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Nonlinear observer design on SL(3) for homography estimation by exploiting point and line correspondences with application to image stabilization

Although homography estimation from correspondences of mixed-type features, namely points and lines, has been relatively well studied with algebraic approaches by the computer vision community, this problem has never been addressed with nonlinear observer paradigms. In this paper, a novel nonlinear observer on the Special Linear group SL(3) applied to homography estimation is developed. The key advance with respect to similar works on the topic is the formulation of observer innovation that exploits directly point and line correspondences as input without requiring prior algebraic reconstruction of individual homographies. Rigourous observability and stability analysis is provided. A potential application to image stabilization in presence of very fast camera motion, severe occlusion, specular reflection, image blur, and light saturation is demonstrated with very encouraging results.

Introduction

Nonlinear observer design for systems endowed with symmetry properties (and on Lie groups in particular) is a relatively new discipline, starting with Salcudean's attitude observer on the unit quaternion group [START_REF] Salcudean | A globally convergent angular velocity observer for rigid body motion[END_REF] and subsequent contributions over the last two decades (see (Nijmeijer & (Eds.) 1999[START_REF] Rehbinder | Pose estimation using linebased dynamic vision and inertial sensors[END_REF][START_REF] Mahony | Nonlinear complementary filters on the Special Orthogonal group[END_REF][START_REF] Bonnabel | Symmetrypreserving observers[END_REF][START_REF] Bonnabel | Non-linear symmetry-preserving observers on Lie groups[END_REF][START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF]) and the reference therein). Since then the interest on this research topic has never ceased to expand. Owning to their algorithmic simplicity, (provable) large domain of convergence and stability, and strong robustness, nonlinear observers have increasingly become alternative solutions to classical filtering techniques, such as extended Kalman filters, unscented Kalman filters or particle filters, for state estimation (see, e.g., [START_REF] Bonnabel | Non-linear symmetry-preserving observers on Lie groups[END_REF][START_REF] Lageman | Gradient-like observers for invariant dynamics on a Lie group[END_REF][START_REF] Mahony | Nonlinear complementary filters on the Special Orthogonal group[END_REF][START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF][START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF]). The classical attitude estimation problem has been addressed in early nonlinear observers on the basis of Lyapunov analysis. This problem has also been a source of inspiration for the development of recent theories on invariant or equivariant observer design for systems with symmetry [START_REF] Mahony | Nonlinear complementary filters on the Special Orthogonal group[END_REF][START_REF] Bonnabel | Symmetrypreserving observers[END_REF][START_REF] Bonnabel | Non-linear symmetry-preserving observers on Lie groups[END_REF][START_REF] Lageman | Gradient-like observers for invariant dynamics on a Lie group[END_REF][START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF]. For instance, complementary nonlinear attitude observers exploiting the underlying Lie group structure of the Special Orthogonal group SO(3) are derived in [START_REF] Mahony | Nonlinear complementary filters on the Special Orthogonal group[END_REF] with proofs of almost global stability of the error system. A symmetry-preserving nonlin-ear observer design based on the Cartan moving-frame method is proposed in [START_REF] Bonnabel | Symmetrypreserving observers[END_REF][START_REF] Bonnabel | Non-linear symmetry-preserving observers on Lie groups[END_REF], which is locally valid for arbitrary Lie groups. A gradient observer design technique for invariant systems on Lie groups is proposed in [START_REF] Lageman | Gradient-like observers for invariant dynamics on a Lie group[END_REF], leading to almost global convergence provided that a non-degenerate Morse-Bott cost function is used. An equivariant observer design method directly on the homogeneous output space for the kinematics of mechanical systems is proposed in [START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF], leading to autonomous error evolution and strong convergence properties.

A large body of works on nonlinear observers has been devoted to attitude observer design on the Special Orthogonal group SO(3) (see [START_REF] Mahony | Nonlinear complementary filters on the Special Orthogonal group[END_REF][START_REF] Berkane | Hybrid Attitude and Gyro-Bias Observer Design on SO(3)[END_REF][START_REF] Trumpf | Analysis of non-linear attitude observers for time-varying reference measurements[END_REF][START_REF] Khosravian | State estimation for invariant systems on lie groups with delayed output measurements[END_REF][START_REF] Zlotnik | Nonlinear estimator design on the special orthogonal group using vector measurements directly[END_REF][START_REF] Batista | Attitude and earth velocity estimation-part II: Observer on the special orthogonal group[END_REF] and the references therein) and to pose observer design on the Special Euclidean group SE(3) (see [START_REF] Baldwin | Complementary filter design on the Special Euclidean group SE(3)[END_REF][START_REF] Izadi | Rigid body pose estimation based on the lagrange-d'alembert principle[END_REF][START_REF] Hua | Observer design on the special euclidean group SE(3)[END_REF][START_REF] Wang | Globally asymptotically stable hybrid observers design on SE(3)[END_REF][START_REF] Vasconcelos | A nonlinear position and attitude observer on SE(3) using landmark measurements[END_REF]) and the references therein). Various refinements have been carried out to take particularities of the considered system and available sensors into account. For instance, some attitude observers posed on SO(3) and based on measurements of a single time-varying direction are proposed in [START_REF] Trumpf | Analysis of non-linear attitude observers for time-varying reference measurements[END_REF][START_REF] Lee | Global attitude estimation using single direction measurements[END_REF]. In particular, [START_REF] Trumpf | Analysis of non-linear attitude observers for time-varying reference measurements[END_REF]) exhibits some explicit persistence of excitation conditions guaranteeing the observability and asymptotic convergence of the proposed observer. Velocity-aided attitude observers developed in [START_REF] Hua | Attitude estimation for accelerated vehicles using GPS/INS measurements[END_REF][START_REF] Martin | An invariant observer for Earth-Velocity-Aided attitude heading reference systems[END_REF][START_REF] Roberts | On the attitude estimation of accelerating rigid-bodies using GPS and IMU measurements[END_REF] no longer rely on the assumption of weak accelerations commonly used in conventional algorithms that involve only measurements of an Inertial Measurement Unit (IMU) and a magnetometer (e.g., [START_REF] Mahony | Nonlinear complementary filters on the Special Orthogonal group[END_REF]). Time delay in output measurements is considered in [START_REF] Khosravian | State estimation for invariant systems on lie groups with delayed output measurements[END_REF] for velocity-aided attitude observer design. Hybrid nonlinear attitude and pose observers are proposed in [START_REF] Berkane | Hybrid Attitude and Gyro-Bias Observer Design on SO(3)[END_REF][START_REF] Wang | Hybrid nonlinear observers for inertial navigation using landmark measurements[END_REF] to overcome topological obstructions of Lie groups containing rotations [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF] so that global asymptotical stability can be achieved. These are just a very nonexhaustive list of examples. On the other hand, other less explored research directions involve the Special Linear group SL(3) for homography estimation problem [START_REF] Malis | Dynamic estimation of homography transformations on the Special Linear group for visual servo control[END_REF][START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF][START_REF] Hamel | Homography estimation on the Special Linear group based on direct point correspondence[END_REF][START_REF] Hua | Explicit Complementary Observer Design on Special Linear Group SL(3) for Homography Estimation using Conic Correspondences[END_REF][START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF] and some newly introduced Lie groups for the Simultaneous Localization and Mapping (SLAM) problem such as the SLAM n (3) group (Mahony & Hamel 2017), the VSLAM n (3) group (van Goor, Mahony, Hamel & Trumpf 2019), and the SE n+1 (2) group [START_REF] Barrau | An EKF-SLAM algorithm with consistency properties[END_REF].

The present paper addresses the problem of nonlinear observer design on SL(3) with application to homography estimation and image stabilization. To our knowledge, most existing works on the topic have been proposed by the authors of this paper [START_REF] Malis | Dynamic estimation of homography transformations on the Special Linear group for visual servo control[END_REF], Mahony et al. 2012, Hamel et al. 2011[START_REF] Hua | Explicit Complementary Observer Design on Special Linear Group SL(3) for Homography Estimation using Conic Correspondences[END_REF][START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF]). Before providing further discussions, let us first recall on the homography and its importance in practice. Originated from the field of Computer Vision, the so-called homography is an invertible mapping that relates two camera views of the same planar scene by encoding in a single matrix the camera pose, the distance between the camera and the scene, along with the normal direction to the scene (e.g., [START_REF] Hartley | Multiple View Geomerty in Computer Vision[END_REF]). It plays an important role in numerous computer vision and robotic applications where the scenarios involve man-made environments composed of (near) planar surfaces. The homography has been exploited to estimate the rigid-body pose of a robot equipped with a camera [START_REF] Scaramuzza | Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles[END_REF]. The navigation of robotic vehicles has been developed using homography sequences (de Plinval, Morin & Mouyon 2017) and one of the most successful visual servo control paradigms makes use of homographies [START_REF] Malis | 2-1/2-D visual servoing[END_REF]. Homography-based navigation methods are also particularly well suited to applications where the camera is sufficiently far from the observed scene, such as situations where ground images are taken from an aerial vehicle [START_REF] Caballero | Homography based Kalman filter for mosaic building. Applications to UAV position estimation[END_REF][START_REF] De Plinval | Stabilization of a class of underactuated vehicles with uncertain position measurements and application to visual servoing[END_REF].

Let us now discuss about the homography estimation problem. Classical algorithms for homography estimation taken from the computer vision community consist in computing the homography on a frame-by-frame basis by solving algebraic constraints related to correspondences of image features (points, lines, conics, contours, etc.) [START_REF] Hartley | Multiple View Geomerty in Computer Vision[END_REF][START_REF] Agarwal | A survey of planar homography estimation techniques[END_REF][START_REF] Jain | Homography estimation from planar contours[END_REF][START_REF] Kaminski | Multiple view geometry of general algebraic curves[END_REF][START_REF] Conomis | Conics-based homography estimation from invariant points and pole-polar relationships[END_REF]. These algorithms, however, only consider the homography as an incidental variable and are not focused on improving (or filtering) the homography over time. This yields an obvious interest in developing alternative homography estimation algorithms that exploit the temporal correlation of data across a video sequence rather than computing algebraically individual raw homography for each image. Nonlinear observers provide a relevant answer to that preoccupation. In recent work by the co-authors of this paper [START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF]), a nonlinear observer has been proposed based on the underlying structure of the Special Linear group SL(3), which is isomorphic to the group of homographies [START_REF] Benhimane | Homography-based 2D visual tracking and servoing[END_REF]. Velocity information is exploited to interpolate across a sequence of images and improve the individual homography estimates. That observer, however, still requires individual image homographies (previously computed using an algebraic technique) as feedback information. It thus necessitates both a classical homography algorithm and a temporal filter algorithm, and only functions if each pair of images provides sufficient features to algebraically compute a raw homography. In order to overcome these drawbacks, in our prior work [START_REF] Hamel | Homography estimation on the Special Linear group based on direct point correspondence[END_REF][START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF] the question of deriving an observer for a sequence of image homographies that takes image point-feature correspondences directly as input has been considered. In this paper, the previous observer is extended by also incorporating image linefeature correspondences (in addition to point-feature correspondences) directly as input in the design of observer innovation. In line with this effort, in another work [START_REF] Hua | Explicit Complementary Observer Design on Special Linear Group SL(3) for Homography Estimation using Conic Correspondences[END_REF] of the coauthors of this paper, conic-feature correspondences are considered for the construction of observer innovation, but the association of all these 3 types of features (i.e. points, lines, and conics) in direct observer design will require a careful investigation and is thus out of the scope of the present paper.

In this paper the proposed observer is derived based on an advanced theory for nonlinear observer design directly on the homogeneous output space [START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF]. Sharing the same filtering advantage with the observer in [START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF], the advanced feature of both the observer of [START_REF] Hamel | Homography estimation on the Special Linear group based on direct point correspondence[END_REF][START_REF] Hua | Feature-based recursive observer design for homography estimation and its application to image stabilization[END_REF] and the observer of this paper is the formulation of observer innovation that exploits directly point and line correspondences without requiring reconstruction of individual image homographies. This may save considerable computational resources, making the proposed algorithm suitable for embedded systems with simple feature tracking software. In contrast with algebraic techniques, the proposed algorithm is well posed even when there is insufficient data for full reconstruction of a homography. In such situations, the proposed observer continues to operate by incorporating available information and relying on propagation of prior estimates. Beyond the above practical advantages of the proposed observer, we believe that the present work is the first to address the problem of nonlinear observer design on the Special Linear group SL(3) for homography estimation by directly exploiting both point and line correspondences as input. It thereby constitutes an appealing application to the "school" of nonlinear observer design on Lie groups. Finally, technical rigourousness of the proposed observer is supported by comprehensive observability and stability analysis, which is also accompanied by a non-trivial analysis for a particular unobservable case often overlooked in the literature.

The present paper is organized as follows. Section 2 provides technical background. In Section 3 a nonlinear observer on SL(3) is proposed using direct point and line correspondences and the knowledge of the group velocity. In Section 4 the homography and associated homography velocity are related to rigid-body motion of the camera and two observers are derived for the case where only the angular velocity of the camera is known, a typical scenario in robotic applications. In Section 5, as a complement contribution, an application of the proposed approach to a real world problem in image stabilization is presented. Some video links, showing the experiment results, are provided as supplementary material. A preliminary version of this paper was reported in a technical report [START_REF] Hua | Point and line feature-based observer design on SL(3) for Homography estimation and its application to image stabilization[END_REF].

Technical background

Notation and mathematical identities

• The Special Linear group SL(3) and its algebra sl(3) are given by SL(3 3) -→ R be an inner product on sl(3), chosen to be the Euclidean matrix inner product on R 3×3 . Then, a right-invariant Riemannian metric on SL(3) induced by the inner product

) := {H ∈ R 3×3 | det H = 1} and sl(3) := {U ∈ R 3×3 | tr(U ) = 0}. The adjoint operator Ad : SL(3) × sl(3) → sl(3) is defined by Ad H U := HU H -1 , ∀H ∈ SL(3), U ∈ sl(3). • Let •, • : sl(3) × sl(
•, • is defined by U 1 H, U 2 H H := U 1 , U 2 , ∀H ∈ SL(3), U 1 , U 2 ∈ sl(3).
• grad 1 f and Hess 1 f denote the gradient and Hessian in the first variable of f , respectively. Let Å (resp. A) denote projective coordinates for the image plane of a camera Å (resp. A), and let { Å} (resp. {A}) denote its reference (resp. current) frame.

• {e 1 , e 2 , e 3 } denote the canonical basis of R 3 . • [•] × is the skew-symmetric matrix associated with the vector cross-product, i.e. [x] × y = x × y, ∀x, y ∈ R 3 .

Preliminaries about homographies

Let ξ ∈ R3 denote the position of the frame {A} with respect to { Å} expressed in { Å}. The orientation of the frame {A} with respect to { Å} is represented by a rotation matrix R ∈ SO(3) (see Fig. 1).

Let us denote by d (resp. d) and η (resp. η) respectively the distance from the origin of { Å} (resp. {A}) to the observed planar scene and the normal vector pointing towards the scene expressed in { Å} (resp. {A}). One verifies that η = R η and d = d -η ξ.

From the relation Pi = P i + ξ, the coordinates Pi ∈ { Å} and P i ∈ {A} of the same point of index i ∈ {1, • • • , n} on the scene are related by

Pi = RP i + ξ. (1) 
Since the considered points belong to the observed planar scene Π :

= {P i ∈ R 3 : η P i -d = 0}
, one deduces from the plane constraint η Pi d = 1 and Eq. ( 1) that

Pi = R + ξη d P i . (2) Let pim i ∈ Å (resp. p im i ∈ A
) denote the image of the considered point of index i when the camera is aligned with the frame { Å} (resp. frame {A})2 . Note that pim i and p im i have the form (u, v, 1) using the homogeneous coordinate representation and they are related to the 3D coordinates of that point by 3 :

pim i ∼ = K Pi , p im i ∼ = KP i , (3) 
with K ∈ R 3×3 the camera calibration matrix that contains the intrinsic parameters of the camera such as the focal length, the pixel aspect ratio, the principal point, etc [START_REF] Ma | An Invitation to 3-D Vision: From Images to Geometric Models[END_REF]. Assume that the camera is well calibrated (i.e. K is known) so that all quantities can be appropriately re-normalized onto the unit sphere S 2 as pi :

= Pi | Pi | = K -1 pim i |K -1 pim i | , p i := P i |P i | = K -1 p im i |K -1 p im i | . (4) 
Using ( 2) and ( 4) the projected points satisfy

pi ∼ = R + ξη d p i ∼ = Hp i ⇒ p i = H -1 pi |H -1 pi | , (5) 
where the projective mapping

H : A → Å, H : ∼ = R + ξη d
is the Euclidean homography that maps Euclidean coordinates of the scene's points from {A} to { Å}.

Since a homography matrix H is only defined up to a scale factor, any homography matrix is associated with a unique matrix H ∈ SL(3) by re-scaling H = det(H) -1 3 H such that det( H) = 1. Therefore, without loss of generality it is assumed that H is an element of SL(3). Recall that the scale factor γ such that

H = γ R + ξη d is equal (d/ d) 1
3 and corresponds to the second singular value of H [START_REF] Ma | An Invitation to 3-D Vision: From Images to Geometric Models[END_REF]). The so-called "image" homography matrix G ∈ SL(3) that maps pixel coordinates from A to Å (i.e. pim i

∼ = Gp im i ) then satisfies G = KHK -1 .
Any line on the observed scene can be represented by the unit vector l normal to the plane that contains the given line and the camera focal point. Picking arbitrarily two different points on the line of index j ∈ {1, • • • , m}, one obtains

l j = p 1j × p 2j |p 1j × p 2j | ∈ {A}, lj = p1j × p2j |p 1j × p2j | ∈ { Å}.
Using (5) and the property M (a×b) = det(M )(M -a× M -b) for any invertible matrix M ∈ R 3×3 and a, b ∈ R 3 one then deduces

l j = H -1 p1j ×H -1 p2j |H -1 p1j ×H -1 p2j | = H (p 1j ×p 2j ) |H (p 1j ×p 2j )| = H lj |H lj | . (6) 
In the sequel, expressions ( 5) and ( 6) of point and line correspondences will be used as measurements for homography observer design.

3 Basic ideas of observer design on SL(3) based on direct point and line correspondences

Homography kinematics and measurements

To expose the underlying ideas of observer design, in this section we consider the simplified case where the kinematics of H ∈ SL(3) are given by

Ḣ = F (H, U ) := HU, H(0) ∈ SL(3), (7) 
with known group velocity U ∈ sl(3). Section 4 will deal with a more applicative (and realistic) case where U is only partly measured.

Assume that a set of n (≥ 0) point measurements p i ∈ S 2 and/or a set of m (≥ 0) line measurements l j ∈ S 2 are at our disposal. All these measurements are expressed in the camera current frame {A}:

p i = h p (H, pi ) := H -1 pi |H -1 pi | , i = {1, . . . , n}, (8) 
l j = h l (H, lj ) := H lj |H lj | , j = {1, . . . , m}, (9) 
where pi ∈ S 2 and lj ∈ S 2 are constant and known in the reference frame { Å}. For future reference, define

p := (p 1 , • • • , pn ), p := (p 1 , • • • , p n ), l := ( l1 , • • • , lm ), l := (l 1 , • • • , l m ).
For stability analysis purposes, the following observability assumption is introduced and will be discussed thereafter.

Assumption 1 (Observability conditions) Assume that the union set S := S n p S m l , with S n p the set of n (≥ 0) observed constant points pi ∈ S 2 and S m l the set of m (≥ 0) observed constant lines lj ∈ S 2 , is consistent in the sense that S satisfies one of the four following cases4 :

• Case 1 (at least 4 points): There exists a subset S 4 p ⊂ S n p of 4 points such that all vector triplets in S 4 p are linearly independent.

• Case 2 (at least 4 lines): There exists a subset S 4 l ⊂ S n l of 4 lines such that all vector triplets in S 4 l are linearly independent.

• Case 3 (at least 3 points and 1 line): There exist 1 line lj and a subset S 3 p ⊂ S n p of 3 linearly independent points that do not lie on the line lj , i.e. l j pi = 0, ∀p i ∈ S 3 p . • Case 4 (at least 1 point and 3 lines): There exist a subset S 3 l ⊂ S m l of 3 linearly independent lines and 1 point pi that does not lie on any line of S 3 l , i.e. l j pi = 0, ∀ lj ∈ S 3 l .

One verifies that SL(3) is a symmetry group with group actions φ(Q, H):=HQ,

ψ(Q, U ):=Ad Q -1 U = Q -1 U Q, ρ(Q, p) := Q -1 p |Q -1 p| , µ(Q, l) := Q l |Q l| ,
which are right group actions in the sense that

φ(Q 2 , φ(Q 1 , H)) = φ(Q 1 Q 2 , H), ψ(Q 2 , ψ(Q 1 , U )) = ψ(Q 1 Q 2 , U ), ρ(Q 2 , ρ(Q 1 , p)) = ρ(Q 1 Q 2 , p), and µ(Q 2 , µ(Q 1 , p)) = µ(Q 1 Q 2 , p) whatever Q 1 , Q 2 , H ∈ SL(3), U ∈ sl(3), and p, l ∈ S 2 .
The kinematics are right equivariant since it can be verified that

       d H φ(Q, H)[F (H, U )] = F (φ(Q, H), ψ(Q, U )) ρ(Q, h p (H, pi )) = h p (φ(Q, H), pi ) µ(Q, h l (H, li )) = h l (φ(Q, H), li )
which have the same forms as the system equation ( 7) and the output equations ( 8), ( 9). The fact that the kinematics are right equivariant allows for applying the nonlinear observer design framework developed in [START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF]). 

Equivariant

e pi := ρ( Ĥ-1 , p i ) = Ĥp i | Ĥp i | = Ep i |Ep i | , ( 10 
)
e lj := µ( Ĥ-1 , l j ) = Ĥ-l j | Ĥ-l j | = E - lj |E -lj | . ( 11 
)
The general form of the proposed observer is given by

Ḣ = ĤU -∆( Ĥ, p, l) Ĥ, Ĥ(0) ∈ SL(3) (12)
with ∆( Ĥ, p, l) ∈ sl(3) the innovation term to be designed.

According to (Mahony et al. 2013, Th. 1), if the innovation term ∆( Ĥ, p, l) is right equivariant in the sense that

∆(φ(Q, Ĥ), ρ(Q, p 1 ),• • •, ρ(Q, p n ), µ(Q, l 1 ),• • •, µ(Q, l m )) = ∆( Ĥ, p 1 , • • • , p n , l 1 , • • • , l m ), ∀Q ∈ SL(3),
then the dynamics of the group error E are autonomous:

Ė = -∆(E, p, l)E. ( 13 
)
To determine the right-equivariant innovation ∆( Ĥ, p, l), a right-invariant cost function C( Ĥ, p, l) should be defined. To this purpose, we first define individual rightinvariant cost functions at pi or lj on the output space S 2 as follows:

C pi ( Ĥ, p i ) := ki 2 Ĥpi | Ĥpi| -pi 2 , C lj ( Ĥ, l j ) := κj 2 Ĥ-lj | Ĥ-lj | -lj 2 , with k i , κ j > 0. These cost functions are right in- variant since C pi (φ(Q, Ĥ), ρ(Q, p i )) = C pi ( Ĥ, p i ) and C lj (φ(Q, Ĥ), µ(Q, p i )) = C lj ( Ĥ, l j ), ∀Q ∈ SL(3). Then,
the aggregate cost C( Ĥ, p, l) defined as the sum of all the individual cost functions

C( Ĥ, p, l) := n i=1 k i 2 Ĥp i | Ĥp i | -p i 2 + m j=1 κ j 2 Ĥ-l j | Ĥ-l j | -lj 2 (14)
is also right invariant.

From there the innovation term ∆( Ĥ, p, l) can be computed as (Mahony et al. 2013, Eq. (40))

∆( Ĥ, p, l) = (grad 1 C( Ĥ, p, l)) Ĥ-1 , (15) 
with grad 1 the gradient using a right-invariant Riemannian metric on SL(3).

Using the fact that the considered Riemannian metric is right invariant, one obtains

d Ĥ C( Ĥ, p, l)[U Ĥ] = grad 1 C( Ĥ, p, l), U Ĥ H = grad 1 C( Ĥ, p, l) Ĥ-1 Ĥ, U Ĥ H = grad 1 C( Ĥ, p, l) Ĥ-1 , U = ∆( Ĥ, p, l), U , (16) 
with any U ∈ sl(3). On the other hand, using ( 14) one has One deduces from (18) that ∆(E, p, l) = ∆( Ĥ, p, l) and, consequently, from (13) that

d Ĥ C( Ĥ, p, l)[U Ĥ] = n i=1 k i Ĥpi | Ĥpi| -pi I -( Ĥpi)( Ĥpi) | Ĥpi| 2 (U Ĥ)pi | Ĥpi| + m j=1 κ j Ĥ-lj | Ĥ-lj | -lj I - ( Ĥ-lj )( Ĥ-lj ) | Ĥ-lj | 2 (-U Ĥ-)lj | Ĥ-lj | = n i=1 k i (e pi -pi
Ė = n i=1 k i π epi pi e pi - m j=1 κ j e lj l j π e lj E. ( 19 
)
Theorem 1 Consider the kinematics (7) and assume that the group velocity U ∈ sl(3) is known. Consider Observer (12) with the innovation term ∆( Ĥ, p, l) ∈ sl(3) defined by (18). Assume that Assumption 1 holds. Then, the equilibrium E = I of the error system (19) is locally exponentially stable.

Proof: The proof of this theorem is based on Theorem 2 in [START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF] according to which the equilibrium E = I of system ( 19) is locally exponentially stable if the right-invariant cost function C( Ĥ, p, l) defined by ( 14) is non-degenerate (i.e. (I, p, l) is a global minimum of C( Ĥ, p, l)). According to (Mahony et al. 2013, Lem. 3)

, C( Ĥ, p, l) is non-degenerate if n i=1 stab ρ (p i ) m j=1 stab µ ( lj ) = {I}, (20) 
where the stabilizer stab f (y) (here f stands for either ρ or µ) of an element y ∈ S 2 is defined by

stab f (y) := Q ∈ SL(3) | f (Q, y) = y .
Condition ( 20) is, in fact, equivalent to

s := n i=1 s ρi m j=1 s µj = {0}, (21) 
with s ρi := ker(d H ρ(H, pi )| H=I ),

s µj := ker(d H µ(H, lj )| H=I ),
the Lie-algebra associated with stab ρ (p i ) and stab µ ( lj ), respectively. In fact, condition (20) or, equivalently, ( 21) ensures that the Hessian Hess 1 C(I, p, l) is positive definite [START_REF] Mahony | Observers for kinematic systems with symmetry[END_REF].

Therefore, the remainder of the proof consists in proving that condition ( 21) is satisfied subject to Assumption 1.

To this purpose, one first computes the derivatives

d H ρ(H, pi )[HU ] = d H -1 pi |H -1 pi| [HU ] = -I -(H -1 pi)(H -1 pi) |H -1 pi| 2 U H -1 pi |H -1 pi| , d H µ(H, lj )[HU ] = d H lj |H lj | [HU ] = I - (H lj )(H lj ) |H lj | 2 U H lj |H -1l j |
, with any U ∈ sl(3). From there one deduces

s ρi = ker(d H ρ(H, pi )| H=I ) = {U ∈ sl(3) | π pi Up i = 0}, s µj = ker(d H µ(H, lj )| H=I ) = {U ∈ sl(3) | π lj U lj = 0},
and, subsequently,

s = n i=1 s ρi m j=1 s µj = U ∈ sl(3) | π pi Up i = 0, π lj U lj = 0, ∀p i ∈ S n p , lj ∈ S m l . (22)
We will determine U ∈ sl(3) such that π pi Up i = 0 and π lj U lj = 0, for all i = 1, • • • , n and j = 1, • • • , m. The relations π pi Up i = 0 and π lj U lj = 0 can be equivalently written as Up i = λ pi pi and U lj = λ lj lj , with λ pi := p i Up i and λ lj := l j U lj . From there one deduces that λ pi (resp. λ lj ) are eigenvalues of U (resp. U ) and pi (resp. lj ) are the associated eigenvectors. Consider the 4 cases of Assumption 1.

• Case 1 (at least 4 points): Without loss of generality, assume that the subset S 4 p = {p 1 , p2 , p3 , p4 } is consistent. Thus, there exist 3 non-zero numbers b 1 , b 2 , and b 3 such that p4 = 3 i=1 b i pi . From there using the fact that

Up 4 = U 3 i=1 b i pi = 3 i=1 b i Up i = 3 i=1 b i λ pi pi , Up 4 = λ p4 p4 = λ p4 3 i=1 b i pi = 3 i=1 b i λ p4 pi , one deduces 3 i=1 b i λ pi pi = 3 i=1 b i λ p4 pi . ( 23 
)
Since b i (i = 1, 2, 3) are not null and the 3 unit vectors pi (i = 1, 2, 3) are linearly independent, (23) directly yields λ p1 = λ p2 = λ p3 = λ p4 . Let λ denote the value of these identical eigenvalues. One deduces that U has a triple eigenvalue λ. Since the number of linearly independent eigenvectors of U is equal to 3, the matrix U is diagonalizable. Then, the diagonalizability of U along with the fact that it has a triple eigenvalue implies that U = λI. This in turn yields tr(U ) = 3λ, which is zero since U is an element of sl(3). Consequently, λ = 0 and U = 0. One then deduces s = {0}.

• Case 2 (at least 4 lines): By proceeding analogously to the proof for Case 1, one deduces that U has a triple eigenvalue λ and U = λI. Since tr(U ) = 0, one deduces λ = 0, U = 0 and, consequently, s = {0}.

• Case 3 (at least 3 points and 1 line): Without loss of generality, assume that the subset S 3 p = {p 1 , p2 , p3 } contains 3 linearly independent points that do not lie on the line l1 , i.e. l 1 pi = 0, ∀p i ∈ S 3 p . Using the relations Up i = λ pi pi , one obtains l 1 (Up i ) = λ pi l 1 pi . On the other hand, using the relation U l1 = λ l1 l1 , one has l 1 (Up i ) = p i (U l1 ) = λ l1 p i l1 . Consequently, one deduces λ p1 = λ p2 = λ p3 = λ l1 . This means that U has a triple eigenvalue associated with 3 linearly independent eigenvectors p1,2,3 . One then deduces that U = 0 and, consequently, s = {0}.

• Case 4 (at least 1 point and 3 lines): Without loss of generality, assume that the subset S 3 l = { l1 , l2 , l3 } contains 3 linearly independent lines and that the point p1 does not lie on any line of S 3 l , i.e. l j p1 = 0, ∀ lj ∈ S 3 l . Then, by proceeding analogously to the proof for Case 3, one deduces that λ l1 = λ l2 = λ l3 = λ p1 , which means that U has a triple eigenvalue associated with 3 linearly independent eigenvectors l1,2,3 . One then deduces that U = 0 and, consequently, s = {0} (end of proof). Now some discussions on Assumption 1 are in order.

• The four cases of Assumption 1 correspond to the ones discussed by Hartley and Zisserman in (Hartley & Zisserman 2003, p. 93) where algebraic reconstruction of the homography is possible from the correspondences of mixed-type features, namely points and lines. Here instead of using geometric constraint arguments to fully cover the 8 degrees of freedom of the homography like in [START_REF] Hartley | Multiple View Geomerty in Computer Vision[END_REF], we have followed a more "Automatic Control" approach so as to tackle (see the proof of Theorem 1) the observability conditions (given in Assumption 1) in a more explicit manner.

• Regarding the "unobservable" case with 2 point and 2 line correspondences also discussed in (Hartley & Zisserman 2003, p. 93), it can be proved that this case does not ensure the satisfaction of the observability condition (20) (or equivalently ( 21)). In fact, similarly to the proof of Theorem 1 and in view of ( 22), it suffices to prove that there exists some non-null matrix U ∈ sl(3) such that π pi Up i = 0 and π lj U lj = 0, for all i = 1, 2 and j = 1, 2. Assume that the two considered points do not coincide (i.e. p 1 p2 = 1) and do not lie on any of the two considered lines (i.e. p i lj = 0, ∀i, j ∈ {1, 2}). Then by proceeding analogously to the proof for Cases 3 and 4 in Theorem 1, one deduces that λ p1 = λ p2 = λ l1 = λ l2 = λ and, thus,

Up 1 = λp 1 , Up 2 = λp 2 , U l1 = λ l1 , U l2 = λ l2 . (24)
In order to determine U ∈ sl(3) solution to ( 24), let us first define α := acos(p 1 p2 ) = 0. One then verifies that there exists a unique rotation matrix R p ∈ SO(3) such that R p p1 = e 3 and R p p2 = sin α e 1 + cos α e 3 . In fact, R p can be easily determined using the TRIAD algorithm [START_REF] Shuster | Approximate algorithms for fast optimal attitude computation[END_REF]. Then, via the following change of variables:

Ū := R p U R p , l1 := R p l1 , l2 := R p l2 ,
the equalities in ( 24) can be rewritten as Ū e 3 = λe 3 , Ū (sin α e 1 + cos α e 3 ) = λ(sin α e 1 + cos α e 3 ), Ū l1 = λ l1 , Ū l2 = λ l2 , from which, and using the fact that tr( Ū ) = tr(U ) = 0 and sin α = 0, one easily deduces that Ū = λ Ū0 , with

Ū0 :=      1 3( l12 l23-l13 l22) l11 l23-l13 l21 0 0 -2 0 0 3( l12 l21-l11 l22) l11 l23-l13 l21 1     
and, thus, s = {λR p Ū0 R p , ∀λ ∈ R} = {0}, meaning that ( 21) is not satisfied.

4 Application to camera-IMU systems observing a stationary planar scene

Homography kinematics from a camera moving with rigid-body motion

In this section the situation where a sequence of homographies is generated by a moving camera viewing a stationary planar scene (i.e. { Å} is stationary) is considered. The objective consists in developing a nonlinear filter for the image homography sequence using the velocity associated with the rigid-body motion of the camera rather than the group velocity U as was assumed in Section 3.

The kinematics of the camera's pose (R, ξ) are given by

Ṙ=R[Ω] × ξ =RV (25) 
with Ω ∈ R 3 and V ∈ R 3 denoting the angular velocity and linear velocity of {A} with respect to { Å} expressed in {A}, respectively.

The group velocity U ∈ sl(3) induced by the rigid-body motion and involved in the dynamics ( 7) of H satisfies [START_REF] Mahony | Nonlinear complementary filters on the special linear group[END_REF])

U = [Ω] × + V η d - η V 3d I. (26) 
Note that the variables η and d involved in U are not measurable and cannot be extracted directly from the measurements. In the sequel, one rewrites (26) as

U = [Ω] × + Γ = [Ω] × + Γ 1 - 1 3 tr(Γ 1 )I, (27) 
with Γ := V η d -η V 3d I and Γ 1 := V η d . Since { Å} is stationary by assumption, the angular velocity Ω can be directly measured from the set of embedded gyrometers. The term Γ related to the translational motion expressed in the current frame {A} is more involved. If it is assumed that ξ d is constant (e.g., the camera moving with a constant velocity parallel to the scene or converging exponentially towards it), and using the fact that V = R ξ and η = η × Ω, one verifies that

Γ = [Γ, [Ω] × ], (28) with 
[Γ, [Ω] × ] = Γ[Ω] × -[Ω] × Γ the Lie bracket.
On the other hand, if it is assumed that V d is constant (e.g., the camera following a circular trajectory over the scene or performing an exponential convergence towards it), it follows that

Γ1 = Γ 1 [Ω] × .
(29)

Observer design with measured angular velocity of the rigid body

Consider the case where the part Γ (resp. Γ 1 ) of the group velocity U in ( 27) is not available to measurement. Let Γ (resp. Γ1 ) denote the estimate of Γ (resp. Γ 1 ) and define the error term Γ := Γ -Γ, (resp. Γ1 := Γ 1 -Γ1 ).

The goal is to provide an estimate Ĥ ∈ SL(3) of H to drive the group error E (= ĤH -1 ) to the identity matrix I and the error term Γ (resp. Γ1 ) to 0 if Γ (resp. Γ 1 ) is assumed to be constant. The observer when ξ d is constant is proposed as follows (compare to (12)):

       Ḣ = Ĥ([Ω] × + Γ) -∆( Ĥ, p, l) Ĥ Γ = [ Γ, [Ω] × ] -k I Ad Ĥ ∆( Ĥ, p, l) Ĥ(0) ∈ SL(3), Γ(0) ∈ sl(3) (30)
and the observer when V d is constant is proposed as follows:

       Ḣ = Ĥ([Ω] × + Γ1 -1 3 tr( Γ1 )I) -∆( Ĥ, p, l) Ĥ Γ1 = Γ1 [Ω] × -k I Ad Ĥ ∆( Ĥ, p, l) Ĥ(0) ∈ SL(3), Γ1 (0) ∈ sl(3) (31)
with some positive gain k I and ∆( Ĥ, p, l) given by ( 18).

The following proposition establishes stability result for Observer (30). The same result for Observer (31) can be directly stated. Proposition 1 Consider a camera moving with kinematics (25) viewing a static planar scene. Assume that Ω is measured and bounded. Consider the kinematics (7) along with (27). Assume that H is bounded and that Γ obeys (28). Consider Observer (30) along with the innovation ∆( Ĥ, p, l) ∈ sl(3) defined by (18). Assume that Assumption 1 holds. Then, the equilibrium (E, Γ) = (I, 0) of the error system is locally asymptotically stable.

Proof: One verifies that the error dynamics satisfy

Ė =-(∆ + Ad Ĥ Γ)E Γ =[ Γ, [Ω] × ] + k I Ad Ĥ ∆ (32)
with ∆ the shortened notation of ∆( Ĥ, p, l). From ( 10), ( 11) and (32) one deduces

ėpi = -π ep i (∆ + Ad Ĥ Γ)e pi ėlj = π e l j (∆ + Ad Ĥ Γ) e lj (33) 
Consider the following Lyapunov function candidate:

L := n i=1 k i 2 |e pi -p i | 2 + m j=1 κ j 2 e lj -lj 2 + 1 2k I || Γ 2 = C(E, p, l) + 1 2k I || Γ 2 . ( 34 
)
with C(•, •, •) defined by ( 14) (Note that C( Ĥ, p, l) = C(E, p, l)). Differentiating L and using (33) and the fact that tr( Γ ([ Γ, Ω])) = 0, one obtains

L = n i=1 k i p i π ep i (∆+Ad Ĥ Γ)e pi - m j=1 κ j l j π e l j (∆+Ad Ĥ Γ) e lj +tr(Ad Ĥ-1 ∆ Γ) = -∆ 2 ≤ 0, (35) 
which is negative semi-definite and equal to zero when ∆ = 0. From there we will show next that there exists a local domain of initial conditions of (E(0), Γ(0)) so that ∆ converges to zero and (E(t), Γ(t)) converge to (I, 0). Since Ω and H are bounded, one verifies that L remains bounded (i.e. L is uniformly continuous) provided that (E(0), Γ(0)) ∈ B E 1 × B Γ. Direct application of Barbalat's lemma to (35) then ensures the asymptotic convergence of ∆ to zero. This in turn implies that E converges to I since E remains in B E for all time. From the expression (32) of Ė one deduces that Ë is bounded. Then, using the fact that ∆ converges to zero and E converges to I, it follows from Barbalat's lemma that lim t→∞ Ė = -Ad Ĥ Γ = 0. Using the boundedness of H, one ensures the boundedness of Ĥ and Ĥ-1 and consequently the convergence of Γ to zero. Finally the stability of the equilibrium (E, Γ) = (I, 0) is a direct consequence of (34) and (35).

Remark 1 One verifies from (30) that ( Ĥ, Γ) always evolve in SL(3) × sl(3) using the fact that ( Ĥ(0), Γ(0)) ∈ SL(3) × sl(3) and the property det(e A ) = e tr(A) , ∀A ∈ R 3×3 . In practice, however, to avoid numerical drift it is often desirable to enforce this constraint by frequently re-normalizing Ĥ and Γ onto SL(3) and sl(3), respectively, using the projections P SL(3) ( Ĥ) = det( Ĥ) -1 3 Ĥ and P sl(3) ( Γ) = Γ -1 3 tr( Γ)I.

Experimental results -Image stabilization

In this section we present an application of the proposed approach to image stabilization in presence of very fast camera motion, severe occlusion, specular reflections, image blurring, and light saturation. The reported experiments have been conducted (using an Intel Core i7-6400 CPU running at 3.40Ghz) on datasets recorded by a prototype synchronized camera-IMU combination with an Aptina MT9V034 CMOS sensor and an Analog Devices ADIS16375 MEMS IMU. The IMU runs at 100 Hz, providing angular velocity measurements to the observer. The camera provides 20 frames per second at a resolution of 752 × 480 pixels.

• Point-feature detection and matching: The implemented code has been written in C++ with OpenCV library. Point-features are extracted using the SurfFeatureDetector routine with standard recommended parameter settings and matched using OpenCV's brute-force matcher BFMatcher routine with L 2 -norm. It is quite unrealistic to track one and the same set of point-features through the long video sequence, in particular given the low frame rate and comparatively rapid motion in our test sequence as well as the presence of severe occlusion, specular reflections, poor image quality due to blur or light saturation. We have hence opted to match point-features between the reference image and each subsequent image frame separately. To do this, we first forward integrate the observer equations (30) using only the gyrometer measurements, i.e. setting the observer gains k

i (i = 1, • • • , n), κ j (j = 1, • • • , m),
and k I to zero (i.e. Prediction step using (36)):

P rediction equations :              Ḣ+ (t ∈ [t k-1 , t k ]) = Ĥ+ ([Ω] × + Γ+ ) Γ+ (t ∈ [t k-1 , t k ]) = [ Γ+ , [Ω] × ] Ĥ+ (t k-1 ) = Ĥ(t k-1 ) Γ+ (t k-1 ) = Γ(t k-1 ) (36) 
We then use the resulting predicted homography estimate Ĥ+ to transform the current image (i.e. warp the current image using the predicted homography Ĥ+ to obtain a prediction of the reference image) using the OpenCV's warpPerspective function before applying feature extraction and matching. The brute-force matching algorithm is well suited to this approach since it favors translational motion over rotational motion, and most of the rotational motion has already been compensated for by forward integrating the angular velocity.

To remove matched point-feature outliers, we first compute the standard deviation (sd u , sd v ) and mean values (m u , m v ) of the differences of coordinates in pixel (du k , dv k ) of the point correspondences and then keep only those satisfying

       m u -max(sd u , S) ≤ du k ≤ m u + max(sd u , S) m v -max(sd v , S) ≤ dv k ≤ m v + max(sd v , S) |du k | ≤ D, |dv k | ≤ D
with S, D pre-defined positive thresholds (S = 30, D = 80 in our experiments). We have purposefully avoided the use of more sophisticated (and much more computationally expensive) alternative algorithms for outlier removal, such as RANSAC. Our simple and fast outlier removal method has yielded quite good matching results as for the test sequence there are either none or very few outliers (see Fig. 2 and the supplemental video). • Line-feature detection and matching: Linefeatures are extracted using the probabilistic Hough transform [START_REF] Matas | Robust detection of lines using the progressive probabilistic hough transform[END_REF] with the OpenCV's HoughLinesP routine. Each extracted line in image coordinates (given by two points p im 1 and p im 2 in homogeneous coordinates) is then transformed into the line representation used in this paper (i.e., the normal to the plane containing the scene's line and the camera focal point) as

l = (K -1 p im 1 ) × (K -1 p im 2 ) |(K -1 P 1 ) × (K -1 P 2 )| ∈ S 2 .
Matching two sets of lines of the reference image and the current image is more involved and has been scarcely developed in literature (and in OpenCV) compared to the point matching problem. We thus developed a simple line matching procedure which is described in [START_REF] Hua | Point and line feature-based observer design on SL(3) for Homography estimation and its application to image stabilization[END_REF] but is omitted here due to space limitation. Excellent line matching results have been obtained for the reported test sequence (see Fig. 3 and the supplemental video).

• with T the sampling time of the camera images. The computational effort for this last step is negligible compared to the previous image processing steps.

• Performance evaluation: The experimental results (cf. the video in the supplementary material and available at https://youtu.be/hlTkzjyENhg) show good and robust performance throughout the entire video sequence, including the previously mentioned passages with severe occlusion, specular reflection, poor image quality due to blur and/or light saturation (see Fig. 4).

Even when temporarily no usable feature correspondence is available (e.g., frames 1148, 1391, 1593), or when our algorithm selects a wrong feature matching set (e.g., frames 1474 -1488, 1571 -1581) the observer continues to track the region of interest well and quickly recovers from any tracking errors.

To show the good performance and robustness of the proposed approach, we have carried out some more tests on datasets recorded on different lightning conditions and camera motions as shown in the following video links (1 indoor and 2 outdoor datasets):

• Indoor dataset: https://youtu.be/19lH0SaE-7Y

• Outdoor dataset 1: https://youtu.be/X-5hUOnesTo

• Outdoor dataset 2: https://youtu.be/dr_lo4xvuvw

Conclusions

The classical problem of homography estimation from point and line correspondences is the first time addressed with a nonlinear observer posed on the Special Linear group SL(3). The key advance of the proposed observer is the formulation of observer innovation that directly makes use of point and line correspondences from an image sequence without requiring explicit computation of the individual homographies between any two given images. Explicit observability conditions are established and the stability of the observer are proved for both cases of known full group velocity and partially known rigidbody velocities. A potential application to image stabilization in presence of very fast camera motion, severe occlusion, specular reflection, image blur, and light saturation is demonstrated with very encouraging results even for a relatively low video frame rate. ). The observer continues to operate even when temporarily no usable feature match is available (e.g., frames 1148, 1391, 1593). In each subplot of current frame, colorful points and lines are those successfully matched with the corresponding features in the reference image; and the green polygon represents a tracked region of interest (i.e., the poster) using the homography estimate. In the bottom right corner of each subplot, a crop of the warped current image is shown, telling us if the image is well stabilized or not. The full video of this experiment is available at https://youtu.be/hlTkzjyENhg.

Fig. 1 .

 1 Fig. 1. The pose of the camera (R, ξ) determines a rigid body transformation from {A} to { Å}. The Euclidean homography H : ∼ = R + (1/d)ξη maps Euclidean coordinates of the scene's points from {A} to { Å}. Arrow notation (•) is used for Euclidean vectors.

  observer design on SL(3) based on point and line correspondences Let Ĥ ∈ SL(3) denote the estimate of H. Define the right group error E := ĤH -1 ∈ SL(3) and the output errors e pi ∈ S 2 , with i ∈ {1, • • • , n}, and e lj ∈ S 2 , with j ∈ {1, • • • , m}, as:

  ) (I -e pi e pi )U e pi m j=1 κ i (e lj -lj ) (I -e lj e lj )U e lj = -tr n i=1 k i π epi pi e pi U + tr m j=1 κ j e lj l j π e lj U = -n i=1 k i π epi pi e pi + m j=1 κ j e lj l j π e lj , U , (17) with π x := (I -xx ), ∀x ∈ S 2 . One directly deduces from (16) and (17) the expression of the innovation term ∆( Ĥ, p, l) as ∆( Ĥ, p, l) = -n i=1 k i π epi pi e pi + m j=1 κ j e lj l j π e lj . (18)

Fig. 2 .

 2 Fig. 2. Matching point correspondences between the warped image frame 264 (warped by the predicted homography) and the reference frame. Poor matching (top) and excellent matching (bottom) before and after applying our outlier removal procedure. Reference frame (left), warped current frame (right), current frame (small image on top right corner).

Fig. 3 .

 3 Fig. 3. Successful line matching between the image frame 169 (right) and the reference frame (left). Colorful points in both images are point correspondences used for our line matching algorithm.

  Correction step of observer (30): After the steps of feature detection and matching, we use the observer gains ofk i = 80 (i = 1, • • • , n), κ j = 40 (j = 1, • • • , m), k I = 0.05 to rapidly iterate the observer equations (37) (i.e. the correction equations of observer (30)) 200 times per video frame (Note that the observer gains used for each iteration are divided by the number of iteration, i.e. using ki = k i /N iter , κj = κ/N iter with N iter = 200).

Fig. 4 .

 4 Fig.4. Good performance and robustness of our algorithm for a very fast camera motion (relative to frame rate), and in presence of strong occlusion (e.g., frames 200, 1390, 2044), severe image blur (e.g., frames 1200, 1272, 1394, 1593) and light saturation (e.g., frame 363, 2044). The observer continues to operate even when temporarily no usable feature match is available (e.g., frames 1148, 1391, 1593). In each subplot of current frame, colorful points and lines are those successfully matched with the corresponding features in the reference image; and the green polygon represents a tracked region of interest (i.e., the poster) using the homography estimate. In the bottom right corner of each subplot, a crop of the warped current image is shown, telling us if the image is well stabilized or not. The full video of this experiment is available at https://youtu.be/hlTkzjyENhg.

  Note that such a sub-level set B E exists since the Hessian Hess 1 C(I, p, l) is positive definite. Note also that ∆ = 0 (or equivalently grad 1 C(E, p, l) = 0) on B E implies that E = I. Since L is non-increasing as a consequence of (35), there exists a smaller subset B E 1 ⊂ B E and an open neighbourhood of the origin B Γ ⊆ sl(3) such that for all (E(0), Γ(0)) ∈ B E 1 × B Γ one ensures that E(t) remains in B E for all time.

	Since the cost C(E, p, l) involved in definition (34) of L
	is non-degenerate (see proof of Theorem 1) there exists
	an open neighbourhood of I in SL(3) where the cost
	C(E, p, l) has compact connected sub-level sets contain-
	ing the global minimum and no other critical point of
	the cost. Let B E ⊂ SL(3) be such a sub-level set of
	the cost C(E, p, l) on which the cost function C(E, p, l)
	is proper with respect to E.

The superscript im is used for "image".

Most statements in projective geometry involve equality up to a multiplicative constant denoted by ∼ = or ∼[START_REF] Ma | An Invitation to 3-D Vision: From Images to Geometric Models[END_REF]. Relation (3) implies a wellknown fact of monocular vision that the 3D coordinates of any observed point can only be retrieved from its corresponding image coordinates up to a scale factor.

The homography for case of 2 points and 2 lines is not observable and cannot be algebraically reconstructed[START_REF] Hartley | Multiple View Geomerty in Computer Vision[END_REF].
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