
HAL Id: hal-02924667
https://hal.science/hal-02924667

Submitted on 28 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement Learning for Interactive QoS-Aware
Services Composition

Pegah Alizadeh, Aomar Osmani, Mohamed Essaid Khanouche, Abdelghani
Chibani, Yacine Y. Amirat

To cite this version:
Pegah Alizadeh, Aomar Osmani, Mohamed Essaid Khanouche, Abdelghani Chibani, Yacine Y. Amirat.
Reinforcement Learning for Interactive QoS-Aware Services Composition. IEEE Systems Journal,
2020, �10.1109/JSYST.2020.2997069�. �hal-02924667�

https://hal.science/hal-02924667
https://hal.archives-ouvertes.fr

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Reinforcement Learning for Interactive QoS-Aware
Services Composition

Pegah Alizadeh , Aomar Osmani, Mohamed Essaid Khanouche , Abdelghani Chibani, and Yacine Amirat

Abstract—An important and challenging research problem in
web of things is how to select an appropriate composition of con-
crete services in a dynamic and unpredictable environment. The
main goal of this article is to select from all possible compositions the
optimal one without knowing a priori the users’ quality of service
(QoS) preferences. From a theoretical point of view, we give bounds
on the problem search space. As the QoS user’s preferences are
unknown, we propose a vector-valued MDP approach for finding
the optimal QoS-aware services composition. The algorithm alter-
natively solves MDP with dynamic programming and learns the
preferences via direct queries to the user. An important feature
of the proposed algorithm is that it is able to get the optimal
composition and, at the same time, limits the number of interactions
with the user. Experiments on a real-world large size dataset with
more than 3500 web services show that our algorithm finds the
optimal composite services with around 50 interactions with the
user.

Index Terms—Quality of services (QoS), reinforcement learning
(RL), services composition, web of things (WoT).

I. INTRODUCTION

THE web of things (WoT) opens the way for the develop-
ment of new intelligent applications that can be used to

provide innovative and valuable services in several domains,
such as smart cities, smart homes, ambient assisted living, and
connected cars [11], [35]. One of the WoT challenges is to deal
with services composition to ensure suitable services flexibility
and customization. This is crucial to meet the evolving needs
of users, which can be expressed through several parameters
of quality of service (QoS) (such as response time, throughput,
availability, price, popularity, etc.).

Following the web service paradigm [4] services, composition
problems are specified as a workflow involving abstract and con-
crete services. A concrete service refers to an executable service,
where an abstract service describes the abstract functionality of

Manuscript received October 25, 2019; revised April 15, 2020; accepted May
17, 2020. (Corresponding author: Pegah Alizadeh.)

Pegah Alizadeh is with the Léonard de Vinci Pôle Universitaire, Research
Center, 92 916 Paris La Défense, France (e-mail: pegah.alizadeh@devinci.fr).

Aomar Osmani is with the LIPN, UMR CNRS 7030, Université Sorbonne
Paris Nord, 93430 Villetaneuse, France (e-mail: ao@lipn.univ-paris13.fr).

Mohamed Essaid Khanouche is with the Medical Computing Laboratory,
Faculty of Exact Sciences, University of Bejaia, Bejaia 06000, Algeria, and also
with the University of Paris Est Creteil, LISSI, F-94400 Vitry, France (e-mail:
mekhanouche@gmail.com).

Abdelghani Chibani and Yacine Amirat are with the University of Paris
Est Creteil, LISSI, F-94400 Vitry, France (e-mail: chibani@u-pec.fr; amirat@
u-pec.fr).

Digital Object Identifier 10.1109/JSYST.2020.2997069

the concrete service. In environments such as the WoT, concrete
services are web interfaces to objects functionalities, which are
exposed by using functional and nonfunctional metadata. At
a given run time and for a given user, each abstract service
can be achieved using several concrete services with the same
functionality but possibly with different nonfunctional parame-
ters, such as the QoS. A composite service (workflow) specifies
what are the concrete services that should be selected for each
abstract service and what is the best services permutation to
satisfy the user’s requirements in terms of the QoS. An important
and challenging research problem is, therefore, how to select an
appropriate composition of concrete services in a dynamic and
unpredictable environment [32].

Composing services to achieve more complex workflows can
be formulated as a mathematical composition, which is always
associative and commutative [15]. To limit the combinatorial
explosion of the composition, specific domain constraints must
be taken into account: same time execution for several concrete
services is allowed, abstract services are used to instantiate
unlimited number of concrete services and each concrete service
appears at most once in the composition. Therefore, the services
composition problem can be viewed as the selection of concrete
services offering the overall best QoS.

Although state-of-the-art approaches find the services compo-
sition workflow by knowing the users’ priorities in advance [20],
[26], [36], these approaches are limited and static; therefore,
they can not handle the following cases: 1) the presence of
the user uncertainties before the service executions, 2) unpre-
dictable services manners such as service failures. We propose
a reinforcement learning (RL)-based approach to dynamically
obtain the optimal service composition, according to the user’s
expectations on the QoSs. Markov Decision Processes (MDP)
with unknown rewards enable us to tackle this challenge by
optimizing rewards according to the answered queries for any
user [1], [2]. Based on our approach and according to the
given theoretical results, our algorithm minimizes the num-
ber of queries needed to select the best service composition.
The proposed algorithm is validated with a large number of
experiments on the most representative real-world dataset for
our problem [50]. The experiments show that the proposed
approach is able to provide the best composite service inte-
grating dynamically user QoS preferences during the algorithm
computation process. We also show some theoretical lower and
upper bounds on the size of the search space of the composition
problem.

The main contributions of this article are as follows.

1937-9234 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7231-5840
https://orcid.org/0000-0002-1160-9343
https://orcid.org/0000-0002-3238-0517
mailto:pegah.alizadeh@devinci.fr
mailto:ao@lipn.univ-paris13.fr
mailto:mekhanouche@gmail.com
mailto:chibani@u-pec.fr
mailto:amirat@u-pec.fr

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE SYSTEMS JOURNAL

1) We propose the first approach in the literature able to
provide a web services composition that explicitly takes
into account the users’ expectations and preferences on
the QoS.

2) Within the given framework, we show a theoretical lower
bound for the number of possible services compositions
by respecting the mentioned constraints.

3) Our method is able to select an optimal services composi-
tion among all the possible permutations without knowing
a priori the users’ preferences.

4) We validate the algorithm on a real world dataset of web
services.

The article is organized as follows: The next section sum-
marizes the related work on QoS-aware services composition.
Section III provides the problem formulation, together with the
theoretical results on the search space. Section IV formalizes
the services composition problem as an MDP. Section V details
the proposed interactive RL algorithm to deal with the services
composition problem and Section VI summarizes the experi-
mental results. Finally, Section VII gives the conclusion and
some perspectives.

II. RELATED WORKS

Usually, acquiring user preferences is not easy in practice, this
is due to the fact that the users are not always certain about their
preferences until the service execution. Moreover, collecting
user preferences can be complex in terms of time and memory
[33]. For these reasons, most of the services composition studies
in the literature are based on the assumption of knowing the user
preferences on the QoS attributes in advance.

For what concerns services composition problems where the
user preferences are known in advance, several works are pro-
posed in the literature [6], [14], [24], [36]. Such works can be
classified accordingly to the techniques used: graph search [12],
[31], Pareto optimality [44], [46], constraints decomposition [3],
meta-heuristic population [7], [17], [39], [42], [49], planning
[8], [51], integer linear programming [47], [48], recommender
system [9], [22], [25], and machine learning [13], [26], [29],
[30], [40]. In the following, we will describe with more details
some of the mentioned papers.

A services selection algorithm combining qualitative and
quantitative QoS attributes is proposed in [39]. The qualitative
attributes considered in this approach are provider, location, and
platform, whereas the quantitative attributes are response time,
throughput, reliability, and availability. The services selection
problem is solved using a global optimization algorithm and a
genetic algorithm.

RL techniques have been often used to deal with dynamic
and uncertain environments in services composition problems.
In [30] and[40], the services composition problem in a dy-
namic environment is modeled as an MDP and solved using a
Q-learning method. In these approaches, the QoS attribute values
are extracted through executing the services, while the optimal
workflow of elementary service invocation actions is updated
according to the change occurred in the environment. In [40],
Wang et al. used a normalized reward function combining the

QoS attributes and the known user preferences on the attributes,
while the approached proposed in [30] aims at maximizing
the expected cumulative rewards, which is on behalf of the
satisfaction degree of the user’s QoS constraints. In [26], two
multiobjective MDP methods are proposed to handle services
composition in uncertain and dynamic environments. The first
approach addresses the single-policy multiobjective compo-
sition scenarios, whereas the second approach addresses the
multiple-policies composition scenarios. In the first approach,
the user’s preferences are given a priori, whereas in the second
one, the set of all suitable services compositions is represented
as a convex hull of extreme services. Recently, several works
have been proposed to use RL methods on large-scale services
composition. For instance, Wang et al. [37] used hierarchical RL,
Liu et al. [21], [38] utilized recurrent neural networks and deep
RL approaches, and Yang and Xie[45] proposed an actor-critic
method as a deep RL approach.

Many services composition approaches are based on machine
learning technique different from RL. For instance, Hossain
et al. [18], [23] proposed services selection approaches in the
context of QoS-aware services composition. In [23], the services
selection with global QoS constraints is first formulated as a
set-based optimization problem, whereas the k-Means clustering
method is then used to find the composite service by maximizing
the QoS value and satisfying the global QoS constraints. On the
other hand, Hossain et al. [18] presented an algorithm, which
first uses the k-means clustering to obtain clusters of candidates
services, then, for each cluster it obtains the composite service
in terms of QoS using a heuristic method.

To the best of our knowledge, very few approaches have
been proposed for solving the services composition problem
in interaction with the users dynamically and without knowing
the user’s preferences a priori. The closest existing approaches
are [9], [10], [20], [26], and [36]. In [9], Chen et al. proposed
to extract the user preferences on the QoS attributes in advance,
with a location-aware web service recommendation system. This
system first collects users’ QoS observations related to the past
usage experience of different Web services. The users are then
clustered, according to their locations and their observed QoS,
in order to propose personalized service recommendations to
each user. In [20], the services composition problem in highly
dynamic environments is modeled as an uncertainly planning
problem using a partially observable MDP. A time-based RL
approach is then proposed to find the composite service satis-
fying the user’s requirements. The proposed approach does not
require knowledge of complete information about services. It
uses historical information to estimate the success probability
of a services’ composition using results. Finally, Tsai et al. [36]
suggested a user-centric service composition to identify the sub-
set of correlated services that best match the users’ requirements
from a designed ontology.

Chen et al. [10], [26] introduced a method for finding the
list of all nondominated workflows, regardless of the user pref-
erences on the QoS attributes. Our approach goes beyond the
identification of the nondominated workflows: it proposes an
approach for identifying one optimal workflow (among the set
of non-dominated workflows) for each system user.

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALIZADEH et al.: REINFORCEMENT LEARNING FOR INTERACTIVE QOS-AWARE SERVICES COMPOSITION 3

TABLE I
ENTRY FROM THE REAL DATASET [49], [50] USED IN OUR EXPERIMENTS

Fig. 1. Abstract services precedence graph of Example 2.

III. PROBLEM FORMULATION

For the sake of simplicity, the problem of identifying a ser-
vices composition able to satisfy the end-to-end user require-
ments can be defined as follows. Given a set ofn abstract services
S = {S1, . . . , Sn} where each abstract service Si can be imple-
mented by ni concrete services {Si1, . . . , Sini

}. Each concrete
service Sij may be executed by a set of actors {a1, . . . , ak}. An
actor can be an end-user or any other entity for which the service
is rendered. We denote the concrete service Sij executed by the
actor ak, by Sk

ij . Furthermore, in several situations, the same
service instance can be executed more than once over time by
the same actor. In this work, we assume that the time horizon can
be divided in time steps. The concrete service Sij executed by
the actor ak at time t is denoted bySk

ij(t) and is called execution.
Example 1 shows a sample of a real case database for the services
composition problem.

Example 1: Table I is an extracted line from the real
dataset [49], [50] used in our experiments. According to
the aforementioned notations, this line should be denoted as
S97
19994,3104(5). It represents for the abstract service 19 994, the

response time and throughput values of the concrete service 3104
executed by user 97 at time step 5.

Each service performs functions that serve the actors. To
evaluate the quality of a service at the application level, a set
of criteria is used, such as response time, throughput, reliability,
availability, price, etc. [43], [48].

In service-oriented architectures, the orchestration process
composes the existing services in order to create a new service
having central control over the whole process [19]. In our
context, the main part of the orchestration process is the ab-
stract service composition. This composition process is guided
by one main constraint: an abstract service can have a set of
prerequisite abstract services that must be executed in order to
make its execution possible. All such precedence constraints can
be represented with a suitable oriented graph (see Fig. 1). A path
in the precedence graph represents a possible orchestration of
abstract services.

We denote as orchestration of abstract services a sequence
of subsets of the set of possible abstract services S, one for
each time step (one abstract service can be included in at most
one timestep). Moreover, we will consider only feasible abstract
service orchestrations, i.e., orchestrations where an abstract
service is included in a set at time steps tonly if all its prerequisite

Fig. 2. Concrete workflow (S11, S21, S32, S41) is a possible organization to
realize the orchestration given in Fig. 1.

abstract services are included in the set of precedent time steps
(see Example 2).

Example 2: Let S1, S2, S3, and S4 be four abstract services.
ServicesS2 andS3 need outputs of the serviceS1 and the service
S4 can be executed only after S2. The abstract services prece-
dence graph is given in Fig. 1. The possible orchestrations with
respect to this graph are: (S1, {S2, S3}, S4), (S1, S2, S3, S4),
(S1, S2, S4, S3), etc.

Each abstract service may be realized by several concrete
services. When an abstract service orchestration is defined, we
need to choose an appropriate concrete service that performs
each corresponding service. In the context of the WoT, services
composition can be seen as an invocation workflow or plan of
the services, which are exposed by the objects through the web.
In this article, the possible concrete services organization for a
given abstract service orchestration is represented by a concrete
workflow. The concrete workflow must be coherent with the
associated abstract service orchestration. Fig. 2 gives an example
of a concrete workflow for the orchestration given in Fig. 1.

We define as workflow a concrete service concatenation of a
given feasible abstract service orchestrations, i.e., a collection
of subsets of concrete services obtained from a feasible abstract
service orchestration after substituting each abstract service by
one of its associated concrete services.

Let M be the number of all possible feasible abstract service
orchestrations and ψk (for k ∈ {1, . . . ,M}) be the kth possi-
ble orchestration. We are interested in defining an evaluation
function F (ψk) that associates a numerical value to all possible
concrete service concatenations of ψk.

Let Q = {q1, . . . , qm} be the set of all possible QoS criteria.
The criteria can be applied both at the abstract and concrete
levels. Without loss of generality, we limit the criteria to the
concrete service level. In this case, ql(Sij) denotes the quality
value of the ql criteria for the Sij concrete service. We suppose
that the values of all criteria are normalized.

To obtain F (ψk), it is necessary to select the best concrete
service concatenation, according to the set of criteria in Q,
among the concrete services in the givenψk orchestration. In our
context, the F function is assumed to be a linear combination of
these criteria (see Example 3).

Without loss of generality, the service selection problem can
be defined as follows:

Find the orchestration ψk with the best value of F (ψk).

Example 3: Let us consider a problem with three abstract
services {S1, S2, S3}. Assume that this problem has a single

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

possible orchestrationψ1 = (S1, S2, S3) such thatψ1 represents
a serial orchestration (we execute first concrete services of S1,
then S2 and end with S3). Let us consider a problem with
two evaluation criteria Q = {q1, q2}, for instance, throughput
and service time response. To each abstract service Si, we
associate a value for qi1 and a value for qi2. The value of
the orchestration is defined as a linear combination between
these criteria:

∑3
i=1(w1qi1 + w2qi2) where the coefficients

wi (one for each abstract service Si) are given by the actor
(user).

From an operational point of view, the evaluation of the
concrete services quality is estimated over their executions
through the time. In the above example, the users’ preferences
are presented as weight values. In practice, the weights are not
given a priori. In Section V, we propose an RL method based on
MDPs for learning QoS attributes weights representing users’
predefined preferences.

A. On the Global Search Space Size

The purpose of this section is to enumerate the number of
end-to-end concrete service combinations (workflows) in order
to evaluate the QoS of each combination and then to select the
best one according to a given set of user/actor preferences. To the
best of our knowledge, there is no existing work in the literature
dealing with this enumeration problem. In the rest of the section,
we give the size of the search space for some special cases
and for the generic case, where no constraints are imposed on
the structure of the orchestration. Those sizes can be viewed,
respectively, as lower and upper bounds on the search space for
any service combination problem.

Let us consider the generic case of a services composition
problem with n abstract services S1, . . . , Sn, such that each ab-
stract service Si can be realized by exactly m possible concrete
services. In the following sections, we analyze how the size of
the search space changes according to the different constraints
on the service order and concurrency.

1) Total Order (sequential) Abstract Services: No explicit
constraint on the order of execution of the services is imposed
but at each time step, it is possible to execute only one abstract
service. Since each Si can be realized by m possible concrete
services, for a given fixed ordering of abstract services, the
possible number of realizations for each order is mn. If there is
no additional constraint between abstract services, the number
of abstracts services permutations is n!. In this case, the total
number of workflows is n!mn.

2) Parallel Abstract Services: All abstract services are ex-
ecuted at the same time. In this case, there exists only one
possible combination between abstract services. The only degree
of freedom is to choose which concrete service to associate to
each abstract service. For this reason, there exists mn possible
realizations.

3) General Case: For each time step, it is possible to execute
simultaneously any number (up to n) of abstract services. We
recall thatS(n, k), the Stirling number of the second kind, counts
the number of ways for partitioning an n-element set into k

subsets1 [16]. On the contrary, k subsets can be ordered in
k! different ways. This leads to a total of S(n, k)k! different
orchestrations of time length exactly k. This means that all
abstract services in each set should be executed at the same
time. Therefore, the total number of orchestrations is

n∑

k=1

S(n, k)k! =

n∑

k=1

k∑

l=0

(−1)l
(
k

l

)

(k − l)n. (1)

For any given orchestration with n abstract services and m
concrete services, we have mn total number of workflows.
Notice that each abstract service is associated to one and only
one executed concrete service at each time step. Consequently,
to obtain the total number of workflows, we need to multiply the
quantities given by (1) with the total number of workflows for
each orchestration

mn
n∑

k=1

S(n, k)k!. (2)

We finally notice that the situation is slightly different if we
impose to associate the same concrete abstract to all the abstract
services at the same time step. If this is the case, we have a total
number of workflows equal to

n∑

k=1

S(n, k)k!mk. (3)

The results showed in this section give an idea of the combi-
natorial explosion one could expect if no precedence is imposed
on the orchestrations. For this reason, we restrict this article to
sequential orchestrations.

IV. SERVICES COMPOSITION AS AN MDP

MDPs are often used to model sequential decision
problems [27].

In this section, we describe how to solve the services compo-
sition problem via MDP models. We are looking for an optimal
QoS-selection strategy satisfying the user’s requirements in
terms of QoS attributes. Since the user’s preferences with respect
to QoS attributes are unknown, we use a partially known MDP
model, and more particularly, a vector-valued MDP (VMDP)
model [2].

A. Vector-Valued Markov Decision Process

The following definitions are necessary to define our VMDP
model.

Definition 1: A discrete-time MDP [1] is defined by a tuple
(T, S,A, Pt(.|s, a), rt) where

1) T = 0, . . . , N are the decision time steps at which the
decisions are made;2

2) S is a finite set of states;
3) A(s) is a finite set of actions that the agent can select in a

state s ∈ S;

1Several equivalent formulas are available to compute the Stirling number of

the second kind, in this case we use S(n, k) = 1
k!

∑k

l=0
(−1)l

(
k
l

)
(k − l)n.

2Time steps can be days, hours, minutes or any time interval;

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALIZADEH et al.: REINFORCEMENT LEARNING FOR INTERACTIVE QOS-AWARE SERVICES COMPOSITION 5

4) Pt(s
′|s, a) is the state transition probability distribution, it

encodes the probability at time t of going to state s′ when
the agent is in state s and executes action a;

5) rt : S ×A −→ R is the Reward Function, rt(s, a) quan-
tifies the value gained when executing action a in state s
at time step t.

Definition 2: A decision rule Dt is a function depending
on time step t that defines what action Dt(s) ∈ A(s) at time
t the agent should select. By assuming N number of time steps,
we define policy π = (D1, . . . , DN−1) as a sequence of N − 1
decision rules.

A policy is stationary if the decision rule for all time steps
are the same, i.e.,: ∀ t ∈ {1, . . . , T} Dt = D. A solution for
an MDP is a policy π : S −→ A that associates an action to
each state. Normally, policies are evaluated by a value function
vπ : S −→ R. The value function is computed recursively as
follows:

vπN (s) = rN (s, π(s)) ∀s ∈ ST (4)

where ST is the set of terminal states as a subset of all states.
For the rest of time steps t < T , the value function is defined as

vπt (s) = rt(s, π(s)) + γ
∑

s′∈S
Pt(s

′|s, π(s))vπt+1(s
′) (5)

where γ is a discount factor (0 < γ ≤ 1). vπt (s) represents the
expected gain in the future from state s, at time step t if the policy
π is executed. Therefore, the final value of a policy is given by
vπ = vπ0 . Let π and π′ be two policies, in the following, we
indicate π � π′ if the policy π is better than policy π′

π � π′ ⇔ ∀s ∈ S vπ(s) ≥ vπ
′
(s) . (6)

Equation (6) indicates that policy π is better than policy π′ if its
value is higher than the value of π′ for all states. π∗ is an optimal
policy if π∗ � π, for all feasible policies π.

What remains to show is how to find an optimal policy. To
find the value of the optimal policy, we can use a dynamic
programming, namely, the Bellman equation [27]

v∗t (s) = max
a∈A(s)

{

rt(s, a) + γ
∑

s′∈S
Pt(s

′|s, a)v∗t+1(s
′)

}

. (7)

For extracting the optimal policy, we need to define a Q-value
function on state s and action a at time step t as

Qt(s, a) = rt(s, a) + γ
∑

s′∈S
Pt(s

′|s, a)v∗t+1(s
′). (8)

The optimal policy selects action a∗ at state s and stage t as
follows:

a∗t ∈ argmax
a∈A(s)

{Qt(s, a)} for t = 1 . . . N − 1. (9)

In the following, we present a generalization of MDPs where
the rewards are vectors instead of scalars.

Definition 3 (see [40]): A discrete-time VMDP is defined by
a tuple (T, S,A, Pt(.|s, a), r̄t) where T, S,A, Pt(.|s, a) are the
same as in Definition 1.

1) r̄t : S ×A −→ Rd is a vector-valued reward function de-
fined as r̄t(s, a) = (r1t(s, a), . . . , rdt(s, a))

In the following section, we will see that VMDPs are par-
ticularly suited for services composition context, because each
executed service has several quality values, such as response
time, throughput, price, availability, etc.

B. Services Composition as a Discrete-Time VMDP

In this section, we adapt VMDPs in the context of services
composition problems. The solution of such MDPs gives the
optimal service composition. There are basically two reasons
for using an MDP.

1) MDPs make it easy and natural to model services com-
position problems: Every salient aspect present in the
decision-making process relating to the services compo-
sition problem has an evident counterpart in an MDP
context. The division of an MDP into states and ac-
tions is particularly suitable for representing the divi-
sion of a composition service problem into abstract ser-
vices and concrete services. Furthermore, an optimal
policy in an MDP reduces to choose which actions
to take at each state, while the optimal workflow re-
duces to find the best concrete service for each abstract
service.

2) MDPs can be easily integrated into a dynamic environment
with uncertainty. In this article, we use part of the results
presented in [2] and [41] on how to efficiently learn the
users’ preferences. These results are based on the com-
bined use of MDP and RL techniques.

From now on, to be coherent with the services composition
terminology, we will use the term workflow as a synonym of
policy, abstract service as a synonym of state, concrete service
as a synonym of action, and QoS as a reward value.

Definition 4: A concrete service Sij can be described by
several functional and nonfunctional properties.

1) Functional properties: Each functional property is de-
scribed through a transaction function, Action(Sij) that
takes an input data vector InputData(Sij) to produce
an output data vector OutputData(Sij).

2) Nonfunctional properties: Each nonfunctional property
consists of a vector of QoS attributes Q(Sij), a set of
quality of experience criteria, and other aspects about the
service such as energy consumption and the context of
use.

Definition 5: An abstract service Si = {Si1, . . . , Sini
} is a

class of ni concrete services with similar functional properties,
i.e., they have the same input and output data vectors, but their
nonfunctional properties can be different.

In the rest of this section, we will explain how various classes
of abstract services, each one associated to several concretes
services, can be modeled as a VMDP.

Definition 6: A VMDP-Service Composition (VMDP-SC) is
defined by a tuple (T,AS,CS, Pt(.|as, cs), r̄t) similar to Defi-
nitions 1 and 3 given as follows:

1) T = 0, . . . , N are the decision time steps;
2) AS is a finite set of abstract services;

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

3) CS(Si) is a finite set of executable concrete services that
the agent can use for a chosen abstract service Si ∈ AS.
We have that CS(Si) = {Si1, . . . , Sini

};
4) Pt(Sj |Si, Sik) is the probability of executing concrete

service Sik for abstract service Si and entering to abstract
service Sj ;

5) QoSt : AS × CS −→ Rd is the vector valued reward
function. QoSt(Si, Sik) represents a vector of QoS
attribute values after invoking Sik in Si at time
step t. For d attributes, we obtain QoSt(Si, Sik) =
(qos1t(Si, Sik), . . . , qosdt(Si, Sik)).

The terminal states, defined as AST , do not have any exe-
cutable services.

Definition 7: A workflow π : AS −→ CS is a function that
defines, which concrete service should be invoked for each
abstract service in order to give the best tradeoff among multiple
QoS attributes.

Since the rewards used in an MDP-SC are vectorial, also the
value function v̄ and the Q-value function Q̄ are vectorial

v̄πt (Si) = QoSt(Si, π(Si))

+ γ
∑

Sj∈AS

Pt(Sj |π(Si), Si)v̄
π
t+1(Sj). (10)

Thus, comparing two workflows boils down to comparing
two vectors. The optimal workflow can differ from user to user
according to their preference with respect to the d value qualities
of services. We make the assumption that each user assign a
different weight w̄i to each QoS attribute. The simple additive
weighting (SAW) technique [28] is used to obtain a single QoS
value as a weighted linear combination of the QoS attributes.
Let W = (w0, . . . , wd) be the set of normalized weights (i.e.,
∑d

i=1 wi = 1) given by a user, the aggregated QoS becomes

QoSt(Si, Sij) =W · QoS(Si, Sij) =

d∑

k=1

wkqoskt. (11)

If the user preferences on QoS attributes are given, the optimal
workflow can be, therefore, computed using SAW techniques.
However, determining appropriate weights for QoS attributes
requires the knowledge of the user preferences, which is often
not obvious to obtain in practice. Even if the user preferences
have been obtained, setting accurately these weights remains
a problem. For instance, it is hard to decide the weight of an
attribute such as response time as 0.2 or 0.21, which appears
no big difference yet it can affect the result of the QoS optimal
composition [10]. We assume thatW is unknown, and we try to
find the best workflow by querying the users when it is necessary.

The basic idea is to deduce the user weights by comparison:
we present to the users two alternative QoS vectors, and we
assume that he/she is always able to find which of the two he/she
prefers. In order to compute the optimal workflow in the service
composition, it is required to compare the vector value function
of two different workflows.

To compare workflow vector values with each other, we
consider first the d− 1-dimensional polytope W that represents

the set of all possible values for W

W =

{

(w1, . . . , wd) ∈ Rd
+ |

d∑

i=2

wi ≤ 1 , w1 = 1−
d∑

i=2

wi

}

.

(12)
Three methods can be used to compare vector values as-

sociated to the workflows [41]. Assume v̄πa = (a1, . . . , ad)
and v̄πb = (b1, . . . , bd) are two vector values associated to two
workflows πa and πb given as follows.

1) Pareto comparison:

v̄πa �P v̄πb ⇔ ∀ i ai ≥ bi. (13)

2) K-dominance comparison: v̄πa is preferred than v̄πb if it
is better for any w̄ in the polytope W
v̄πa �K v̄πb ⇔ ∀W ∈ W, W · v̄πa ≥W · v̄πb .

(14)
3) Query to the user: v̄πa �q v̄

πb if the user prefers workflow
v̄πa over v̄πb . This check is a sort of “last resort”: if none
of the previous methods allow to eliminate one of the two
vectors, the only option is to ask directly to the user.

It is possible to show that checking whether a K-dominance
exists between two workflow vector values can be done by solv-
ing an ad hoc linear programming problem [41]: v̄πa �K v̄πb

is true if there is a non-negative solution to the following linear
program:

min W · (v̄πa − v̄πb)

s.t. W ∈ W. (15)

We noticed that

v̄πa �K v̄πb =⇒/ v̄πb �K v̄πa

therefore, to check whether a dominance exists between the
two vectors, we need to solve two separate linear programs.
In the remaining of this article, we explain how to find the
optimal workflow that gives the best tradeoff among multiple
QoS criteria, satisfying the user requirements in terms of QoS
only querying a few times.

V. INTERACTIVE RL ALGORITHMS FOR THE SERVICES

COMPOSITION PROBLEM

After modeling the services composition environment as a
VMDP-SC, we are interested in finding a solution for our model,
i.e., how to compute the optimal workflow respecting the users’
preferences on the QoS attributes. In this section, we introduce
an algorithm with this aim, namely, interactive value iteration
for services composition (IVI-SC). It is possible to use interac-
tive value iteration methods for finding the optimal workflow by
learning user’s preferences weights dynamically [2], [41].

We assume that a VMDP-SC with finite discrete-time is given.
The services can be invoked in T + 1 number of discrete time
steps: {0, . . . , T − 1} ∪ {T} where T is a final empty time
step. Since the MDP-SC objective is finding the workflow that
maximizes a measure of long-run expected Q vector values,
we propose a backward induction method to solve the Bellman

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALIZADEH et al.: REINFORCEMENT LEARNING FOR INTERACTIVE QOS-AWARE SERVICES COMPOSITION 7

equation given in (7) to obtain the optimal policy/workflow, see
(9). Our approach is formalized in Algorithm 1.

In the iterative Algorithm 1, first, we assign a zero vector to the
set of states (abstract services) at time step T . For each abstract
service Si(t) (at time t) given in the MDP-SC, the algorithm
selects the best concrete service among the all available ones.
These actions (concrete services) are dependent on various time
steps, for instance, the possible actions of the Si(t) service at
times step t can be different from the possible actions for time
step t+ 1. In the finite horizon time (our case), the iteration

continues until either this difference becomes small enough or
the horizon time steps finish.

Since the QoSs is the d-dimensional vectors, solving (7) and
finding the maximum among the vectors is not obvious. For
this reason, we use the Algorithm 2 getBest that applies the
three comparison methods presented at the end of Section IV.
ThegetBest function receives twod-dimensional vectors with
the W polytope constraining the user weight preferences on the
QoSs. If the Pareto comparison cannot find the greater vector,
the K-dominance comparison is used to find the most preferred
vectors. Otherwise, the query function should be called (given
in Algorithm 3). The user’s response to the comparison between
the two given vectors, adds a new constraint to the W polytope.

Algorithm 1 finally finds the optimal policy/workflow or
services composition for the given system VMDP-SC and re-
turns back the optimal policy πbest. Notice that the condition
best = v̄t(Si(t)) in Algorithm 1 checks if the best selected
concrete service for Si(t) has been changed regarding the pre-
vious iteration. If it was, the optimal concrete service should be
replaced by the concrete service Sij(t) which generates a better
vector value for Si(t).

The proposed algorithm is exact, and its complexity is poly-
nomial w.r.t three parameters: the number of abstracts services
forming the composition, the number of candidates concretes
services per each abstract services, and the number of QoS
attributes. Assuming |AS| is the set of all abstract services
and M = maxi,tCS(Si(t)) is the maximum number of abstract
services in each time step t and each abstract service Si. In
order to compute the best QoS vector in each inner iteration, the
Best algorithm tests the Pareto dominance and K-dominance
comparison twice in the worst case, which are polynomial
w.r.t d, where d is the number of attributes for QoSs and any
K-dominance (LP) can be solved in polynomial time. Finally,
we suppose that the time necessary to ask a preference to the
user is constant. Therefore, the complexity of the algorithm is
O(Md|AS|).

VI. PERFORMANCE EVALUATION

We evaluate our methods on a publicly available dataset
containing two QoS attributes: throughput and response time.
These are the records between 339 users and 5825 web services

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 3. Sequential form of abstract service connection. The start state is an
empty state and it is connected to the first selected abstract service in the model.
While the terminal state is an empty state to indicate that we have a finite horizon
VMDP-SC.

distributed worldwide [49], [50]. The dataset also includes some
information about user features and service features such as
countries, autonomous systems, IP dresses, latitude, and lon-
gitude. In the studied database, 142 users execute various web
services in different time steps. The information is available
only for 64 time steps. In this section, we first explain how to
model the dataset as a VMDP-SC and then we examine the
performances of our algorithm on the dataset.

A. Dataset as a VMDP-SC

The main issue in implementing IVI-SC (Algorithm 1) on any
database is how to model the given dataset as a VMDP. In the
supported dataset [49], [50], there are several text files, including
wslist.txt, userlist.txt, rtdata.txt, and tpdata.txt. The wslist.txt is
our source file for extracting a list of web services and their
related abstract services. In our dataset, we consider the web
services as the concrete services. The userlist.txt file includes
some information about users of different web services. The
two other tpdata.txt and rtdata.txt files include the throughput
and response time values, respectively, on various web services
executed by 142 users. This means that any web service invoked
by a user has two parameters for measuring the service quality:
throughput (megabits per second, Mbps) and response time
(second, s).

The studied database[49], [50] is generated in practice by
observing various users utilizing enormous number of web
services. After cleaning the database and extracting all web
services and their related abstract services from the wslist.tx
file, and getting the web services qualities from two files tp.txt
and rt.txt, we have a VMDP-SC with the following parameters
(see Definition 6):

1) 64 time steps;
2) 744 abstract services;
3) 3551 total number of concrete services (in our case web

services);
4) The transition function is not given directly in the database.

Several models can be used to define the possible or-
ders and concurrences among the abstract services (see
Section III. In this case, we adopt a sequential structure
(see Fig. 3);

5) The QoSt function comes from the extracted data on
web services and their two qualities: response time and
throughput.

To demonstrate the efficiency of our approach in calculating
the optimal workflow, we study our method on a common state-
of-the-art model: the sequential model.

TABLE II
EXAMPLE OF TWO-DIMENSIONAL WEIGHT VECTORS (THROUGHPUT AND

RESPONSE TIME) FOR FIVE USERS WITH PREFERENCES ON THE ATTRIBUTES

The goal of Algorithm 1 is to learn such a
vectors for each of the five users.

Fig. 4. This figure shows the number of queries proposed to the user during
each time step. The weight preferences are based on Table II.

For the sequential model (see Fig. 3), the start state is an
empty state connected to the first selected abstract service in
the model. On the contrary, the terminal state is an empty
state that indicates that the MDP has a finite horizon. The
sequential order on abstract services can be defined in any order.
In our model, the order is randomly selected once, to fix the
MDP model. For any time step t ∈ {0 . . . 63}, the transition
probability Pt(Sj(t+ 1)|Si(t), Sik(t)) is 1, if web service Sik

is invocable for a given abstract service Si(t) according to
our database and the abstract service Sj(t+ 1) is the next
demanded service in our selected sequential MDP model, oth-
erwise Pt(Sj(t+ 1)|Si(t), Sik(t)) = 0.

B. Model the Web Service Dataset as VMDP

To evaluate Algorithm 1, we consider the complete dataset,
i.e., we keep all the quality services executed by all 142 users.
Modeling such a huge size database as a VMDP-SC and imple-
menting the IVI-SC algorithm on it is a challenging task.

In order to evaluate our algorithm performance, we analyze
the results for five different users with various preferences on the
service qualities (response time and throughput). Our tested user
weights vectors (W) on service qualities are given in Table II.
Notice that the weight preferences on the QoSs are “unknown”
to our algorithm. They are used to simulate the user’s behavior.

Fig. 4 shows how the interactive value iteration algorithm
communicates with users during the 64 time steps. Since the
user weight preferences are unknown to the algorithm, it is

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALIZADEH et al.: REINFORCEMENT LEARNING FOR INTERACTIVE QOS-AWARE SERVICES COMPOSITION 9

Fig. 5. Figure shows how the accumulated response time increases during
each time step. The weight preferences are based on Table II.

Fig. 6. Figure shows how the accumulated throughput increases during each
time step. The weight preferences are based on Table II.

needed to query them in the required situations. According to
the figure, Algorithm 1 finds the optimal workflows after asking
less than 56 queries to the users with preferences weights W 0,
W 1, and W 2. Contrarily, for the users with weight preferences
W 3 andW 4, the algorithm queries a more significant amount of
questions to the user. One possible explanation for the different
behavior from one user to the other is that, if the weights are
more balanced, comparing vectors using Pareto dominant and
K-dominant methods is less informative and, therefore, the only
option to eliminate one of the two vectors is to ask directly to
the user. This problem can be mitigated by approximating a
workflow for the system instead of calculating the exact one.
Since IVI-SC is an exact algorithm, the initial sequence of
dataset presentation have an important effect on the number of
required queries in order to find the optimal workflow.

Figs. 5 and 6 shows how the service qualities change with
respect to the time step for the five given weight preferences. The
optimal workflow should maximize the total sum of throughputs
while minimizing the total sum of response times. The two
figures show how throughput and response time increase linearly
w.r.t the time steps. Fig. 5 shows that the accumulated response

TABLE III
IT DEMONSTRATES HOW THE COMPUTED WORKFLOW FROM ALGORITHM 1 IS

DIFFERENT FROM THE IDEAL WORKFLOW FOR W3

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE SYSTEMS JOURNAL

TABLE IV
IT DEMONSTRATES HOW THE COMPUTED WORKFLOW FROM ALGORITHM 1 IS

DIFFERENT FROM THE IDEAL WORKFLOW FOR W4

time for all weight preferences does not exceed 4 s. On the
contrarily, Fig. 6 maximizes the accumulated throughput until a
value of around 9000 Mb/s.

If the user’s weight vectors are available, the exact workflow is
computed by taking the weights into account and using a classi-
cal approach on MDPs such as Value iteration or Policy Iteration
method [5], [34]. In order to compare the workflows obtained
with our method with the ideal ones, we transfer the quality
vectors to the quality values: QoS(Si, Sij) =W · QoS(Si, Sij)
by doing the assumption of knowing a priori the user weights
W . In this way, we can compute the exact services compositions
for each user and compare them with the computed workflows
from the IVI-SC method. Our experiments confirm that the
optimal workflow computed by the IVI-SC algorithm is exactly
the same as the exact computed workflow for the three users
with weights preferences W 0,W 1, and W 2. For the two other
weight preferences W 3 and W 4, the IVI-SC and the exact
approach are different in a few number of abstract services:
178 out of 744 abstract services for W 3 and 38 out of 744
abstract services for W 4. In other words, our method computes
76% and 95% of concrete services correctly for users W 3 and
W 4, respectively. Table III presents the list of abstract services
where our approach (IVI-SC) and the exact approach propose
different concrete services for the services composition problem
under W 4. Table IV shows the differences between these two
approaches forW 4. The first column contains a service abstract
name with its possible number of concrete services to execute,
and the second column shows the selected concrete service
number by the IVI and the exact methods.

VII. CONCLUSION AND FUTURE WORKS

In this article, an RL-based approach is proposed to solve
the services composition problem in a WoT environments and
without knowing the user preferences on the QoS attributes. The
services composition problem is formulated as a discrete-time
VMDP and solved using an interactive value iteration method.
The registered qualities of the web services in our studied
dataset [49], [50] are executed by selecting 142 users from
the dataset. The experiments show that our algorithm finds the
optimal services composition by learning the user preferences

weights with high accuracy. The optimal services composition
is obtained by maximizing the accumulated throughputs and
minimizing the accumulated response times. As potential future
work, different models of MDPs should be tested, such as
parallel MDP, sequential parallel MDP, etc. Finally, it could also
be interesting to classify and observe the users types w.r.t. their
service qualities and their execution information on the web
services before modeling the dataset into an MDP.

REFERENCES

[1] O. Alagoz, H. Hsu, A. J. Schaefer, and M. S. Roberts, “Markov decision
processes: A tool for sequential decision making under uncertainty,” Med.
Decision Making, vol. 30, no. 4, pp. 474–483, 2009.

[2] P. Alizadeh, Y. Chevaleyre, and F. Lévy, “Advantage based value iteration
for Markov decision processes with unknown rewards,” in Proc. Int. Joint
Conf. Neural Netw., Vancouver, BC, Canada, Jul. 2016, pp. 3837–3844.

[3] M. Alrifai, T. Risse, and W. Nejdl, “A hybrid approach for efficient web
service composition with end-to-end QoS constraints,” ACM Trans. Web,
vol. 6, no. 2, 2012, Art. no. 7.

[4] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for QoS-
based web service composition,” in Proc. 19th Int. Conf. World Wide Web,
2010, pp. 11–20.

[5] F. E. M. Arasi, S. Govindarajan, and A. Subbarayan, “Weighted quality
of service based ranking of web services,” Indian J. Sci. Technol., vol. 9,
no. 21, pp. 1–8, Jul. 2017.

[6] J. Cao, J. Huang, G. Wang, and J. Gu, “QoS and preference based web
service evaluation approach,” in Proc. 8th Int. Conf. Grid Cooperative
Comput., 2009, pp. 420–426.

[7] M. Chandra, A. Agrawal, A. Kishor, and R. Niyogi, “Web service selection
with global constraints using modified gray wolf optimizer,” in Proc. Int.
Conf. Adv. Comput., Commun. Informat., 2016, pp. 1989–1994.

[8] N. Chen, N. Cardozo, and S. Clarke, “Goal-driven service composition in
mobile and pervasive computing,” IEEE Trans. Services Comput., vol. 11,
no. 1, pp. 49–62, Jan./Feb. 2018.

[9] X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu, “Web service recommenda-
tion via exploiting location and QoS information,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 7, pp. 1913–1924, Jul. 2014.

[10] Y. Chen, J. Huang, C. Lin, and J. Hu, “A partial selection methodology for
efficient QoS-aware service composition,” IEEE Trans. Services Comput.,
vol. 8, no. 3, pp. 384–397, May/Jun. 2015.

[11] A. Chibani, “3 Web of Objects European Project,” 2019 (accessed on: Oct.
8, 2019). [Online]. Available: http://www.lissi.fr/woo-en/

[12] S. Deng, L. Huang, W. Tan, and Z. Wu, “Top-k automatic service compo-
sition: A parallel method for large-scale service sets,” IEEE Trans. Autom.
Sci. Eng., vol. 11, no. 3, pp. 891–905, Jul. 2014.

[13] S. Deng, H. Wu, D. Hu, and J. L. Zhao, “Service selection for composition
with QoS correlations,” IEEE Trans. Services Comput., vol. 9, no. 3,
pp. 291–303, Mar. 2016.

[14] A. M. Ejaz, H. Mukhtar, D. Belaid, and J. B. Song, “QoS-aware device
selection using user preferences for tasks in ubiquitous environments,” in
Proc. IEEE Int. Conf. Emerging Technol., 2011, pp. 1–6.

[15] V. Gabrel, M. Manouvrier, and C. Murat, “Web services composition:
Complexity and models,” Discrete Appl. Math., vol. 196 (Supplement C),
pp. 100–114, 2015.

[16] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics,
Reading, MA, USA: Addison-Wesley, 1989.

[17] M. Graiet, I. Abbassi, M. Kmimech, and W. Gaaloul, “A genetic-based
adaptive approach for reliable and efficient service composition,” IEEE
Syst. J., vol. 12, no. 2, pp. 1644–1654, Jun. 2018.

[18] M. S. Hossain, M. Moniruzzaman, G. Muhammad, A. Ghoneim, and
A. Alamri, “Big data-driven service composition using parallel clustered
particle swarm optimization in mobile environment,” IEEE Trans. Serv.
Comput., vol. 9, no. 1, pp. 806–817, Sep. 2016.

[19] N. M. Josuttis, SOA in Practice: The Art of Distributed System Design.
Sebastopol, CA, USA: O’Reilly Media, Inc., 2007.

[20] Y. Lei, Z. Jiantao, W. Fengqi, G. Yongqiang, and Y. Bo, “Web service
composition based on reinforcement learning,” in Proc. IEEE Int. Conf.
Web Services., 2015, pp. 731–734.

[21] J. W. Liu, L. Q. Hu, Z. Q. Cai, L. N. Xing, and X. Tan, “Large-scale and
adaptive service composition based on deep reinforcement learning,” J.
Vis. Commun.. Image Representation, vol. 65, 2019, Art. no. 102687.

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

http://www.lissi.fr/woo-en/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALIZADEH et al.: REINFORCEMENT LEARNING FOR INTERACTIVE QOS-AWARE SERVICES COMPOSITION 11

[22] W. Liu, “Trustworthy service selection and composition - reducing the en-
tropy of service-oriented web,” in Proc. 3rd IEEE Int. Conf. Ind. Informat.,
Aug. 2005, pp. 104–109.

[23] N. B. Mabrouk, N. Georgantas, and V. Issarny, “Set-based bi-level optimi-
sation for QoS-aware service composition in ubiquitous environments,” in
Proc. IEEE Int. Conf. Web Services, 2015, pp. 25–32.

[24] D. Mallayya, B. Ramachandran, and S. Viswanathan, “An automatic
web service composition framework using qos-based web service ranking
algorithm,” The Scientific World J., vol. 2015, 2015, Art. no. 207174.

[25] U. S. Manikrao and T. V. Prabhakar, “Dynamic selection of web services
with recommendation system,” in Proc. Int. Conf. Next Generation Web
Serv. Practices, Aug. 2005, p. 5.

[26] A. Mostafa and M. Zhang, “Multi-objective service composition in un-
certain environments,” IEEE Trans. Serv. Comput., to be published, doi:
10.1109/TSC.2015.2443785.

[27] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, 1st ed. New York, NY, USA: Wiley, 1994.

[28] L. Qi, Y. Tang, W. Dou, and J. Chen, “Combining local optimization and
enumeration for QoS-aware web service composition,” in Proc. IEEE Int.
Conf. Web Services, 2010, pp. 34–41.

[29] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching–learning-based
optimization: A novel method for constrained mechanical design opti-
mization problems,” Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,
2011.

[30] L. Ren, W. Wang, and H. Xu, “A reinforcement learning method for
constraint-satisfied services composition,” IEEE Trans. Services Comput.,
no. 1, Los Alamitos, CA, USA: IEEE Computer Society, Jul. 2017, doi:
10.1109/TSC.2017.2727050.

[31] P. Rodriguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes, “An inte-
grated semantic web service discovery and composition framework,” IEEE
Trans. Services Comput., vol. 9, no. 4, pp. 537–550, Jul. 2016.

[32] Q. Z. Sheng, X. Qiao, A. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
“Web services composition: A decades overview,” Inf. Sciences, vol. 280,
pp. 218–238, 2014.

[33] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, “Ranking and clus-
tering web services using multicriteria dominance relationships,” IEEE
Trans. Services Comput., vol. 3, no. 3, pp. 163–177, Jul.–Sep. 2010.

[34] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[35] N. Temglit, A. Chibani, K. Djouani, and M. A. Nacer, “A distributed agent-
based approach for optimal QoS selection in web of object choreography,”
IEEE Syst. J., vol. 12, no. 2, pp. 1655–1666, Jun. 2018.

[36] W. Tsai, P. Zhong, X. Bai, and J. Elston, “Dependence-guided service
composition for user-centric SOA,” IEEE Syst. J., vol. 8, no. 3, pp. 889–
899, Sep. 2014.

[37] H. Wang, G. Huang, and Q. Yu, “Automatic hierarchical reinforcement
learning for efficient large-scale service composition,” in Proc. IEEE Int.
Conf. Web Services, 2016, pp. 57–64.

[38] H. Wang, J. Li, Q. Yu, T. Hong, J. Yan, and W. Zhao, “Integrating
recurrent neural networks and reinforcement learning for dynamic service
composition,” Future Generation Comput. Syst., vol. 107, pp. 551–563,
2020.

[39] H. Wang, P. Ma, Q. Yu, D. Yang, J. Li, and H. Fei, “Combining quanti-
tative constraints with qualitative preferences for effective non-functional
properties-aware service composition,” J. Parallel Distributed Comput.,
vol. 100, pp. 71–84, 2017.

[40] H. Wang, X. Zhou, X. Zhou, W. Liu, W. Li, and A. Bouguettaya, Adaptive
Service Composition Based on Reinforcement Learning. Berlin, Germany:
Springer, 2010, pp. 92–107.

[41] P. Weng and B. Zanuttini, “Interactive value iteration for Markov decision
processes with unknown rewards,” in Proc. 23rd Int. Joint Conf. Artif.
Intell., Beijing, China, Aug. 2013, pp. 2415–2421.

[42] Q. Wu, F. Ishikawa, Q. Zhu, and D.-H. Shin, “QoS-aware multigranularity
service composition: Modeling and optimization,” IEEE Trans. Syst., Man,
Cybern.: Syst., vol. 46, no. 11, pp. 1565–1577, Nov. 2016.

[43] P. Xiong, Y. Fan, and M. Zhou, “Web service configuration under multiple
quality-of-service attributes,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 2,
pp. 311–321, Apr. 2009.

[44] M. E. Khanouche, Y. Amirat, A. Chibani, M. Kerkar, and A. Yachir,
“Energy-centered and QoS-aware services selection for Internet of
Things,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 3, pp. 1256–1269,
Jul. 2016.

[45] H. Yang and X. Xie, “An actor-critic deep reinforcement learning approach
for transmission scheduling in cognitive internet of things systems,” IEEE
Syst. J., vol. 14, no. 1, pp. 51–60, Mar. 2020.

[46] Q. Yu and A. Bouguettaya, “Efficient service skyline computation for
composite service selection,” IEEE Trans. Knowl. Data Eng., vol. 25, no.
4, pp. 776–789, Apr. 2013.

[47] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng,
“Quality driven web services composition,” in Proc. 12th Int. Conf. World
Wide Web, 2003, pp. 411–421.

[48] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-aware middleware for web services composition,” IEEE
Trans. Softw. Eng., vol. 30, no. 5, pp. 311–327, May 2004.

[49] Y. Zhang, G. Cui, S. Deng, and Q. He, “Alliance-aware service compo-
sition based on quotient space,” in Proc. IEEE Int. Conf. Web Services,
Jun. 2016, pp. 340–347.

[50] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of real-world
web services,” IEEE Trans. Services Comput., vol. 7, no. 1, pp. 32–39,
Jan.–Mar. 2014.

[51] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang, “QoS-aware
dynamic composition of web services using numerical temporal planning,”
IEEE Trans. Services Comput., vol. 7, no. 1, pp. 18–31, Jan. 2014.

Authorized licensed use limited to: Université de Montpellier - Sci et Tech. Downloaded on August 27,2020 at 13:49:16 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TSC.2015.2443785
https://dx.doi.org/10.1109/TSC.2017.2727050

