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Abstract. We propose an elasto-plastic model coupled with damage for the behavior of geomaterials in
compression. The model is based on the properties, shown in [S. Andrieux, et al., Un modèle de matériau
microfissuré pour les bétons et les roches, J. Mécanique Théorique Appliquée 5 (1986) 471–513], of microcracked
materials when the microcracks are closed with a friction between their lips. That leads to a macroscopic model
coupling damage and plasticity where the plasticity yield criterion is of the Drucker–Prager type with
kinematical hardening. Adopting an associative flow rule for the plasticity and a standard energetic criterion for
damage, the properties of such a model are illustrated in a triaxial test with a fixed confining pressure.

Keywords: Plasticity / damage / compression test / geomaterials / dilatancy
1 Introduction

Many works have been devoted to the modeling of the
mechanical behavior of geomaterials like concrete, rocks,
and soils and many phenomenological models have been
proposed to give an account of the main aspects of the
observed phenomena, namely, dilatancy and stress soften-
ing, while those materials are submitted to triaxial
compressions. The majority of these approaches is based
on elasto-plastic formalism with some of them having
resort to damage coupling. For instance, in soil or rock
mechanics, one generally uses elasto-plastic or more
generally (thermo)elasto-viscoplastic models without in-
troducing damage variables [1–3], whereas it is generally
admitted that one cannot reproduce the experimental
results observed for concrete without considering a damage
evolution law [4–10]. In all the cases the elasto-plastic
models are based on a restricted choice of yield criteria (like
Drucker–Prager one or some variants like Hoek–Brown
criterion [1,2] or the cap model [11]), with common feature
being the hypothesis of a nonassociative flow rule. The
reason generally invoked to put aside the normality rule for
the plasticity evolution is that otherwise a too important
dilatancy effects would be obtained in the evolution of the
volumetric strain once the normality rule is used, for
instance, for a standard Drucker–Prager-type criterion.
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This, evoked earlier, macroscopic elasto-plastic coupled
behavior is interpreted on a lower scale as the consequence
of the presence of microcracks inside the material. Because
of the compression, a part or all of those cracks are closed
and a friction between the lips of the cracks can prevent a
free sliding of the lips. This impossibility to relax to the
initial strain state results at themacro-level in the presence
of residual plastic strains. Moreover, if one assumes that
the sliding with friction between the lips follows Coulomb
law, then aDrucker–Prager-type criterion for the plasticity
law is naturally obtained. Finally, the growth of the
microcracks is in straight relation to the observed
progressive loss of rigidity of the samples and can be
reproduced at the macro-level by using a damage model.
But if those mechanisms related to the microcracking are
usually invoked to build macroscopic models, very few
works have been devoted to an authentic micromechan-
ical approach. An exception is reference [12] where such
an attempt is made by using Coulomb friction law for the
sliding of the crack lips and Griffith law for the crack
propagation; see also a more recent paper [13] where a
full 3D approach is proposed. Even if the analysis in
reference [12] is conducted in a simplified two-dimensional
setting where the uncracked material is assumed isotro-
pic, elastic, and homogeneous whereas the microcracks
are assumed straight and small enough to neglect their
interactions, some general properties are obtained and
can be used to construct more general macroscopic
models. In particular, the authors show that the elastic
mons Attribution License (http://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.
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energy stored in the microcracked material reads as the
following function of the total strain e and the plastic
strain p:

ĉðe;pÞ ¼ 1

2
A0ðe� pÞ � ðe� pÞ þ 1

2
A1p � p: ð1Þ

In equation (1), one uses the notations precised at the
end of this section. In particular, A0 denotes the stiffness
tensor of the soundmaterial, whereas A1 represents a loss
of stiffness due to the microcracks. Therefore, the
micromechanical approach leads to a term in the elastic
energy which corresponds to the energy blocked by the
contact with friction of the lips of the cracks. Let us note
that this latter term involves only the plastic strain
(and eventually the damage state via A1 dependence) not
the total strain. The damage state is supposed not to enter
in the first term of the energy equation (1) and,
consequently, even if the stress–strain relation still
reads as

s ¼ A0ðe� pÞ;

the stress which appears in the plasticity yield criterion
deduced from Coulomb friction law is not s but the
tensor X given by

X ¼ s �A1p:

In other words, the yield criterion is of the Drucker–
Prager type with a kinematical hardening where the back
stress A1p depends linearly on the plastic strain but also
nonlinearly on the damage state. These two particularities
(the presence of a kinematical hardening in the plasticity
yield criterion and the fact that damage appears only in
the blocked elastic energy) can generally not be seen in the
various models proposed in the literature; see however
references [10,14] where kinematical hardening is also
introduced. It turns out that they have fundamental and
rather unexpected consequences on the response of the
material under triaxial compression tests. In particular,
one can account for reasonable contractance and dilatancy
effects without leaving an associate flow rule. The goal of
the present paper is to study the specificity of the responses
of this type of models.

The paper is organized as follows. In Section 2 we con-
sider the elasto-plastic model without damage. Presenting
first the general ingredients of an associative plasticity law,
we progressively refine the model by introducing the
particularities coming from the micromechanical consider-
ations. We finally study the response of a volume element
submitted to a triaxial test at fixed confining pressure. The
damage is introduced in Section 3, still on the basis of the
micromechanical considerations. Using a standard law for
the damage evolution law, we obtain the complete model of
elasto-plasticity coupled with damage. After establishing
some general properties, we then consider a family of
particular models to finally calculate the response of the
volume element submitted to the triaxial test at fixed
confining pressure.
Throughout the paper, we use the following notations
(see also Tab. 1). The summation convention on repeated
indices is implicitly adopted. The vectors and second-order
tensors are indicated by boldface letters, like n and s for
the unit normal vector and the stress tensor. Their
components are denoted by italic letters, like ni and sij.
The fourth-order tensors as well as their components are
indicated by a sans serif letter, like A0 or A0ijkl for the
stiffness tensor. Such tensors are considered as linear maps
applying on vectors or second-order tensors and the
application is denoted without dots, like A0e whose
ij-component is A0ijklekl. The inner product between two
vectors or two tensors of the same order is indicated by a
dot, like a � b which stands for aibi or s � e for sijeij.

2 The elasto-plastic behavior at fixed
damage state

This section describes a pure elasto-plastic behavior law.
Even so the damage is not explicitly present in this
formulation, the latter could be considered as the model at
fixed damage state. The idea is to identify all the relevant
coupling terms which influence dilatancy and softening
behavior.

2.1 General considerations

An associative model of elasto-plasticity is defined by two
potentials:

1.
 The volume free energy function of the state variables.

2.
 The dissipation potential or equivalently the convex set

in which the thermodynamical forces associated with the
internal variables must lie.

Here we will only consider isothermal processes and a
plastic behavior with linear kinematical hardening. Accord-
ingly, the state variables are constituted by the strain
tensor e and the plastic tensor p without other internal
variables (the damage variable will be introduced in
Section 3). Therefore, the free energy density c is given by

c ¼ ĉðe;pÞ; ð2Þ
where the state function ĉ is assumed to be convex and at
least continuously differentiable. By differentiation, one
obtains the stress tensor s and the tensor X of the
thermodynamical forces associated with the plastic strain
tensor:

s ¼ ∂ĉ
∂e

ðe;pÞ; X ¼ � ∂ĉ
∂p

ðe;pÞ: ð3Þ

From themathematical point of view, e,p, s, and X are
order 2 symmetrical tensors which can be identified with
3� 3 symmetrical matrices after the choice of an
orthonormal basis. In other words, those tensors will be
considered as elements of M3

s.
The plasticity (or yield) criterion is defined by giving

the (closed with non-empty interior) convex set K of M3
s

where the thermodynamical forces X must lie. Here we



Table 1. Notation used throughout the paper for main mechanical quantities.

e Tensor Total strain tensor
p Tensor Plastic strain tensor
a Scalar Damage variable
_e Tensor Rate of the total strain
_p Tensor Rate of the plastic strain
s Tensor Stress tensor
X Tensor Thermodynamical force associated with p
Y Scalar Thermodynamical force associated with a

c Scalar Free energy per unit volume
ĉ Function Free energy state function
M3

s Set Linear set of 3� 3 symmetrical matrices
K Set Convex set of admissible X
pK Function Support function of the convex set K
D Scalar Dissipated power by unit volume
eD Tensor Deviatoric part of the strain tensor
eT Scalar Transversal strain
ez Scalar Axial strain
en ¼ Tr e Scalar Volumetric strain = trace of the strain tensor
pD Tensor Deviatoric part of the plastic strain tensor
pT Scalar Transversal plastic strain
pz Scalar Axial plastic strain
Trp Scalar Trace of the plastic strain tensor
sD Tensor Deviatoric part of the stress tensor
p0 Scalar Confining pressure
sz Scalar Axial stress
sm Scalar Mean stress = Tr s=3
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make the strong assumption that this domain is fixed, that
is independent of time and of the plasticity evolution.
(However, we will see in the next section that the image of
this domain in the stress space evolves with the plastic
strain.) In practice, the convex K is characterized by a
convex function f : M3

S ↦ℝ so that the plasticity criterion
reads as

X ∈ K ¼ fX� ∈ M3
s : fðX�Þ � 0g: ð4Þ

The interior points of K correspond to the forces X�

such that fðX�Þ <0 and the points on the boundary of K to
the forces X� such that fðX�Þ ¼0.

Since we only consider an associative model, the
evolution of the plastic strain follows the normality rule.
When the convex set K has a smooth boundary without
angular points, the function f is differentiable and the flow
rule can read as

_p ¼ _h
∂f
∂X

ðXÞ; with _h ¼ 0; if fðXÞ < 0

≥ 0; if fðXÞ ¼ 0
;

�
ð5Þ

where _h denotes the plastic multiplier. If the boundary
of K is not smooth and the normal is not defined at some
points, then the normality rule is extended by using the Hill
maximal work principle. In such a case, the flow rule is
given by

X ∈ K; ðX�X�Þ � _p ≥ 0; ∀X� ∈ K: ð6Þ
The inequality (6) says that_p must belong to the cone

of the outer normals to K at the point X of the boundary.
That inequality leads to equation (5) when the normal is
well defined at X.

From the energetic point of view, the energy which is
dissipated by plasticity can be defined in terms of the
support function of the convex K. Specifically, let us
introduce the support function pK of K:

p ∈ M3
s ↦pKðpÞ ¼ sup

X� ∈ K

X� � p ∈ ℝ: ð7Þ

By construction, pK is convex and positively homoge-
neous of degree 1,

pKðlpÞ ¼ lpKðpÞ; ∀l > 0; ∀p ∈ M3
s:

Moreover, pK vanishes at p ¼ 0, is nonnegative
provided that 0∈K, and can take the value +∞ when K
is not bounded. Its interpretation as the volume dissipated
power by plasticity comes from Clausius–Duhem
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inequality. Indeed, in isothermal condition, the dissipated
power (by volume unit) D is defined by

D ¼ s � _e � _c

and the second principle of thermodynamics requires
that D be nonnegative. Owing to equations (2) and (3), D
reads as

D ¼ X � _p:
By virtue of Hill maximal work principle (6) and the

definition (7) of the support function, one gets

D ¼ pKð _pÞ; ð8Þ
which means that pK plays also the role of the dissipation
potential. Furthermore, it is sufficient to have 0∈K for
Clausius–Duhem inequality to be satisfied, i.e., D≥ 0.

2.2 Choice of the form of the free energy state
function

Guided by the micromechanical considerations presented
in reference [12] for microcracked materials, we consider
that the plastic strain is due to the friction between the lips
of the (closed) microcracks. However, we do not assume
that Trp ¼ 0 and hence abandon the usual plastic
incompressibility condition. Consequently, the plastic
strain is a full symmetric second-order tensor and no more
a pure deviator. Moreover, the spherical part of p which
comes from the normal displacements between the lips of
the microcracks will be also governed by an irreversible
evolution law. Accordingly, we choose for the free energy
the following quadratic function of ðe;pÞ:

ĉðe;pÞ ¼ 1

2
A0ðe� pÞ � ðe� pÞ þ 1

2
A1p � p: ð9Þ

In equation (9) the first term represents the elastic
energy andA0 denotes the (fourth-order) stiffness tensor of
the sound material. The second term in equation (9)
represents the blocked energy by friction and the (fourth-
order) stiffness tensor A1 represents the loss of stiffness due
to the presence of microcracks. As one will see later, this
loss of stiffness is visible only when the sliding or the
opening between the lips of the cracks are active, i.e., when
_p ≠0.

The tensor A0 is positive definite and the tensor A1 is
assumed to be nonnegative. In fact, A1 is also positive
definite as soon as the material is microcracked, as it is
shown in reference [12]. But, we will also consider the case
when A1 vanishes to emphasize the strong influence of the
blocked energy on the mechanical behavior of the micro-
cracked material. Consequently, ĉ is a (strictly) convex
function of ðe;pÞ.

To simplify the presentation, we will assume that the
material remains isotropic (even when the damage grows).
Therefore, both tensors A0 and A1 have only two indepen-
dent moduli. Decomposing the strain and the plastic strain
tensors into their spherical and deviatoric parts

e ¼ 1

3
Tr e Iþ eD; p ¼ 1

3
Trp Iþ pD; ð10Þ
the free energy finally reads as

ĉðe;pÞ ¼ 1

2
K0ðTr e� TrpÞ2 þ m0ðeD � pDÞ � ðeD � pDÞ

þ 1

2
K1ðTrpÞ2 þ m1p

D � pD;

ð11Þ
where K0> 0 and m0> 0 are the compressibility and shear
moduli of the sound material, whereas K1≥ 0 and m1≥ 0
will be called the kinematical hardening moduli. The
elastic moduli K0 and m0 are related to the Young
modulus E0 and the Poisson ratio n0 of the sound material
by

3K0 ¼ E0

1� 2n0
; 2m0 ¼

E0

1þ n0
: ð12Þ

By differentiation of equation (11), the stress–strain
relation is linear and reads as

s ¼ A0ðe� pÞ: ð13Þ
Decomposing the stress tensor into its spherical and

deviatoric parts,

s ¼ smIþ sD; sm ¼ 1

3
Tr s; ð14Þ

the relation (13) becomes

s
D ¼ 2m0ðeD � pDÞ

sm ¼ K0ðTr e� TrpÞ :
(

ð15Þ

Still by differentiation, the thermodynamical forces
associated with the plastic strains read as

X ¼ s �A1p; ð16Þ

and they differ in general from the stresses when A1≠ 0.
Decomposing the forces X into their spherical and
deviatoric parts,

X ¼ XmIþXD; Xm ¼ 1

3
Tr X; ð17Þ

the relation (16) becomes

X D ¼ sD � 2m1p
D

Xm ¼ sm �K1Tr p
:

(
ð18Þ

2.3 Choice of the plasticity criterion

Drucker–Prager criterion (or some variants like Mohr–
Coulomb or Hoek–Brown criteria) is widely used in the
modeling of the behavior of geomaterials under compres-
sion, see references [1,2,5]. In general, those criteria are
used in a nonstandard context, i.e., with a nonassociative



1 Note that, contrarily to a frequent use in Civil Engineering, we
keep the convention used in Mechanics of Continuous Media for
the sign of the strains and the stresses: the traction is positive and
the compression negative.
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flow rule for the plasticity evolution, like in reference [3].
The main usual argument which is evoked to use a
nonassociative flaw rule is that one overestimates the
dilatancy effect with the normality rule associated with
Drucker–Prager criterion. On the contrary, we propose in
this paper to keep an associative flaw rule but with a
Drucker–Prager criterion which contains a kinematical
hardening. One of the main goals is to show how a
kinematical hardening can lead to relevant dilatancy
effects.

Specifically, in the present context, the Drucker–Prager
criterion reads in terms of the thermodynamical forcesX as

fðXÞ :¼ 1ffiffiffi
6

p ‖XD‖þ kXm � tc � 0: ð19Þ

In equation (19) k∈ (0, 1) is a dimensionless coefficient
associated with the internal friction, tc ≥ 0 represents a
critical stress which vanishes in absence of cohesion,
and k· k denotes the euclidean norm of a second-order
tensor (whereas the factor

ffiffiffi
6

p
is introduced for conve-

nience in order to simplify forthcoming expressions),

‖XD‖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD �XD

p
:

Consequently, the elastic domain

K ¼ fX ∈ M3
s : fðXÞ � 0g

is really a closed convex subset of M3
s (with non-empty

interior). In fact, K is a convex cone which has an angular
point at XD;XmÞ ¼ 0; tc=kð Þ�

and which is unbounded in
the direction of hydrostatic compressions. Furthermore,
even if the elastic domain is fixed in the space of the
thermodynamical forces, it varies with the plastic strain in
the stress space. Indeed, by virtue of equation (16), the
elastic domain expressed in term of s becomes the set KðpÞ
given by

KðpÞ ¼ s ∈ M3
s :

1ffiffiffi
6

p ksD � 2m1p
Dk

�
þ kðsm �K1TrpÞ � tc

�
:

Thus, KðpÞ is subjected to a linear translation when the
plastic strain evolves:

KðpÞ ¼ A1pþK:

Starting from equation (7), the support function pK of
the convex K is obtained after tedious calculations which
are not reproduced here and finally reads as

pKðpÞ ¼
tc

k
Tr p if Tr p≥ k

ffiffiffi
6

p
kpDk

þ∞ otherwise

:

8<
: ð20Þ

Since we adopt the normality rule, the evolution of the
plastic strain is directly deduced from equation (19).
Considering first a regular point of the boundary of K, the
flow rule reads as follows:

At X such that fðXÞ ¼ 0; X≠ ð0; tc=kÞ;

_pD ¼ Tr _p

k
ffiffiffi
6

p XD

kXDk
Tr _p ≥ 0

:

8><
>:

ð21Þ

Let us note that at such a point one has
Tr _p ¼ k

ffiffiffi
6

p
‖ _pD‖. At the angular point, the rate of the

plastic strain tensor must belong to the cone of the outer
normal to K. That leads to

At X ¼ ð0; tc=kÞ; Tr _p ≥ k
ffiffiffi
6

p
‖ _pD‖: ð22Þ

Consequently, the normality rule forces the trace of the
plastic strain to only increase with time, a fundamental
property to account for the dilatancy effects.

2.4 Response under a triaxial test with a confining
pressure

The elasto-plastic behavior of a material governed by
the associative Drucker–Prager law presented in the
previous sections is illustrated by considering the response
of a volume element during a triaxial test with a confining
pressure. Assuming that the volume element starts from a
natural reference configuration without plastic strain, the
test is divided into the following three stages:

1.
 First, the volume element is submitted to a hydrostatic

compression where the pressure is progressively in-
creased from 0 to a final value p0> 0.
2.
 Then, maintaining the lateral pressure to the value p0,
one compresses in the axial direction z by prescribing the
axial strain ez with _ez < 0. Accordingly, the response
will be purely elastic as long as |ez| is small enough so
that the plastic yield criterion is not reached.
3.
 Finally, whe|ez| is larger than a critical value, the volume
element plastifies.

Let us determine the evolution of the strains, the plastic
strains, and the stresses during those different stages with
respect to |ez| (which could be considered as the loading
parameter).1

2.4.1 Confining stage

During this stage the strain and stress tensors are purely
spherical and the plastic strain remains equal to 0. At
the end of this stage, the stresses and the strains are given
by

s ¼ �p0I; e ¼ � p0
3K0

I; p ¼ 0: ð23Þ
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Sincep=0, one has X ¼ s andDucker-Prager criterion
gives

fðXÞ ¼ �kp0 � tc < 0:

The axial strain ez decreases from 0 to �p0/3K0,
whereas the volumetric strain ev ¼ Tr e decreases from 0 to
�p0/K0. During all this stage, one has

_ev ¼ 3 _ez < 0

and hence a contractance due to the hydrostatic
compression.

2.4.2 Elastic stage at fixed confining pressure

During this stage, the plastic strain remains equal to 0:

p ¼ 0:

By symmetry, the stress and the strain tensors are of
the following form2:

X ¼ s ¼
�p0 0 0

0 �p0 0

0 0 sz

0
B@

1
CA; e ¼

eT 0 0

0 eT 0

0 0 ez

0
B@

1
CA;

where p0 and ez are prescribed. The deviatoric parts read as

sD ¼ ðsz þ p0ÞJ; eD ¼ ðez � eT ÞJ
with

J ¼
�1=3 0 0

0 �1=3 0

0 0 2=3

0
B@

1
CA; ‖J‖ ¼

ffiffiffi
2

3

r
:

sz and eT remain to be determined. They are given by
equation (15) with the help (12):

eT ¼ �n0ez � ð1� 2n0Þð1þ n0Þ p0
E0

; sz ¼ E0ez � 2n0p0:

ð24Þ
One deduces in particular the evolution of the

volumetric strain:

_ev ¼ ð1� 2n0Þ _ez < 0: ð25Þ
This stage stops when the stresses reach the yield

criterion, i.e., when fðsÞ ¼ 0. Since

fðsÞ ¼ 1

3
jsz þ p0j þ

k

3
ðsz � 2p0Þ � tc
2 Throughout the paper, all the tensors are represented by
matrices in the basis (ex, ey, ez) where z denotes the axial direction
whereas x et y denote the transversal direction.
and since sz+ p0< 0, the yield surface is reached when

sz ¼ � 1þ 2k

1� k
p0 �

3tc
1� k

: ð26Þ

The corresponding value of ez is deduced from
equation (24):

ez ¼ � 1� 2n0 þ 2ð1þ n0Þk
1� k

p0
E0

� 3tc
ð1� kÞE0

: ð27Þ

2.4.3 Plastification stage

Then, if the confining pressure is constant and if one
prescribes _ez < 0, the material will plastify. This plastifi-
cation stage strongly depends on the presence or not of the
kinematical hardening. Therefore, we will distinguish
between the two situations by considering first the case
where the hardening moduli m1 and K1 vanish, i.e., the
case without hardening.

1.
 Case without kinematical hardening. In such a

case, one gets X ¼ s and since the elastic domain is
fixed in the stress space, the stresses will remain blocked
to the value reached at the end of the elastic stage. In
other words, the lateral pressure is equal to p0 and the
axial stress sz is given by equation (26). Since _s ¼ 0,
one gets

_p ¼ _e

and hence p takes the form

p ¼
pT 0 0

0 pT 0

0 0 pz

0
B@

1
CA;

pD ¼ ðpz � pT ÞJ;
Trp ¼ pz þ 2pT :

ð28Þ

Since sz+ p0< 0, the flow rule (21) gives

_pT � _pz ¼
1

2k
ð _pz þ 2 _pT Þ≥ 0:

Since _pz ¼ _ez and _pT ¼ _eT , one gets

_eT ¼ _pT ¼� 1þ 2k

2ð1� kÞ _ez > 0:

Therefore, the volumetric strain rate is given by

_ev ¼ � 3k

1� k
_ez > 0: ð29Þ

Thus, the normality rule predicts a dilatancy of the
material during the plastification stage. In general, this
predicted dilatancy is too large by comparison with
experimental observations and that leads people to use
a nonassociative flow rule. We will see just below that
the kinematical hardening can strongly modify these
results.
2.
 Case with kinematical hardening. In such a case,
the stresses do not remain blocked. Their evolution is
obtained by assuming that the strain tensor remains of
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the form (28) and that the yield criterion is always
satisfied at a non-angular point, i.e.,

fðXÞ ¼ 0; with Xz < XT :

Let us note that this assumption is not restrictive
because we can use the general result of uniqueness of the
response in the case of an associative law with
kinematical hardening. Indeed, if we find a solution,
then we are sure that is the good one. (Note that such a
uniqueness result is no more ensured in the case of
nonassociative flow rule.)

Accordingly, one gets

XD ¼ Xz �XTð ÞJ; 3Xm ¼ Xz þ 2XT

and
XT �Xz þ 3kXm ¼ 3tc:

Differentiating these relations with respect to time and
taking into account equation (18) lead to

_XT � _Xz þ 3k _Xm ¼ 0
_Xz � _XT ¼ _sz � 2m1 _pz � _pTð Þ
3 _Xm ¼ _sz � 3K1Tr _p

8><
>:

The flow rule (21) gives

_pz � _pT ¼ �Tr _p

2k
: ð30Þ

Combining the four previous relations gives the
following relationship between _sz and Tr _p:

_sz ¼ �m1 þ 3k2K1

ð1� kÞk Tr _p: ð31Þ

Differentiating the stress–strain relations (13) gives

_sz ¼ 2m0 _ez � _eT þ _pT � _pzð Þ
_sz ¼ 3K0 _ev � Tr _pð Þ
_ev ¼ _ez þ 2 _eT

:

8><
>:

Eliminating _eT and using the flow rule give two other
relations between _sz, Tr _p, _ev, and _ez:

_sz ¼ m0 3_ez � _ev þ Tr _p

k

� �
; _sz ¼ 3K0 _ev � Tr _pð Þ: ð32Þ

Using equation (31) allows us to determine _sz, Tr _p,
and _ev in terms of _ez. We finally get

Tr _p ¼ � 3k _ez

1� kþ 3 m1þ3k2K1ð Þ
1�kð ÞE0

> 0; ð33Þ

_ev ¼ 1� m1 þ 3k2K1

k 1� kð Þ3K0

� �
Tr _p: ð34Þ
Therefore, equation (33) shows that the kinematical
hardening tends to decrease Tr _p and even equation (34)
shows that the sign of _ev depends on the intensity of
the hardening. Specifically, if the hardening moduli are
small enough (by comparison with the elastic moduli),
then _ev > 0 and there is dilatancy. But, if the hardening
moduli are large enough, then _ev < 0 and there is con-
tractance. Moreover, let us note that if m1 =K1= 0, then
we recover that _ev ¼ Tr _p and the relation (29). But, if m1
and K1 are very large by comparison to m0 and K0, then
one gets

_ev � 1� 2n0ð Þ _ez < 0;

which is nothing but the relation (25) obtained in the
elastic stage for the volumetric strain change. In
conclusion, according to the ratio between the hardening
moduli and the elastic moduli, the volumetric strain
evolution can lead to a strong dilatancy effect correspond-
ing to perfect plasticity as well as a contractance effect like
in elasticity. This last conclusion leads to a foretaste
consideration (developed in detail in the next section) for
a relevant damage coupling � once the damage affects A1
tensor, it directly impacts the dilatancy strength of the
given law.

3 The elasto-plastic behavior coupled with
damage

In this section we introduce the damage into the elasto-
plastic model. As mentioned at the end of Section 2, the
coupling could be introduced purely from macroscopic
considerations. We made a choice for more physical
approach starting from a set of hypothesis which will
finally lead to the same coupling. Let us first present a list of
assumptions used in that construction before particulariz-
ing the model.

3.1 Main assumptions on the damage dependence

Although there exist an infinite number of ways to
couple damage with plasticity [5–9], we will make the
simplest choices. Specifically, the following are the main
assumptions:

1.
 The damage state is characterized by a scalar variable a

which can grow from 0 to 1, a=0 corresponding to a
sound material, and a=1 corresponding to a full
damaged material.
2.
 The damage state enters in the expression of the free
energy, but not in the plasticity criterion. In other
words, the convex domain K is independent of a.
3.
 The dissipated energy by damage is only function of the
damage state.

By virtue of these assumptions, the state of the
material point is characterized by the triple e; p;að Þ
and the free energy is still a function of state which now be
read as

c ¼ ĉðe;p;aÞ: ð35Þ
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The function ĉ is still assumed to be continuously
differentiable from which one deduces the stresses s and
the thermodynamical forces X and Y associated with the
plastic strain and the damage. Specifically, one sets

s ¼ ∂ĉ
∂e

e;p;að Þ; X ¼ � ∂ĉ
∂p

e;p;að Þ;

Y ¼ � ∂ĉ
∂a

e;p;að Þ: ð36Þ

In equation (36),Y can be interpreted as the free energy
release rate associated with a growth of the damage at
constant strain. Since it is natural to assume that the
release of energy is really nonnegative, one adds the
following condition of positivity for Y:

� ∂ĉ
∂a

e;p;að Þ≥ 0; ∀e; ∀p ∈ M3
s ; ∀a ∈ ½0; 1�; ð37Þ

condition which restricts the dependence of the free energy
on a.

Since the plasticity criterion is assumed to be indepen-
dent of a (hypothesis (2)), the plastic dissipation potential
still reads as

pKð _pÞ ¼ sup
X� ∈ K

X� � _p;

where K is a closed convex subset of M3
s. Finally, by

hypothesis (3), the damage dissipated energy d reads as

d¼ D̂ að Þ; ð38Þ
where D̂ is a nonnegative differentiable function of a
which vanishes at a=0:

D̂ð0Þ¼ 0; D̂0ðaÞ > 0; ∀a ∈ ½0; 1�:
This assumption is also motivated by the micro-

mechanical approach of reference [12]: indeed, if one
considers microcracked materials whose microcracking
evolution is governed by Griffith’s criterion, then dissipat-
ed energy by damage corresponds to the Griffith surface
energy.

Therefore, the part _d of the dissipated power due to the
evolution of damage simply reads in terms of the damage
state and the damage rate as

_d ¼D̂0ðaÞ _a;
whereas the total dissipated power due to the evolution of
both the plastic strain and the damage is given by

D ¼ pKð _pÞ þ D̂0ðaÞ _a:
It remains to formulate the damage evolution law. As

for the elasto-plastic behavior, we adopt a standard law in
the sense of the concept of Generalized Standard Materials
proposed in reference [15] or [16] in a general context
and particularized by [17,18] for damaging materials.
Specifically, the evolution of the damage consists in the
following three items:

1.T
he irreversibility condition:Damage can only grow and

hence one requires that _a ≥ 0 at any time.

2.T
he damage criterion: The free energy release rate must

remain less or equal to the critical value D̂0 ðaÞ given by
the damage dissipated power:

Y � D̂0 ðaÞ: ð39Þ

3.T
he consistency relation: Damage can only evolve when

the free energy release rate is equal to its critical value,
condition which can read as

ðY � D̂0ðaÞÞ _a ¼ 0: ð40Þ

3.2 The associative elasto-plastic Drucker–Prager
model with kinematical hardening coupled with
damage

Let us particularize now the model that we will use for
geomaterials in compression.

3.2.1 Choice of the free energy and of the dissipated
energy by damage

Let us first introduce the damage variable into the
expression (9) of the free energy. The micromechanical
approach developed in reference [12] for a microcracked
material with contact and friction between the lips of the
cracks shows that only the hardening tensorA1 depends on
the crack state, the tensor A0 representing the stiffness of
the sound material. Therefore, we will assume that A1 only
depends on the damage variable and hence the expression
of the free energy becomes

ĉ e; p; að Þ ¼ 1

2
A0 e� pð Þ � e� pð Þ þ 1

2
A1 að Þp � p: ð41Þ

Moreover, if we assume that the material is isotropic,
then one gets

ĉ e;p;að Þ ¼ 1

2
K0 Tr e� Trpð Þ2

þ m0 eD � pD
� � � eD � pD

� �
þ 1

2
K1 að ÞðTrpÞ2 þ m1 að ÞpD � pD

: ð42Þ

The positivity of the stiffness tensor A0 and of the
hardening tensor A1 requires that K0, m0, K1(a), and
m1(a) satisfy the following inequalities:

K0 > 0; m0 > 0; K1 að Þ≥ 0; m1 að Þ≥ 0; ∀a ∈ ½0; 1�:

The energy release rate reads as

Y ¼ � 1

2
K0

1 ðaÞðTrpÞ 2 � m0
1 ða ÞpD � pD ð43Þ
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and hence it depends only on the plastic strain and the
damage, and not on the total strain. In order that Y be
nonnegative, refer to the condition (37), it is necessary and
sufficient that

K0
1 að Þ � 0; m0

1 að Þ � 0; ∀a ∈ ½0; 1�:

The damage criterion becomes then

� 1

2
K0

1 að ÞðTrpÞ2 � m0
1 að ÞpD � pD � D̂0 að Þ:

Since the Drucher–Prager yield criterion is assumed to
be independent of damage, the model will be complete once
the three functions a↦K1 (a), a↦m1(a), and a↦ D̂ að Þ
are given for a∈ [0, 1]. In fact since the choice of the damage
variable is arbitrary, it is always possible, after a suitable
change of variable, to fix one of the three functions.
The state variables: e;p;að Þ∈M3
s � M3

s � ½0; 1�
The free energy density:

c ¼ 1

2
K0 Tr e� Trpð Þ2 þ m0 eD � pD

� � � e
�

The stress–strain relationships:

sD ¼ 2m0 e
�

sm ¼ K0ðT

�

The plasticity evolution law:

The plasticity thermodynamical forces:
XD ¼ sD � 2m1

Xm ¼ sm �K1ð

�

The plasticity yield criterion: f Xð Þ :¼ 1ffiffiffi
6

p ‖XD‖þ kXm �

The plasticity flow rule:
_pD ¼ Tr _p

k
ffiffiffi
6

p XD

kXDk ; Tr _p ≥ 0

Tr _p ≥ k
ffiffiffi
6

p k _pDk≥ 0;

8><
>:

The damage evolution law:
The irreversibility condition: _a ≥ 0

The damage criterion: Y :¼ � 1

2
K0

1 að ÞðTrpÞ2 � m0
1 að ÞpD �

The consistency condition: Y �D1ð Þ _a ¼ 0

Remark 3.1 This model can be written in a variational form fo
rate-independent evolution laws. After the choice of the expressio
energy, as a function of the state variables, the evolution of the int
(i) an irreversibility principle, (ii) a stability criterion, and (iii) an e
refer to references [20–22] where its application to elasto-plasticity an
construct nonassociative plasticity model, see reference [11] for an e
induced by the damage evolution. Thatmeans that the present local
damage terms in the energy) in order that the damage localization
regularized model, the variational approach should be really usefu
Here we choose to fix the function D̂ by setting

D̂ að Þ ¼ D1a; ð44Þ
where D1 is a positive constant which has the dimension
of a stress (or equivalently an energy by volume unit).
Accordingly, the dimensionless damage variable a can
be interpreted as the fraction of the volume energy
dissipated by damage at the current damage state by
comparison to D1 which represents the volume dissipat-
ed energy by damage when the volume element is totally
damaged.

3.2.2 The complete model

Finally, the associative elasto-plastic Drucker–Prager
model with kinematical hardening coupled with damage
consists in the following set of definitions and relations:
D � pD
�þ 1

2
K1 að Þ Trpð Þ2 þ m1 að ÞpD � pD

D � pD
�

r e� TrpÞ

að ÞpD

aÞTrp

tc � 0

if fðXÞ¼ 0; XD ≠0

if fðXÞ¼0; XD¼0

pD � D1

llowing the general presentation proposed in reference [19] for
n of the total energy, sum of the free energy, and the dissipated
ernal variables is deduced from three general physical principles:
nergy balance. The interested reader for such an approach could
d damagemodels is developed. That approach can even be used to
xample. Note also that the model has a stress-softening character
modelmust be regularized (for instance, by introducing gradient of
in a body be limited and controlled. For the construction of the
l and even necessary.
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3.3 Application to the triaxial test with containing
pressure
3.3.1 Some general properties

Let us reconsider the triaxial test by including now the
possibility of damage of the volume element. The results
obtained in Section 2.4 remain valid as long as the
plasticity yield criterion is not reached. In other words, the
confining stage and the elastic stage remain unchanged.
What happens after depends in particular on the choice of
the functions m1(a) and K1(a). However we can obtain
some general properties without specifying those functions
provided that they satisfy the following conditions:

K1 ð0Þ ¼ m1 ð0Þ ¼ þ∞
K0

1 0ð Þ ¼ m0
1ð0Þ ¼ �∞

; K1ð1Þ ¼ m1ð1Þ ¼ 0

�
ð45Þ

∀a ∈ ð0; 1Þ :
K1 að Þ > 0; m1 að Þ > 0

K0
1 að Þ < 0; m0

1 að Þ < 0

K00
1 að Þ > 0; m00

1 að Þ > 0

:

8><
>: ð46Þ

Those conditions are inspired by the micromechanical
model presented in reference [12]. In particular, the fact
that the hardening moduli are infinite when a=0 ensures
that the elastic moduli K0 and m0 are those of the
undamaged material. In the same manner, the fact that
the hardeningmoduli vanish when a=1 corresponds to the
total loss of stiffness when the material is fully damaged.
The hypothesis that the second derivatives of K1 and m1
are positive plays an important role as we will see below.
Let us now establish some general properties based on the
above assumptions.

1.
 Damage evolves only with plasticity. Let us first show

that damage can grow only when plasticity evolves.
Indeed, by virtue of the damage criterion, damage
evolves only when Y=D1, i.e., when

� 1

2
A0

1 að Þp � p ¼ D1:

Differentiating this relation with respect to t leads to

1

2
A00

1 að Þp � p _a ¼ �A0
1 að Þp � _p ð47Þ

fromwhich one deduces that _a ¼ 0 if _p ¼ 0, which is the
desired result. Let us note that this result is essentially
due to the fact that the stiffness tensorA0 is assumed to
be damage independent.
2.
3 Let us note that the uniqueness of the response is not guaranteed
Damage starts at the same time as plasticity. Indeed,
by virtue of the hypothesis K0

1ð0Þ ¼ m0
1ð0Þ ¼ �∞, the

damage criterion at the onset of damage gives

� 1

2
K0

1 0ð Þ Trpð Þ2 � m0
1ð0ÞpD � pD � D1

and hence can be satisfied only if p=0.

in presence of damage without making extra assumptions on the
3.

functions m1(a) and K1(a). This study on the uniqueness will not
be made here.
Form of the strain, plastic strain, and stress tensors
during the plasticity stage with damage. The previous
properties suggest to search a response such that damage
and plasticity evolve simultaneously. During this
damage with plasticity stage, the strain and stress
tensors are assumed to be of the form3

s ¼
�p0 0 0

0 �p0 0

0 0 sz

0
B@

1
CA; e ¼

eT 0 0

0 eT 0

0 0 ez

0
B@

1
CA;

p ¼
pT 0 0

0 pT 0

0 0 pz

0
@

1
A

where p0 remains constant and ez is a given function of
time which is decreasing from its critical value given in
reference (27).
4.
 Relationship between Trp and a. Inserting the form of
the different tensors into the plasticity flow rule (which
does not involve the damage state) gives

pz � pT ¼ �Trp

2k
: ð48Þ

Reporting this relation into the damage criterion
gives Trp in function of a:

Trp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6k2D1

�R0 að Þ

s
ð49Þ

where R (a) is the following combination of the harden-
ing moduli:

R að Þ :¼ m1 að Þ þ 3k2K1 að Þ: ð50Þ
Let us note that, since the second derivatives of K1

and m1 are positive, Trp is a strictly increasing function
of a. That means that the required inequality Tr _p > 0
is satisfied provided that _a > 0.
5.
 Relationship between sz and a. The plasticity criterion
with the definition of the plasticity thermodynamical
forces give the following three equations:

XT �Xz þ 3kXm ¼ 3tc

Xz �XT ¼ sz þ p0 þ m1 að Þ Trp
k

3Xm ¼ sz � 2p0 � 3K1 að ÞTrp
:

8><
>:

Eliminating XT, Xz, Xm and using equation (49)
allow us to obtain sz as the following function of a:

1� kð Þsz ¼ �3tc � 1þ 2kð Þp0 �
ffiffiffiffiffiffiffiffiffiffiffi
6D1

S0ðaÞ

s
; ð51Þ



S að Þ ¼ 1

R1

an

1� að Þm

S0 að Þ ¼ 1

R1

m� nð Þaþ n

a1�n 1� að Þmþ1

S00 að Þ ¼ 1

R1

m� nð Þ m� nþ 1ð Þa2 þ 2n m� nþ 1ð Þa� n 1� nð Þ
a2�n 1� að Þmþ2

8>>>>>>>><
>>>>>>>>:
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where

S að Þ :¼ 1

R að Þ :

One then checks that sz is always negative. Its
absolute value will be either increasing or decreasing
when a grows according to the second derivative of the
compliance function S (a) which is negative or positive.
The former case, when S00 að Þ < 0, corresponds to a
stress-hardening response, whereas the second one,
when S00 að Þ > 0, corresponds to a stress-softening
response. Note that the sign of the second derivative
of S(a) is not given by the sign of the second derivative
of R(a) and hence constitutes an additional choice for
the model.
6.
 Relationships between ez, ev, and a. The stress–strain
relations allow us to express ez and ev in terms of a.
Specifically, taking into account equations (49) and (51),
one gets

ez ¼ sz

E0
� 1

k
� 1

� �
Trp

3
þ 2n0p0

E0
; ð52Þ

ev ¼ sz � 2p0
3K0

þ Trp: ð53Þ
7.
 The relation between the axial stress sz and the axial
strain ez. The relations (51) and (52) give the relation
between ez and sz under the form of a curve parametrized
by a. Let us note that we are not ensured that ez is a
monotonic function of a. Specifically, when S00ðaÞ < 0
(stress-hardening behavior), then _ez < 0 when _a > 0
and hence damage grows when ez (which is negative)
is decreasing. But, when S00ðaÞ > 0, then the sign of _ez is
not guaranteed when _a > 0, because the term in sz is
increasing, whereas the term in Trp is decreasing.
Therefore, a snap-back is possible. If such a snap-back
exists, the control of the axial strain ez necessarily
implies a discontinuous evolution of the damage. That
can even lead to a brutal rupture of the volume element
with a sudden jump of a to 1 when ez reaches its limit
value.
8.
 The relation between the volumetric strain ev and the
axial strain ez. The relations (51)–(53) give the relation
between ev and sz under the form of a curve parametrized
by a. Here also one can have a competition between the
term in sz and the term in Trp. During the hardening
phases, one has _sz < 0 and Tr _p > 0. Consequently,
according to the respective weight of the two terms, one
will observe either a contractance or a dilatancy. On the
contrary, during the softening phases, since _sz > 0 and
Tr _p > 0, one will always observe a dilatancy.

These different properties are illustrated in the next
section by particularizing the model. Let us note that in
the triaxial test with a fixed confining pressure, the
functions m1(a) and K1(a) appear only by their com-
bination R(a) (which involves also the internal friction
coefficient k). Therefore, it is sufficient to know the
function R(a) and the constants m0, K0, D1, k, and tc to
characterize the model, the confining pressure p0 playing
the role of a parameter.
3.3.2 Study of a family of models

Let us consider the following family of functions R(a):

R að Þ ¼ R1
1� að Þm
an

; with R1 > 0; m > 1; 0 < n < 1:

ð54Þ

This choice of function is governed mainly by our
intention to control the asymptotic behavior both at the
initiation of damage (a≈ 0 power law of n) and at the end of
microcracking (a≈ 1 power law of m). One easily checks
that such a function a↦R(a) is really compatible with
the hypotheses (45) and (46). Indeed, R (a) is strictly
decreasing from +∞ to 0 when a grows from 0 to 1. Its first
and second derivatives are given by

R0ðaÞ ¼ �R1ððm� n Þaþ nÞ ð1� aÞm�1

anþ1
;

R00ðaÞ ¼ R1ððm� nÞðm� n� 1Þa2

þ 2nðm� n� 1Þaþ nðnþ 1ÞÞ ð1� a Þm�2

anþ2
:

8>>>>>>><
>>>>>>>:

It is also not difficult to verify that R00 að Þ > 0 for
every a∈ (0, 1) because m> 1> n> 0. The first derivative
R0(a) is strictly increasing from�∞ to 0 when a grows from
0 to 1. By virtue of equation (49), one deduces that Trp
grows from 0 to +∞ with the evolution of damage.

The compliance function S (a) and its first and second
derivatives are given by

See equation above.
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The study of the sign of S00(a) shows that S00(a) is
negative in the interval (0,a0),positive in the interval (a0, 1)
with a0 given by

a0 ¼ 1

m� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn

m� nþ 1

r
� n

� �
: ð55Þ

Therefore, by virtue of equation (51), the absolute value
of the axial stress sz increases and one observes a stress-
hardening behavior when a grows from 0 to a0, then |sz|
decreases and one observes a stress-softening behavior
when a grows from a0 to 1. Moreover, since S0 (0)= S0(1)=
+∞, sz starts from the value given by equation (26) and
corresponding to the end of the elastic stage, then increases
(in absolute value) until its maximal value corresponding
to the time at which the damage reaches the value a0,
and finally decreasing (in absolute value) to come back to
the value (26) reached at the end of the elastic stage. The
absolute value of the overstress Dsz associated with the
stress-hardening phase is given by

Dsz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6D1

1� kð Þ2S0 a0ð Þ

s
: ð56Þ

Let us first study the variations of the axial strain ez in
function of the damage a and let us analyze under which
condition a snap-back occurs. Starting from equation (52)
and using the fact that ez is negative, one deduces that the
derivative of ez with respect to a is always negative.
Therefore, a snap-back exists if and only if the following
condition is satisfied:

S00 að Þ
R00 að Þ

� R0 að Þð Þ3=2
S0 að Þð Þ3=2 � 1� kð Þ2 E0

3
; ∀a ∈ 0; 1ð Þ: ð57Þ

Since R (a) is of the form R1R að Þ, the left-hand side
above can read as

S00 að Þ
R00 að Þ

� R0 að Þð Þ3=2

S0 að Þð Þ3=2
¼:R1’ að Þ; ð58Þ

where the function a↦’ (a) depends only on the expo-
nents m and n of the model. In the neighborhood of a=1,
the different terms behave as follows:

R0 að Þ∼�R1m 1�að Þm�1; R00 að Þ∼R1m m�1ð Þð1�aÞm�2;

S0 að Þ∼ m

R1
1�að Þ�m�1; S00 að Þ∼mðmþ1Þ

R1
1�að Þ�m�2

8<
:

Hence, one gets

’ að Þ∼ mþ 1

m� 1
ð1� aÞm:

Therefore, since ’ is continuous, negative in the interval
(0, a0), positive in the interval (a0, 1), and since
’ (a0)=’ (1)= 0, the function ’ reaches its upper bound
in the interval (a0, 1), the upper bound depending only on
m and n. Hence, the condition of non-snap-back (57) can
read as

R1 � 1� kð Þ2E0

3maxa∈ ½a0;1�’ að Þ : ð59Þ

In other words, there is no snap-back provided that the
hardeningmodulus R1 is small enough. Let us note that this
condition depends on the parameters E0, K,m, and n of the
model, but is independent of D1, tc, and the confining
pressure p0.

Let us now study the variations of the volumetric strain
ev as a function of the damage a and let us analyze when one
observes a contractance or a dilatancy. We assume that R1
is small enough and satisfies equation (59) so that there is
no snap-back in the response sz� ez and hence _ez < 0. By
virtue of equation (53), one has _ev < 0 and hence con-
tractance if and only if

_sz þ 3K0Tr _p > 0:

With the help of equations (49) and (51), that condition
can be expressed in terms of ’ (a) defined by equation (58).
Specifically, one observes a contractance at the time when
the damage reaches the value a if the following condition
is satisfied:

’ að Þ < �3k 1� kð ÞK0

R1
: ð60Þ

That can happen only during the phase where ’ is
negative, that is only during the stress-hardening phases.
During the stress-softening phases, since ’> 0, one
observes a dilatancy. Therefore, a contractance can happen
only at the beginning of the test, as long as a<a0. Since
the behavior of the first and the second derivatives of R
and S in the neighborhood of a=0 is given by

R0 ðaÞ ∼ � R1na
�n�1 ; R00 ðaÞ ∼R1n ðnþ 1Þ a�n�2;

S0 ðaÞ ∼ n

R1
an�1; S00 ðaÞ ∼ � nð1� n Þ

R1
an�2 ;

8<
:

one gets

’ðaÞ∼ � 1þ n

1� n
a�n:

Consequently, since ’ (0)=�∞, one obtains a con-
tractance when a is small enough. On the contrary, as soon
as a becomes larger than a critical value (which is
necessarily less than a0), one observes a dilatancy until
the complete rupture of the volume element. Let us note
that since _sz tends to 0 when a tends to 1, one gets by virtue
of equations (52) and (53)

_ev � Tr _p � � 3k

1� k
_ez;

when a is close to 1. That is in conformity with the result
(29) obtained in the case of a perfect plasticity behavior



Fig. 1. Graphs of the axial stress sz (left) and of the volumetric strain ev (right) versus the axial strain ez when R1=0.1E0 and p0= 0
(uniaxial compression test).
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without kinematical hardening, situation to which one
tends when a becomes close to 1.

Let us finally study the relation between the axial strain
ez and the axial stress sz in the case when the condition (59)
of non-snap-back is satisfied. Using the behavior of R0 and
S0 in the neighborhood of a=0, one deduces from equations
(49) and (51) the following behaviors for Trp and sz:

Tr p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6k2D1

nR1

s
að1þnÞ=2 þ ⋯

sz ¼ � 3tc
1� k

� ð1þ 2kÞp0
1� k

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6D1R1

ð1� k2Þn

s
að1�nÞ=2 þ ⋯

8>>>>><
>>>>>:

Thus, the plastic strain is on the order of a (1+n)/2 while
the variation of the elastic strain is on the order of a (1�n)/2.
Hence, at the beginning of the plasticity stage, the plastic
strain is negligible by comparison with the variation of the
elastic strain. Inserting these estimates into equation (52),
one deduces that the relation between ez and sz is
continuous and continuously differentiable at the transi-
tion between the elastic stage and the plasticity stage, the
slope being equal to E0. After the elastic stage, if the axial
strain |ez| is increased until +∞, then |sz| begins by
increase, and then passes by a maximum before to decrease
to finally take the value that it had at the end of the elastic
stage. All those variations are in fact independent of the
confining pressure.

3.3.3 Graphs of the response according to the values of the
parameters m, n, and R1

In all the pictures presented in this section, one uses the
following values for the Poisson ratio n0 and the parameters
tc and k of the Drucker–Prager criterion:

n0 ¼ 0:2; tc ¼ 0; k ¼0:2:

One sets

sc :¼ ࣎

ffiffiffiffiffiffiffiffiffiffiffi
D1E0

p
; ec :¼

ffiffiffiffiffiffi
D1

E0

r
: ð61Þ
The material constant sc fixes the scale of the stresses,
whereas the material constant ec fixes the scale of the
strains. The responses depend on the two exponentsm and
n, and on the two ratios R1/E0 and p0/sc.

–
 Case wherem=2, n=1/2. The value a0 of the damage
from which there is stress-softening is given by equation
(55) and hence one finds a0= 0.0883. By virtue of
equation (56), the overstress due to the stress-hardening
phase depends on R1/E0 (but not on the confining
pressure p0) and is given by

Dsz ¼ 1:827

ffiffiffiffiffiffi
R1

E0

s
sc: ð62Þ

In order that there is no snap-back in the response
sz� ez, it is necessary that the condition (59) be satisfied.
For the considered values of m and n, one gets
maxa∈½a0;1�’ðaÞ ¼ 0:775 and hence the non-snap-back
condition requires that R1� 0.275E0.

Figure 1 shows the graphs of sz and ev as functions of
ez when there is no confining pressure (p0= 0) and in the
case where R1=0.1E0 (hence there is no snap-back). In
that case the value of the overstress is Dsz ¼ 0:578sc.

In Figure 2 are plotted the same graphs for different
values of R1/E0. One can note that the larger the R1, the
larger the overstress, which conforms to equation (62),
but also the more rapid is the decrease of the axial stress
after the peak. A similar behavior can be seen for
the volumetric strain: the larger the R1, the greater the
maximal contraction, but also the more rapid the
growing of the dilatancy after the peak.

When R1 is greater than 0.275E0, the graph of sz
contains a snap-back which induces, during a test where
the axial strain is controlled and continuously decreasing,
a discontinuity of the evolution of the axial stress and the
damage (cf. Fig. 3).

The graph of the axial stress vs. the axial strain for a
given confining pressure during the damage-plasticity
phase is simply a translation of that corresponding to the
uniaxial compression test, the translation being given by
the values of the axial strain and the axial stress at the
end of the elastic stage (cf. Fig. 4). This property is due to
the linear character of Drucker–Prager criterion. That



Fig. 2. Influence of R1/E0 on the graphs of the axial stress and the volumetric strain versus the axial strain when there is no confining
pressure (uniaxial compression test). The value of R1/E0 associated with each graph is indicated in red on the graph.

Fig. 4. Graph of the axial stress vs. the axial strain for different
values (in red on the graphs) of the confining pressure (in fact of
the ratio p0/sc) when R1=0.1E0. The first part (the linear part) of
the graphs correspond to the hydrostatic and elastic stages.

Fig. 3. When R1/E0 is large enough, the graph of sz vs. ez
contains a snap-back (here R1= 0.4E0). Consequently, when the
axial strain reaches the value corresponding to the limit point A,
the response jumps from A to B.
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would not be true anymore if one used a more general
plasticity criterion like Hoek–Brown criterion [1,2].
–
 Influence of the exponentsm and n. The shape of the
graphs giving the axial stress in terms of the axial strain
(during an uniaxial compression test without confining
pressure) is always the same whatever the values of m
and n provided that they remain inside the admissible
intervals, i.e.,m> 1> n> 0. One can see the dependence
of the response on m an n in Figure 5.

We note that as expected the m parameter influence
mainly the post-pic stress behavior (for m=1 the
ultimate damage state achieved even for the finite value
of ez), while n parameter alternate mainly the initial
hardening state leaving the large |ez| asymptote intact.
Both parameters (m and n) contribute (Eqs. (55) and
(56)) to the overstress Dsz estimation that reads as

Dsz ¼ fðm;nÞ
1� k

ffiffiffiffiffiffi
R1

E0

s
sc;
where f (m, n) is only dependent on m and n. At given
n, f (m, n) is a decreasing function of m, whereas at
given m, f (m, n) is first a decreasing function, then
an increasing function of n when n varies from 0 to 1
(cf. Fig. 6).
–
 Possible parameter fitting strategy. Even so our
model depends just on three “damage” parameters (R1, n,
m), the common task of parameter choice for the given
material could be a rather laborious exercise. Neverthe-
less, based on the obtained earlier parameter influence
properties, one could develop straight experimental data
fitting strategy. From the experimental data set
characterizing geomaterials, one has usually access to
dilatancy (Tr eðloadingÞ) and softening curves (sz (load-
ing)). The softening post-pic behavior would allow us
to fit first the m value. Once the m parameter is fixed,
one could proceed to R1 value choice which allow
adjusting the strength of dilatancy curve. Finally, the
experimental overstress threshold could be fixed by
adapting the last n parameter.



Fig. 5. Influence of the exponentm (left) and n (right) on the graph of the axial stress vs. the axial strain in a uniaxial compression test
(p0= 0). The values of m and n are indicated in red on the graph. In the left figure where m varies, one takes n=1/2, whereas on the
right figure where n varies, one takes m=2. In all cases R1= 0.1E0.

Fig. 6. Dependence of the overstress Dsz on the exponents m and n of the model. Left: dependence on m when n=1/2. Right:
dependence on n when m=2. In all cases R1= 0.1E0 and k=0.2.
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4 Conclusion and perspectives

Starting from low-scale mechanical properties of micro-
cracked elastic materials and taking into account the closed
cracks friction between its lips, we propose a phenomeno-
logical model with an associative elasto-plastic behavior
coupled with damage. The main feature of the model which
is inspired by the micromechanical considerations is that
the free energy contains not only the usual elastic energy
but also a stored energy which is due at the microlevel to
the friction between the lips of the microcracks. This
blocked energy is assumed to depend at the macro-level on
the damage state and the plastic strain and induces a
kinematical hardening in the plasticity yield criterion.
Considering a Drucker–Prager yield criterion and adopting
the normality rule for the plasticity flow rule, we have
applied such amodel to a triaxial test with a fixed confining
pressure. It turns out that the model is able to account for
the main observed properties of geomaterials in such a
situation, like contractance or dilatancy effect on the
evolution of volumetric strain and stress-hardening or
stress-softening effect for the axial stress.

The next step will be to identify from experimental
results the parameters of the proposed model (which can
be enriched by considering more complex yield criterion
than the Drucker–Prager one). Its validity will be also
tested by comparing its predictions with other families of
experimental tests like the oedometric test or cyclic tests.
An interesting issue is also to use such a model to calculate
the response of a true three-dimensional sample (and no
more of the volume element). Since the damage evolution
is accompanied by stress-softening effect, one can expect
that the response of the sample is no more homogeneous
(in space). That could require to enhance the damage
model by introducing non-local terms like in references
[23,24].
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