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Abstract. In this work, the combined effects of couple-stresses and piezo-viscosity on the dynamic behavior of
a compression ignition engine big-end connecting-rod bearing with elastic layer are investigated using the
V. K. Stokes micro-continuum theory. It is assumed that the journal (crankpin) is rigid and the big-end bearing
consists of a thin compressible elastic liner fixed in an infinitely stiff housing. The governing Reynolds’ equation
and the viscous dissipation term appearing on the RHS of energy equation are modified using the V. K. Stokes
micro-continuum theory. The non-Newtonian effect is introduced by a new material constant h, which is
responsible for couple-stress property, and the piezo-viscosity effect by the pressure–viscosity coefficient
a appearing in the well-known Barus’ law. In the proposed model, the nonlinear transient modified Reynolds
equation is discretized by the finite difference method, and the resulting system of algebraic equations is solved
by means of the subrelaxed successive substitutions method to obtain the fluid-film pressure field as well as the
film thickness distribution. The crankpin center trajectories for a given load diagram are determined iteratively
by solving the nonlinear equilibrium equations of the journal bearing system with the improved and damped
Newton–Raphson method for each time step or crankshaft rotation angle. According to the obtained results, the
effects of couple-stresses and piezo-viscosity on the nonlinear dynamic behavior of dynamically loaded bearings
with either stiff or compliant liners are significant and cannot be overlooked.

Keywords: Compression ignition engine / couple-stress / piezo-viscous fluid / coated bearing / dynamically
loaded journal bearing
1 Introduction

Nowadays, reciprocating machines such as internal com-
bustion engines and compressors are the most important
class of machinery extensively used in diverse engineering
applications. Unquestionably, dynamic behavior of such
machines is strongly dependent on the performance
characteristics of their bearings.

The crankshaft and connecting-rod bearings of these
modernmachineswithhighhorsepower andhigh loadsmust
be correctly designed to support large dynamic loads
resulting from combustion pressure in the engine cylinder
and inertia forces due to reciprocating and rotatingmotions
of solids, which belong to the crank-slider mechanism.

These loads, which are generally determined from
the crank-slider kinematics and dynamics, vary both in
magnitude and direction during an engine cycle. Under
enyebka.Bou-Said@insa-lyon.fr
these severe operating conditions, the behavior of the
dynamically loaded journal bearing system becomes
strongly nonlinear requiring a complete nonlinear transient
analysis. This later involves the simultaneous solutions of
the complex multiphysical fluid–solid interaction problem,
governed by several nonlinear PDEs. This type of analysis
is extremely essential when the engine rotates at high
speeds, for example, in the case of Formula 1.

Many researchers in the fields of fluid–film lubrication
and engine design have tried to formulate lubricants with
new chemical compounds to enhance the dynamic behavior
of rotating systems. Applications of various types of
Newtonian and non-Newtonian fluids or combination of
conventional mineral and synthetic-based lubricants with
different polymer additives are examples of the efforts
made to achieve better dynamic performance character-
istics of journal bearing systems.

The rheological behavior of mineral or synthetic motor
oils used as lubricants is significantly affected by the
presence of various additives such as viscosity index (VI)
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improver polymers, which are characterized by long
chains.

These polymers can be classified into two categories:
hydrocarbon copolymers and polymethacrylates. In gener-
al, oils containing VI additives such as multigrade motor
oils must be considered as non-Newtonian shear thinning
fluids. Their viscosity decreases when the shear or strain
rate to which they are subjected increases, and they are
affected by the Weissenberg effect, i.e. during flow, forces
appear perpendicular to the shear planes. These properties
have been analyzed by a Weissenberg rheogoniometer [1].
According to Lodge [2], these forces could be proportional
to the square of the rate of shear.

Rosenberg [3,4] has shown experimentally that the
minimum film thickness of a journal bearing lubricated by
polymerized oils is more important than that measured
with the pure mineral oils having the same viscosity. In
order to determine the effects of VI additives on the journal
bearing behavior, Robin [5] developed a test bearing.
The operating conditions for which the tests were
performed are N= 3 krpm and W0= 4 kN, which are the
rotation velocity of the shaft and the applied load,
respectively. It was found that the introduction of high
concentration of polymethacrylates to the base mineral oil
reduces the friction torque by about 25% without
important change in the film thickness. It was also
concluded that it would be interesting to use oils with
high concentration of VI additives having low molecular
weight such as polymethacrylates, rather than weak
concentrations of additives with high molecular weight.

In the Oliver’s experimental work [6], it was found that
the presence of dissolved polymer in the lubricant increases
the load carrying capacity of the lubricating film and
decreases the friction coefficient.

In another experimental investigation, Scott and
Suntiwattana [7] showed that addition of a small amount
of long-chained additives like some polymers such as
polyisobutylene can enhance the lubricating effectiveness
of conventional Newtonian lubricant.

The microstructure of these new lubricants can
translate, rotate and deform independently.

It is observed from the experimental results that using
themicro-continuum ormicro-polar theory ismore suitable
for the theoretical study of such lubricants. Application of
classical Navier-Stokes and energy equations to describe
their motion leads to erroneous results. Thus, many
rheological models such as power law, viscoelastic, couple-
stress and micro-polar are proposed in the technical
literature.

In order to better describe the rheological behavior of
this kind of lubricant, different micro-continuum theories
have been developed. The Stokes’micro-continuum theory
[8,9] is the simplest theory of fluids proposed in the
technical literature since the 1960s, which allows the polar
effects such as the presence of couple-stresses and body
couples in addition to the body forces and surface forces.
However, it neglects the elasticity and the normal forces
effects appearing during flow because of the presence of
such additives.

In this theory, the iso-volume couple-stress fluids are
characterized by two constants, namely, m and h, whereas
only one parameter appears for a Newtonian iso-volume
fluid, which is the dynamic viscosity m. The new material
constant h is responsible for couple-stress property. In
the literature, the effects of couple-stresses on the behavior
of journal bearings are generally studied by defining the

couple-stress parameter l ¼ h
m

� �1
2

which has the dimension

of length and can be thought of as a fluid property
depending on the size of the polymer molecule.

In an excellent investigation, Fatu et al. [10] have
studied the importance of piezo-viscous and shear-
thinning effects on the dynamic behavior of three typical
compliant connecting-rod big-end bearings used for a
Formula 1 engine, a compression ignition engine and a
spark ignition engine. The constitutive equation relating
the fluid dynamic viscosity to rate of shear that has
been used by the authors to describe the non-Newtonian
shear thinning behavior is similar to that proposed by
Gecim [11].

To study the piezo-viscous effects, the model that has
been used by the authors is that suggested by Chu and
Cameron, which is suitable for higher pressures [12].

They proved that for the studied cases, the non-
Newtonian shear thinning effects could not be neglected,
especially for high-speed engines, and the piezo-viscous
effects are more significant than the non-Newtonian effects
and lead to increasing film thickness.

It should be noted that the same constitutive
equation has been used by Paranjpe [13], and Wang
et al. [14,15] in order to investigate the non-Newtonian
shear-thinning effects in smooth and rough dynamically
loaded bearings.

In an earlier work [16], we have presented a theoretical
study of stiff big-end connecting-rod bearings dynamic
behavior for both Diesel and gasoline engines using the
couple-stress fluid model. The mobility method [17,18]
suggested in 1965 by Booker has been adopted to the
numerical treatment of nonlinear motion equations of the
rigid crankpin. The effects of different values of couple-
stress parameter l on the minimum film thickness, peak
pressure, flow rate, power loss as well as crankpin
trajectories were investigated for both engines.

In the present work, which can be considered as an
extension of the above work [16], the combined effects of
couple-stresses and piezo-viscosity on the dynamic behav-
ior of a compression ignition engine big-end connecting-
rod bearing with elastic layer are investigated using the
Stokes micro-continuum theory. It is assumed that the
journal (crankpin) is rigid and the big-end bearing consists
of a thin compressible elastic liner fixed in an infinitely
stiff housing.

The damped Newton–Raphson method is used, in
improved form, to predict the dynamic response of layered
connecting-rod bearings subjected to a load cycle instead of
the mobility method since this later is not appropriate for
the analysis of compliant or partially grooved journal
bearings despite its rapidity to obtain dynamic responses of
stiff cylindrical journal bearings [19]. However, when using
the Newton–Raphson method, the inverse lubrication
problem needs to be solved instead of the direct problem,
i.e. dynamical loads applied on bearing are known but
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corresponding eccentricities of journal need to be calculat-
ed by iteration.
Fig. 1. Big-end connecting-rod bearing and coordinates systems.
2 Theoretical analysis

2.1 Governing equations of couple-stress fluid
mechanics

The governing equations for the transient flow of an
incompressible (iso-volume) couple-stress fluid, neglecting
the body forces and body couples, can be written in the
general form as [8,9]

∂vi
∂xi

¼ 0 ð1Þ

r
∂vi
∂t

þ vj
∂vi
∂xj

� �
¼ ∂Tji

∂xj
; ð2Þ

where Tji ¼ � pdij þ m ∂vi
∂xj þ

∂vj
∂xi

� �
� h∇2 ∂vi

∂xj �
∂vj
∂xi

� �
,

which is the total skew symmetric stress tensor, and
∇2 ¼ ∂2

∂xk∂xk is the Laplace operator.

rCp
∂T
∂t

þ vj
∂T
∂xj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Energy transfer due to convection

¼ ∂
∂xi

k
∂T
∂xi

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Energy transfer due to conduction

þ 2mDijDij þ 16hKiKi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Total viscous dissipation F

ð3Þ

where Dij ¼ 1
2

∂vi
∂xj

þ ∂vj
∂xi

� �
and Ki ¼ 1

2 eijkvk;j ¼ � 1
4

∂2vi
∂xj∂xj,

which are the strain rate tensor and the mean curvature
rate vector, respectively.

These are the equations of conservation of mass,
conservation of linear momentum and conservation of
energy, respectively.

Although it is not necessary for the present analysis, the
modified energy equation has been derived only for the
purpose of giving the expression of the dissipation function
appearing on the RHS of equation (3), which will be useful
for calculating the power loss.

2.2 Modified Reynolds equation for piezo-viscous
fluids with couple-stress

With the usual assumptions considered for the lubrication
film, the modified Reynolds equation for two-dimensional
isothermal flow of piezo-viscous lubricant with couple-
stress can be derived for the connecting-rod big-end bearing
represented in Figure 1 [20].

∂
∂x

G h; l;a; pð Þ ∂p
∂x

� �
þ ∂
∂z

G h; l;a; pð Þ ∂p
∂z

� �

¼ 12m0 v tð ÞR ∂h
∂x

þ ∂h
∂t

� �
;

ð4Þ
where

G h; l;a; pð Þ ¼ h3e�ap � 12l2

� he�2ap � 2le�
5
2ap tanh

he
1
2ap

2l

 !" #
and

v tð Þ ¼ vs þ vb

2
¼ v2

2
1� ℓ2

ℓ3
cosu2 tð Þ

� �
;

ð5Þ
where vs is the shaft (crankpin) angular velocity, vb is the
big-end bearing angular velocity, v2 ¼ 2pN

60 is the angular
velocity of crankshaft (N being the engine rotational speed
in rpm), u2 is the crankshaft angle, which varies from 0 to
4p, ℓ2

ℓ3
is the ratio of the crankshaft-arm length to the

connecting-rod length and v is the mean angular velocity
determined from the kinematics analysis of crank-slider
mechanism [18].

Note that for crankshaft bearings (main bearings),
equation (5) reduces to v tð Þ ¼ v2

2 .
In the above equations, h is the lubricant film thickness,

l has the dimension of length and can be regarded as a fluid
property depending on the size of the high polymer
molecule and as it approaches to zero, equation (4) reduces
to the classical Reynolds equation for Newtonian fluid.
a is the pressure–viscosity coefficient appearing in the
Barus law, which gives the viscosity–pressure dependency
at constant temperature:

m pð Þ ¼ m0e
ap; ð6Þ

where m0 is the dynamic viscosity for p=0, and a is the
pressure–viscosity coefficient, which can be obtained by
plotting the natural logarithm of dynamic viscosity m
versus pressure p. The slope of the graph corresponds to the
value of a. The pressure–viscosity coefficient is a function
of the molecular structure of the lubricant and its physical
characteristics.

There are various formulae available to calculate the
pressure–viscosity coefficient in the technical literature
such as the Wooster’s relationship [21]. Some of these
equations are accurate for certain fluids and inaccurate for
others.
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It should be noted that the piezo-viscosity effect varies
between oils, and it is more considerable for naphthenic oils
than paraffinic oils. Water, by contrast, shows only a small
rise, almost negligible, in viscosity variation with pressure.

There are many other formulae for viscosity–pressure
relationships. A short review of some of the empirical
formulae for the viscosity–pressure relationships is given in
reference [22].

2.3 Boundary conditions

The boundary conditions associated to the Reynolds
equation (4) may be classified as follows:

Boundary conditions related to the environment in
which the system operates:

p x; z ¼ �L

2
; t

� �
¼ patm ¼ 0; at the bearing edges ð7aÞ

Periodicity condition:

p x ¼ 0; z; tð Þ ¼ p x ¼ 2pR; z; tð Þ ð7bÞ
Boundary related to lubricant supply:

p ¼ ps ¼ 0; at the feeding groove ð7cÞ
Boundary conditions related to lubricant flow (cavita-

tion phenomenon):

p x; z; tð Þ ¼ pcav ¼ 0

∂p
∂x

x; z; tð Þ ¼ ∂p
∂z

x; z; tð Þ ¼ 0
;

at the oil film rupture
boundary

8<
:

ð7dÞ
At these conditions, we can add for aligned journal

bearings the following condition:

∂p
∂z

x; z ¼ 0; tð Þ ¼ 0; at the bearing centerline ð7eÞ

2.4 Oil film thickness

The connecting-rod housing and the crankpin are consid-
ered as infinitely stiff and thus only the thin compliant liner
will deform Figure 1. In the mobile frame (X3,Y3) related to
the connecting-rod, the film thickness of the undeformed
bearing is a function of the radial clearanceC=Rb�Rs and
the crankpin center position defined by eX and eY as
expressed in the following equation:

h0 ¼ C � eX tð Þcos u � eY tð Þsin u; ð8Þ
where u is the bearing angle (cylindrical coordinate)
originating at the X-axis.

When the film thickness h0 is modified with the elastic
deformation of the fluid film-bearing liner interface, the
film geometry becomes

h u; z; tð Þ ¼ h0 þ CXP u; z; tð Þ; ð9Þ
where C ¼ 1þ sð Þ 1� 2sð Þ
1� s

tl
E is the compliance operator of the

bearing liner in (m/Pa). This operator gives a relation
between pressure and elastic displacement and not between
force and displacement.

The simplified elastic model used in equation (9) to
calculate the radial deformation due to hydrodynamic
pressure is more accurate when we assume that the liner
thickness, tl, is much smaller than the bearing radius,
i.e. tl

R≪1 [23–25].
The bearing configuration considered is similar to that

recently studied by Thomsen and Klit using a three-node
triangular finite element method for solving Reynolds
equation [26]. In this study, where only the local
deformations of the bearing liner are considered, the
authors have used the same elastic model to calculate
the radial displacement at the fluid film-bearing liner
interface. The liner is made of an almost incompressible
material, namely, the PEEK (Polyetheretherketone)
composite having a modulus of elasticity E of 6GPa and
a Poisson’s ratio s of 0.40.

NotethatthecomplianceoperatorC,which is considered
as a key parameter in EHD problems, can be determined in
matrix form, called compliance matrix, using a standard
finite element or boundary element analysis of the whole
bearing structure.

2.5 Finite difference formulation of the modified
Reynolds equation

The finite difference method is used to approach the non-
linear transient pressure equation (4) called here the
modified Reynolds’ equation.

The bearing surface is divided into Nx�Nz rectangular
cells, i.e. the total number of nodes is (Nx+1)� (Nz+1). A
computational grid of 61� 21 nodal points is selected for
the present investigation. This computational size is chosen
as a compromise between time of calculations and accuracy.

After discretization, the modified Reynolds equation
takes the following form:

Giþ1
2;j

þGi�1
2;j

△xð Þ2
þ

Gi;jþ1
2
þGi;j�1

2

� �
△zð Þ2

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ai;j

pi;j

¼
Giþ1

2;j

△xð Þ2
 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

bi;j

piþ1;j þ
Gi�1

2;j

△xð Þ2
 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ci;j

pi�1;j

þ
Gi;jþ1

2

△zð Þ2
 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

di;j

pi;jþ1 þ
Gi;j�1

2

△zð Þ2
 !
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

ei;j

pi;j�1

� 12m0 vR
hiþ1;j � hi�1;j

2△x

� �
þ ht

ij � ht�△t
ij

△t

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fi;j

ð10Þ
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where Giþ 1
2;j

¼ Gi;j þGiþ 1;j

2 ; Gi� 1
2;j

¼ Gi;j þGi� 1;j

2 ; Gi;jþ 1
2
¼

Gi;j þGi;jþ 1

2 ; Gi;j� 1
2
¼ Gi;j þGi;j� 1

2 ; ht�△t
ij is the nodal oil film

thickness calculated at previous time steps, i=1,…, Nx+1
and j=1, …, Nz.

In equation (10), △x ¼ 2p
Nx
, △z ¼ L

2Nz
are the mesh

sizes in the circumferential and axial directions, respec-
tively, and △t ¼ j△u2

v2
j is the time increment.△u2 ¼ 4p

nsteps

being the crank angle increment where nsteps is the
number of steps in one engine cycle, i.e. the complete load
cycle divided into nsteps parts. So, the total number of
data will be (nsteps+1), including the first and the last
data (e.g. for △u2= 5 ° , nsteps=144, and for △u2 = 1° ,
nsteps=720).

The nonlinear algebraic equations system (10) resulting
from the spatial-temporal discretization of the nonlinear
modified Reynolds equation is solved by the successive
substitution method with underrelaxation coefficient v
ranging from 0 to 1 similar to the one-dimensional
nonlinear root finding Wegstein’s method in order to
determine the oil film pressure field pi,j:

p
mð Þ
ij ¼ 1� vð Þp m�1ð Þ

ij þ vp
mð Þ
ij ; ð11Þ

where the superscript m indicates the number of iteration
for the successive substitution method.

Typical v values selected for the cases studied in this
work range from 10�3 to 10�1 depending on the nonlinear
behavior of the modified Reynolds equation. However, v
can be equal to 1 when solving the linear Reynolds
equation, i.e. for stiff bearing and/or isoviscous cases.

This method consists of building up a series of
solutions p

0ð Þ
ij ; p

1ð Þ
ij ; . . . . . . ; p

m� 1ð Þ
ij ; p

mð Þ
ij , where p

0ð Þ
ij the ini-

tial estimate of solution. The nodal pressures p
mð Þ
ij being

calculated by solving the following system by the Gauss–
Seidel algorithm with overrelaxation coefficient VGS in
order to accelerate the procedure convergence, especially
when dealing with transient and nonlinear problems, and
to fulfill the Reynolds cavitation conditions (7d) by
incorporating the Christopherson algorithm [27]. During
the iterative computation of fluid film pressure, the
pressure vanishes (pcav= 0) if the calculated pressure
becomes negative:

p
mð Þ
ij

� �nþ1
¼ 1�VGSð Þ p

mð Þ
ij

� �n
þVGS bi;j

	 
 m�1ð Þ
p

mð Þ
iþ1;j

� �n�
þ ci;j
	 
 m�1ð Þ

p
mð Þ
i�1;j

� �nþ1
þ di;j
	 
 m�1ð Þ

p
mð Þ
i;jþ1

� �n
þ ei;j
	 
 m�1ð Þ

p
mð Þ
i;j�1

� �nþ1

� fi;j

� � m�1ð Þ��
ai;j
	 
 m�1ð Þ ð12Þ

where (n) and (n+1) are the steps of Gauss–Seidel
iteration.

The iterative Gauss–Seidel procedure is stopped when
at each grid point (node i, j) the maximum relative error
between two successive iterations fell below a tolerant
error of 10�6, i.e.

max
p

mð Þ
ij

� � nþ1ð Þ
� p

mð Þ
ij

� � nð Þ

p
mð Þ
ij

� � nþ1ð Þ

�������
������� � 10�6: ð13Þ

Note that in relaxation methods, the execution time or
even the numerical stability is greatly affected by the
relaxation coefficient used. The optimum value for VGS is
not always predictable in advance [28].

The optimum value of VGS is that which is able to
converge to the solution for a tolerant error in a minimum
number of iterations or a small computing time. In practice,
it is generally determined via numerical simulations.

The stopping criterion of iterations in the successive
substitution algorithm is

knk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNxþ1

i¼1

XNzþ1

j¼1
p

mð Þ
ij � p

m�1ð Þ
ij

� �2
XNxþ1

i¼1

XNzþ1

j¼1
p

mð Þ
ij

� �2
vuuuut � 10�2; ð14Þ

knk being the relative least square norm.
2.6 Load balance and crankpin center orbit

When the external load acting on the bearing varies both in
direction and magnitude, the journal (crankpin) center
describes a trajectory within the bearing. The determina-
tion of this trajectory requires the solution of the nonlinear
equilibrium equations at each time step or crank rotation
angle with an iterative method. An inverse solution of
the Reynolds’ equation is then required.

For analigned journal bearing, theequilibriumequations
may be written when inertia forces of the crankpin are
neglected as

�
ZZ

A

p ⁢ cosu dAþ FX ¼ 0

�
ZZ

A

p ⁢ sinu dAþ FY ¼ 0

8>><
>>: ð15Þ

where FX, FY are the applied load components.
At each time, the position of the journal (crankpin)

center defined by the eccentricity vector e tð Þ ¼ eX tð Þ
eY tð Þ

( )
is determined when the lift force vector WðtÞ ¼
WXðtÞ
WY ðtÞ

( )
¼ �

Z Z
A

p
cosu

sinu

( )
dA balances the applied

load F tð Þ ¼ FX tð Þ
FY tð Þ

( )
expressed in the mobile coordinate

system related to the connecting-rod (X3,Y3).
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Equation (15) can be rewritten as

rX eX tð Þ; eY tð Þð Þ ¼
Z L

2

�L
2

Z u2

u1

p u; z; tð ÞcosuRdudz� FX tð Þ ¼ 0

rY eX tð Þ; eY tð Þð Þ ¼
Z L

2

�L
2

Z u2

u1

p u; z; tð ÞsinuRdudz� FY tð Þ ¼ 0

ð16aÞ
where rX and rY are the components of the residual vector
r (t), which is a nonlinear function of eX and eY.

The damped Newton–Raphson method is used to solve
the set of two nonlinear equations (16a). This method is
formulated on the linearization of equilibrium equations
using two variables, Taylor expansion of equations (16a) in

the neighborhood of the kth trial solution
e

kð Þ
X tð Þ
e

kð Þ
Y tð Þ

( )
, i.e.

r
kþ1ð Þ
X ≈ r

kð Þ
X þ ∂rX

∂eX

� �
k

de
kð Þ
X þ ∂rX

∂eY

� �
k

de
kð Þ
Y ¼ 0

r
kþ1ð Þ
Y ≈ r

kð Þ
Y þ ∂rY

∂eX

� �
k

de
kð Þ
X þ ∂rY

∂eY

� �
k

de
kð Þ
Y ¼ 0

:

8>>><
>>>: ð16bÞ

In the relaxed Newton–Raphson method, the (k+1)th
trial solution is

e
kþ1ð Þ
X tð Þ
e

kþ1ð Þ
Y tð Þ

( )
¼ e

kð Þ
X tð Þ
e

kð Þ
Y tð Þ

( )
þ vNR

de
kð Þ
X tð Þ

de
kð Þ
Y tð Þ

( )
; ð17Þ

where vNR is the damping factor in the interval (0, 1).
It was found during simulations that for liners with low

elasticity modulus and for piezo-viscous lubricants leading
to a nonlinear Reynolds equation, the use of the damped
Newton–Raphson method described above with
vNR=10�1 is required in order to obtain the numerical
convergence. On the other hand, for rigid liner and/or
isoviscous lubricant, the vNR value can be taken to be equal
to 1, because in such a case both Newtonian and non-
Newtonian Reynolds equations have a linear behavior in
terms of pressure p.

Note that the vNR value can be automatically adjusted
during iterations based on the rate of solution convergence.

The corrections
de

kð Þ
X tð Þ

de
kð Þ
Y tð Þ

( )
to

e
kð Þ
X tð Þ
e

kð Þ
Y tð Þ

( )
are found by

solving the following linear algebraic system deduced from
equation (16b)

See equation (18) below.
∂rX
∂eX

� �2

þ ∂rY
∂eX

� �2 ∂rX
∂eX

∂rX
∂eY

þ ∂rY
∂eX

∂rY
∂eY

Sym:
∂rX
∂eY

� �2

þ ∂rY
∂eY

� �2

2
6664

3
7775

e
kð Þ
X

;e
ð
Y

	

The obtained linear system is solved analytically.
The stopping criterion for the improved Newton–

Raphson method by which the iterative process can be
ended without any loss in solution accuracy is

jr kð Þ
X tð Þj þ jr kð Þ

Y tð Þj � e and k < kmax; ð19aÞ
which represents the Laplace’s norm L1 of the residual.

The Euclidean L2 norm of the residual can also be
used, i.e.

r
ðkÞ
X ðtÞ
r
ðkÞ
Y ðtÞ

8<
:

9=
;

T
r
ðkÞ
X ðtÞ
r
ðkÞ
Y ðtÞ

8<
:

9=
; � e; ð19bÞ

where e= 10�2 and kmax are the predefined convergence
tolerance and the maximum number of iterations,
respectively.

The partial derivatives appearing in matrix equation
(18) are evaluated numerically by central finite differ-
ences, i.e.

∂rX
∂eX

� �
k

≈
rX

�
e
ðkÞ
X þ d; e

ðkÞ
Y

�
� rX

�
e
ðkÞ
X � d; e

ðkÞ
Y

�
2d

;

∂rX
∂eY

� �
k

≈
rX

�
e
ðkÞ
X ; e

ðkÞ
Y þ d

�
� rX

�
e
ðkÞ
X ; e

ðkÞ
Y � d

�
2d

;

∂rY
∂eX

� �
k

≈
rY

�
e
ðkÞ
X þ d; e

ðkÞ
Y

�
� rY

�
e
ðkÞ
X � d; e

ðkÞ
Y

�
2d

;

∂rY
∂eY

� �
k

≈
rY

�
e
ðkÞ
X ; e

ðkÞ
Y þ d

�
� rY

�
e
ðkÞ
X ; e

ðkÞ
Y � d

�
2d

;

ð20Þ
where d=10�10 for calculations made in double precision.

2.7 Hydrodynamic characteristics
2.7.1 Side leakage flow

The side leakage flow at bearing edges z ¼ � L
2

	 

is

calculated by the following relation:

Qz ¼ 2

Z u�
2

u�
1

h u; z ¼ L

2

� �
w u; z ¼ L

2

� �� �
Rdu

�����
�����; ð21Þ

where u�1 tð Þ and u�2 tð Þ are the angles delimiting the active
zone of the bearing.
kÞ

de

kð Þ
X tð Þ

de
kð Þ
Y tð Þ

( )
¼ �

rX
∂rX
∂eX

þ rY
∂rY
∂eX

rX
∂rX
∂eY

þ rY
∂rY
∂eY

8>><
>>:

9>>=
>>;

e
kð Þ
X

;e
kð Þ
Y

	 
 ð18Þ
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In the above equations, h is the film thickness and

〈w x; zð Þ〉¼ 1
h

Z h

0

w x; y; zð Þdy is the axial mean flow velocity

calculated by the following relationship obtained for piezo-
viscous couple-stress fluid:

w x; zð Þh i ¼ �G h; l;a; pð Þ
12m0h

∂p
∂z

: ð22Þ

The axial flow velocity w (x, y, z) as well as the
circumferential velocity u (x, y, z) is determined from
integration of field equations governing the motion of the
lubricating oil in x- and z-directions:

h
∂4u
∂y4

� m0e
ap ∂

2u

∂y2
¼ � ∂p

∂x
: ð23aÞ

h
∂4w
∂y4

� m0e
ap ∂

2w

∂y2
¼ � ∂p

∂z
: ð23bÞ

Using the following boundary conditions,

u x; 0; zð Þ ¼ Ub ¼ vbR;
∂2u
∂y2

x; 0; zð Þ ¼ 0;u x;h; zð Þ

¼ Us ¼ vsR; and
∂2u
∂y2

x;h; zð Þ ¼ 0 ð24aÞ

w x; 0; zð Þ ¼ 0;
∂2w
∂y2

x; 0; zð Þ ¼ 0;w x;h; zð Þ
¼ 0; and
∂2w
∂y2

x;h; zð Þ ¼ 0; ð24bÞ

we get

See equations (25a) and (25b) below.

2.8 Power loss

The total power loss is evaluated on the active zone of
bearing from

P ¼ jPCouette&Hagen�Poiseuillej þ jPsqueezej; ð26Þ
u x; y; zð Þ ¼ Ub þ Us � Ubð Þ y
h|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Couetteflow

þ e�2ap

2m0

∂p
∂x

8>><
>>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl

w x; y; zð Þ ¼ e�2ap

2m0

∂p
∂z

y y� hð Þ
e�ap

þ

8>><
>>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl

Hage
where

PCouette&Hagen�Poiseuille ¼
Z L

2

�L
2

Z u�
2

u�
1

Z h

0

F1dyRdudz

þ
Z L

2

�L
2

Z u�
2

u�
1

Z h

0

F2dyRdudz ð27Þ

In equation (27), F1 and F2 are the dissipation
functions due to the shear stress and the couple-stress
effects, respectively. These two functions that appear on
the second hand of modified energy equation (3) can be
defined in hydrodynamic lubrication theory as

F1 ¼ 2mDijDij

¼ m
∂vi
∂xj

∂vi
∂xj

þ ∂vi
∂xj

∂vj
∂xi

� �
≈m

∂u
∂y

� �2

þ ∂w
∂y

� �2
" #

; ð28Þ

F2 ¼ 16hKiKi

¼ h
∂2vi

∂xj∂xj

∂2vi
∂xk∂xk

≈ h
∂2u
∂y2

� �2

þ ∂2w
∂y2

� �2
" #

: ð29Þ

After integration with respect to y, we get

PCouette &Hagen�Poiseuille

¼
Z L

2

�L
2

Z u�
2

u�
1

m0e
apðUs � UbÞ2

h
Rdudz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Shear induced power

þ
Z L

2

�L2

Z u�
2

u�
1

Gðh; l;a; pÞ
12m0

∂p
R∂u

� �2

þ ∂p
∂z

� �2
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pressure induced power

Rdudz

ð30Þ
and

Psqueeze ¼ F � _e ¼ FX � _eX þ FY � _eY ; ð31Þ
which is the power loss due to the squeezing effect.
y y� hð Þ
e�ap

þ 2ℓ2 1�
Cosh 2y�h

2ℓe�
1
2
ap

� �
Cosh h

2ℓe�
1
2
ap

� �
2
664

3
775
9>>=
>>;fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hagen�Poiseuilleflow

ð25aÞ

2ℓ2 1�
Cosh 2y�h

2ℓe�
1
2
ap

� �
Cosh h

2ℓe�
1
2
ap

� �
2
664

3
775
9>>=
>>;fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n�Poiseuilleflow

: ð25bÞ
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In equation (31), _eX ¼ deX
dt and _eY ¼ deY

dt are the
Cartesian components of the journal (crankpin) center
velocities in X- and Y-directions, respectively.

3 Results and discussion

3.1 Computation procedure

Based on the analysis described in the present paper, a
computational code in MS-Fortran 90 was developed to
study the isothermal elasto-hydro-dynamic (IEHD) be-
havior of layered connecting-rod big-end bearings lubri-
cated with piezo-viscous fluids with couple-stress.

The prediction of instantaneous position of the shaft
(crank pin) within the bush (big-end bearing) requires the
solution of an inverse problem throughout the thermody-
namic cycle of a reciprocating engine. In summary,
the procedure of calculation needs the following
five steps:

Step 1: From a position of the shaft center (eX, eY), we
calculate the film thickness h and the corresponding
pressure p.

Step 2: The hydrodynamic load W is calculated by
integrating the pressure on the bearing surface.

Step 3: The calculated load is then compared with the
applied load F: if the calculated load is different from the
applied load, we correct the position of the shaft, e.g. by
the iterative Newton–Raphson method, and we restart the
calculation.

Step 4: The iterative process is pursued until
convergence: the center position of the shaft inside the
bearing as well as the hydrodynamic characteristics of
bearing are thus determined at each time t.

Step 5: The load cycle is repeated several times until
two successive load cycles give identical shaft orbits.

The computed results include bearing center orbits,
variations of the minimum film thickness, the peak
pressure, the power loss and the side leakage flow versus
the crank rotation angle u2.

In this section, the couple-stress and the piezo-viscous
effects in the ungrooved connecting-rod big-end bearing
with thin elastic liner of the Ruston and Hornsby 6 VEB-X
MK III four-stroke marine diesel engine are investigated.
This particular connecting-rod bearing is the most
analyzed bearing in the technical literature [29].

The polar and Cartesian diagrams of the dynamic load
applied by the crankpin on the big end bearing of 0.127m
width during one engine cycle are presented graphically in
Figure 2. The load data expressed in the mobile frame
related to connecting-rod are reported in Table 1 for
crank step △u2 = 10°. These data are interpolated using
cubic splines for each 1° in order to ensure an accurate
solution.

The peak load is about 208 kN occurring at u2 = 10°
after top dead center (ATDC). For a four-stroke engine,
there are 720° crank angles in one engine cycle
corresponding to two complete rotations of crankshaft.
The time step used in the analysis being 1° crank angle.
So, there are 720 time steps or parts in one engine cycle,
viz. nsteps= 720.
Input parameters of engine, layered big-end bearing
and the properties of the motor oil ISO VG 100 used in this
investigation are reported in Tables 2–4.

To analyze big-end bearing, which has a 360°
circumferential oil supply groove of 0.0127m width
machined at its mid-section, we model it by treating each
half of the bearing land as a single bearing and assuming
that the magnitude of the supply pressure was negligible,
i.e. ps=0. By exploiting symmetry, it was only necessary to
analyze one half of the bearing land of 0.057m width
subjected to half loading. So, the load data given in Table 1
must be halved.

3.2 Validation

In order to verify the proposed method of solution, the
specific case chosen is also the connecting-rod big-end
bearing of the Ruston and Hornsby engine with and
without a full circumferential groove.

In Figure 3, we compare the results obtained in the
frame related to the connecting-rod (X3,Y3) by the current
method of solution based on the damped Newton–Raphson
algorithm and the subrelaxed successive substitutions
method with those calculated by a separate computer
program using the mobility method of Booker described in
details in reference [16]. The calculations were performed
in isothermal regime for both grooved and ungrooved
bearings with stiff liner using a Newtonian fluid of dynamic
viscosity m0= 15 mPa · s as lubricant.

Table 5 gives another check for the correctness of the
algorithm and the computer program by comparing the
predicted values of the minimum oil film thickness and
maximum film pressure with some results from the
literature for both grooved (full circumferential groove)
and ungrooved connecting-rod bearings [31–35].

Good agreement is observed and we may conclude that
the method of solution used in the present analysis is
validated for a rigid bearing lubricated with isoviscous
Newtonian fluids and operating under isothermal con-
ditions. Note that the discrepancies between the results
may be caused partly by the effect of supply pressure.
Indeed, our calculations were performed for the grooved
bearing configuration by setting the supply pressure in the
feeding groove at zero instead of ps=0.294MPa as stated
in reference [35].

3.3 Parametric study

Three different coated bearing configurations of the
ungrooved Hornsby & Ruston connecting-rod big-end
bearing are used for the isothermal analysis in order to put
in evidence the effects of the piezo-viscous and the presence
of couple-stresses in the lube oil on the dynamic responses
of these bearings. In this analysis, the dynamic responses
of a traditional bearing with a stiff liner of 2mm thickness
are calculated and compared with those obtained for
bearings with compliant liners made from white metal
(Babbitt) and polymer materials. Properties of the oil
sample and elastic characteristics of the bearing liner
materials are reported in Tables 3 and 4.
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Fig. 2. Dynamic loading on the Ruston and Hornsby 6 VEB-X connecting-rod big-end bearing including gas and inertia forces.
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3.4 Couple-stress effects

In Figure 4, three stationary journal (crankpin) orbits are
plotted in polar diagrams corresponding to the three
following configurations: a traditional bearing with stiff
liner, which is considered as rigid in solid line, and two
bearings with different liner materials (white metal, which
is a compressible material, and polymer (PEHD), which is
an incompressible material) in dash and dash-dot lines,
respectively. The clearance circle e/C=1 is also plotted
with dash line. For each bearing, the lubricant is considered
as a piezo-viscous fluid (a=20GPa�1), and the load cycle is
repeated several times until two successive load cycles give
identical shaft or journal orbits.

It is observed that the crankpin center orbits for
both Newtonian and non-Newtonian lubricants have
similar shapes even though the bearing is compliant.
But the couple-stresses produce more contracted
trajectories of the shaft center, which result in higher
minimum oil film thicknesses as depicted in Figures 5
and 6.

Although the minimum film thickness is sensitively
increased by the presence of couple-stresses, the maximum
film pressure is not really affected for both stiff and
compliant bearings as shown in Figures 7a and 7b. It is well
known that taking into account couple-stress effects leads
to a pressure distribution increase.

For the compliant bearing with a Babbitt liner, the
average values of minimum film thickness and maximum
film pressure obtained over the cycle are, respectively,
about 9.82mm and 22.32MPa for the Newtonian oil and
27.61mm and 20.39MPa for the oil blended with polymers



Table 1. Connecting-rod bearing loads at N=600 rpm adapted from references [18,29].

u2 deg:ð Þ FX3
, (N) FY 3

, (N)
cðdeg:Þ ¼ atan

FY 3

FX3

� �
u2 deg:ð Þ FX3

, (N) FY 3
, (N) c (deg .)

0 115336.60 0.000000 0. 370 �127301.80 8784.80 176.05
10 207899.50 8784.80 2.42 380 �118183.40 17107.01 171.76
20 134996.80 17107.01 7.22 390 �103593.90 24539.62 166.67
30 76594.56 24539.62 17.76 400 �84378.56 30744.58 159.98
40 46481.60 30744.58 33.48 410 �61738.24 35495.04 150.10
50 34343.01 35495.04 45.95 420 �37020.70 38670.91 133.75
60 35148.09 38670.91 47.73 430 �11720.48 40276.64 106.22
70 44524.48 40276.64 42.13 440 12699.04 40401.18 72.55
80 55511.04 40401.18 36.04 450 35014.66 39222.46 48.24
90 69967.04 39222.46 29.27 460 54354.56 36936.19 34.20
100 83755.84 36936.19 23.80 470 70233.92 33755.87 25.67
110 95809.92 33755.87 19.41 480 82643.84 29890.56 19.88
120 105506.60 29890.56 15.82 490 91895.68 25509.28 15.51
130 112401.00 25509.28 12.78 500 98434.24 20763.26 11.91
140 117382.70 20763.26 10.03 510 102837.80 15759.26 8.71
150 118361.30 15759.26 7.58 520 105551.00 10586.24 5.73
160 115870.40 10586.24 5.22 530 107018.90 5315.36 2.84
170 113646.40 5315.36 2.67 540 107508.20 0.000000 0.
180 110443.80 0.000000 0. 550 107018.90 �5315.36 357.16
190 108130.90 �5315.36 357.2 560 105551.00 �10586.24 354.27
200 106307.20 �10586.24 354.3 570 102837.80 �15759.26 351.29
210 102837.80 �15759.26 351.3 580 98434.24 �20763.26 348.09
220 98434.24 �20763.26 348.1 590 93007.68 �25509.28 344.66
230 89253.57 �25509.28 344.05 600 84912.32 �29890.56 340.61
240 82643.84 �29890.56 340.12 610 73258.56 �33755.87 335.26
250 70233.92 �33755.87 334.33 620 59247.36 �36936.19 328.06
260 54354.56 �36936.19 325.80 630 41811.20 �39222.46 316.83
270 35014.66 �39222.46 311.76 640 23267.49 �40401.18 299.94
280 12699.04 �40401.18 287.44 650 4087.712 �40276.64 275.79
290 �11720.48 �40276.64 253.78 660 �10399.42 �38670.91 254.95
300 �37020.70 �38670.91 226.25 670 �21443.81 �35495.04 238.87
310 �61738.24 �35495.04 209.89 680 �23872.42 �30744.58 232.18
320 �84378.56 �30744.58 200.02 690 �10270.43 �24539.62 247.29
330 �103593.90 �24539.62 193.32 700 17142.59 �17107.01 315.06
340 �118183.40 �17107.01 188.24 710 51774.72 �8784.80 350.37
350 �127301.80 �8784.80 183.94 720 115336.60 0.000000 0.
360 �130370.90 0.000000 189.00

Table 2. Diesel Ruston and Hornsby 6 VEB engine parameters data.

Parameter, symbol Unit Value

Engine speed, N rpm 600
Crankshaft arm length (crank throw), ℓ2 m 0.184
Connecting-rod length, ℓ3 m 0.782
Engine cycle (crank angle) degrees 720
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Table 3. Input parameters (geometric characteristics and operating conditions) used to study the performance
characteristics of layered connecting-rod bearing.

Parameter, Symbol Unit Value

Bearing diameter, D m 0.2032
Bearing length, L m 0.127
Radial clearance, C m 82:55� 10�6

Circumferential groove width m 0.0127
Circumferential groove angular amplitude degrees 360
Ambient and cavitation pressures, patm, pcav Pa 0.0
Supply pressure, ps Pa 0.0
Young’s modulus of bearing liner, E at T = 20 °C (68 F) [30]
– Babbitt, lead base white metal
– Polyethylene high density

GPa
29
0.9

Poisson’s ratio of bearing liner, s at T = 20 °C (68 F) [30]
– Babbitt, lead base white metal
– Polyethylene high density

–
0.33
0.35

Thickness of bearing-liner, tl m 2 � 10�3

Table 4. Rheological and physical properties of the motor oil ISO VG 100 under study.

Parameter, symbol Unit Value

Couple-stress parameter at constant temperature, h N · s 10−11

Viscosity–pressure coefficient at constant temperature, a(first Barus’ parameter) Pa�1 2 × 10−8

Dynamic viscosity at p = 0 and a constant temperature, m0 (second Barus’ parameter) Pa · s 15 � 10�3

(a) Steady-state orbits for un-grooved bearing 
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(b) Steady-state orbits for grooved bearing 
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Fig. 3. Comparison of predicted crank pin center cyclic path for both grooved and ungrooved Ruston and Hornsby 6 VEB connecting-
rod bearings determined after two load cycles.
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Table 5. Comparison of numerical results obtained in the present analysis with those provided by literature.

Ungrooved bearing Grooved bearing

Present
analysis

Goenka and
Paranjpe
[31]

Vincent and
Maspeyrot
[33]

Present
analysis

Goenka
[34,35]

Vijayaraghavan
[32]

Vincent and
Maspeyrot
[33]

hmin (μm) 9.16 at u2= 280° 8.78 8.74 3.74 at u2= 272° 3.47 3.60 4.03
pmax (MPa) 21.06 at u2= 11° – – 34.59 at u2= 11° 34.40 – –
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Fig. 4. Stationary crankpin center orbits for a complete engine cycle giving two crankshaft rotations.
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(couple-stress fluid model). Hence, the couple-stresses
result in an important increase of the minimum film
thickness by about 180% and a very slight drop in peak film
pressure by about 9%.

Likewise, for the compliant bearing with a liner made of
polymer (PEHD), which is a more compliant material
characterized by a lower elasticity modulus (E=0.9GPa),
the couple-stresses lead to a much more important increase
of the minimum film thickness by about 317% and a much
slighter drop in peak film pressure by about 6% even
though the minimum film thickness and the peak film
pressure are much lower than those obtained in the
previous bearing case, i.e. the compliant bearing with a
liner made of white metal (Babbitt).
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Fig. 5. Global minimum oil film thickness during the complete load cycle.
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Table 6 summarizes the results obtained for the three
different coated bearing configurations.

Figure 8 depicts the variation of side leakage flow and
power loss versus crank angle for both Newtonian (l=0)
and non-Newtonian oils (l/C=0.3). It is shown that for the
same applied dynamic load, with Newtonian fluid we
obtain higher side leakage flow and power loss when
compared to couple-stress fluid.

For the compliant bearing with a Babbitt liner (Tab. 6),
the mean values of side leakage flow and power loss for the
Newtonian fluid are higher than those for the couple-stress-
fluid by about 40 and 36%, respectively. Note that the
peaks of side leakage flow and power loss occur at u2= 10°

ATDC.

3.5 Effects of bearing liner elasticity

Stationary journal orbits of coated and uncoated (stiff)
bearings calculated for both Newtonian and couple-stress
lubricants are compared in Figure 4. As can be seen, the
journal orbit of the bearing coated with the liner in white
metal (Babbitt) is almost identical to that of the stiff
bearing. Unlike, the journal orbit of the bearing coated with
PEHD liner is significantly affected by the local deforma-
tion of the bearing liner compared to the journal orbit of the
bearing coated with liner in white metal characterized by
an elasticity modulus greater than that of the PEHD.

From Figures 5 to 7, which describe the history of the
minimum oil film thickness and the peak oil film
hydrodynamic pressure predicted for both Newtonian
and couple-stress fluids, it can be seen that there are
significant differences throughout the cycle in the mini-
mum film thickness and in the peak film pressure between
the most compliant bearing, i.e. the bearing with a liner in
PEHD and the bearing with a liner in white metal.

As indicated in Table 6, the least minimum oil film
thickness in one engine cycle obtained for the piezo-viscous
Newtonian case is 9.825mm for the compliant bearing with
a liner in white metal and 5.88mm for the compliant
bearing with a liner in PEHD (about 40% variation), and
the largest peak oil film hydrodynamic pressure is about
22MPa for the compliant bearing with a liner in white metal
(Babbitt)and16MPafor thecompliantbearingwitha liner in
PEHD (about 27% variation). However, the least minimum
oil film thickness in one engine cycle calculated for the piezo-
viscous fluid with couple-stresses is 27.61mm for the
compliant bearing with a liner in white metal and 24.52mm
for thecompliantbearingwitha liner inPEHD(i.e. about11%
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Fig. 6. Minimum oil film thickness calculated at the bearing centerline during the complete load cycle.
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variation,which isquiteverysmall thanthatoftheNewtonian
case), and the largest peak oil film hydrodynamic pressure is
about 20MPa for the compliant bearing with a liner in white
metal and 15MPa for the compliant bearing with a liner in
PEHD (i.e. about 25%variation), which is almost identical to
that of the Newtonian case.

From the same figures, it can also be seen that the
global least minimum oil film thicknesses calculated for the
bearing with a liner in white metal (i.e. the second bearing
configuration) and the bearing with a liner in PEHD (third
bearing configuration) occurs at different values of the
crankshaft rotation angle due to the elasticity effect of the
bearing liner, whereas the peak oil film hydrodynamic
pressure always is present at the same crank angle, i.e. in
the vicinity of u2= 10° ATDC for which the peak load
appears as depicted in Figure 2. Note that the global
minimum film thickness arises at the layered bearing edges
and it is always lower than that calculated in the mid-
section of the compliant bearing.

Figure 8 also compares the variations of side leakage
flow and power loss with crank angle for the three bearings
configurations (stiff and compliant bearings). The leakage
flow as well as the power loss show little difference over
the cycle for both Newtonian and non-Newtonian cases.
Note that the power loss is calculated considering only
the area with a full film. It can be concluded that there is no
significant effect of the bearing compliance on the side
leakage flow and the power loss. These results agree
qualitatively with those obtained by Mc Ivor and Fenner
[36] when the global deformations of the whole structure of
the Ruston and Hornsby connecting-rod big-end bearing
are considered in their finite element analysis.
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Fig. 7. Maximum oil film pressure during the complete load cycle.

Table 6. Comparison of hydrodynamic characteristics for isothermal analysis.

hmin, mm pmax, MPa emax 〈Qzi, cm3/s
or cc/s

〈Pi, W

a=2� 10�8 Pa�1 1a 9.825 22.32 0.881 47.5 1010
m0= 15� 10�3 Pa · s 2b 5.88 16.55 0.93 48. 998
h=0 3c 9.81 22.72 0.881 47.5 1012
a=2� 10-8 Pa�1 1a 27.61 20.39 0.666 33.9 743
m0= 15� 10-3 Pa · s 2b 24.52 15.51 0.70 34. 759
h=10-11 N · s 3c 27.55 20.73 0.67 33.9 743
a Babbitt, lead-base white metal;
b Polyethylene high density (PEHD);
c Stiff liner.
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Due to the bearing liner deformation, the gap
between the deformed bearing surface and the shaft is
geometrically different than that between the rigid
bearing surface and the shaft. Accordingly, the hydro-
dynamic pressure profile is also different for the two
bearing configurations. Figure 9 shows the hydrodynamic
pressure profiles along the centerline calculated for the
bearing with a liner in white metal and the bearing with
a liner in PEHD for some crank rotation angles. As
expected, one peak pressure occurs in the circumferential
direction of the bearings since only the local deforma-
tions are considered. Besides, the maximum hydrody-
namic pressure for the most compliant bearing (bearing
with PEHD liner) is lower than that obtained in the case
of the bearing with a liner in white metal having a
greater elasticity.
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Fig. 8. Side leakage flow and power loss during the complete load cycle.
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Fig. 9. Hydrodynamic pressure profiles in the mid-section of the bearing for some crank angles u2.
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4 Concluding comments

The combined effects of couple-stresses and piezo-
viscosity in dynamically loaded connecting-rod big-end
bearings with thin elastic liners under isothermal
conditions have been undertaken. The motor oil used
for lubricating such bearings was modeled as a non-
Newtonian couple-stress fluid in order to take into account
the couple-stresses in addition to the surface forces due to
the presence of various polymer additives. We showed
that this fluid model is characterized by a skew symmetric
stress tensor which comprises two physical properties m
and h denoting the classical dynamic viscosity and the
additional coefficient that specifies the couple-stress
character of the fluid, respectively. To these two
coefficients, we have added a third one denoted a to take
into account the piezo-viscosity effect. As the piezo-
viscosity a is independent of temperature in the present
work, the combined effects of couple-stresses and piezo-
viscosity on the dynamic response of three layered
connecting-rod bearing configurations were only investi-
gated using the isothermal assumption. Moreover, an
improved and relaxed iterative Newton–Raphson method
has been proposed for solving the equilibrium equations in
order to determine the trajectories of the crankpin center
within layered bearings.

The conclusions are as follows:

1.
 The pressure equation derived in this paper is more

general than the classical Reynolds equation for the
study of dynamically loaded bearings with elastic layers
using piezo-viscous fluids with couple-stress as lubri-
cants.
2.
 With the same applied dynamic loads, the couple-stress
fluids yield higher least minimum oil film thickness, and
more contracted orbits than Newtonian fluids.
3.
 The elastic deformations effects result in an expansion of
the orbit and a decrease of the maximum hydrodynamic
pressure especially for layered bearings with low-
elasticity modulus coatings (e.g. bearing with PEHD
liner).
4.
 For the cases investigated, the couple-stress effects are
more significant than the piezo-viscous effects.
Nomenclature

C Bearing radial clearance, m
C Scalar compliance operator, m

Pa=

E Young’s modulus of the bearing-liner,
Pa

e Eccentricity, ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2X þ e2Y

p
, m

FX, FY Applied load components, N
F Dynamic load applied on the big-end

bearing, ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

X þ F 2
Y

q
, N

eX, eY Displacement components of the shaft
(crankpin) center, m

h Oil-film thickness, m
L Length of bearing, m
l Characteristics length of polymer addi-

tives,=
ffiffiffiffiffiffiffiffi
h

m

�q
, m

N Rotational speed of engine (crank-
shaft), rpm

p Oil film pressure, Pa
pmax Instantaneous maximum film pressure,

Pa
ps Supply pressure, Pa
patm Ambient pressure, Pa
pcav Cavitation pressure, Pa
Qz Side leakage flow, m3/s
R Shaft radius, m
T Temperature field in the fluid, K
t Time, s
Dt Time increment, s
tl Thickness of bearing-liner, m
k Thermal conductivity of the fluid,

W/m ·K
ℓ2 Crankshaft-arm length, m
ℓ3 Connecting-rod length, m
(Ob, X3, Y3) or
(Ob, X, Y)

Mobile frame related to the connecting-
rod

P Total power loss, W
Pshear Shear power loss, W
Psqueeze Squeeze power loss, W
z Axial coordinate measured from mid-

dle section plane of the bearing, m
vi Cartesian components of the velocity of

fluid, m/s
a Pressure–viscosity coefficient, Pa�1

e Eccentricity ratio, e ¼ e
C

h Material constant responsible for cou-
ple-stresses, N · s

m Absolute viscosity of lubricant, Pa · s
n Kinematic viscosity of lubricant, m2/s
s Poisson’s ratio of the bearing-liner, �
Cp Lubricant specific heat, J/kg ·K
u Bearing angle, rad
u2 Crank angle, rad
u3 Angle between X1-axis related to

engine block and connecting-rod, rad
u�1; u

�
2 Instantaneous angular position of the

start and the end of the pressure curve,
respectively, rad

v2 Angular velocity of the crankshaft,
¼ du2

dt , rad/s
vs Angular velocity of shaft (crankpin),

rad/s
vb Angular velocity of bearing,¼ du3

dt ; rad/s
v Average angular velocity of shaft and

bearing, ¼ vs þvb

2 , rad/s
c Angle between the direction of applied

load F and X-direction, rad
r Mass density of lubricant, kg/m3

• •
• •

" #
Square matrix

〈• 〉 Average quantity
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•
•

( )
Column vector

•
•

( )T

Line vector where the superscript T
means the transpose
Abbreviations

ATDC : After top dead center
EHD : Elasto-hydro-dynamic
IEHD : Isothermal elasto-hydro-dynamic
GS : Gauss–Seidel
ISO : InternationalOrganization forStandardization
PEHD : Poly-ethylene high density
rpm : Revolution per minute
VG : Viscosity grade
VI : Viscosity index of lubricating oil
nsteps : Number of time steps in a load cycle
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