3.2. Time-dependent covariate

3.2.1. Influence of the parameters of the virtual age model and of the baseline hazard rate

Settings. In this subsection, we analyse the influence of the shape parameter β0 of the
Weibull distribution and of the efficiency parameter ρ0 of the virtual age model. Likewise
in Subsection 3.1, M = 10000 datasets have been simulated for each configuration, with
ν = 50 systems per dataset and n = 20 failures per system. The ranges of values of the
parameters were the same: the true coefficient of influence of the covariate was set to γ0 = 1,
β0 varied in the set {1.5, 1.75, . . . , 3} and ρ0 varied in the set {0.1, 0.2, . . . , 0.9} in case of
an ARA model, and in {0.7, 0.75, . . . , 0.95} in case of the QR model. η0 was chosen so
that all the failures occurred within a comparable range of time. The difference lies in the
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Figure 7: MSE of the estimations of the four parameters in the case of a constant covariate, versus the
number n of failures per system and the number ν of systems per dataset

type of the covariate: here, it was no longer a constant covariate, but a time-dependent
covariate, which jumps every unit of time on [0, 10]. We simulated this covariate by drawing
11 independent random uniform variables, and by accumulating successively these variables.
This resulted in a positive step-wise constant increasing covariate, which sizes of jumps are
uniformly distributed. We divided this covariate by 11, the number of constant steps, so
that the covariate values remain between 0 and 1. We chose to do so because of the way
the covariate values are integrated into the failure intensity: without dividing the simulated
covariate, we would get a maximum value of exp(γ′0X

(max)
10 ) = exp(11) ' 60000, with a

mean of (exp(11) − 1)/11 ' 5400. These potential values, which appear as a factor of the
failure intensity, would make impossible to distinguish any information from the virtual age
model itself. Rather than changing the order of magnitude of γ0, we chose to normalize the
covariate. We simulated the datasets with the first method exposed in 2.2.2.

Heatmaps of the empirical MSE obtained in this setting are given in Figure 8, which
reads just as Figure 5.

General results. In comparison with the case of constant covariates, we find here patterns
in the heatmaps quite similar, except for γ, the coefficient of the covariates, which has no
more a random look. The values of the MSE are almost the same for β and ρ. They are
multiplied by 2 (ARA models) or 4 (QR model) for η, and by 8 (ARA models) or 37 (QR
model) for γ. It must be noticed that η and γ have a close link in the model: in the case of
a constant covariate, both have a multiplicative effect (via a reparametrization for η) on the
conditionnal intensity. We see here that the introduction of a time-dependent covariate in
the model disturbs the quality of estimation of both parameters. However, except for some
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high values for γ in the QR model, the MSE stay reasonably low.

Influence of the parameters. For β, we find again, as already said, that the higher ρ0 is
and the lower β0 is, the better the estimations are. The biases are under 0.02 for the ARA
models and 0.1 for the QR model.

We find a slightly clearer influence of ρ0 on the quality of estimation of η: the higher it
is, the lower the MSE are. At a first glance, we could say that this influence is the same for
β0, but it must be noticed that it is not true for low values of ρ0 within the QR model. The
relative biases with respect to the true value are under 1 % for the ARA models and under
19 % for the QR model, with much lower values when ρ0 is high.

For ρ, we get almost the same heatmaps as in the constant covariate case, with only
slightly higher values within the ARA models.

The case of γ, the coefficient of the covariate, is the most interesting. This time, there is
an influence of both β0 and ρ0 on the quality of estimation of γ. It looks like for all models,
the higher ρ0 is, the better the estimations are, even though it is not true for ρ0 ≤ 0.7 within
the QR model. In contrast, the effect of β0 is not the same for all models. Within the ARA
models, the higher it is, the lower the MSE are, especially for high values of β0. The pattern
for low values of ρ0 is rather unclear. Within the QR model, it is clear that the lower β0 is,
the better the estimations of γ are. In the ARA∞ model, γ is generally underestimated, with
a bias up to 0.027. On the contrary, γ is overestimated within the QR model, with biases
up to 0.66. With respect to the true value γ0 = 1, these are quite high values. Within the
ARA1 model, we find that γ is overestimated with a bias up to 0.012 when β0 is high and ρ0

is low, and is underestimated with a bias up to 0.0057 when β0 is low and ρ0 is high. With
the latter configuration, which means that the systems wear slowly and that the repairs
are very efficient, the conditional failure intensity globally increases slowly. Therefore, the
failure times are more spaced. Within the estimation procedure, this could be understood
as a low impact of the covariate (which is positive), leading to an underestimation of γ. The
reverse is true for the former configuration.

3.2.2. Influence of the coefficient of the covariate

We focus here on the influence of γ0 on the quality of estimation. Only the case β0 = 2.5,
ρ0 = 0.7 for the ARA models and ρ0 = 0.9 for the QR model was considered while γ0 varied
in the set {−3,−2, . . . , 3}. η0 was chosen according to the procedure already explained.
Plots of the empirical MSE obtained in this setting are given in Figure 9.

The results here are very different from the constant covariate case. For β, there is no
influence of γ0 on the estimations within the ARA∞ and the QR models. In contrast, the
higher γ0 is, the higher the MSE are within the ARA1 model. For the three models, the
biases are constant. The variation that occurs for ARA1 therefore comes from the standard
deviation, which shows the same phenomenon. However, for the three models, the values
have the same order of magnitude as in the constant covariate case. We observe the same
thing in the estimation of η, except that it is here the QR model that shows the highest
values. We cannot directly compare the values, since we were talking of non normalized
MSE in the case of a constant covariate, whereas here we had to normalize the MSE by
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Figure 8: MSE of the estimations of the four parameters in the case of a time-dependent covariate, versus
the true values of β0 and ρ0

the varying true value η0. If we normalize the latter, we find values of the same order of
magnitude as the former. Regarding ρ, the situation is the same as for β, with an increase
of the MSE within the ARA1 model with higher values of γ0, that is also observable on the
standard deviations. The order of magnitude is the same as in the constant covariate case.
The look of the plot for the estimations of γ is totally different from the constant covariate
case. Here, the curves for the ARA models show a constant behavior, either for the MSE,
the bias, or the standard deviation. The bias is never more than 0.017, which is a low value
with respect to the true value γ0 = 1. The standard deviation is up to 0.44 for the ARA1

model, and to 0.27 for the ARA∞ model. Then, we see that the higher γ0 is, the higher
the MSE are within the QR model. This comes as well from the standard deviation, which
exhibits the same monotonicity, as from the bias, which increases when γ0 is high. In fact,
γ is more and more underestimated, with a bias of up to 0.22.

3.2.3. Influence of data size on the quality of estimation

Settings. This part of the numerical study intends to analyse how the dimensions of the
datasets influence the quality of estimation. We allowed again the number of systems ν
and the number of failures per system n to vary in the set {5, 10, 15, . . . , 50}. We chose the
ARA∞ model to study two different types of covariate. In order to focus on the data size,
we chose the model parameters among ones that showed good results: η0 = 1/(0.11/2.5),
β0 = 2.5, ρ0 = 0.7, γ0 = 1. For each pair of ν and n, we simulated M = 10000 datasets.

The time-dependent covariate was simulated either as previously as the normalized cu-
mulative sum of 11 uniform random variables (and is therefore increasing with time), or as
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Figure 9: MSE of the estimations of the four parameters in the case of a time-dependent covariate, versus
the true values of γ0

a random variable taking its values within the set {−2,−1, 0, 1, 2}, jumping from a value
to an adjacent one at times 1, 2, . . . , 10. We have set probabilities of the following type: at
point -2, the probability to jump in -1 is 1; at point -1, the probability to jump in -2 is 0.5
and the probability to jump in 0 is 0.5, etc. A graphical summary of these probabilities is
given in Figure 3.2.3. The initial state is always 0.

Heatmaps. Heatmaps of the empirical MSE obtained in this setting are given in Figure 11,
which reads just as Figure 7, apart from the fact that the graphs for the ARA∞ model are
replaced with the graphs for the increasing covariate and the graphs for the QR model are
replaced with the graphs for the finite state space covariate. Again, we see a clear trend to
get better estimations when the data size increases, either in terms of number of systems or
of number of failures, which is what we expected. Except for γ, the scales are comparable
and even a little smaller than in the constant covariate case. It seems that for small samples,
it works better for time-dependent covariates.

25



-2 -1 0 1 2

0.5 0.5 0.5 1

1 0.5 0.5 0.5

Figure 10: Probabilities of jumping from one state to another for the time-dependent covariate

Parameters of the Weibull distribution. We observe here the same phenomenon as for a
constant covariate: it is easier to estimate β and η, respectively the shape and the scale
parameters of the initial intensity, with more systems rather than with more failures per
system. The biases are rather symmetric, and show that these two parameters are gener-
ally overestimated. However, this overestimation decreases quickly with more data. The
standard deviations are not symmetric, and exhibit the same trend as the MSE.

Efficiency of the maintenances. Again, as in the case of the ARA∞ model with a constant
covariate, ρ is easier to estimate with more systems rather than with more failures per system.
We already gave a potential reason for that: the three other parameters are more easily
estimated with more systems, which may impact the quality of estimation of ρ, although
this parameter represents the efficiency of the maintenances. The biases may reveal even
more clearly this phenomenon: with only 5 systems per dataset, the biases reach 0.018,
whatever the number of failures is, whereas with 10 systems, they never hit 0.010. In any
case, these biases are reasonably low, and show only a slight underestimation of ρ.

Coefficient of the covariate. Finally, we observe that in the case of the non monotonic
covariate, as expected, it is easier to estimate γ when there are more systems. However, in the
case of the cumulative uniform covariate, it is the opposite: more failures per system provide
a better estimation than more systems per dataset. Regarding the biases, it is interesting
to notice that with the cumulative uniform covariate, γ tends to be underestimated (bias of
0.39 for a 5×5 dataset, only 0.15 for a 5×10 or 10×5 dataset) whereas with the finite state
space covariate, it is slightly overestimated (bias of 0.095 for a 5× 5 dataset, only 0.050 for
a 5× 10 or 10× 5 dataset).

4. Conclusion

4.1. Main results

This paper proposed a parametric model able to take into account the intrinsic wear,
the effect of imperfect maintenances and the heterogeneity of several almost identical and
independent systems. It set up a mathematical framework and developed two simulation
methods as well as the estimation of the model parameters.

The other achievement of this article was to assess the quality of estimation. We found
that when estimating the virtual age model parameters along with the coefficient of influence
of constant covariates, the results are satisfyingly good. They look close to those we obtained
without covariate in terms of MSE. The influence of the different parameters simulation
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Figure 11: MSE of the estimations of the four parameters in the case of a time-dependent covariate, versus
the number n of failures per system and the number ν of systems per dataset

values on the quality of estimation has been carefully studied. In particular, we empirically
found that the intrinsic wear rate of the systems and the efficiency of the maintenances have
no influence on the quality of estimation of the covariates coefficient, and converselyin the
case of a constant covariate. Regarding the covariates coefficient, some interesting questions
were raised: the quality for this coefficient is symmetrical whether its simulation value is
negative or positive. Moreover, the quality increases when the simulation value is high,
with a quadratic-like growth. Finally, the three studied models exhibit the same quality of
estimation for a null coefficient. This may lead to future work in order to derive theoretical
properties on the estimators. The quality of estimation with time-dependent covariates was
found to be not as good as in the constant covariate case, but it remains quite satisfying.
We observed different patterns when considering the quality with respect to the model
parameters. In particular, whereas the coefficient of the constant covariate had no influence
on the quality of estimation of the other parameters, it has some when the covariate is
time-dependent.

Regarding the influence of data size, we fortunately found that the more data we have,
the better the estimation is. We highlighted the fact that the behaviour of the estimators is
not symmetrical whether it is the number of systems that increases, or the number of failures
per system. First, the more systems we have, the easier it is to estimate the parameters of the
intrinsic wear of the systems: indeed, these parameters are best estimated when we observe
a large number of first failure times. After repairs, the information tends to be blurred by
the effect of the maintenances, that is simultaneously estimated. Second, the reverse is true
for QR and easily understandable: the more successive maintenances we have, the better the
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efficiency can be estimated. Third, the estimation of the covariates influence is less precise
with small datasets. The more systems we have, the better it is, since for a single system,
this coefficient is undistinguishable from the scale of the baseline hazard rate. Each system
corresponds to a single value of the covariates. Therefore, the amount of information is too
small to perform a good estimation.

4.2. Future work

The good results of the estimation procedure should be examined to understand what are
the underlying mathematical properties of the estimators. We also empirically highlighted
some interesting features with the influence of the coefficient of the covariate on the quality
of estimation. Some mathematical properties may be derived from these characteristics.
Another extension could be the evaluation of the influence of the covariate sampling on the
quality of estimation. For example, one may not record all the jumps of a time-dependent
covariate. The impact of this sampling should be assessed. Such a work could lead to study
a continuous covariate that is a degradation process, recorded at some predefined times.
Peng et al. [10] did study an imperfect maintenance model with a stochastic process as a
covariate, but it was in a Bayesian framework.
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Appendix A. Detailed computations for the simulation of failure times

With the hypothesis set in Section 2.2, the conditional cumulative distribution function
is decomposed along the discontinuity points of the covariates in Equation (13). There are
three cases: 1. When l(Ti) = l(t), which is represented in Figure A.12, the computation is as
follows:

Figure A.12: First case occurring when computing the cumulative distribution function.

f =

(1)︷ ︸︸ ︷
gl(Ti)

∫ t

Ti

V ′i (s)h(Vi(s))ds = gl(Ti) (H(Vi(t))−H(Vi(Ti))) . (A.1)

2. When l(Ti) = l(t)− 1, which is represented in Figure A.13, the computation is as follows:
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Figure A.13: Second case occurring when computing the cumulative distribution function.

f =

(1)︷ ︸︸ ︷
gl(Ti)

∫ τl(Ti)

Ti

V ′i (s)h(Vi(s))ds+

(2)︷ ︸︸ ︷
gl(t)

∫ t

τl(t)−1

V ′i (s)h(Vi(s))ds

= gl(Ti)

(
H(Vi(τl(Ti)))−H(Vi(Ti))

)
+ gl(t)

(
H(Vi(t))−H(Vi(τl(t)−1))

)
. (A.2)

3. When l(Ti) ≤ l(t)− 2, which is represented in Figure A.14, the computation is as follows:

Figure A.14: Third case occurring when computing the cumulative distribution function.

f =

(3)︷ ︸︸ ︷
l(t)−1∑

l=l(Ti)+1

gl

∫ τl

τl−1

V ′i (s)h(Vi(s))ds+

(1)︷ ︸︸ ︷
gl(Ti)

∫ τl(Ti)

Ti

V ′i (s)h(Vi(s))ds+

(2)︷ ︸︸ ︷
gl(t)

∫ t

τl(t)−1

V ′i (s)h(Vi(s))ds

=

l(t)−1∑
l=l(Ti)+1

gl (H(Vi(τl))−H(Vi(τl−1)))

+ gl(Ti)

(
H(Vi(τl(Ti)))−H(Vi(Ti))

)
+ gl(t)

(
H(Vi(t))−H(Vi(τl(t)−1))

)
. (A.3)

Therefore, if l(Ti) = l(t),

Fi+1(t) = 1− exp
(
− gl(Ti) (H(Vi(t))−H(Vi(Ti)))

)
. (A.4)

Else,

Fi+1(t) = 1− exp

(
−

l(t)−1∑
l=l(Ti)+1

gl
(
H(Vi(τl))−H(Vi(τl−1))

)
− gl(Ti)

(
H(Vi(τl(Ti)))−H(Vi(Ti))

)
− gl(t)

(
H(Vi(t))−H(Vi(τl(t)−1))

))
, (A.5)

with gl := exp(γ′χl), and the sum being eventually empty if l(Ti) = l(t) − 1.
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