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Abstract
The concept of refined neutrosophic vector spaces was introduced by Ibrahim et al. in [20] and the present
paper is the continuation of the work. In the present paper, further studies on neutrosophic vector spaces are
presented. Specifically, linear dependence, independence, bases and dimensions of refined neutrosophic vector
spaces are studied with several results and examples presented. Also, refined neutrosophic homomorphisms of
refined neutrosophic vector spaces are studied and existence of linear maps between weak refined neutrosophic
vector spaces and weak neutrosophic vector spaces are established.

Keywords: Neutrosophy, neutrosophic vector space, refined neutrosophic vector space, refined neutrosophic
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1 Introduction and Preliminaries
Neutrosophy is a new branch of philosophy introduced by Florentin Smarandache in 1995. Neutrosophic
logic/set introduced by Smarandache in [28] is an extension of fuzzy logic/set introduced by Zadeh [38] and
intuitionistic fuzzy logic/set introduced by Atanassov [13]. In neutrosophic logic/set, each proposition is char-
acterized by the degree of truth in the set (T ), degree if indeterminacy in the set (I) and the degree of falsehood
in the set (F ) where (T, I, F ) are not necessarily intervals, but may be any real sub-unitary subsets: discrete
or continuous; single-element, finite, or (countable or uncountable) infinite; union or intersection of various
subsets; etc. Neutrosophic logic/set has many applications in mathematics, computer science, engineering,
technology, decision making, medical diagnosis, social sciences and many other fields. For full details, the
reader should see [19, 23–27], [14–18], [31]-[33], [35]-[37].

Smarandache recently introduced the concept of refined neutrosophic logic/set in [29] where it was shown
that the neutrosophic components (T, I, F ) can be split into refined neutrosophic components of the form
< T1, T2, · · · , Tp; I1, I2, ·, Ir;F1, F2, · · · , Fs > with applications in physics and other sciences and mathe-
matics. In [30], Smarandache presented (T, I, F ) structures and this motivated Agboola to introduce the con-
cept of refined neutrosophic algebraic structures in8 where he studied refined neutrosophic groups. Since the
introduction of refined neutrosophic algebraic structures, many researchers have further studied the concepts
and several results have been published as can be found in [1–7, 9–11, 21].

The concept of a neutrosophic vector space V (I) generated by a vector space V and indeterminacy factor
I was introduced by Vasantha Kandasamy and Florentin Smarandache in [31]. Since then, several researchers
have studied the concept and a great deal of literature have been published. Recently, Agboola and Akinleye
in [12] studied classical vector spaces in a neutrosophic environment and they showed that every neutrosophic
vector space over a neutrosophic field (resp. field) is a vector space. In [34], Vasantha Kandasamy, et al.
introduced for the first time the concept of neutrosophic quadruple vector spaces over the classical fields R,C
and Zp and they presented several interesting results. Further studies on neutrosophic quadruple vector spaces
were carried out in [22] by Ibrahim et al. where several results and examples were presented. The notion
of refined neutrosophic vector spaces and their properties was introduces by Ibrahim et al. in [20]. They
studied Weak(strong) refined neutrosophic vector spaces and subspaces, and also, they studied strong refined
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neutrosophic quotient vector spaces. Several interesting results and examples were presented. It was shown
that every weak (strong) refined neutrosophic vector space is a vector space and it was equally shown that every
strong refined neutrosophic vector space is a weak refined neutrosophic vector space. In the present paper
however, further studies on refined neutrosophic vector spaces are presented. Specifically, linear dependence,
independence, bases and dimensions of refined neutrosophic vector spaces are studied and several results
and examples are presented. Refined neutrosophic homomorphisms of refined vector spaces are studied and
existence of linear maps between weak refined neutrosophic vector spaces V (I1, I2) and weak neutrosophic
vector spaces V (I) are established.

For the purposes of this paper, it will be assumed that I splits into two indeterminacies I1 [contradiction
(true (T ) and false (F ))] and I2 [ignorance (true (T ) or false (F ))]. It then follows logically that:

I1I1 = I21 = I1,
I2I2 = I22 = I2, and
I1I2 = I2I1 = I1.

Definition 1.1. 8 If ∗ : X(I1, I2) ×X(I1, I2) 7→ X(I1, I2) is a binary operation defined on X(I1, I2), then
the couple (X(I1, I2), ∗) is called a refined neutrosophic algebraic structure and it is named according to the
laws (axioms) satisfied by ∗.

Definition 1.2. 8 Let (X(I1, I2),+, .) be any refined neutrosophic algebraic structure where + and . are ordi-
nary addition and multiplication respectively.
For any two elements (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2), we define

(a, bI1, cI2) + (d, eI1, fI2) = (a+ d, (b+ e)I1, (c+ f)I2),

(a, bI1, cI2).(d, eI1, fI2) = (ad, (ae+ bd+ be+ bf + ce)I1, (af + cd+ cf)I2).

Definition 1.3. 8 If ′′+′′ and ′′·′′ are ordinary addition and multiplication, Ik with k = 1, 2 have the following
properties:

1. Ik + Ik + · · ·+ Ik = nIk.

2. Ik + (−Ik) = 0.

3. Ik · Ik · · · · Ik = Ink = Ik for all positive integers n > 1.

4. 0 · Ik = 0.

5. I−1k is undefined and therefore does not exist.

Definition 1.4. 8 Let (G, ∗) be any group. The couple (G(I1, I2), ∗) is called a refined neutrosophic group
generated by G, I1 and I2. (G(I1, I2), ∗) is said to be commutative if for all x, y ∈ G(I1, I2), we have
x ∗ y = y ∗ x. Otherwise, we call (G(I1, I2), ∗) a non -commutative refined neutrosophic group.

Definition 1.5. 8 If (X(I1, I2), ∗) and (Y (I1, I2), ∗′) are two refined neutrosophic algebraic structures, the
mapping

φ : (X(I1, I2), ∗) −→ (Y (I1, I2), ∗′)
is called a neutrosophic homomorphism if the following conditions hold:

1. φ((a, bI1, cI2) ∗ (d, eI1, fI2)) = φ((a, bI1, cI2)) ∗′ φ((d, eI1, fI2)).

2. φ(Ik) = Ik for all (a, bI1, cI2), (d, eI1, fI2) ∈ X(I1, I2) and k = 1, 2.

Example 1.6. 8 Let
Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2), (0, I1, I2), (1, I1, 0), (1, 0, I2), (1, I1, I2)}.
Then (Z2(I1, I2),+) is a commutative refined neutrosophic group of integers modulo 2.
Generally for a positive integer n ≥ 2, (Zn(I1, I2),+) is a finite commutative refined neutrosophic group of
integers modulo n.

Example 1.7. 8 Let (G(I1, I2), ∗) and and (H(I1, I2), ∗′) be two refined neutrosophic groups.
Let φ : G(I1, I2)×H(I1, I2)→ G(I1, I2) be a mapping defined by φ(x, y) = x and let
ψ : G(I1, I2) × H(I1, I2) → H(I1, I2) be a mapping defined by ψ(x, y) = y. Then φ and ψ are refined
neutrosophic group homomorphisms.
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Definition 1.8. 4 Let (R,+, .) be any ring. The abstract system (R(I1, I2),+, .) is called a refined neutro-
sophic ring generated by R, I1, I2. (R(I1, I2),+, .) is called a commutative refined neutrosophic ring if
for all x, y ∈ R(I1, I2), we have xy = yx. If there exists an element e = (1, 0, 0) ∈ R(I1, I2) such that
ex = xe = x for all x ∈ R(I1, I2), then we say that (R(I1, I2),+, .) is a refined neutrosophic ring with unity.

Definition 1.9. 4 Let (R(I1, I2),+, .) be a refined neutrosophic ring and let n ∈ Z+.

(i) If nx = 0 for all x ∈ R(I1, I2), we call (R(I1, I2),+, .) a refined neutrosophic ring of characteristic n
and n is called the characteristic of (R(I1, I2),+, .).

(ii) (R(I1, I2),+, .) is call a refined neutrosophic ring of characteristic zero if for all x ∈ R(I1, I2), nx = 0
is possible only if n = 0.

Example 1.10. 4

(i) Z(I1, I2),Q(I1, I2),R(I1, I2),C(I1, I2) are commutative refined neutrosophic rings with unity of char-
acteristics zero.

(ii) Let Z2(I1, I2) = {(0, 0, 0), (1, 0, 0), (0, I1, 0), (0, 0, I2), (0, I1, I2), (1, I1, 0), (1, 0, I2), (1, I1, I2)}.
Then (Z2(I1, I2),+, .) is a commutative refined neutrosophic ring of integers modulo 2 of charac-
teristic 2. Generally for a positive integer n ≥ 2, (Zn(I1, I2),+, .) is a finite commutative refined
neutrosophic ring of integers modulo n of characteristic n.

Example 1.11. 4 Let MR
n×n(I1, I2) =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

 : aij ∈ R(I1, I2)


be a refined neutrosophic set of all n × n matrix. Then (MR

n×n(I1, I2),+, .) is a non-commutative refined
neutrosophic ring under matrix multiplication.

Theorem 1.12. 4 Let (R(I1, I2),+, .) be any refined neutrosophic ring. Then (R(I1, I2),+, .) is a ring.

2 Linear dependence, independence, bases and dimensions of a refined
neutrosophic vector space

Definition 2.1. Let (V,+, .) be any vector space over a field K. Let V (I1, I2) =< V ∪ (I1, I2) > be a refined
neutrosophic set generated by V , I1 and I2. We call the triple (V (I1, I2),+, .) a weak refined neutrosophic
vector space over a field K, if V (I1, I2) is a refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2), then V (I1, I2) is called a strong refined neutrosophic vector space.

The elements of V (I1I2) are called refined neutrosophic vectors and the elements of K(I1, I2) are called
refined neutrosophic scalars.

If u = a + bI1 + cI2, v = d + eI1 + fI2 ∈ V (I1, I2) where a, b, c, d, e and f are vectors in V and
α = k +mI1 + nI2 ∈ K(I1, I2) where k,m and n are scalars in K, we define:

u+ v = (a+ bI1 + cI2) + (d+ eI1 + fI2) = (a+ d) + (b+ e)I1 + (c+ f)I2,

and

αu = (k +mI1 + nI2).(a+ bI1 + cI2) = k.a+ (k.b+m.a+m.b+m.c+ n.b)I1 + (k.c+ n.a+ n.c)I2.

Definition 2.2. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2) and let v1, v2, ·, vn ∈ V (I1, I2).

1. An element v ∈ V (I1, I2) is said to be a linear combination of the v′is if

v = α1v1 + α2v2 + · · ·+ αnvn,where αi ∈ K(I1, I2).
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2. v′is are said to be linearly independent if

α1v1 + α2v2 + · · ·+ αnvn = 0

implies that α1 = α2 = · · · = αn = 0.
In this case, the set {v1, v2, · · · , vn} is called a linearly independent set.

3. v′is are said to be linearly dependent if

α1v1 + α2v2 + · · ·+ αnvn = 0

implies that not all αi are equal to zero.
In this case, the set {v1, v2, · · · , vn} is called a linearly dependent set.

Definition 2.3. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K and let
v1, v2, · · · , vn ∈ V (I1, I2).

1. An element v ∈ V (I1, I2) is said to be a linear combination of the v′is if

v = k1v1 + k2v2 + · · ·+ knvn,where ki ∈ K.

2. v′is are said to be linearly independent if

k1v1 + k2v2 + · · ·+ knvn = 0

implies that k1 = k2 = · · · = kn = 0.
In this case, the set {v1, v2, · · · , vn}. is called a linearly independent set.

3. v′is are said to be linearly dependent if

k1v1 + k2v2 + · · ·+ knvn = 0.

implies that not all ki are equal to zero.
In this case, the set {v1, v2, · · · , vn} is called a linearly dependent set.

Example 2.4. Let V (I1, I2) = R(I1, I2) be a weak refined neutrosophic vector space over a field K = R.
An element v = 8 + 19I1 + 18I2 ∈ V (I1, I2) is a linear combination of the elements v1 = 2 + 5I1 + 4I2,
v2 = 1 + 2I1 + 3I2 ∈ V (I1, I2), since 8 + 19I1 + 18I2 = 3(2 + 5I1 + 4I2) + 2(1 + 2I1 + 3I2).

Example 2.5. Let V (I1, I2) = R(I1, I2) be a weak refined neutrosophic vector space over a field K = R.
An element v = 3 + 15I1 + 7I2 ∈ V (I1, I2) is a linear combination of the elements v1 = 2 + 5I1 + 3I2,
v2 = 1 + I1 + I2 ∈ V (I1, I2), since 3 + 15I1 + 7I2 = 4(2 + 5I1 + 3I2)− 5(1 + I1 + I2).

Example 2.6. Let V (I1, I2) = R(I1, I2) be a strong refined neutrosophic vector space over a refined neutro-
sophic field K(I1, I2) = R(I1, I2). An element v = 8 + 19I1 + 18I2 ∈ V (I1, I2) is a linear combination of
the elements v1 = 1 + 2I1 + 3I2, v2 = 2 + 5I1 + 4I2 ∈ V (I1, I2), since
8 + 19I1 + 18I2 = (2 + 5I1 + 6I2)(1 + 2I1 + 3I2) + (3− 2I1 − 4I2)(2 + 5I1 + 4I2)

= (2 + 8I1 + 3I2)(1 + 2I1 + 3I2) + (3− 4I1 − 2I2)(2 + 5I1 + 4I2)
= (4 + 11I1 − 2I2)(1 + 2I1 + 3I2) + (2− 6I1 + I2)(2 + 5I1 + 4I2)
= (4 + 8I1 + I2)(1 + 2I1 + 3I2) + (2− 4I1 − I2)(2 + 5I1 + 4I2).

Here (2 + 5I1 + 6I2), (3− 2I1 − 4I2), (2 + 8I1 + 3I2), (3− 4I1 − 2I2), (4 + 11I1 − 2I2),
(2− 6I1 + I2), (4 + 8I1 + I2), (2− 4I1 − I2) ∈ K(I1, I2).

This example shows that the element v = 8+19I1+18I2 can be infinitely expressed as a linear combination
of the elements v1 = 1+ 2I1 +3I2, v2 = 2+ 5I1 +4I2 ∈ V (I1, I2). This observation is recorded in the next
proposition.

Proposition 2.7. Let V (I1, I2) be a strong refined neutrosophic vector space over a neutrosophic fieldK(I1, I2)
and let v1, v2, · · · , vn ∈ V (I1, I2). An element v ∈ V (I1, I2) can be infinitely expressed as a linear combina-
tion of the vis.
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Proof: Suppose that v = α1v1 + α2v2 + · · · + αnvn where v = a + bI1 + cI2, v1 = a1 + b1I1 + c1I2,
v2 = a2+b2I1+cI2, · · · , vn = an+bnI1+cIn and α1 = k1+m1I1+tI2, α2 = k2+m2I1+tI2, · · · , αn =
kn +mnI1 + tI2 ∈ K(I1, I2).
Then
a + bI1 + cI2 = (k1 +m1I1 + t1I2)(a1 + b1I1 + c1I2) + (k2 +m2I1 + t2I2)(a2 + b2I1 + c2I2) + · · · +
(kn +mnI1 + tnI2)(an + bnI1 + cnI2)
from which we obtain
a1k1 + a2k2 + · · ·+ ankn = a,
b1k1+ a1m1+ b1m1+ c1m1+ b1t1+ b2k2+ a2m2+ b2m2+ c2m2+ b2t2+ · · ·+ bnkn+ anmn+ bnmn+
cnmn + bntn = b,
c1k1 + a1t1 + c1t1 + c2k2 + a2t2 + c2t2 + · · ·+ cnkn + antn + cntn = c.

This is a linear system in unknowns ki,mi, ti i = 1, 2, · · · , n.
Since the system is consistent and have infinitely many solutions, it follows that the vis can be infinitely
combined to produce v.
But if V (I1, I2) and K(I1, I2) are finite the vis will be finitely combined to produce v.

Proposition 2.8. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2) and let U [I1, I2] and W [I1, I2] be subsets of V [I1, I2] such that U [I1, I2] ⊆ W [I1, I2]. If U [I1, I2]
is linearly dependent, then W [I1, I2] is linearly dependent.

Proposition 2.9. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2) and let U [I1, I2] and W [I1, I2] be subsets of V [I1, I2] such that U [I1, I2] ⊆W [I1, I2]. If W [I1, I2]
is linearly independent, then U [I1, I2] is linearly independent.

Proof : LetW [I1, I2] = {v1 = (a1+b1I1+c1I2), v2 = (a2+b2I1+c2I2), · · · , vn = (an+bnI1+cnI2)},
be a linearly independent set. Let, if possible,
U [I1, I2] = {v1 = (a1 + b1I1 + c1I2), v2 = (a2 + b2I1 + c2I2), · · · , vz = (az + bzI1 + czI2)}, z < n, be a
linearly dependent subset of {v1 = (a1+b1I1+c1I2), v2 = (a2+b2I1+c2I2), · · · , vn = (an+bnI1+cnI2)}.
Then there exist some scalars (k1 +m1I1 + t1I2), (k2 +m2I1 + t2I2), · · · (kz +mzI1 + tzI2) ∈ K(I1, I2),
not all zero, such that
(k1 +m1I1 + t1I2)(a1 + b1I1 + c1I2) + (k2 +m2I1 + t2I2)(a2 + b2I1 + c2I2) + · · ·+
(kz +mzI1 + tzI2)(az + bzI1 + czI2) = 0.

=⇒ (k1 +m1I1 + t1I2)(a1 + b1I1 + c1I2) + (k2 +m2I1 + t2I2)(a2 + b2I1 + c2I2) + · · ·+
(kz +mzI1 + tzI2)(az + bzI1 + czI2) + (0z+1 + 0z+1I1 + 0z+1I2)(az+1 + bz+1I1 + cz+1I2) +
(0z+2 + 0z+2I1 + 0z+2I2)(az+2 + bz+2I1 + cz+2I2) + · · ·+ (0n + 0nI1 + 0nI2)(an + bnI1 + cnI2) = 0.

The scalars (k1,m1I1, t1I2), (k2,m2I1, t2I2), · · · , (kz,mzI1, tzI2), (0z+1 + 0z+1I1 + 0z+1I2),
(0z+2 + 0z+2I1 + 0z+2I2), · · · , (0n + 0nI1 + 0nI2) are not all zero.
Thus, the vectors v1 = (a1+ b1I1+c1I2), v2 = (a2+ b2I1+c2I2), · · · , vn = (an+ bnI1+cnI2) are linearly
dependent. This contradiction the assumption that the vectors
v1 = (a1 + b1I1 + c1I2), v2 = (a2 + b2I1 + c2I2), · · · , vn = (an + bnI1 + cnI2) are linearly independent.
Hence, the set {v1 = (a1+ b1I1+ c1I2), v2 = (a2+ b2I1+ c2I2), · · · , vz = (an+ bzI1+ czI2)} is a linearly
independent set.

Proposition 2.10. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K. The set
W (I1, I2) = {v1, v2, · · · vn} ⊆ V (I1, I2) is linearly dependent, if and only if at least one vector vi is a linear
combination of the other vectors .

Proof : The proof is similar to the proof in classical case.

Proposition 2.11. Let V (I1, I2) be a strong refined neutrosophic vector space over a neutrosophic field
K(I1, I2) and let v1 = k1 + k1I1 + k1I2, v2 = k2 + k2I1 + k2I2, · · · , vn = kn + knI1 + knI2 be ele-
ments of V (I1, I2) where 0 6= ki ∈ K. Then {v1, v2, · · · , vn} is a linearly dependent set.

Proof :
Let α1 = p1 + q1I1 + r1I2, α2 = p2 + q2I1 + r2I2, · · · , αn = pn + qnI1 + rnI2 be elements of K(I1, I2).
Then α1v1 + α2v2 + · · ·+ αnvn = 0 which implies that
(p1+q1I1+r1I2)(k1+k1I1+k2I2)+(p2+q2I1+r2I2)(k2+k2I1+k2I2)+ · · ·+(pn+qnI1+rnI2)(kn+
knI1 + knI2) = 0
from which we obtain
k1p1 + k2p2 + · · ·+ knpn = 0.
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This is a homogeneous linear system in unknowns pi, i = 1, 2, · · · , n.
This system has infinitely many nontrivial solutions. Hence αis are not all zero and therefore, {v1, v2, · · · , vn}
is a linearly dependent set.

Note 1. If in Proposition 2.11 we consider a single vector v ∈ V (I1, I2), the statement still hold.
For instance, let 0 6= v = a+ bI1 − aI2 ∈ V (I1, I2) and 0 6= β = pI1 − pI2 ∈ K(I1, I2), we have

β · v = (a+ bI1 − aI2) · (pI1 − pI2) = apI1 + bpI1 − bpI1 − apI1 − apI2 + apI2 = 0.

Definition 2.12. Let V (I1, I2) be weak(strong) refined neutrosophic vector space. If {v1, v2, · · · , vn} is any
set of refined neutrosophic vectors in V (I1, I2), the set of all linear combinations of these refined neutrosophic
vectors is called their span, and is denoted by

span{v1, v2, · · · , vn}.

If it happens that V (I1, I2) = span{v1, v2 · · · , vn}, then these vectors are called a spanning set for V (I1, I2).

Proposition 2.13. Let U(I1, I2) = span{v1, v2, · · · , vn} be in a strong refined neutrosophic vector space
V (I1, I2) over a refined neutrosophic field K(I1, I2) then

1. U(I1, I2) is a strong refined neutrosophic subspace of V (I1, I2) containing v1, v2, · · · , vn.

2. U(I1, I2) is the smallest subspace containing v1, v2, · · · , vn in the sense that any strong refined neu-
trosophic subspace of V (I1, I2) that contains each of these refined neutrosophic vectors, must contain
U(I1, I2).

Proof. 1. (a) U(I1, I2) 6= ∅, since we can find 0 = 0 + 0I1 + 0I2 ∈ K(I1, I2) such that
0 = 0v1 + · · ·+ 0vn belongs to U(I1, I2).

(b) Let v, u ∈ U(I1, I2) where u = s1v1 + s2v2 + · · ·+ snvn and v = t1v1 + t2v2 + · · ·+ tnvn
and α = p+ p1I1 + p2I2 ∈ K(I1, I2) then

u+ v = (s1 + t1)v1 + (s2 + t2)v2 + · · ·+ (sn + tn)vn,

αu = (αs1)v1 + (αs2)v2 + · · ·+ (αsn)vn.

So both u+ v and αu lie in U(I1, I2).
Finally, since U ⊆ U(I), where U is a vector space we conclude that U(I1, I2) is a refined
neutrosophic subspace.

2. Let W (I1, I2) be a refined neutrosophic subspace of V (I1, I2) that contains each of v1, v2, · · · , vn.
Since W (I1, I2) is closed under scalar multiplication, each of α1v1, α2v2, · · · , αnvn lies in W (I1, I2)
for any choice of

α1 = p1 + q1I1 + r1I2, α2 = p2 + q2I1 + r2I2, · · · , αn = pn + qnI1 + rnI2 ∈ K(I1, I2).

But then αv1 + α2v2 + · · ·+ αnvn lies in W (I1, I2) since W (I1, I2) is closed under addition.
This means that W (I1, I2) contains every member of U(I1, I2), which proves (2).

Example 2.14. Let Pn(I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2). Then Pn(I1, I2) = span{1, x, x2, · · · , xn}.

We need only show that each neutrosophic polynomial p(x) in Pn(I1, I2) is a linear combination of
1, x, · · · , xn. But this is clear because p(x) has the form p(x) = a0 + a1x+ a2x

2 + · · ·+ anx
2.

With a0, a1, · · · , an ∈ K(I1, I2).

Example 2.15. Let R3(I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2). Then R3(I1, I2) = span{(1 + I1 + I2), (1 + I1 + 0I2), (0 + I1 + I2)}.

Write v1 = (1 + I1 + I2), v2 = (1 + I1 + 0I2), v3 = (0 + I1 + I2), and U(I1, I2) = span{v1, v2, v3}.
Obviously U(I1, I2) is contained in R3(I1, I2).
We have R3(I1, I2) = span{(1 + 0I1 + 0I2), (0 + I1 + 0I2), (0 + 0I1 + I2)}.
So to prove that R3(I1, I2) is contained in U(I1, I2), it is enough by Proposition 2.13 to show that each of
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(1 + 0I1 + 0I2), (0 + I1 + 0I2), (0 + 0I1 + I2) lies in span{v1, v2, v3}. But they can be given explicitly as
linear combinations of v1, v2, and v3:

(1 + 0I1 + 0I2) = (1 + I1 + I2)− (0 + I1 + I2) = v1 − v3,

(0 + 0I1 + I2) = (1 + I1 + I2)− (1 + I1 + 0I2) = v1 − v2
and then, using the first of these, we have

(0 + I1 + 0I2) = (1 + I1 + 0I2)− (1 + 0I1 + 0I2) = v2 − (v1 − v3) = v2 − v2 + v3.

Proposition 2.16. Let x = a + bI1 + cI2 and y = d + eI1 + fI2 be two refined neutrosophic vectors in a
strong refined neutrosophic vector space V (I1, I2) over refined neutrosophic field K(I1, I2).
Then span {x, y} = span{x+ y, x− y}, i.e.,
span{a+ bI1 + cI2, d+ eI1 + fI2} = span{a+ d+ (b+ e)I1 + (c+ f)I2, a− d+ (b− e)I1 + (c− f)I2}.

Proof. We have
span{a+d+(b+e)I1+(c+f)I2, a−d+(b−e)I1+(c−f)I2} ⊆ span{a+bI1+cI2, d+eI1+fI2} because
both a+d+(b+ e)I1+(c+f)I2 and a−d+(b− e)I1+(c−f)I2 lie in span{a+ bI1+ cI2, d+ eI1+fI2}.
On the other hand,

a+ bI1 + cI2 =
1

2
[a+ d+ (b+ e)I1 + (c+ f)I2] +

1

2
[a− d+ (b− e)I1 + (c− f)I2]

d+ eI1 + fI2 =
1

2
[a+ d+ (b+ e)I1 + (c+ f)I2]−

1

2
[a− d+ (b− e)I1 + (c− f)I2],

so
span{a+ bI1 + cI2, d+ eI1 + fI2} ⊆ span{a+ d+ (b+ e)I1 + (c+ f)I2, a− d+ (b− e)I1 + (c− f)I2}
by Proposition 2.13 . Hence the prove.

Proposition 2.17. Let U(I1, I2) and W (I1, I2) be strong refined neutrosophic subspaces of as strong refined
neutrosophic vector space V (I1, I2) over a refined neutrosophic field K(I1, I2). Then

1. U(I1, I2) ⊆W (I1, I2) =⇒ span(U(I1, I2)) ⊆ span(W (I1, I2)).

2. span(span(U(I1, I2))) = span(U(I1, I2)).

3. span(U(I1, I2) ∪W (I1, I2)) = span(U(I1, I2)) + span(W (I1, I2)).

Proof. The proof of 1, 2 and 3 are the same as in classical case.

Definition 2.18. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic
field K(I1, I2). A linearly independent subset B[I1, I2] = {v1, v2, · · · , vn} of V (I1, I2) is called a basis
for V (I1, I2) if B[I1, I2] spans V (I1, I2).

Proposition 2.19. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic
field K(I1, I2). The bases of V (I1, I2) are the same as the bases of V over a field K.

Proof:
Suppose that B = {v1, v2, · · · , vn} is an arbitrary basis for V over the fieldK. Let v = a+bI1+cI2 be an arbi-
trary element of V (I1, I2) and let α1 = k1+m1I1+t1I2, α2 = k2+m2I1+t2I2 · · · , αn = kn+mnI1+tnI2
be elements of K(I1, I2). Then from α1v1 + α2v2 + · · ·+ αnvn = 0,
we obtain

k1v1 + k2v2 + · · ·+ knvn = 0,

m1v1 +m2v2 + · · ·+mnvn = 0,

t1v1 + t2v2 + · · ·+ tnvn = 0.

Since vis are linearly independent, we have ki = 0, mj = 0 and tz = 0 where i, j, z = 1, 2, · · · , n.
Hence, αi = 0, i = 1, 2, · · · , n. This shows that B is also a linearly independent set in V (I1, I2).
To show that B spans V (I1, I2), let v = a+ bI1 + cI2 = α1v1 + α2v2 + · · ·+ αnvn.
Then we have

a = k1v1 + k2v2 + · · ·+ knvn,
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b = m1v1 +m2v2 + · · ·+mnvn,

c = t1v1 + t2v2 + · · ·+ tnvn = 0.

Since a, b, c ∈ V, it follows that v = a + bI1 + cI2 can be written uniquely as a linear combination of vis.
Hence, B is a basis for V (I1, I2). Since B is arbitrary, the required result follows;

Proposition 2.20. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic
field K(I1, I2) which is spanned by a finite set of neutrosophic vectors v1, v2, · · · , vm. Then any independent
set of refined neutrosophic vectors in V (I1, I2) is finite and contains no more than m elements.

Proof: Let v = a+ bI1 + cI2, u = d+ eI1 + fI2.
To prove this it suffices to show that every refined neutrosophic subset S(I1, I2) of V (I1, I2) which contains
more than m refined neutrosophic vectors is linearly dependent.
Let S(I1, I2) be such a set. In S(I1, I2) there are distinct refined neutrosophic vectors u1, u2, · · · , un where
n > m.
Since v1, v2, · · · , vm span V (I1, I2), there exist scalars Cij with C = r + sI1 + tI2 ∈ K(I1, I2) such that

uj =

m∑
i=1

Cijvi =

m∑
i=1

(rijai + (rijbi + sijai + sijbi + sijci + tijbi)I1 + (rijci + tijai + tijci)I2) .

For any n scalars x1, x2, · · · , xn with x = p+ qI1 + zI2 ∈ K(I1, I2) we have
x1u1 + x2u2 + · · ·+ xnun =

∑n
j=1 xjuj

=
∑n

j=1(pj + qjI1 + zjI2)uj
=

∑n
j=1(pj + qjI1 + zjI2)

∑m
i=1 Cijvi

=
∑n

j=1(pj + qjI1 + zjI2)
∑m

i=1(rijai + (rijbi + sijai + sijbi + sijci+

tijbi)I1 + (rijci + tijai + tijci)I2)
=

∑n
j=1

∑m
i=1(pj + qjI1 + zjI2)(rijai + (rijbi + sijai + sijbi + sijci + tijbi)I1+

(rijci + tijai + tijci)I2)
=

∑n
j=1

∑m
i=1(pjrijai + (pjrijbi + pjsijai + pjsijbi + pjsijci + pjtijbi + qjrijai + qjrijbi+

qjsijai + qjsijbi + qjsijci + qjtijbi + qjrijci + qjtijai + qjtijci + zjrijbi + zjsijai + zjsijbi
+zjsijci + zjtijbi)I1 + (pjrijci + pjtijai + pjtijci + zjrijai + zjrijci + zjtijai + zjtijci)I2)

=
∑n

j=1

∑m
i=1((pj + qjI1 + zjI2)(rij + sijI1 + tijI2)(ai + bI1 + bI2))

=
∑n

j=1

∑m
i=1((pj + qjI1 + zjI2)(rij + sijI1 + tijI2))(ai + bI1 + bI2)

=
∑n

j=1

∑m
i=1(Cijxj)vi

=
∑m

i=1(
∑n

j=1 Cijxj)vi.
Since n > m, there exist scalars x1, x2, · · · , xn not all 0 such that

n∑
j=1

Cijxj = 0 1 ≤ i ≤ m.

Hence x1u1 + x2u2 + · · ·+ xnun = 0. This shows that S(I1, I2) is a linearly dependent set.

Definition 2.21. Let V (I1, I2) be a strong refined neutrosophic vector space over a neutrosophic fieldK(I1, I2).
The number of elements in the basis for V (I1, I2) is called the dimension of V (I1, I2) and it is denoted by
dims(V (I1, I2)). If the number of elements in the basis for V (I1, I2) is finite, V (I1, I2) is called a finite
dimensional strong refined neutrosophic vector space. Otherwise, V (I1, I2) is called an infinite dimensional
strong refined neutrosophic vector space.

Definition 2.22. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K. The number of
elements in the basis for V (I1, I2) is called the dimension of V (I1, I2) and it is denoted by dimw(V (I1, I2)). If
the number of elements in the basis for V (I1, I2) is finite, V (I1, I2) is called a finite dimensional weak refined
neutrosophic vector space. Otherwise, V (I1, I2) is called an infinite dimensional weak refined neutrosophic
vector space.

Example 2.23. The strong refined neutrosophic vector space of Example 2.14 is finite dimensional
and dims(V (I1, I2)) = n+ 1.

Proposition 2.24. Let V (I1, I2) be a finite dimensional strong refined neutrosophic vector space over a refined
neutrosophic field K(I1, I2). Then every basis of V (I1, I2) has the same number of elements.

Proof. The proof is similar to the proof in classical case.
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Proposition 2.25. Let V (I1, I2) be a finite dimensional weak (strong) refined neutrosophic vector space over
a field K (resp. over a refined neutrosophic field K(I1, I2)). If dims(V (I1, I2)) = n, then
dimw(V (I1, I2)) = 2n.

This can be easily seen in the examples given below.

Example 2.26. Let V (I1, 12) = Rn(I1, I2) be a strong refined neutrosophic vector space over a refined
neutrosophic field R(I1, 12).
The set B = {v1 = (1, 0, 0, · · · , 0), v2 = (0, 1, 0, · · · , 0), · · · , vn = (0, 0, 0, · · · , 1)} is a basis for V (I1, I2).

Example 2.27. Let V (I1, I2) = Rn(I1, I2) be a weak refined neutrosophic vector space over R. The set
B = {v1 = (1, 0, 0, · · · , 0), v2 = (0, 1, 0, · · · , 0), · · · , vk = (0, 0, 0, · · · , 1),
vk+1 = (I1 + I2, 0, 0, · · · , 0), vk+2 = (0, I1 + I2, 0, · · · , 0), · · · , vn = (0, 0, 0, · · · , I1 + I2)} is a basis for
V (I1, I2).

Note 2. The bases of the strong refined neutrosophic vector space of Example 2.26 is contained in the bases
of the weak refined neutrosophic vector space of Example 2.27. This observation is recorded in the next
proposition.

Proposition 2.28. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic
field K(I1, I2). Then the bases of V (I1, I2) over K(I1, I2) are contained in the bases of the weak refined
neutrosophic vector space V (I1, I2) over a field K.

Proof. The proof follows from Examples 2.26 and 2.27 .

Proposition 2.29. Let W (I1, I2) be a strong refined neutrosophic subspace of a finite dimensional strong
refined neutrosophic vector space V (I1, I2) over a neutrosophic field K(I1, I2). Then W (I1, I2) is finite di-
mensional and dims(W (I1, I2)) ≤ dims(V (I1, I2)). If dims(W (I1, I2)) = dims(V (I1, I2)), then
W (I1, I2) = V (I1, I2).

Proof. IfW (I1, I2) = {}, dimsW (I1, I2) = 0 . So assumeW (I1, I2) 6= {}, and choose u1 6= 0 inW (I1, I2).
IfW (I1, I2) = span{u1}, then dimsW (I1, I2) = 1. IfW (I1, I2) 6= span{u1}, choose u2 inW (I1, I2) outside
span{u1}. Then {u1, u2}, is linearly independent.
If W (I1, I2) = span {u1, u2}, then dimsW (I1, I2) = 2. If not, repeat the process to find u3 in W (I1, I2)
such that {u1, u2, u3} is linearly independent. Continue in this way. The process must terminate because the
refined neutrosophic space V (I1, I2) (having dimension n) cannot contain more than n independent vectors.
Hence W (I1, I2) has a basis of at most n refined neutrosophic vectors.
Secondly, Let dimsW (I1, I2) = dimsV (I1, I2) = m. Then any basis {u1, · · · , um} of W (I1, I2) is an
independent set of m refined neutrosophic vectors in V (I1, I2) and so is a basis of V (I1, I2).
In particular, {u1, · · · , um} spans V (I1, I2) so, because it also spans W (I1, I2),
V (I1, I2) = span{u1, · · · , um} =W (I1, I2).

Proposition 2.30. Let U(I1, I2) and W (I1, I2) be finite dimensional strong refined neutrosophic subspaces
of a strong refined neutrosophic vector space V (I1, I2) over a refined neutrosophic field K(I1, I2). Then
U(I1, I2) +W (I1, I2) is a finite dimensional strong refined neutrosophic subspace of V (I1, I2) and

dims(U(I1, I2) +W (I1, I2)) = dims(U(I1, I2)) + dims(W (I1, I2))− dims(U(I1, I2) ∩W (I1, I2)).

If V (I1, I2) = U(I1, I2)⊕W (I1, I2) then

dims(U(I1, I2) +W (I1, I2)) = dims(U(I1, I2)) + dims(W (I1, I2)).

Definition 2.31. Let V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a refined
neutrosophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2) be a mapping of V (I1, I2) into W (I1, I2).
φ is called a refined neutrosophic vector space homomorphism if the following conditions hold:

1. φ is a vector space homomorphism.

2. φ(Ik) = Ik for k = 1, 2.

If φ is a bijective refined neutrosophic vector space homomorphism, then φ is called a refined neutrosophic
vector space isomorphism and we write V (I1, I2) ∼=W (I1, I2).
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Definition 2.32. Let V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a refined
neutrosophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2) be a refined neutrosophic vector space
homomorphism.

1. The kernel of φ denoted by Kerφ is defined by the set {v ∈ V (I1, I2) : φ(v) = 0}.

2. The image of φ denoted by Imφ is defined by the set
{w ∈W (I1, I2) : φ(v) = w for some v ∈ V (I1, I2))}.

Example 2.33. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field
K(I1, I2)

1. The mapping φ : V (I1, I1) −→ V (I1, I1) defined by φ(v) = v for all
v = a+ bI1 + cI2 ∈ V (I1, I2) is a refined neutrosophic vector space homomorphism and Kerφ = {0}.

2. The mapping φ : V (I1, I1) −→ V (I1, I1) defined by φ(v) = 0 for all v = a+ bI1 + cI2 ∈ V (I1, I2) is
not a refined neutrosophic vector space homomorphism. Since for Ik ∈ V (I1, I2), φ(Ik) 6= 0.

Proposition 2.34. Let V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a neutro-
sophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2) be a refined neutrosophic vector space homomor-
phism. Then

1. Kerφ is not a strong refined neutrosophic subspace of V (I1, I2) but a subspace of V (I1, I2).

2. Imφ is a strong refined neutrosophic subspace of W (I1, I2).

Proof. That Kerφ is a subspace of V (I1, I2), and Imφ is a strong refined neutrosophic subspace of W (I1, I2)
follows easily .
Now, to show that Kerφ is not a strong refined neutrosophic subspace of V (I1, I2), we note that for
Ik ∈ V (I1, I2) we have that φ(Ik) = Ik 6= 0, this implies that Ik /∈ kerφ.
Hence, kerφ is not a strong refined neutrosophic subspace.

Proposition 2.35. Let V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a refined
neutrosophic field K(I1, I2) and let φ : V (I1, I2) −→ W (I1, I2) be a refined neutrosophic vector space
homomorphism. If B = {v1, v2, · · · , vn} is a basis for V (I1, I2), then φ(B) = {φ(v1), φ(v2), · · · , φ(vn)} is
a basis for W (I1, I2).

Proof. Since B = {v1, v2, · · · , vn} is a basis for V (I1, I2), it spans V (I1, I2), so for every
v ∈ V (I1, I2), there exist αi ∈ K(I1, I2), with i = 1, 2, 3, · · ·n such that v = α1v1 + α2v2 + · · ·+ αnvn.
φ(v) = φ(α1v1 + α2v2 + · · ·+ αnvn)

= φ(α1v1) + φ(α2v2) + · · ·+ φ(αnvn)
= α1φ(v1) + α2φ(v2) + · · ·+ αnφ(vn).
Thus φ(v) = α1φ(v1) + α2φ(v2) + · · ·+ αnφ(vn).

Then for every v ∈ V (I1, I2), its image φ(v) ∈ W (I1, I2) can be written as a linear combination of
{φ(v1), φ(v2), · · ·φ(vn)}. Hence {φ(v1), φ(v2), · · ·φ(vn)} spans W (I1, I2).
Now if α1φ(v1) + α2φ(v2) + · · ·+ αnφ(vn) = 0 then φ(α1v1 + α2v2 + · · ·+ αnvn) = 0.
But then each αi = 0 by the independence of the vi so {φ(v1), φ(v2), · · ·φ(vn)} is linearly independent.
To this end we can conclude that φ(B) = {φ(v1), φ(v2), · · ·φ(vn)} is a basis for W (I1, I2).

Proposition 2.36. Let W (I1, I2) be a strong refined neutrosophic subspace of a strong refined neutrosophic
vector space V (I1, I2) over a neutrosophic field K(I1, I2). Let φ : V (I1, I2) −→ V (I1, I2)/W (I1, I2) be a
mapping defined by φ(v) = v +W (I1, I2) for all v ∈ V (I1, I2). Then φ is not a neutrosophic vector space
homomorphism.

Proof. It is easily seen, since for k = 1, 2, φ(Ik) = Ik +W (I1, I2) =W (I1, I2) 6= Ik.

Remark 2.37. One of the natural questions would be if V (I1, I2) and W (I1, I2) are strong (weak) re-
fined neutrosophic vector spaces over a refined neutrosophic field K(I1, I2)(respectively(K)). Suppose
Hom(V (I1, I2),W (I1, I2)) is the collection of all refined neutrosophic vector space homomorphisms from
V (I1, I2) into W (I1, I2), then by defining + and scalar multiplication on Hom(V (I1, I2),W (I1, I2)) can we
obtain a refined neutrosophic vector? The answer to this is given in the next proposition .
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Proposition 2.38. Let V (II , I2) and W (I1, I2) be any two strong refined neutrosophic vector spaces over the
refined neutrosophic field K(I1, I2). Let Hom(V (I1, I2),W (I1, I2)) be the collection of all refined neutro-
sophic vector space homomorphisms from V (I1, I2) into W (I1, I2), then the triple
(Hom(V (I1, I2),W (I1, I2)),+, ·) is not a refined neutrosophic vector space over K(I1, I2).

Proof. φ, ψ ∈ Hom(V (I1, I2),W (I1, I2)) then (φ + ψ) and (ψφ) ∈ Hom(V (I1, I2),W (I1, I2)), since
(φ + ψ)(Ik) = φ(Ik) + ψ(Ik) = Ik + Ik = 2Ik 6= Ik and (αφ)(Ik) = αφ(Ik) = αφ(Ik) 6= Ik for all
α ∈ K(I1, I2) and k = 1, 2.

Definition 2.39. Let U(I1, I2), V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over a
refined neutrosophic field K(I1, I2) and let φ : U(I1, I2) −→ V (I1, I2), ψ : V (I1, I2) −→ W (I1, I2) be
refined neutrosophic vector space homomorphisms.
The composition ψφ : U(I1, I2) −→W (I1, I2) is defined by ψφ(u) = ψ(φ(u)) for all u ∈ U(I1, I2).

Proposition 2.40. Let U(I1, I2), V (I1, I2) and W (I1, I2) be strong refined neutrosophic vector spaces over
a refined neutrosophic field K(I1, I2) and let φ : U(I1, I2) −→ V (I1, I2), ψ : V (I1, I2) −→ W (I1, I2) be
refined neutrosophic vector space homomorphisms. Then the composition ψφ : U(I1, I2) −→ W (I1, I2) is a
refined neutrosophic vector space homomorphism.

Proof: That ψφ is a vector space homomorphism is clear. Then for u = Ik ∈ U(I1, I2), we have

ψφ(Ik) = ψ(φ(Ik)) = φ(Ik) = Ik with k = 1, 2.

Hence ψφ is a neutrosophic vector space homomorphism.
Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic field K(I1, I2) and

let β : V (I1, I2) −→ V (I1, I2) be a refined neutrosophic vector space homomorphism. If B = {v1, v2 · · · , vn}
is a basis for V (I1, I2), then each β(vi) ∈ V (I1, I2) and thus for βij ∈ K(I1, I2), we can write

β(v1) = β11v1+ β12v2+ · · ·+ β1nvn
β(v2) = β21v1+ β22v2+ · · ·+ β2nvn
... =

...
... · · ·

...
β(vn) = βn1v1+ βn2v2+ · · ·+ βnnvn.

Let

[β]B =


β11 β21 · · · βn1
β12 β22 · · · βn2
...

...
...

...
β1n β2n · · · βnm

 .
[β]B is called the matrix representation of β relative to the basis B.

Proposition 2.41. Let V (I1, I2) be a strong refined neutrosophic vector space over a refined neutrosophic
field K(I1, I2) and let β : V (I1, I2) −→ V (I1, I2) be a refined neutrosophic vector space homomorphism. If
B is a basis for V (I1, I2) and v is any element of V (I1, I2), then

[β]B[v]B = [β(v)]B.

We give an example to help establish this proposition.

Example 2.42. Let V (I1, I2) = R3(I1, I2) be a strong refined neutrosophic vector space over a refined
neutrosophic field K(I1, I2) = R(I1, I2) and
let v = (2 + 3I1 + I2, 4 + 3I1 − I2, 2 + 4I1 + 4I2) ∈ V (I1, I2). If β : V (I1, I2) −→ V (I1, I2) is a refined
neutrosophic vector space homomorphism defined by β(v) = v for all v ∈ V (I1, I2), then relative to the basis
B = {v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (0, 1, 1)} for V (I1, I2), the matrix of β is obtained as

[β]B =

 1 + 0I1 + 0I2 1 + 0I1 + 0I2 0 + 0I1 + 0I2
1 + 0I1 + 0I2 0 + 0I1 + 0I2 1 + 0I1 + 0I2
0 + 0I1 + 0I2 1 + 0I1 + 0I2 1 + 0I1 + 0I2

 .
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For v = (2 + 3I1 + I2, 4 + 3I1 − I2, 2 + 4I1 + 4I2) ∈ V (I1, I2) , we have
β(v) = v = (2 + I1 − 2I2)v1 + (2I1 + 3I2)v2 + (2 + 2I2 + I2)v3
So that

[v]B =

 2 + I1 − 2I2
2I1 + 3I2
2 + 2I1 + I2

 = [β(v)]B

and we have
[β]B[v]B = [β(v)]B.

Example 2.43. Let V (I1, I2) = R2(I1, I2) be a weak refined neutrosophic vector space over a field K = R
and let v = (1− 3I1 + 2I2, 3 + I1 − 4I2) ∈ V (I1, I2).
If β : V (I1, I2) −→ V (I1, I2) is a refined neutrosophic vector space homomorphism defined by β(v) = v for
all v ∈ V (I1, I2), then relative to the basis
B = {v1 = (1, 0), v2 = (0, 1), v3 = (I1, 0), v4 = (0, I1), v5 = (I2, 0), v6 = (0, I2)} for V (I1, I2), the matrix
of β is obtained as

[β]B =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

For v = (1− 3I1 + 2I2, 3 + I1 − 4I2) ∈ V (I1, I2), we have

β(v) = v = v1 + 3v2 − 3v3 + v4 + 2v5 − 4v6.

Therefore,

[v]B =


1
3
−3
1
2
−4

 = [β(v)]B

and thus
[β]B[v]B = [β(v)]B.

One interesting question to ask will be, can we find a mapping that will transform a refined neutrosophic
vector space into a neutrosophic vector space? The answer to this is positive. Since every refined neutrosophic
vector space and every neutrosophic vector space are vector spaces, then by relaxing the second axiom in
Definition 2.31, the mapping φ becomes a classical vector space homomorphism which can be use for such
transformation.

Proposition 2.44. Let V (I1, I2) be a weak refined neutrosophic vector space over a field K and let V (I) be
a weak neutrosophic vector space over K. Let φ : V (I1, I2) −→ V (I) be a mapping defined by

φ((x+ yI1 + zI2)) = (x+ (y + z)I) ∀(x+ yI1 + zI2) ∈ V (I1, I2) with x, y, z ∈ V.

Then φ is a linear map.

Proof. 1. φ is well defined. Suppose x1 + y1I1 + z1I2 = x2 + y2I1 + z2I2 then we that
x1 = x2, y1 = y2 and z1 = z2. So,

φ((x1 + y1I1 + z1I2)) = (x1 + (y1 + z1)I) = x2 + (y2 + z2)I = φ(x2 + y2I1 + z2I2).

2. For additivity, suppose (x1 + y1I1 + z1I2), (x2 + y2I1 + z2I2) ∈ V (I1, I2) then
φ((x1 + y1I1 + z1I2) + (x2 + y2I1 + z2I2)) = φ((x1 + x2) + (y − 1 + y2)I1 + (z1 + z2)I2)

= (x1 + x2) + (y1 + y2 + z1 + z2)I
= (x1 + x2) + ((y1 + z1) + (y2 + z2))I
= (x1 + x2) + ((y1 + z1)I + (y2 + z2)I)
= (x1 + (y1 + z1)I) + (x2 + (y2 + z2)I)
= φ(x1 + y1I1 + z1I2) + φ(x2 + y2I1 + z2I2).
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3. For homogeneity, let (x+ yI1 + zI2) ∈ V (I1, I2) and k ∈ K, then
φ(k(x1 + y1I1 + z1I2)) = φ(kx1 + ky1I1 + kz1I2)

= kx1 + (ky1 + kz1)I
= kx1 + k(y1 + z1)I
= k(x1 + (y1 + z1)I) = kφ((x1 + y1I1 + z1I2)).

Hence φ is a linear map.

Note 3. The kernel of this linear map is given by
kerφ = {(x+ yI1 + zI2) : φ((x+ yI1 + zI2)) = (0 + 0I)}

= {(x+ yI1 + zI2) : (x+ (y + z)I) = (0 + 0I)}
= {(0 + yI1 + (−y)I2)}.

1. It can be shown that kerφ is a linear subspace of V (I1, I2).

2. It can also be shown that (kerφ,+) ∼= (V (I1, I2),+).

Proposition 2.45. Let Lk(V (I1, I2), V (I)) be the set of linear maps from a weak refined neutrosophic vector
space V (I1, I2) over a field K into a weak neutrosophic vector space V (I) over a field K. Define addition
and scalar multiplication as below;

(φ+ ψ)(x+ yI1 + zI2) = φ((x+ yI1 + zI2)) + ψ((x+ yI1 + zI2))

and for k ∈ K
(kφ)((x+ yI1 + zI2)) = kφ(x+ yI1 + zI2).

Then, it can be shown that (Lk(V (I1, I2), V (I)),+, ·) is a weak neutrosophic vector space.

Proposition 2.46. Let φ ∈ Lk(V (I1, I2), V (I)) and dimV (I1, I2), dimV (I) <∞.

1. If dimV (I1, I2) > dimV (I), then, no linear map of V (I1, I2) to V (I) is one to one.

2. If dimV (I1, I2) < dimV (I), then, no linear map of V (I1, I2) to V (I) is onto.

Proof. 1. Suppose there exist a function φ ∈ Lk(V (I1, I2), V (I)) which is one to one . Then

dimV (I1, I2) = dimkerφ+ dimImφ.

Thus, dimV (I1, I2) = dimImφ = dimV (I) (dimkerφ = 0, since φ is one to one).
This gives a contradiction. Hence there exist no such function.

2. Suppose there exist a function φ ∈ Lk(V (I1, I2), V (I)) which is onto . Then Imφ = V (I). Thus,

dimV (I1, I2) = dimkerφ+ dimImφ

and also
dimV (I1, I2) ≥ dimV (I).

Thus
dimV (I) > dimV (I1, I2) ≥ dimV (I).

This is not possible. Hence there exist no such function.

3 Conclusion
This paper studied linear dependence, independence, bases and dimensions of refined neutrosophic vector
spaces and presented some of their basic properties. Also, the paper studied refined neutrosophic vector
space homomorphisms and established the existence of linear maps between weak refined neutrosophic vector
spaces V (I1, I2) and weak neutrosophic vector spaces V (I). We hope to present more properties of refined
neutrosophic vector spaces in our future papers.
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