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AbstractMonitoring the ecological status of natural habitats is crucial to the conservation process,
as it enables the implementation of e�cient conservation policies. Nowadays, it is increasingly
possible to automate species identi�cation, given the availability of very large image databases and
state-of-the-art computational power which makes the training of automated machine learning-
based classi�cation models an increasingly viable tool for monitoring marine habitats. Corallige-
nous reefs are an underwater habitat of particular importance, found in the Mediterranean. This
habitat is of a similar biocomplexity to coral reefs. They have been monitored in French wa-
ters since 2010 using manually annotated photo quadrats (RECOR monitoring network). Based
on the large database of annotations accumulated therein, we have trained convolutional neural
networks to automatically recognise coralligenous species using the data gathered from photo
quadrats. Previous studies conducted on similar habitats performed well, but were only able to
consider a limited number of classes, resulting in a very coarse description of these often-complex
habitats. We therefore designed a custom network based on o�-the-shelf architectures which is
able to discriminate between 61 classes with 72.59 % accuracy. Our results showed that confusion
errors were for the most part taxonomically coherent, showing accuracy performances of 84.47
% when the task was simpli�ed to 15 major categories, thereby outperforming the human accu-
racy previously recorded in a similar study. In light of this, we built a semi-automated tool to
reject unsure results and reduce error risk, for when a higher level of accuracy is required. Finally,
we used our model to assess the biodiversity and ecological status of coralligenous reefs with
the Coralligenous Assemblage Index and the Shannon Index. Our results showed that whilst the
prediction of the CAI was only moderately accurate (pearson correlation between observed and
predicted CAI = 0.61), the prediction of Shannon Index was more accurate (pearson correlation =
0.74). In conclusion, it will be argued that the approach outlined by this study o�ers a cost and
time-e�ective tool for the analysis of coralligenous assemblages which is suitable for integration
into a large-scale monitoring network of this habitat.

Keywords Coralligenous reefs, Deep learning, Convolutional neural networks, Image classi�ca-
tion, Species recognition, Monitoring
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1 Introduction

Coralligenous reefs represent unique calcareous formations of biogenic origin in the Mediter-
ranean (Ballesteros, 2006); they are produced by the accumulation of encrusting algae and bio-
constructor animals (polychaetes, bryozoans and gorgonians). Coralligenous reefs are similar
to tropical coral reefs in terms of their richness and are considered the second richest marine
habitat in the Mediterranean Sea (Boudouresque, 2004). They are described as a special habitat
with biodiversity interest by the European Habitats Directive (Habitats Directive 92/43/CEE). Like
all marine ecosystems that are threatened on global scale by numerous anthropogenic pressures
(Halpern et al., 2008; Hoekstra et al., 2004), coralligenous reefs are not exempt from the impacts
of the Anthropocene (McGill et al., 2015) even if they are located at depths between 20 and 100
m below sea level. These coastal ecosystems are particularly sensitive to environmental changes
as they are characterised by high levels of marine biodiversity (Halpern et al., 2008) and are in
contact with human population densities of about three times the average elsewhere (Small and
Nicholls, 2003). They are severely a�ected by environmental pressures, most notably increasing
sediment loads and deposition coming from human coastal activities and hydrodynamics alter-
ation (Airoldi, 2003; Ballesteros, 2006). This habitat desperately need to be monitored; “methods
are urgently needed to assess prevailing patterns, evaluate impacts to which they [coralligenous
outcrops] are subjected and provide baseline data to explore future trajectories of these high di-
versity assemblages” (Kipson et al., 2011).

Studying and monitoring the biodiversity of coralligenous reefs is limited by human physio-
logical implications as it is physically demanding to spend a considerable amount of time at great
depths underwater. Consequently, photo quadrats are commonly used in studies of this kind. This
requires standardised photos to be taken by a diver in order for the coralligenous assemblages to
be identi�ed back on land (Deter et al., 2012b). A taxonomist can measure a reef’s biodiversity
(benthic species) and conservation status using indices such as the Coralligenous Assemblage
Index (CAI) (Deter et al., 2012a) and Shannon index (Magurran, 2004). This is however time-
consuming, and requires well-trained taxonomists, as these reefs are home to over 1500 di�erent
species (Ballesteros, 2006).

Since the mid-2000s, automated image classi�cation has seen vast improvements, most notably
in the development of deep Convolutional Neural Networks (CNNs). Most researchers now con-
sider the task of image classi�cation to have achieved its optimum potential (Rawat and Wang,
2017) in light of the outstanding performances of CNNs on well-known datasets such as ImageNet
(Deng et al., 2009). Since CNNs �rst broke through in international image recognition challenges
(Krizhevsky et al., 2012), the networks have grown deeper and more e�cient with various archi-
tectures (He et al., 2016a; Huang et al., 2017; Szegedy et al., 2015). Complications can nonethe-
less arise in applied cases such as species recognition. The variability of lighting conditions and
intra-species morphological diversity renders underwater benthic species recognition particularly
challenging (Beijbom et al., 2012). Some studies have used machine learning algorithms for the
identi�cation of coral reefs species (Beijbom et al., 2012; Marcos et al., 2005)). In recent years, the
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application of state-of-the-art CNNs on coral datasets has achieved high classi�cation accuracy,
most notably when discriminating between coral and non-coral (Manderson et al., 2017; Williams
et al., 2019); they have achieved about 90 % accuracy when identifying 10 di�erent phylums (King
et al., 2018). Under human supervision, the use of a semi-automated framework has been shown
to improve classi�cation accuracy whilst remaining time and cost-e�ective (Beijbom et al., 2015;
Geifman and El-Yaniv, 2017).

While no such framework has been tested on coralligenous reefs in particular, it should be
noted that there is still room for improvement when applying CNNs to ecological data. At this
point, the number of classes successfully recognised by CNNs is still relatively low, considering the
wide variety of coralligenous species. Consequently, only a coarse level of analysis of broad taxa
is possible. Discrimination among �ner taxonomic levels is indeed a more complex task, as species
and gender share a lot of visual characteristics and individual di�erences may be greater than inter-
class variability. Taking into account the substantial cost of training such deep architectures, the
networks used by most studies implementing CNNs for image classi�cation were programmed
with pre-trained weights which had been learnt on a di�erent task (King et al., 2018; Mahmood
et al., 2017), rather than training the networks from scratch. It has nevertheless been proven that,
as the distance between the base task and the target task increases, the features’ transferability
decreases (Yosinski et al., 2014).

Our research therefore stems from the observation that, in previous work regarding benthic
species recognition (i) the number of classes considered was limited when compared with the
species richness generally encountered in coralligenous assemblages; (ii) the classes are mostly
de�ned at a coarse taxonomical level (phylum, class, order); and (iii) the studies that achieved
the highest classi�cation accuracy when using CNNs used pre-trained networks that had been
�ne-tuned for the particular task at hand. We therefore aimed to expand upon the work done by
previous studies on coralligenous reefs by building a �ne-grained classi�er, using state-of-the-art
CNN architectures trained from scratch, in order to best address the task at hand.

2 Related work

Over the last decade, the performance of supervised image classi�cation algorithms has im-
proved exponentially, owing to: the availability of very large labelled image databases such as
ImageNet (Deng et al., 2009), developments in computational power, and the deepening of CNNs.
These networks have been able to rapidly achieve state-of-the-art results in the most prestigious
image recognition challenges (Russakovsky et al., 2015). Since the challenge was �rst launched,
research teams have sought new network architectures to improve classi�cation performances.
CNNs are now employed in a great variety of research �elds including ecology, and are widely
used for species recognition, notably the identi�cation of coral species which they have performed
excellently (King et al., 2018).

To the best of our knowledge, no previous studies have attempted to automate the classi�cation
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of coralligenous reef images. Coral reefs on the other hand have been extensively used as case
studies for the development of automated visual assessment technologies, so that we may better
monitor the biodiversity of these threatened ecosystems (Beijbom et al., 2012, 2015; King et al.,
2018; Mahmood et al., 2016; Manderson et al., 2017). Coralligenous reefs are similarly as complex
as coral reefs, and both are home to a multitude of di�erent, intricate species (Bianchi, 2001). We
therefore used the performance of species recognition technology on coral reefs as a baseline for
developing our own research techniques on coralligenous reefs.

2.1 Annotator reliability

Underwater lightning conditions are subject to high variability due to the impaired light ab-
sorption by the water column, or ambient turbidity. Moreover, species identi�cation is di�cult
because of the nuanced shapes and boundaries between species, and the high inter and intra-
species morphological variability. These factors, combined with the variable quality of photo or
video surveys (Manderson et al., 2017), leads to potential inconsistencies in the manual annotation
of image datasets.

To the best of our knowledge, very few studies assessed human error in the case of expert
species identi�cation, and only one studied this error in relation to the analysis of coral species
(Beijbom et al., 2015). Given the high similarity between coral and coralligenous reefs, and the
lack of studies conducted on the latter habitat, we used the analysis of Beijbom et al. (2015) as a
baseline for expert annotation accuracy. Their dataset was composed of 800 images belonging to
four di�erent coral reefs across the Paci�c Ocean, with 200 photos per site. Each image contained
ten annotated random points with a resultant total of 2000 annotations per reef. The photographic
survey was performed between 2005 and 2012 with a variety of di�erent Digital Single Lens Re�ex
(DSLR) cameras, therefore the spatial resolution of the photos was variable and ranged between 12
and 81 pixels per mm2 for a size ranging from 6 to 10 Mpx. For each site, a local coral reef expert
(named “host”) labelled the corresponding dataset with his own label-set. The four label-sets were
mapped to a consensus set of 20 classes corresponding to miscellaneous non-living objects, whole
phylum, and genders at the �ner level of taxonomy. One to six years later, each site was presented
for evaluation to six di�erent experts: the “host” (the expert who established the ground truth
annotation) and �ve “visitors” (coral experts with no prior knowledge of the study sites). These
six experts labelled 2000 points per site according to the label set provided, resulting in 48000
annotations. The inter-annotator variability was assessed using Kappa statistic (Cohen, 1960).
Results di�ered according to the considered functional group (coral, macroalgae, coralline algae
or turf algae), and ranged from κ = 35.5 to 84.0 (i.e “minimal” to “strong” agreement between
annotators).
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2.2 CNNs for coral images classi�cation

Previous attempts to use CNNs for coral images classi�cation (Beijbom et al., 2016; King et al.,
2018; Mahmood et al., 2017, 2016), outperformed other techniques based on hand-crafted features.
In the event that there is a lack of data, or insu�cient money to fund the cost of training state-
of-the-art architectures, a CNN may �rst be trained using frozen, pre-trained weights on the con-
volutional layers, before the whole CNN is re-trained (King et al., 2018). This procedure ensures
that the imported weights are not signi�cantly altered by the gradient descents. In their study,
King et al. (2018) used this method to benchmark di�erent CNN architectures. They compared the
accuracy on patch-based classi�cation (bounding box around the annotated pixel) with VGG16,
di�erent implementations of Inception networks, and two ResNet networks (52 and 152 layers).
The CNN that achieved the best classi�cation accuracy in this ten-category coral classi�cation
task was the ResNet152, which attained 90.03 % accuracy.

It has been shown that the patch size strongly in�uences classi�cation performances (Beijbom
et al., 2012). The patch size may therefore be adjusted to optimise classi�cation depending upon
the size of the individual subjects and the particular location of the labelled pixel. A trade-o� must
be found, to include enough context while focusing on the information located at the centre of the
patch (Beijbom et al., 2012) (Figure 1). Local Spatial Pyramid Pooling (local-SPP) (Mahmood et al.,
2016) improves feature extraction from point annotations, and makes the feature representation
scale invariant. Patches of di�erent scales are extracted and resized to �t the input size of a VGGnet
(224×244 pixels) and are then processed by the convolutional layers and the �rst fully connected
layer in order to extract 4096-dimension feature vectors. All vectors obtained from the di�erent
patch sizes are max pooled to obtain a single feature vector which contains the highest values
for the region considered. This approach enables a variety of scales to be processed, while max
pooling renders the feature vector scale invariant.
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Figure 1 Illustration of the patch size selection problem. (a) the signal from the small sponge
patch might be lost in its surroundings; (b) the patch might not capture the full extent of the
larger textures; (c) extracted features would be more stable with a larger area; (d) point of interest
on the edge between classes making any patch size problematic.

2.3 Automatic classi�cation via deeply learned features

While neural networks excel at image classi�cation, notably regarding famous challenges such
as ImageNet, their performance can be curtailed in real-life classi�cation problems, such as face
recognition (Zhou et al., 2015), medicine (De Fauw et al., 2018) or species identi�cation
(Mehdipour Ghazi et al., 2016). It should be noted that CNNs alone can struggle with datasets
if some classes are under-represented; or if ground truth annotations are unreliable; or in the
case of a �ne-grained classi�cation task, where there are intricate links between classes. Using
CNNs in combination with other machine learning algorithms, such as: linear models, random
forests, Logistic Regression (LR), and Support Vector Machines (SVMs) can improve classi�ca-
tion performances (Gao et al., 2017; Li and Yu, 2016). Li and Yu (2016) used a random forest to
process the feature activation map obtained from the ReLU of a layer of an AlexNet network con-
catenated with hand-crafted features, in order to improve saliency detection. In this instance the
penultimate, fully connected layer provided the most discriminative features. Previous studies
used SVMs trained with features from the convolutional layers of a CNN to improve classi�ca-
tion accuracy (Gao et al., 2017; Huang and LeCun, 2006). Donahue et al. (2014), who studied the
in�uence of SVM and LR on classi�cation performances using features extracted from di�erent
layers of a CNN (Donahue et al., 2014), found that the 1st and 2nd fully connected layers improved
the network the most, and that LR and SVM performed roughly equally as well. However, unlike
SVMs, LR performs soft assignment and outputs probabilities making it naturally well-calibrated
(Niculescu-Mizil and Caruana, 2005).
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3 Data

3.1 Sampling procedure

Data were recorded over the period 2010—2018 during the RECOR monitoring network cam-
paigns (Andromède-Océanologie, 2018), from 198 sampling stations situated in 121 geographical
locations along the French and Italian (Sardinia) Mediterranean coast. Each station was situated at
a depth of between 17 and 90 m (Figure 2), and a few of these locations included several sampling
stations at various depths.

Figure 2 Localization of the 121 study sites (South of France, Corsica and Sardinia).

All photographic quadrats were acquired by one scuba diver, using a DSLR camera in a wa-
terproof Seacam housing, �tted with two lateral strobes, �xed on a quadrat frame for standard
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acquisition (2500 cm2 quadrat). Di�erent cameras were used over the period 2010—2018: Nikon
D2Xs, D3, D3S and D810. The resolutions ranged between 12.1 and 36.3 megapixels (Mpx), and
had a focal length between 12 and 20 mm. Thirty quadrats were analysed per station, onto which
64 points were randomly projected (Figure 3) and manually labelled using the Coral Point Count
4.1 (CPCe, 2011) software (Deter et al., 2012b).

Figure 3 Photographic quadrat of a coralligenous reef. The green dots represent the 64 randomly
projected points with CPCe software that are manually labelled.

3.2 Available dataset

The original dataset was composed of 668,160 annotations (made by the same taxonomic ex-
pert), sampled from 10,440 digital photographic quadrats. The database included 208 di�erent
classes and showed a high inter-class imbalance (see ?? for full species details); the number of
annotations per class ranged from 1 to over 100,000. All classes with less than approximately 500
instances were removed from the dataset, with the exception of “erected necrosis” (105 instances)
because of the ecological importance to distinguish between erected and encrusted organisms, as
they are not equally sensitive to anthropogenic pressures (Sartoretto et al., 2017). Undi�erentiated
sediment / substrate annotations from years 2010—2012 (labelled “sludge”, “pavement”, “rubble”
and “sand” for years 2013—2018) were also removed from the dataset. Consequently, �nal dataset
included 61 classes for a total of 349,370 annotations, and was then split into a training set of
282,940 annotations, a validation set of 34,963 annotations, and a test set of 31,467 annotations.
The �nal dataset was somewhat more evenly balanced; each class was represented by 105 to 60,218
annotations.
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3.3 Biological links among classes

The biological relationships between classes describe a complex hierarchy at di�erent taxo-
nomic levels due to the impossibility / irrelevance of identifying all individuals up to species level
from only visual analysis (Figure 4; large circles represent the 61 classes subject to the classi�ca-
tion task; small circles represent other classes that were not included) and intra-class variance is
sometimes greater than inter-class variance (Figure 5). Out of 61 classes, eight represent a coarse
level of discrimination between major categories of living individuals, 31 classes may be identi�ed
at the species level (the �nest level of discrimination apart from individuals), and the remaining
categories were made up of 10 genders and 12 phylum or equivalent (broad categories of non-
living objects). Many of these classes are closely related to each other and some classes of species
belong to another gender class, themselves belonging to a major category class (Figure 4).
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Figure 4 Classes of coralligenous taxa, hierarchically organised. Each network represents a major
category (orange) linked to related phylums (yellow), genders (green) and species (blue). Smaller
circles represent categories not subject to the original classi�cation task and are written out in
words. ADC = Adeonella calveti; APCA = Aplysina cavernicola; AXDA = Axinella damicornis;
BMAC = Brown macroalgae; C = Crevice; CELL = Cellaria sp.; CLIO = Cliona sp.; CORU = Coral-
lium rubrum; CRAM = Crambe crambe; CRMA = Encrusting red macroalgae; CRPU = Crella pul-
vinar ; CRSP = Crisia sp.; CRT = Crambe tailliezi; CYSP = Cystoseira sp.; D = Sand; DELE = Den-
droxea lenis; DIIM = Dictyota implexa; DISP = Dictyonella sp.; DYAV = Dysidea avara; ECBR =
Encrusting bryozoan; ENS = Non identi�ed encrusting sponge; ERBR = Erected bryozoan; ERMA
= Erected red macroalgae; EUCA = Eunicella cavolini; EUSI = Eunicella singularis; FILB = Filamen-
tous brown algae; FILG = Filamentous green algae; FILR = Filamentous red algae; FISA = Filograna
or Salmacina sp.; FLPE = Flabellia petiolate; GMAC = Green macroalgae; HALI = Haliclona sp.;
HATU = Halimeda tuna; HERA = Hexadella racovitzai; HY = Hydrozoa; LEPR = Leptopsammia
pruvoti; LIIN = Lithophyllum incrustans; LIST = Lithophyllum stictaeforme; MAS = Non identi�ed
massive sponge; MEAL = Mesophyllum alternans; MEEX = Mesophyllum expansum; MESP = Mes-
ophyllum sp.; MYT = Myriapora truncate; NEC_encrusted = Encrusted necrosis; NEC_erected =
Erected necrosis; PAAX = Parazoanthus axinellae; PACL = Paramuricea clavata; PACR = Palmo-
phyllum crissum; PCSP = Encrusting Peyssonnelia sp.; PEF = Pentapora fascialis; PESP = Erected
Peyssonnelia sp.; PHTE = Phorbas tenacior ; PLSP = Pleraplysilla spinifera; PYCL = Pycnoclavella
sp.; R = Rubble; S = Sludge; SCMA = Schizomavella mamillata; SPO = Sponges; SWO = Sedentary
worms; VAMA = Valonia macrophysa; ZATY = Zanardinia typus.

For instance, Mesophyllum alternans (MEAL) and Mesophyllum expansum (MEEX) are di�er-
ent species belonging to the same gender Mesophyllum sp (MESP), and Mesophyllum sp belongs
to the major category Encrusting red macroalgae (CRMA). These classes also share a lot of visual
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characteristics, and it is the task of the algorithm to �nd the features common to one particular
class which are not shared by speci�c subcategories. This requires an expert knowledge and is
quali�ed as a �ne-grained classi�cation task (Akata et al., 2015).

Figure 5 Illustration of intra and inter-class variance. MEAL = Mesophyllum alternans; MEEX =
Mesophyllum expansum; MESP = Mesophyllum sp.; CRMA = Encrusting red macroalgae.

4 Methodology

This study sought to design and train an algorithm based on deep CNN architectures, in order
to identify a selection of coralligenous species or their broader taxonomical group, and to assess
the biodiversity and ecological status of coralligenous reefs. We designed a custom methodology,
drawing on state-of-the-art architectures and a large database of annotated photographic quadrats.
More speci�cally, we performed the following analysis :

1. Assess human annotation error on a similar problem in order to establish a baseline perfor-
mance;

2. Train simple CNNs on di�erent patch sizes and build an ensemble network in order to im-
prove performances with multi-scale prediction;

3. Train a LR on deeply learned features from intermediate layers to improve performances
and calibrate the ensemble network;

4. Build a semi-automated tool based on the calibrated ensemble network, allowing to classify
a dataset with a required minimum error risk;

5. Reduce the classi�cation level of detail by grouping classes to higher taxonomical degrees
(56 genders and 15 major categories), to build a customizable tool able to classify at di�erent
levels of details with corresponding accuracies.
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4.1 Assessment of annotator reliability

We used the data from Beijbom et al. (2015) (subsection 2.1) to assess human annotator ac-
curacy using F1-score (section 5.2.1). For each point, the ground truth was de�ned as the �rst
identi�cation by the “host” expert. These results will be used to discuss our CNN classi�cation
performances.

4.2 Ensemble network for multi-scale prediction

Di�erent studies showed that in a patch-based classi�cation context, multiple scales classi�ca-
tion improved the �nal performances of the classi�er (Beijbom et al., 2012; Mahmood et al., 2016).
Indeed, many cases can challenge a patch-based classi�er (small vs large individuals, point lo-
cated on the edge between two classes. . . ), and the integration of analyses made at di�erent scales
can help build a more robust and discriminative classi�er. Therefore, we trained an ensemble of
ResNet18s on four patch sizes (Figure 6): 224 × 224, the standard input sizes for most CNNs,
128 × 128, 96 × 96, and 64 × 64 pixels. However, our methodology slightly di�ers from earlier
works in two main aspects. Firstly, Mahmood et al. (2016) resized the extracted patches to �x input
dimensions as they used a pre-trained network. Conversely, we trained ResNet18s from scratch
and consequently, input size was able to correspond to the size of the extracted patches. This
avoids information loss which comes as a consequence of upscaling of small patches. Secondly,
instead of implementing a max pooling set on the last convolutional layer (Mahmood et al., 2016),
our ensemble network uses the four outputs from the Global Average Pooling (GAP) layers, fol-
lowing the last convolutional block of the trained ResNet18. This ensures that more information
is preserved and can be processed by a Multi-Layer Perceptron (MLP) and the concatenation re-
sults in a 2048 features vector. Our MLP was made up of three fully connected layers, of sizes 512
(fc512), 256 (fc256) and 61; the �rst two layers used ReLU activation, and the �nal layer a softmax,
for classi�cation.

4.3 Logistic regression with deeply learned features

We trained LR models with di�erent inputs, from the features learned by the deep learning
model (output of the concatenation layer feeding the MLP; Figure 6), to the more processed logits
of the softmax layer:

• Features from the concatenation of GAP outputs;

• Features from the �rst layer of the MLP (fc512);

• Features from the second layer of the MLP (fc256);

• Logits of the softmax layer;

• Concatenation of the features of fc256 and the logits (Figure 6).
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Figure 6 Structure of the ensemble network without (black) and with (red) machine learning
prediction on deeply learned features (outputs of the two last layers of the MLP are concatenated
and passed as input to a logistic regression). Features from global average pooling layer of four
ResNet18s are fed to a MLP made of three fully connected layers of size: 512 and 256 with ReLU
activation, and 61 with softmax for classi�cation.

4.4 Semi-automated framework with selective classi�cation

Selective classi�cation, also called “reject option” (Herbei and Wegkamp, 2006), is a technique
used to optimise classi�cation performance. By training a classi�er to decide whether or not a
prediction is reliable, this technique reduces the error rate at the cost of a decrease in the classi-
�cation rate, since the algorithm rejects certain samples which can later be manually labelled by
an expert. This has been empirically investigated previously, in the case of image classi�cation
of marine habitats (Beijbom et al., 2012, 2015). Thresholding is a simple and fast method for mit-
igating a lack of performances in the classi�cation task, in the event that the accuracy of human
annotations in the dataset is lacking. Within a more theoretical framework, the use of selective
classi�cation with neural networks has previously been studied to �nd the best possible rejec-
tion rule (Geifman and El-Yaniv, 2017). They called this risk-coverage approach “Selection with
Guaranteed Risk” (SGR). For a given desired risk (i.e misclassi�cation rate), the SGR maximises
classi�cation coverage while keeping the risk below the limit.

Implementation of selective classi�cation requires a good calibration of the network, i.e. the
network should output a probability score equivalent to the empirical accuracy; for an output
score of 0.8 for example, the network should predict the right class in 80 % of the cases. However,
a recent study showed that deep neural networks are not always well calibrated, and they tend to
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output over-con�dent prediction scores (Guo et al., 2017). Hyperparameters, such as depth, batch
normalization, and weight decay, have been shown to in�uence calibration. Scaling the logits
passed to the softmax function can also help calibrate the network.

4.5 Categories merging: from coarse-to-�ne biodiversity
assessment

In order to provide di�erent levels of analysis ranging from coarse to �ne, and to enhance
classi�cation performances, we analysed the classi�cation results at di�erent taxonomic levels by
grouping classes by gender or major category after classi�cation with the 61-class network. As
seen above, the relations between classes describe a complex and interconnected schema. Degrad-
ing the level of detail for the classi�cation task was therefore expected to increase classi�cation
accuracy, as the di�erent class levels were set according to a taxonomic hierarchy between original
classes that share common visual characteristics. Level 1 corresponds to the original classi�cation
task (61 classes), level 2 corresponds to a classi�cation at the gender level (56 classes; Figure 4),
and level 3 corresponds to the major category (15 classes). Furthermore, level 3 grouping describes
a reduced number of classes which allowed us to have insight into class-wise performances and
distribution.

5 Experimental settings

5.1 Training procedure

It has been previously established that on a similar case which involved patch-based coral
classi�cation, the ResNet152 architecture performed best (King et al., 2018). However, this archi-
tecture is very deep and considers tens of millions of parameters. Consequently, we experimented
on di�erent, shallower CNNs which were modelled on this architecture (ResNet18 and ResNet50).
Unlike many previous studies which used transfer learning (King et al., 2018; Mahmood et al.,
2016, 2017), we trained our CNNs from scratch. Di�erent ResNet18s were trained with batch nor-
malization and ReLU activation taking place before the convolution layer, as this has been proven
to improve generalization (He et al., 2016b). We trained these CNNs using Adam optimiser, with
a learning rate of 10−3 and other parameters set to their defaults, in accordance with the original
study (Kingma and Ba, 2014). Data was fed iteratively in batches of 512, for patches of dimensions
64 × 64, 96 × 96 and 128 × 128 pixels. Batches of 200 were used for patch size 224 × 224 due
to computational limitations. A ResNet50 was also trained under the same conditions, with patch
size 128× 128 and batch size 128, once again due to computational limitations. In order to better
compare the networks, a ResNet18 was also trained with same conditions as the ResNet50. The
ensemble network was built on four ResNet18s (Figure 6) which were independently trained on
the four patch sizes. The ensemble was then �ne-tuned: we used a batch size of 128, froze the
weights from the ResNet18s, and used the same optimiser and parameters as mentioned above.
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Data augmentation on all patches was performed for all trained networks, in order to compensate
for the high class imbalance and allow a better generalization. We applied random rotations be-
tween 0 and 180 degrees, brightness scaling between 0.4 and 1.6, and horizontal / vertical �ipping
to all patches on the �y as data was fed to the networks. Trainings lasted at least 100 epochs and
were stopped when validation accuracy did not improve for 25 epochs.

A ResNet152 was used as the baseline for classi�cation performance. This network was ini-
tially programmed using pre-trained weights lifted from the ImageNet challenge. The top fully-
connected layer was replaced with a layer using ReLU activation, followed by a dropout layer
and a softmax layer, with outputs corresponding to the number of classes (here 61). Firstly, the
top layer was trained alone; using features extracted from the convolutional layers, a Stochastic
Gradient Descent (SGD) with a learning rate of 10−3, and weight decay rate set to 5× 10−4. The
whole network was then trained with SGD; learning rate10−4 and weight decay 10−6. Patches
of 224× 224 were fed in batches of 16. Training was performed over 50 epochs until loss on the
validation set stopped decreasing.

The deeply learned features and the di�erent layer outputs of the training, validation, and
test sets were extracted in advance. LRs were trained and optimised using the grid search tool
implemented in scikit-learn1 on the validation set.

SGR was applied at risk levels ranging from 5 to 30 % and resultant thresholds. Coverages and
bounds for the coverage were assessed together with top-5 accuracy on the unclassi�ed part of
the dataset. SGR was trained on the validation set and applied to the training and test set with the
aforementioned risk levels to assess the corresponding coverages.

All architectures were implemented in Python 3.6 using the Keras2 library and Tensor�ow3

backend. All training and testing processes were performed on a Windows 10 workstation with
64 bits OS, 128 Gb RAM, 2×NVidia GeForce GTX 1080 Ti 11 Gb memory and 12 cores CPU 2.9
GHz.

5.2 Evaluation metrics

5.2.1 Classi�cation performances

The performances of the networks were assessed with the precision, recall and F1-score. At
training, validation and testing time; precision, recall and F1-score were calculated as follows:

F1-score = 2× Precision× Recall
Precision + Recall (1)

With:

1Scikit-learn v0.20.2
2Keras v 2.2.4
3Tensor�ow v 1.12.0
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Precision =
True Positive

True Positive + False Positive (2)

Recall = True Positive
True Positive + False Negative (3)

F1 ranges from 0 to 1, 1 being a perfect classi�er.

The three metrics were computed at both micro and macro levels. Micro-F1, precision, and re-
call computed the statistics across all classes, given their distribution on the whole dataset, while
macro statistics placed equal weight on all classes, meaning that class-wise di�erences in per-
formance more greatly impacted the scores. This rendered micro-recall equivalent to the overall
top-1 accuracy of the models (these two terms will be used interchangeably).

5.2.2 Calibration of the networks

After training, network calibration was evaluated on the validation set for the best ResNet18,
the baseline ResNet152, and the ensemble network with and without LR. Predictions were grouped
in M bins of same size for the computation of accuracy according to the following equation (Guo
et al., 2017):

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (4)

Where Bm is the set of indices of the instances composing bin m, ŷi the predicted class of
instance i and yi its true class. Average con�dence for Bm is then given by :

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (5)

With p̂i the outputted probability corresponding to the class ŷi. On top of the diagrams, Esti-
mated Calibration Error (ECE) was calculated for the models considered with the following equa-
tion.

ECE =
M∑

m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (6)

With n the total number of samples in the dataset.
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5.2.3 Coralligenous ecological status and biodiversity assessment

Coralligenous health is typically assessed using the Coralligenous Assemblage Index (CAI)
(Deter et al., 2012a). This is based on the prevalence of bryozoans, major builders and sludge in
an assemblage. The CAI is calculated as follows:

CAIi =
1

3
× (

1− sludgei
1−mini sludgei

+
majbuildersi

maximajbuildersi
+

bryozoansi
maxi bryozoansi

) (7)

With sludgei, majbuildersi and bryozoansi, the covering percentage of sludge, major builders (13
classes out of the 61) and bryozoans (8 classes out of the 61) respectively. Minimum and maximum
values of these percentages are calculated over all study sites. CAI is classically measured on 30
quadrats, 64 points per quadrat, for a total of 1,920 annotated points.

Biodiversity indices are numerous. This includes simpler indices, such as species richness
which refers to the number of observed species, and more integrated indices which take abun-
dance into account in order to attribute more or less weight to common or rare species (Magurran,
2004). One commonly used index is the Shannon index:

Sj = −
∑
i

pijlog(pij) (8)

With pij the prevalence of species i among site j.

Both indices were modelled by randomly selecting 10,000 sets of 1,920 instances from the test
set of 31,467 instances). For each set of 1,920, proportions of sludge / bryozoans / major builders,
CAI and Shannon index were calculated on the ground truth and the automatic labels. Pearson
correlations were used to analyse the �t between true and modelled indices.

6 Results

6.1 Human error

The assessment of human annotator reliability on the dataset presented in section 2.1 showed
variable performances across the expert panel (Table 1). All metrics were signi�cantly higher for
the hosts (who performed the ground truth annotation) than visitors, and micro-F1 was higher
than macro-F1 for both the hosts and visitors.

Table 1 Classi�cation accuracy of hosts (n = 4) and visitors (n = 20) on the Moorea dataset ((Bei-
jbom et al., 2015)). Values are given in mean percentage ± standard deviation.

Subject Macro-F1 Top-1 accuracy Micro-F1

hosts 74.86 ± 3.63 79.21 ± 2.35 80.32 ± 2.32
visitors 59.4 ± 4.15 64.98 ± 6.31 68.31 ± 4.64
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6.2 CNN performances

6.2.1 Simple CNNs and ensemble network

All validation performances consistently increased with the patch size up to 224 × 224, which
achieved 65.94 micro-F1 (Table 2). As for training curves, the gap between patch size performances
tended to decrease quickly. It is worth emphasizing that macro-F1 (with all classes weighted
equally) was consistently lower than micro-F1 (all classes weighted according to their proportion
in the dataset).

Table 2 Performances of the ResNet18 on the validation and test sets for di�erent input sizes
(patch size). In bold the best value for each metric.

Validation set Test set

Patch Size Batch
size Macro-F1 Top-1

accuracy Micro-F1 Macro-F1 Top-1
accuracy Micro-F1

64 × 64 512 40.29 54.43 55.07 46.50 60.64 60.17
96 × 96 512 51.21 63.97 63.73 51.75 63.82 63.57

128 × 128 512 54.28 65.99 65.85 54.08 65.77 65.54
224 × 224 200 54.93 66.70 66.44 53.93 66.30 65.94

The ResNet18 and ResNet50 trained with the same hyperparameters (Table 3, ResNet50—128
and ResNet18—128) performed roughly equally on validation and test sets, with ResNet18-128
achieving a micro-F1 of 63.44 and ResNet50 63.89 on the test set. However, an epoch for the
ResNet50 took about three times longer than ResNet18. The ResNet50 did not outperform the pre-
viously trained ResNet18 with patch size 128 and batch size 512 (Table 2). The deeper architecture
of the ResNet50 made it impossible to train with a batch size of 512.

Table 3 Performances of di�erent ResNet architectures on validation and test sets. ResNetX—Y
is written so that X indicates the network’s depth and Y the input size. In bold the best value for
each metric.

Validation set Test set

Network Batch
size Macro-F1 Top-1

accuracy Micro-F1 Macro-F1 Top-1
accuracy Micro-F1

ResNet152—224 16 37.45 62.38 60.46 38.26 61.71 60.09
ResNet50—128 128 52.04 64.07 63.85 52.27 64.35 63.89
ResNet18—128 128 51.40 63.90 63.88 51.62 63.60 63.44
ResNet18—224 200 54.93 66.70 66.44 53.93 66.30 65.94

Ensemble 128 60.56 70.60 70.35 60.38 70.54 70.37

The ensemble network performed better than any previous CNN on validation and test sets
(70.35 and 70.37 micro-F1, respectively), and outperformed both the best, single ResNet18 (65.94,
Table 2) and the baseline ResNet152 (60.09, Table 3). The latter performed worse than any other
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network considered here for all metrics, with macro-F1 (37.45 and 38.26 on validation and test
sets, respectively) lower than micro scores (micro-F1 of 60.46 and 60.09). With the sole exception
of CNN for patch size 64 × 64, validation and test performances were very similar for all trained
models, and macro metrics were consistently lower than micro metrics.

6.2.2 Ensemble network with logistic regression

LRs were trained using l2 penalty and multinomial loss, with the following parameters de�ned
with grid search on the validation set: C = 0.01 and saga solver4. Results were compared with each
other and with the ensemble alone (Table 4).

Table 4 Performances of logistic regression applied to di�erent layers of the ensemble network,
on validation and test sets. None: ensemble alone, logits: features of the last layer before softmax,
fc256: features from the penultimate layer; fc512: features from the �rst layer of the Multi-Layer
Perceptron (MLP); GAP: features from the concatenation of global average pooling before the MLP.
In bold the best value for each metric.

Validation set Testing set

Features Macro-F1 Top-1 accuracy Micro-F1 Macro-F1 Top-1 accuracy Micro-F1

None 60.56 70.60 70.35 60.38 70.54 70.37
logits 61.93 72.23 71.81 61.69 71.91 71.50
fc256 63.92 72.62 72.28 62,69 72.41 72.02
fc512 16.31 55.09 53.23 8.55 44.12 42.37
GAP 10.12 46.67 45.19 6.70 38.64 37.31

combined 63.74 72.69 72.32 63.91 72.59 72.20

The LR on the logits and features from the penultimate layer (fc256) resulted in an improve-
ment in both macro and micro metrics scores, compared with the ensemble network alone (see
“None”, Table 4). On the test set, micro-F1 increased from 70.37 to 71.50 using logits, and 72.02
using the penultimate layer, while macro-F1 increased from 60.38 to 61.69 and 62.69 respectively.
The use of both layers’ features (see “fc256 + logits”, Table 4) resulted in a marginal improvement
(63.91 for macro-F1 and 72.20 for micro-F1 on the test set). Using features from the �rst layer of the
MLP (fc512), or the concatenation of global average pooling outputs, resulted in consistent degra-
dation of all metrics on the validation set, and results were even worse for the test set. Using the
best model, out of the 61 classes, 11 showed an accuracy >80 % (“Aplysina cavernicola”, “Crevice”,
“Corallium rubrum”, “Crambe tailliezi”, “Eunicella cavolini”, “Hexadella racovitzai”, “Leptopsam-

mia pruvoti”, “Mesophyllum alternans”, “Parazoanthus axinellae”, “Paramuricea clavata”, “Erected
Peyssonnelia sp.” ) and 12 had an accuracy comprised between 70 % and 80 % (“Sand”, “Eunicella
singularis”, “Filamentous green algae”, “Filamentous red algae”, ”Flabellia petiolata”, “Haliclona
sp.”, “Halimeda tuna”, “Palmophyllum crassum”, “Encrusting Peyssonnelia sp.”, “Pentapora fascialis”,
“Phorbas tenacior”, “Pleraplysilla spinifera” ).

4Grid search : C = {10-4 ; 10-3 ; 10-2 ; 10-1 ;1 ;10 ;100} ; solver = {sag ; saga ; lbfgs}
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6.3 Post-processing

6.3.1 Semi-automated classi�cation

Reliability diagrams –which plot con�dence against accuracy – were plotted for the baseline
ResNet152, the best ResNet18, and the ensemble network with and without LR (Figure 7). The red
line shows a theoretical, perfect calibration (y = x).

Figure 7 Reliability diagrams of the di�erent networks. The red curve corresponds to a perfect
calibration (y = x). ECE = Estimated Calibration Error; ResNet152 = RestNet152 with patch size
224 × 224 and batch size 16; RestNet18 = RestNet18 with patch size 224× 224 and batch size 200;
Ensemble Network = ensemble of the four ResNet18 with the four patch sizes (64× 64, 96× 96,
128 × 128 and 224 × 224 pixels); Ensemble Network + LR = ensemble network with the logistic
regression on the results of both the penultimate fully connected layer (fc256) and the softmax
layer.

The ResNet152 showed the highest ECE with 6.21 %, while the best single ResNet18 (patch size
224 and batch size 200) achieved 4.01 %. The ensemble network had an ECE of 4.40 % without
LR. The best score was achieved by the ensemble network with LR applied to the logits and the
penultimate layer, which displayed an ECE of 3.60 %.

The results, recorded after the SGR algorithm was applied for selective classi�cation on the
best ensemble network with LR, are summarised in Table 5. A top-1 accuracy of 85.65 % (risk =
14.35 %) was achieved when covering 67.48 % of the test set, and 91.30 % accuracy (risk = 8.70 %)
could be obtained when classifying more than 50 % of the data. Top-5 accuracy on the uncovered
part of the data was consistently between 80 and 95 %.
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Table 5 Application of the Selection with Guaranteed Risk algorithm on the validation set for
training and results on the test set. Top-5 uncovered = top-5 accuracy for the rejected part of the
test set. All numbers are expressed in %.

Desired risk Train-risk Train-coverage Test-risk Test-coverage Top-5 uncovered

5.00 4.25 33.98 4.20 33.72 94.16
10.00 9.15 52.12 8.70 51.90 92.71
15.00 14.11 67.59 14.35 67.48 91.06
20.00 19.09 80.47 19.26 80.62 88.16
25.00 24.08 92.97 24.24 93.17 81.75
30.00 27.30 100.00 27.40 100.00 -

6.3.2 Categories merging

Post-classi�cation merging of the predicted classes, according to the taxonomic hierarchy, re-
sulted in the consistent augmentation of performances (Table 6). Gender grouping (level 2) led
to a moderate increase of top-1 accuracy (75.91 % vs 72.59 % on the test set) and a small decrease
in the total number of classes, from 61 to 56. Merging classes according to their major category
(level 3) resulted in a gain of 11.88 points on the test set. The task was then reduced to discriminate
between 15 classes, and results were then on par with the human accuracy tested on a 20 class task
as recorded in Table 1 (72.88 macro-F1 and 84.29 micro-F1 on the test set versus 74.86 macro-F1
and 80.32 micro-F1 for host annotators on the human evaluation dataset).

Table 6 Results for coarse-to-�ne categories merging according to taxonomic hierarchy. Level 1
= original classes (61); level 2 = gender level (56); level 3 = major category level (15).

Validation set Test set

Model Number
of classes Macro-F1 Top-1

accuracy Micro-F1 Macro-F1 Top-1
accuracy Micro-F1

Level 1 61 63.74 72.69 72.32 63.91 72.59 72.20
Level 2 56 64.86 75.98 75.53 64.76 75.91 75.63
Level 3 15 71.75 84.40 84.21 72.88 84.47 84.29

Level 3 merging o�ers an easy insight into the class-wise performance of the classi�cation
process (Figure 8). Out of the 15 classes, three tended to be misclassi�ed; “encrusting bryozoan”
tended to be misclassi�ed as “encrusting red macroalgae” (17 %) and “sponge” (17 %); “Hydroid”
was often mistaken for “brown macroalgae” (19 %) or “sludge, pavement, rubble, sand” (15 %); and
“sedentary worms” were most often misclassi�ed as “encrusting red macroalgae” (16 %) or “sludge,
pavement, rubble, sand” (15 %). Overall, four classes were responsible for most of the confusion:
“brown macroalgae”, “encrusting red macroalgae”, “sponge”, and “sludge, pavement, rubble, sand”.
On the other hand, seven classes tended to be well classi�ed (> 80 % accuracy): “encrusting red
macroalgae” (92 %), “gorgonian” (91 %), “green macroalgae” (85 %), “scleractinia” (87 %), “sponge”
(84 %), “zoantharia” (89 %) and “sludge, pavement, rubble, sand” (83 %).
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Figure 8 Confusion matrix of the output from the ensemble network with logistic regression on
the test set. The 61 original classes were merged to their major category (15 classes). Numbers
represent ground truth repartition in predicted classes (%).
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6.4 Ecological indicators prediction

Predicted sludge and bryozoans were correlated moderately well with the ground truth (Fig-
ure 9; pearson correlation: 0.54 and 0.61, respectively), but predicted and observed major builders
showed higher correlation (pearson correlation: 0.82).

Figure 9 Predicted vs observed percentages of sludge, bryozoans and major builders. Pearson
correlations: Sludge = 0.54, Bryozoans = 0.61, Major builders = 0.82.

Predicted CAI was moderately correlated with the ground truth (Figure 10; pearson correlation:
0.61), but predicted and observed Shannon indices showed higher correlation (pearson correlation:
0.74).

Figure 10 Predicted vs observed Coralligenous Assemblage Index and Shannon Index. Pearson
correlations: CAI = 0.61, Shannon Index = 0.74.
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7 Discussion

7.1 Patch size in�uence

Although our dataset was large enough to train a CNN from scratch, it was limited to punctual
annotations (at the pixel level) of photo quadrats, therefore it required patch-wise classi�cation.
The patch size was crucial (Table 2), as it re�ects a trade-o� between local and contextual infor-
mation. If the patch size is too small, it contains insu�cient information and most probably fails
to capture whole individuals; if it is too large, the context scrambles the signature of the central
information, confusing the algorithm. The patch size 64 × 64 pixels performed the worst out of
all the metrics; the large di�erences between validation and test performances was indicative of
its poor capacity for generalization. A patch size of 224 × 224 gave the highest micro-F1 on the
test set (65.94). This patch size included enough contextual noise to regularize over�tting, and
it enabled better generalization. While the single RestNet18 based on the patch size 224 × 224

obtained the best accuracy, our ensemble network, which was based on the four tested patch sizes
and followed the feature extraction scheme of the local-SPP (Mahmood et al., 2016), improved clas-
si�cation performances by 4.43 points (Table 3). The biggest di�erence between our network and
the original version of the local-SPP lies in the fact that we concatenated the four 512-dimension
feature vectors, instead of the max-pooling layer, which enabled the information contributed by
each patch size to be processed by the consecutive MLP without loss.

7.2 Tuning the architecture

The training procedure of ResNet18, notably the batch size parameter, had a great impact on
classi�cation performance. This was indicated by the di�erence in micro-F1 values produced by
a ResNet18 trained with batch size 128 (63.44; Table 3) and a ResNet18 train with batch size 512
(65.54; Table 2). These results provide a di�erent perspective than the conclusions drawn by pre-
vious studies (Masters and Luschi, 2018; Mishkin et al., 2016) where the use of small or even mini-
batches enhanced performances. This could be explained by the high imbalance between classes
and the �ne-grained nature of the classi�cation task. Larger batches may therefore be more repre-
sentative of the intra-class variability which in turn allows the network to focus on inter-class vari-
ance. It will be asserted that our best ResNet18 (ResNet18—224; 65.94 micro-F1, Table 3) easily out-
performed deeper network architectures, whether trained from scratch with a smaller batch size
(ResNet50—128; micro-F1 63.89), or pre-trained with �ne-tuned weights (ResNet152—224; 60.09
micro-F1) according to standard procedures (King et al., 2018). Our results support the �ndings of
a recent study which advocated the use of carefully tailored training strategies and architecture
enhancements for vastly improving performances, even with transfer learning (He et al., 2019).
It remains to be said that further modifying the layers could further improve performances, for
example altering the order of convolutions in residual blocks (He et al., 2019) or widening the
network (Zagoruyko and Komodakis, 2016).
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Training a LR on the penultimate and �nal layers of the ensemble network improved classi�-
cation performances (72.20 vs 70.37 micro-F1, Table 4). LRs derived from the results of the con-
catenation of the GAP or the �rst fully connected layer (fc512) greatly decreased performances
on the validation set and led to a further decrease in performance on the test set, indicating that
the LR massively over�tted the training set. It is widely known that using a CNN in combination
with other machine learning algorithms can improve classi�cation accuracy (Donahue et al., 2014;
Gao et al., 2017; Huang et al., 2017; Li and Yu, 2016), but additionally applying them to the logits
of a neural network is further bene�cial to the use of a selective classi�cation framework, LR is
a linear classi�er that uses negative log-likelihood (NLL) as a loss function for a multiclass prob-
lem. When feeding the logits taken from the last layer of the ensemble network into a softmax, it
performs linear scaling to optimise the NLL in a similar way that temperature scaling can be used
for network calibration (Guo et al., 2017). This explains why applying LR to the last two layers
of the ensemble network improved calibration (ECE = 3.60 %) while simultaneously improving
performance. The fact that ResNet152 was the worst calibrated (ECE = 6.21 %) is coherent with
previous studies’ �ndings, which noted that the depth and width of the network negatively impact
calibration (Guo et al., 2017). This also applies to the ensemble network (ECE = 4.40 %), which was
slightly deeper and considerably wider than a single ResNet18—224 (ECE = 4.01 %).

7.3 Post-processing

Selective classi�cation requires well-calibrated networks because the reliability of the output
is assessed in order to decide whether or not to reject the prediction. The SGR algorithm provides
accurate thresholds which allow the user to �lter predictions which �t with the required level of
error (Geifman and El-Yaniv, 2017). Top-5 accuracy was consistently above 80 % on the rejected
part on the test set, regardless of desired risk speci�ed for input into the SGR algorithm. Said top-5
accuracy could then be used to create a tool to enable an expert to quickly annotate the rejected
data. By establishing a trade-o� between accuracy and time-e�ectiveness, this simple method
could be useful for mitigating the limited accuracy of human annotation (which in turn a�ects
performance in the classi�cation task), and is appropriate considering the �ne-grained nature of
the classi�cation task.

Further customising the network, we merged the output classes by gender and major cate-
gories. While merging gender classes (61 to 56 classes) improved performance by one to three
points (level 2, Table 6), major category merging (61 to 15 classes) improved performance by eight
to twelve points, depending on the metrics considered (level 3, Table 6). These results indicated
that the error observed in level 1 classi�cation makes biological sense, as class confusions are for
the most part taxonomically coherent. Major category merging enabled us to easily detect the
repartition of the error (Figure 8), wherein three categories were ill-predicted (“Encrusting bry-
ozoan”, “Hydroid” and “Sedentary worms”), and a further four categories induced a great deal of
confusion (“Brown macroalgae”, “Encrusting red macroalgae”, “Sponge”, and “Sludge, pavement,
rubble, sand”). This can be explained by the imbalance of the classes in the dataset: the network
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misses examples for poorly represented classes and tends to misclassify those as one of the four
predominant classes that are visible in most of the patches, such as “Encrusting red macroalgae”..
This also explains why macro metrics, which place equal weight on each class, performed consis-
tently worse than micro metrics. This disparity of performance could certainly be ameliorated by
an addition of instances, since the availability of data regarding class has been shown to directly
in�uence performance (Zhou et al., 2014). The confusion experienced by the network may be ex-
plained by the nature of the habitat to a certain extent. For example, it makes sense that the major
category “sludge, pavement, rubble, sand” generated a great deal of noise, since lots of individuals
in the benthos were partially covered by sediment particles.

Finally, it should be noted that, by merging the outputs to 15 major categories, the accuracy
scores achieved when considering the relative abundance of classes in the dataset (i.e. micro met-
rics) outperformed the human accuracy observed on a similar problem conducted on 20 coral reef
classes at the gender level (Beijbom et al., 2015). If no conclusion can be directly drawn from this
observation, it nevertheless represents a signi�cant achievement given the high level of similarity
between coral and coralligenous habitats, and the fact that some major categories de�ned here
were included in the task presented by Beijbom et al. The annotator accuracy also gives a general
indication of the noisiness of the annotated dataset used for training and testing. In this study,
the annotations were performed only once by a single annotator, which means that our dataset
includes errors learned by our networks. This explains part of the irreducible error made by our
networks, as previous studies have shown how this impedes network e�ciency (Mishkin et al.,
2016). However, results per class showed that scarcity of data, and confusion between similar
species were the greatest source of error.

7.4 On the use of CNNs in a large scale monotoring of
coralligenous reefs

Monitoring coralligenous reefs involves long, physically demanding dives at great depths be-
low sea level (often 40—80 m deep), and many hours spent on the task of manually identifying
species in photo quadrats (Deter et al., 2012b). The use of well-trained CNNs (particularly those
which operate within a selective classi�cation framework) can greatly aid this process; it makes
the automatic annotation of vast quantities of data possible, while ensuring a guaranteed accuracy.
At the level of detail “major category” (level 3, Table 6), which can su�ce for a quick evaluation
of the diversity, our CNN performance even exceeded the human accuracy measured on a simi-
lar dataset when considering the relative abundance of classes in the dataset (i.e. micro metrics;
Table 1). In order to further re�ne the classi�cation and obtain a more detailed assessment that
includes rare or invasive species, this problem could be addressed by the use of few-shot or even
zero-shot learning (Liu et al., 2018).

The predicted percentages of major builders was fairly accurate, with a high correlation be-
tween observed and predicted values (pearson correlation: 0.82; Figure 9). The predictions of
sludge and bryozoans on the other hand were altogether less accurate, with a weaker correla-
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tion between observations and predictions (pearson correlation: 0.54 and 0.61, respectively). The
various substrates were divided into four di�erent categories: “sludge”, “pavement”, “rubble”, and
“sand”. Given the similarity of the substrates, they are subject to the arbitrary interpretation of the
expert and are therefore fairly likely to contain annotator errors. Consequently, 11 % of “sludge”
instances were classi�ed as “sand”, and a further 2 % was classi�ed as “rubble”. What is more,
“sludge” instances often corresponded to very small patches of sludge atop more easily recogniz-
able classes, which confused the algorithm on a number of occasions. For example, 7 % of sludge
instances were confused with Mesophyllum alternans, and a further 5 % with encrusting Peysson-

nelia sp. – these are two di�erent encrusting, red macroalgae. While the classi�cation of “encrust-
ing red macroalgae” at level 3 clustering was highly accurate (92 % , Figure 8), it should be noted
that “encrusting bryozoan” and “erected bryozoan” were sometimes confused with “encrusting red
macroalgae”, “sponge” and substrate. All of these factors a�ected CAI predictions (pearson corre-
lation: 0.61; Figure 10) which are based on proportions of major builders, bryozoans and sludge.
However, assessment of biodiversity was more accurate; the correlation between predicted and
observed Shannon index values was 0.74. These results suggest that our method can be used to
quickly assess the diversity of multiple sites within a large-scale monitoring network.

8 Conclusions

Considering the high complexity and heterogeneity of coralligenous reefs, the results we achieved
on this 61-class task attained so high a level of re�nement of prediction as to constitute a real ad-
vance in automated benthic species recognition. The use of multi-scale analysis for processing
various levels of local information proved very e�ective for addressing the task at hand, and the
use of a logistic regression on deeply learned features successfully enhanced our results, produc-
ing well-calibrated predictions. In sum, this project culminated in the development of a semi-
automated, species recognition tool for analysing photo quadrats of coralligenous reefs which can
be adjusted to match the required levels of accuracy and detail, at the cost of a decrease in the
classi�cation rate. To conclude, this study represents a milestone for the development of an ef-
fective, automated assessment protocol for measuring the ecological status of coralligenous reefs.
However, deep learning knows very fast improvements, and our methodology could bene�t from
the latest �ndings in order to improve some of the components of our pipeline. Future work made
in this �eld would also bene�t from a combination of deep learning approaches and photogram-
metry, as combining biodiversity assessment and 3D structural indicators enables the exploration
of the links between structural complexity and ecosystem functioning indices.
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