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Abstract. We present a topology optimization approach for the design of fluid-to-fluid heat exchangers
which rests on an explicit meshed discretization of the phases at stake, at every iteration of the optimization
process. The considered physical situations involve a weak coupling between the Navier–Stokes equations
for the velocity and the pressure in the fluid, and the convection–diffusion equation for the temperature

field. The proposed framework combines several recent techniques from the field of shape and topology
optimization, and notably a level-set based mesh evolution algorithm for tracking shapes and their defor-

mations, an efficient optimization algorithm for constrained shape optimization problems, and a numerical
method to handle a wide variety of geometric constraints such as thickness constraints and non-penetration
constraints. Our strategy is applied to the optimization of various types of heat exchangers. At first, we
consider a simplified 2D cross-flow model where the optimized boundary is the section of the hot fluid phase
flowing in the transverse direction, which is naturally composed of multiple holes. A minimum thickness
constraint is imposed on the cross-section so as to account for manufacturing and maximum pressure drop
constraints. In a second part, we optimize the design of 2D and 3D heat exchangers composed of two types
of fluid channels (hot and cold), which are separated by a solid body. A non-mixing constraint between
the fluid components containing the hot and cold phases is enforced by prescribing a minimum distance

between them. Numerical results are presented on a variety of test cases, demonstrating the efficiency of
our approach in generating new, realistic, and unconventional heat exchanger designs.

Keywords. Shape and topology optimization, heat exchangers, non-mixing constraint, convective heat
transfer, geometric constraints.
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1. Introduction

Although most of the effort of the topology optimization community has been focused on the design of
mechanical structures till the 2010s, there has been recently a growing enthusiasm for multiphysics systems
[85, 29, 35, 34, 90, 91, 70, 40]. This is in part attributable to the recent advances in additive manufactur-
ing techniques, which have significantly broadened the range of manufacturable designs in the aeronautic
industry, including those generated by topology optimization algorithms. Another possible explanation for
this observation is the development of efficient numerical techniques enabling to consider large-scale three-
dimensional systems, close to actual industrial interests [1, 3, 19, 67, 13, 66, 56].

The optimization of heat exchangers is one such recent challenge, drawing more and more attention from
industrial designers. These are multiphysics devices used to cool down or to heat up fluids by conveying them
in the vicinity of another refrigerating or heating gas, liquid, or solid, see [55]. Industrial heat exchangers
are usually composed of multiple tubes and fins shaped in order to maximize the exchange surface between
the hot and cold phases. They naturally have to comply with various design constraints, such as the need
for controlling the loss of pressure induced by the system on the input fluid, or the mechanical resistance of
the whole device to the high thermal loads at play [22, 84, 60].

Until recently, industrial heat exchangers have been designed with the assistance of computer-aided de-
sign (CAD) based geometry optimization software [18, 14], which are compatible with all the stages of the
design workflow from physical simulations relying on commercial codes to the automated manufacturing
process. Unfortunately, these methods heavily rely on the choice of a parameterization for the geometry of
the optimized shape, so that they usually yield very small modifications of the initially proposed geometry
[49, 23, 38, 36, 69]. These already allow for substantial gains in performance in most industrial applications.
On the contrary, modern topology optimization algorithms are tailored to explore a much wider range of
shapes, and one would naturally expect that the integration of these techniques in the engineering process
could help in finding new and original designs with greater efficiency.

This motivation gave rise to a number of investigations concerned with the topology optimization for
convective heat transfer involving one single fluid phase [31, 59, 64, 65, 3, 25, 29, 57, 78, 53], see also [2] for
a review. A quite smaller amount of works have considered the optimal design of two-fluid heat exchangers,
featuring channels conveying two types of fluids which must not interpenetrate. The topology optimization of
such systems proves quite challenging, in part due to the modelling and the implementation of a non-mixing
constraint between different input channels. It has been an active research issue since the seminal MSc thesis
[76], see notably the recent works [80, 48, 81, 79, 87, 58] and the introduction in [54] for an overview.

Although these studies show promising results, they are all conducted in the framework of density-based
topology optimization, which poses at least two major challenges. On the one hand, these methods are
intrusive, that is, they may require modifications inside the numerical solver. Since they do not feature
an explicit discretization of the various phases at play (solid, fluid), the physical equations describing the
true “black-and-white” solid–fluid system must be replaced by approximate counterparts, defined on a fixed
computational mesh in order to account for the presence of the “grayscale” transitions between different
phases, which are represented by intermediate densities [20]. This delicate issue also involves the choice
of interpolation parameters and suitable filters, so that a proper, “black-and-white” design be obtained at
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convergence, even though a post-processing of the final design is often required to achieve this. On the other
hand, the formulation of a non-mixing constraint between different fluid phases, which is quite specific to
the heat exchanger context, turns out to be particularly uneasy within density-based topology optimization
frameworks: it is indeed awkward to distinguish which fluid properties should govern the approximate physics
at play in the intermediate, grayscale regions. Several approaches have been proposed in the aforementioned
works to circumvent this drawback, e.g.: the use of a fluid-tracking model in [76, 87], that of a suitable
interpolation scheme in [58], or of a filter enforcing a solid coating around each fluid phase [48, 54]. One
of the common difficulties of this class of methods is the selection of appropriate metaparameters which
penalize sufficiently the porous interfaces between the two fluids but which also ensure that the inlets are
indeed connected to the outlets [54].

In this article, we propose a body-fitted topology optimization methodology for heat exchangers which
is based on the framework of Hadamard’s method [51, 86]. When it comes to the numerical representation
of designs and their updates, we do not rely on a density-based method, but rather on the level-set based
mesh evolution method introduced in [5, 6] and used in our previous works [42, 45]. The latter features an
exact mesh of the interface between the solid material and the fluid component(s) at every iteration of the
optimization process. This interface is iteratively updated according to a suitable deformation field. This
strategy combines the versatility of the level-set method [72] which allows to account for complex topological
changes [11, 89], with the benefits of a body-fitted approach, which keeps a neat, meshed representation of
the geometry of the fluid and solid subdomains. As a result, our framework does not require any modification
of the original equations describing the physical phenomena at play. Hence, any black-box software could
in principle be used to achieve their numerical solution. Furthermore, all the needed geometric information
about the various phases at play, such as their volume, thickness, or perimeter, are readily available from
their meshed representations. In our applications to heat exchangers, this makes it possible to formulate and
enforce accurately the non-mixing constraint between two fluid phases, which, as we shall see below, amounts
to prescribe a minimum distance between the two fluid phases. We believe that this feature of our approach,
whereby the fluid and solid subdomains are meshed explicitly at every iteration of the optimization process
is one of the main advantages of our algorithm.

The other key ingredients of our numerical framework borrow from the material developed in our previous
works concerned with topology optimization of multiphysics systems, involving conjugate heat transfer. The
shape derivatives of quite arbitrary functionals of the domain are computed thanks to the mathematical for-
mulas established in [42]. The considered inequality and equality constrained shape optimization problems
are solved with the null space algorithm proposed and analyzed in [43]. Our three-dimensional implementa-
tion involves the solution of moderately large-scale finite element systems, computational meshes considered
feature 1 to 2 million tetrahedra, which are performed thanks to domain decomposition and preconditioning
techniques described in [45]. Finally, the variational method of [44] allows us to enforce conveniently our
non-penetration and minimum thickness constraints.

The above numerical strategy is applied on two different heat exchanger models:

(i) our first case study is introduced in section 3: we optimize the shape of the cross-sections of oil pipes
cooled down by air. We rely for this purpose on a simplified 2D physical model featuring a thermostatic
boundary condition about the temperature of the optimized interface. The oil pipes are assumed to
flow transversally to the air flow, which is very convenient to reduce the original 3D problem to a
two-dimensional one. As we shall see, since no pressure drop constraint is enforced on the oil phase,
the optimization problem favors the apparition of very thin and elongated structures. Therefore,
a minimum thickness constraint is added to the formulation of the problem, so that the optimized
designs be at the same time more relevant from a physical viewpoint and easier to fabricate. A variety
of shapes are computed for various sets of physical parameters and initial shapes;

(ii) the next two test cases are concerned with the optimization of respectively 2D and 3D two-tube heat
exchangers. The 2D test case is detailed in section 4. We consider a fluid-to-fluid heat exchanger, where
the two fluid channels, separated by a solid phase, should exchange their heat as efficiently as possible
without interpenetrating. This raises the need to add a non-mixing constraint between both fluid
components, or alternatively, a constraint whereby the minimum distance between them be positive.
It is formulated as an averaged constraint functional involving the signed distance functions to both
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fluid subdomains, whose shape derivatives are efficiently evaluated thanks to the variational method
of [44]. Let us emphasize that the implementation of this variational method is rather straightforward
in both 2D and 3D. This allows to circumvent the need for computing integrals along the normal rays
to the optimized interface and its principal curvatures involved in the classic expression of the shape
derivatives of geometric constraints, a task which is notoriously delicate to implement [10, 4, 62, 61].
Our numerical results show that our method allows to enforce a wall with minimum thickness as low
as a few mesh elements between two phases.

Finally, a fully three-dimensional test case is treated in section 5, where we consider the topology
optimization of a two-tube heat exchanger involving the non-mixing condition. Although the physical
setting and the mathematical methodology are identical to those of the previous 2D test case, the
implementation is much more involved. In order to achieve affordable computational times, several
non-trivial adaptations are indeed necessary to make the crucial stages of the framework parallel.

The remainder of this article is organized as follows. In section 2, we overview the main numerical
ingredients of the proposed shape and topology optimization framework. We then turn in section 3 to the
study of our first concrete case, namely the optimization of heat exchangers made of a collection of oil tubes,
whose two-dimensional cross-section is the optimized variable. In section 4, we consider the optimal design
of heat exchangers made of two categories of pipes, one containing a hot fluid and the other containing a
cold one, in two space dimensions. We then turn in section 5 to the three-dimensional counterpart situation,
where we focus on the main implementation differences with the former 2D case. The article ends with a
series of concluding remarks and leads for future research in section 6.

2. Body-fitted topology optimization of thermal-fluid systems with null space gradient
flows and geometric constraints

In this section, we briefly present the main ingredients of our numerical framework for the optimal design
of heat exchangers, referring to the PhD thesis [40] and the references therein for further details. Each of
the three situations tackled in sections 3 to 5 has its own distinctive particularities that shall be described
in due time, but the common, abstract physical setting of this article is presented in section 2.1. The
notion of Hadamard’s shape derivative is recalled in section 2.2. The null space algorithm used to solve
our constrained optimization problems is depicted in section 2.3. The variational method dedicated to the
numerical computation of the shape derivatives of geometric constraint functionals is reviewed in section 2.4.
The principles of the level-set based mesh evolution method which makes it possible to update body-fitted
meshes while handling topological changes are recalled in section 2.5. Eventually, our complete algorithmic
procedure is summarized in section 2.6.

2.1. General setting

As we have mentioned, we shall consider different physical configurations throughout this article. We in-
troduce the common notation in the present section, referring to sections 3.1, 4.1 and 5 for further details
about each individual situation.

Let D = Ωf ∪Ωs be a “hold-all” domain, composed of two disjoint subdomains Ωf and Ωs, separated by

the interface Γ = Ωf ∩ Ωs, as in Figure 1. For commodity, we refer to Ωf as the “fluid subdomain”, and to
Ωs as the “solid subdomain”, although in the particular instance of section 3, Ωs is also filled with a fluid.

The velocity and pressure describing the motion of the fluid in Ωf are denoted by v and p, respectively.
These are characterized as the solutions to the incompressible steady-state Navier–Stokes equations. The
temperature field T inside D is then influenced by convection effects according to the velocity v in the fluid
domain Ωf , and by diffusion in the whole domain D. Again, see sections 3.1 and 4.1 for the precise statement
of the corresponding equations. In all the numerical examples of this work, the state and adjoint equations
characterizing v, p and T are solved by using the finite element method. In our practical implementation,
these operations as well as all other finite element based computations (such as those of shape derivatives)
are achieved using the open-source FreeFEM environment [50]. The reader is referred to [45] for more details
on the implementation.

We aim to optimize the geometry of the partition of D into the fluid and solid phases Ωf and Ωs. This
leads us to consider generic minimization problems, that we formulate without loss of generality in terms of
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Figure 1. Schematic and notations for the fluid-thermal systems D = Ωs ∪ Ωf considered in section 2.1.

the fluid phase Ωf :
min
Ωf⊂D

J(Ωf ,v(Ωf ), p(Ωf ), T (Ωf ))

s.t.

{

gi(Ωf ,v(Ωf ), p(Ωf ), T (Ωf )) = 0 for 1 ≤ i ≤ k

hj(Ωf ,v(Ωf ), p(Ωf ), T (Ωf )) ≤ 0 for 1 ≤ j ≤ l,

(2.1)

where J , (gi)1≤i≤k, and (hj)1≤j≤l are respectively the objective function, k equality constraints, and l
inequality constraints.

2.2. Shape optimization with Hadamard method

Similarly to most optimization algorithms, our numerical solution of (2.1) is based on the knowledge of
the derivatives of the objective and constraint functionals with respect to the optimization variable: the
geometry of the fluid domain Ωf in the present case. This calls for a notion of differentiation with respect
to the domain, for which we rely on Hadamard’s boundary variation method [71, 51, 86].

In a nutshell, variations of Ωf are considered in the form of

(Id + θ)(Ωf ), where θ ∈W 1,∞(D,Rd), ||θ||W 1,∞(D,Rd) < 1. (2.2)

The shape derivative of a functional Ωf 7→ F (Ωf ) is then defined as the Fréchet derivative DF (Ωf ) :
W 1,∞(D,Rd) → R of the mapping θ 7→ F ((Id+θ)(Ωf )) at θ = 0, so that the following first-order expansion
holds:

F ((Id + θ)(Ωf )) = F (Ωf ) + DF (Ωf )(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(D,Rd)

θ→0
−−−→ 0. (2.3)

In practice, one often uses more regular vector fields θ in (2.2) and (2.3), which additionally satisfy θ ·n = 0
on ∂D, so that D is unaltered by the mapping (Id + θ). Furthermore, the shape derivative DF (Ωf )(θ) is
often identified to an associated shape gradient θF , that is, a vector field satisfying:

∀ξ ∈ V, a(θF , ξ) = DF (Ωf )(ξ), (2.4)

where V is a Hilbert space of vector fields over D, and a(·, ·) is an associated inner product. A usual choice
is the use of a H1 regularization,

V = H1(D)d, with a(θ, ξ) :=

∫

D

(θ · ξ +∇θ : ∇ξ) dx, (2.5)

leading to a system (2.4) and (2.5) which is easily solved by the finite element method. We refer to [21, 30] for
further details about this identification and regularization process of shape derivatives, and to the survey [7]
for a comprehensive presentation.

In the physical context of the fluid-thermal systems described in section 2.1, the shape derivative of an
arbitrary functional F (Ωf ), involving the solutions (v, p) and T of the coupled Navier–Stokes and convection–
diffusion equations, has been calculated in [42]. We rely on the formulas provided by the Propositions 3 and
4 therein.
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Finally, let us mention some important facts about the structure of shape derivatives. Common computa-
tions yield shape derivatives θ 7→ DF (Ωf )(θ) written in the “volume” form of an integral on D, depending
on θ and ∇θ, e.g.:

DF (Ωf )(θ) =

∫

D

(θ · S(Ωf ) +∇θ : T (Ωf )) dx,

where the vector and matrix fields S(Ωf ) : D → R
d and T (Ωf ) : D → R

d×d depend on v, p, T , and on the
functional F (Ωf ) via suitable adjoint states. Under mild regularity assumptions, it admits the equivalent
“surface” expression:

DF (Ωf )(θ) =

∫

Γ

vF (Ωf )θ · n ds, (2.6)

where n is the normal vector to the interface Γ, pointing outward Ωf , and vF (Ωf ) : Γ → R.
In the implementation of the present work, we exclusively rely on the volume form of the shape derivative,

which proves to be more robust numerically. We refer to [52, 47] for discussions and comparisons on this
matter. The existence of the surface form, however, plays a particular role in the variational method we use
to handle geometric constraint, see section 2.4 below.

2.3. Null space gradient flows for constrained optimization

The constrained optimization problem (2.1) is solved with the help of the null space gradient flow algorithm
introduced in our previous work [43], see also Section 3.1 in [45] for a brief introduction.

Briefly, this algorithm solves nonlinear constrained optimization problems featuring a moderate number
of equality and inequality constraints. In the context of a shape optimization problem such as (2.1), it
calculates at each iteration n = 0, 1, 2, . . . a deformation direction θn of the form

θn = −



αn
Jθ

n
J +

k
∑

i=1

λni θ
n
gi
+

l
∑

j=1

µn
j θ

n
hj



 .

The vector field θn
J (resp. θn

gi
and θn

hj
) is a shape gradient associated to the shape derivative DJ(Ωn

f )(θ)

(resp. Dgi(Ω
n
f )(θ) and Dhj(Ω

n
f )(θ)) via (2.4). The coefficients αn

J , λ
n
i , and µ

n
j are automatically computed

as the solution to a dual quadratic optimization subproblem which allows to identify the subset of inequality
constraints which must remain saturated (or “active”, that is meeting their respective upper bound) in the
course of the optimization process. This yields an “optimal” descent displacement field θn, in the sense that
update steps (Id + θn)(Ωf ) tend to decrease the objective function J while reducing gradually the violation
of the constraints gi and hj .

2.4. Geometric constraints based on the signed distance function and their shape derivatives

As advocated in [68, 10], a wide variety of geometric constraints on a shape Ω ⊂ D can be formulated as
averaged criteria depending on the signed distance function dΩ to Ω. As such, minimum and maximum
thickness constraints were considered in this way in [68, 10] and we shall rely on a similar approach in
section 3.2.2. Moreover, we shall express the non-mixing constraint between the hot and cold phases of a
two-fluid heat exchanger in this framework in section 4.3.

In this section, Ω ⊂⊂ D is a smooth shape, which stands for either the whole fluid domain Ωf in the context
of section 3, or for either the hot or the cold fluid component Ωf,hot or Ωf,cold ⊂ Ωf in the configuration of
two-fluid heat exchangers considered in sections 4 and 5.

The signed distance function dΩ to Ω is defined for all x ∈ D by

dΩ(x) =











−d(x, ∂Ω) if x ∈ Ω

0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ D\Ω,

(2.7)

where d(x, ∂Ω) is the Euclidean distance from the point x to the boundary ∂Ω:

d(x, ∂Ω) := inf
p∈∂Ω

|x− p|. (2.8)

Let us recall a few useful notions and facts related to the signed distance function, see also Figure 2:
6



Σ
<latexit sha1_base64="yjGgDcLCn5bn4lwtIWx04UxiAGk="></latexit>

D
<latexit sha1_base64="goRwTPpypAxgaDqCMmIv3G2okJI=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVZIqqLuCIi5bsK1QiyTTaQ3Ni8lEKEV/wK1+m/gH+hfeGaegFtEJSc6ce8+Zuff6aRhk0nFeC9bc/MLiUnG5tLK6tr5R3txqZ0kuGG+xJEzEle9lPAxi3pKBDPlVKrgX+SHv+KNTFe/ccZEFSXwpxynvRd4wDgYB8yRRzbObcsWpOnrZs8A1oAKzGkn5BdfoIwFDjggcMSThEB4yerpw4SAlrocJcYJQoOMc9yiRNqcsThkesSP6DmnXNWxMe+WZaTWjU0J6BSlt7JEmoTxBWJ1m63iunRX7m/dEe6q7jenvG6+IWIlbYv/STTP/q1O1SAxwrGsIqKZUM6o6Zlxy3RV1c/tLVZIcUuIU7lNcEGZaOe2zrTWZrl311tPxN52pWLVnJjfHu7olDdj9Oc5Z0K5V3YNqrXlYqZ+YURexg13s0zyPUMcFGmhp70c84dk6t0Irs/LPVKtgNNv4tqyHD+4mj0Q=</latexit>

Ω
<latexit sha1_base64="OhBWeFN0+AzER+eMtTFkKHOH7JA="></latexit>

•<latexit sha1_base64="pXkActCnptZX5e3i8T2Zzct4Moo="></latexit>

z
<latexit sha1_base64="gU4nxfnueWdCoCbCKL7RHo6KEEY="></latexit>

•<latexit sha1_base64="Ybys71TCatAMG0HJ1FLJQlWpDlA="></latexit>

ray∂Ω(z)
<latexit sha1_base64="N6YNXHQlMWZ7s30FDFn2DUtYddk="></latexit>

•<latexit sha1_base64="lMdOa9TD5ljLWmTIU72zqtpj1pg="></latexit>

x
<latexit sha1_base64="AA0ptFJ+phTxfBEAgfCwuf6EHqM="></latexit>

•<latexit sha1_base64="lMdOa9TD5ljLWmTIU72zqtpj1pg="></latexit>p
<latexit sha1_base64="fOdhaLZPeXOdXS7LIzL/z4GodAk="></latexit>

•<latexit sha1_base64="AL4iABsBFbCZJVa7IaUMdgDlfD8="></latexit>

y
<latexit sha1_base64="Mtlk/T/DNxtBw780OgjpTRrskik="></latexit>

q1
<latexit sha1_base64="CEXJbdZXb6jX4xKHzQ8d237mhhw="></latexit>

q2
<latexit sha1_base64="EETOElUI8pJrV+RL+sfRhxPdOy0="></latexit>

•<latexit sha1_base64="AL4iABsBFbCZJVa7IaUMdgDlfD8="></latexit>

•<latexit sha1_base64="AL4iABsBFbCZJVa7IaUMdgDlfD8="></latexit>

n(p)
<latexit sha1_base64="buK7exuRoc7uCjqY2dP9Pi6tEZc="></latexit>

Figure 2. Illustration of the main objects attached to the signed distance function. The point
x ∈ D \ Σ has p ∈ ∂Ω as unique projection point, while y ∈ Σ has q1 and q2 for projections onto
∂Ω.

(i) the set of points p where the infimum is realized in (2.8) is the set of projections of x onto ∂Ω. When
there exists a unique such point, it is called the projection of x onto ∂Ω, and it is denoted by p∂Ω(x);

(ii) the set of points x ∈ D having at least two distinct projections onto ∂Ω is called the skeleton (or
sometimes, the medial axis) Σ of Ω. It is a set with null Lebesgue measure, and since Ω is smooth, so
is the closure Σ, see [33, 63];

(iii) the set of points x ∈ D \ Σ sharing the same projection point z ∈ ∂Ω is called the normal ray of z:

ray∂Ω(z) = {x ∈ D \ Σ, p∂Ω(x) = z} ; (2.9)

(iv) the signed distance function is differentiable at every point x ∈ D \ Σ, and its derivative reads:

∇dΩ(x) = n(p∂Ω(x)).

The signed distance function dΩ conveniently encodes most of the geometric features of the domain Ω.
We refer to [33] for an extensive discussion of this notion, and to Section 1.3 in [40] for an introduction. The
geometric constraints of interest in this work assume the form:

P (Ω) ≤ 0 where P (Ω) :=

∫

D

j(dΩ(x))dx, (2.10)

for a given smooth function j : R → R; see sections 3.2.2 and 4.3 for several instances of such geometric
constraints.

As we have seen in sections 2.2 and 2.3, the solution of the optimization program (2.1) relies on the shape
derivative DP (Ω) of P . The numerical computation of the shape derivative of functions P (Ω) of the form
(2.10), depending on the signed distance function dΩ, requires a special treatment which we now summarize,
referring to [4, 68, 10] for details. The shape derivative of P (Ω) reads:

DP (Ω)(θ) =

∫

D

j′(dΩ(x))d
′
Ω(θ)(x)dx. (2.11)

In the above expression, d′Ω(θ) is the “Eulerian derivative” of the signed distance function in the direction
θ ∈ W 1,∞(D,Rd), that is, for a.e. x ∈ D, d′Ω(θ)(x) is the Fréchet derivative of the mapping θ 7→ dΩ(θ)(x)
at θ = 0. This function satisfies the following boundary-value problem:

{

∇d′Ω(θ) · ∇dΩ = 0 in D\Σ

d′Ω(θ) = −θ · n on ∂Ω,
(2.12)
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where n denotes the normal vector to ∂Ω, pointing outward Ω. The first line of (2.12) expresses that the
values of d′Ω(θ) are constant along the rays (2.9) of ∂Ω, while the second line actually specifies these values
on ∂Ω.

The expression (2.11) is uneasy to handle in practice, since the derivative d′Ω(θ) depends in a non-trivial
way on θ. Owing to the coarea formula, (2.11) can be rewritten in the following surface form:

DP (Ω)(θ) =

∫

∂Ω

vP (Ω)θ · n ds; (2.13)

see [4, 10, 44]. Unfortunately, the analytical expression of the scalar field vP (Ω) : Γ → R (which is not
reported here for brevity) involves integrals along the normal rays to ∂Ω, as well as the principal curvatures
of ∂Ω. These quantities are well-known to be difficult to compute in a robust way on unstructured meshes.

These issues can be overcome thanks to the variational method from our previous work [44]: instead of
evaluating the analytic formula for the function vP (Ω), we actually compute it numerically as the solution
to a variational problem. More precisely, we consider the problem

find v ∈ Vω such that for any w ∈ Vω,
∫

∂Ω

vw ds+

∫

D\Σ

ω(∇dΩ · ∇v)(∇dΩ · ∇w) dx = −

∫

D

j′(dΩ)w dx, (2.14)

which is easily solved numerically by means of standard piecewise linear finite elements. In the above
formulation, the function ω is a positive weight which is continuous on D\Σ, while Vω is a weighted Hilbert
space, whose precise definition and mathematical properties are described in Section 2 of [44].

The space Vω contains functions w which are constant along the sets ray∂Ω(z), z ∈ ∂Ω, and possibly
discontinuous across Σ. Recalling (2.12), one may then insert d′Ω(θ) as test function in (2.14), and it follows
from the expression (2.12) that the trace of the solution v ∈ Vω to (2.14) on Γ is exactly the desired scalar
field vP (Ωf ).

The weight ω can be chosen rather arbitrarily. In theory, from [44], it should only be continuous and
positive on D\Σ and satisfy a few additional monotonicity assumptions. It is however numerically desirable
that ω vanish on the skeleton Σ of Ω so that the discontinuities of test functions w ∈ Vω across Σ are better
captured with piecewise linear finite elements, thus enhancing the accuracy of the calculation of vP (Ωf ). In
all the situations addressed in this work, following the recommendation in [44] (section 3.3.1) we use the
weight

ω =
2

1 + 100|dΩ∆dΩ|3.5
,

a choice which is motivated by the large values of the discretized version of ∆dΩ near Σ. The constants 100
or 3.5 have been selected empirically to achieve universally satisfactory performance even when the distance
of ∂Ω to the skeleton Σ is small. In most cases, the use of different constants works equally well.

2.5. Topology optimization using a level-set based mesh evolution method

Among the multiple available approaches, see [7] for an overview, we rely on the level-set based mesh
evolution algorithm from our previous works [5, 6, 42, 45] for the numerical representation of shapes and
their deformations, see also [77] for earlier related ideas. The salient feature of this approach is that it enjoys
an explicit, meshed representation of the tracked subdomains Ωf and Ωs at any stage of the optimization
process, while still allowing for topological changes. This is possible thanks to the combination of two
complementary numerical representations of the partition D = Ωf ∪ Ωs:

(i) a meshed description: a conforming simplicial mesh T , i.e., composed of triangles in 2D and tetrahedra
in 3D, of the total domain D is available, in which the interface Γ is meshed explicitly. This repre-
sentation is well-suited when it comes to solving the physical state equations with the finite element
method on their associated meshed subdomains Ωf and Ωs, see, e.g., Figs. 5, 12 and 23d in the results
below;

(ii) a level-set description: following the pioneering work [73], see also [82] for an overview and [12, 89, 83, 74]
for the seminal applications in shape and topology optimization, Ωf and Ωs are represented by means
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of a scalar function φ : D → R, in practice discretized at the vertices of a mesh of D, such that:


















φ(x) < 0 if x ∈ Ωf

φ(x) = 0 if x ∈ Γ

φ(x) > 0 if x ∈ Ωs.

This representation allows to account for large deformations of the configuration D = Ωf ∪Ωs according
to a given velocity field θ and a pseudo-time step τ > 0. One solves to this end the following linearized
version of the level-set advection equation:







∂ψ

∂t
(t, x) + θ(x) · ∇ψ(t, x) = 0 (t, x) ∈ (0, τ)×D

ψ(0, x) = φ(x) x ∈ D,
(2.15)

which yields an updated level-set function ψ(τ, ·) associated to the partition D = (Ωf )τθ ∪ (Ωs)τθ,

where (Ωf )τθ is the negative subdomain of φ(τ, ·) and (Ωs)τθ := D\(Ωf )τθ.

Dedicated numerical algorithms allow to switch from one of these descriptions to the other. On the
one hand, a level-set function φ associated to a configuration D = Ωf ∪ Ωs under meshed description is
generated as the signed distance function to Ωf by using the open-source software Mshdist [28]. Conversely,
a conforming mesh of D where both subdomains Ωf and Ωs are explicitly discretized is generated from the
datum of an associated level-set function φ : D → R thanks to the remeshing library Mmg [27, 26], see also
the aforementioned works [5, 6, 42, 45] for illustrations and details.

2.6. The complete algorithmic procedure

The shape and topology optimization algorithm derived from the previous considerations is summarized in
algorithm 1 below. Note that we refer to our method as a “shape and topology optimization algorithm”
(although we rely solely on shape derivatives) because the boundaries of the design domain are allowed to
move freely and topological changes occurring in the course of the optimization are captured. Our approach
is therefore substantially different from the many works concerned with parametric shape optimization of
fluid systems [49, 39, 23, 38], whereby very small updates of the design shape are sought.

Algorithm 1 Body-fitted topology optimization algorithm of section 2.

input: conforming initial mesh T 0 of D, where Ω0
f and Ω0

s appear explicitly as meshed subdomains

for n = 0, 1, 2, . . . until convergence do
(1) generate the signed distance function φn to Ωn

f on the whole mesh T n;

(2) compute the physical states v(Ωn
f ), p(Ω

n
f ), and T (Ωn

f ) as well as the corresponding adjoint
states by solving the coupled Navier–Stokes and convection–diffusion equations on T n, taking
advantage of the associated submeshes for Ωn

f and Ωn
s ;

(3) compute a deformation field θn which decreases the value of J and the violation of the constraints
gi and hj thanks to the optimization algorithm in section 2.3.

(4) solve the level-set advection equation (2.15) on T n, for a suitably small time period [0, τn]: a

level-set function for the new partition D = Ωn+1
f ∪ Ωn+1

s is obtained as φn+1 := ψ(τn, ·);

(5) construct a new conforming mesh T n+1 of D in which both subdomains Ωn+1
f and Ωn+1

s are
explicitly discretized.

end for

return optimized partition D = Ωn
f ∪ Ωn

s .
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3. Topology optimization of a 2D air–oil heat exchanger

In this section, we deal with the optimization of the 2D cross-section of a three-dimensional air–oil heat
exchanger. The setting of this problem is described in section 3.1. The two phases Ωf and Ωs are filled
with air and oil, respectively. The physical phenomena of interest solely take place in Ωf : the velocity and
pressure (v, p) of the fluid are governed by the 2D incompressible steady-state Navier–Stokes equations, and
the temperature T inside Ωf is subject to diffusion and convection by the fluid, with a thermostatic boundary
condition on the interface Γ. The optimization problem is formulated in section 3.2, where we define the
considered shape functionals, and notably a minimum thickness constraint imposed on the oil phase Ωs.
Section 3.3 presents a variety of numerical results, obtained by applying algorithm 1 with different initial
designs and sets of physical parameters.

Remark 1. Here and in the sequel, physical units are omitted when it comes to the numerical values used
in our test cases. For simplicity, we prefer to work with nondimensional quantities, and we do not claim that
all values are completely relevant from the physical point of view. In particular, because of computational
limitations, our choices of Reynolds and Péclet numbers (which are nondimensional in the first place) are
quite restricted to moderate values. Nevertheless, one can think that the physical units are SI units as follows.
All lengths are understood in meters (m), velocities in m s−1, temperatures in Kelvin (K) or degree Celsius
in the next sections, fluid density in kgm−3, fluid thermal capacity in JK−1 kg−1, thermal conductivity in
JK−1 m−1 s−1, and fluid viscosity in kgm−1 s−1.

3.1. Setting of the study

Our purpose is to optimize the shape and the topology of a 2D air–oil heat exchanger. The situation is that
depicted on Figure 3: the hold-all domain D = (0, L)× (0, H) is a rectangle with width L = 0.85 and height
H = 1. It contains a fluid, air, which occupies a subdomain Ωf ⊂ D to be optimized. The complementary

subdomain Ωs = D \ Ωf is filled with oil. The fluid boundary

∂Ωf = ∂Ωf,in ∪ ∂Ωf,out ∪ ∂Ωf,wall ∪ Γ,

is composed of the following regions:

• ∂Ωf,in is the inlet boundary, where the fluid is entering the device with a parabolic velocity v0 with
maximum norm ||v0||∞;

• ∂Ωf,out is the outlet boundary, where the fluid is exiting the device with zero normal stress;
• ∂Ωf,wall is the remaining part of the device D, which bears a no-slip boundary condition for the fluid

and an adiabatic boundary condition for the temperature;
• Γ = Ωf ∩ Ωs is the interface between the air and oil phases. The oil inside Ωs has a much higher
thermal conductivity than that of air, and so the temperature takes the uniform value T = Toil in Ωs.
Moreover, the interface Γ is sufficiently thin and conductive so that T = Toil on Γ.

From a physical point of view, after 3D extrusion in the z-direction, this system can be interpreted as a
heat exchanger featuring air flowing in the x-direction and cooling down infinitely long oil channels flowing
in the transverse z-direction.
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H = 1

L = 0.85

D

Ωf

Air inlet

Oil inlet

∂Ωf,in

∂Ωf,out

Γ

∂Ωf,wall

∂Ωf,wall

x

y
z

Figure 3. Setting of the air–oil heat exchanger of section 3.

Mathematically, the fluid, air, is characterized by its velocity v and pressure p in Ωf , which are the
solutions to the incompressible steady-state Navier–Stokes equations:







































−div(σf (v, p)) + ρ∇v v = 0 in Ωf

div(v) = 0 in Ωf

v = v0 on ∂Ωf,in

σf (v, p)n = 0 on ∂Ωf,out

v = 0 on ∂Ωf,wall

v = 0 on Γ.

(3.1)

Here, ρ is the fluid density, and the fluid stress tensor σf (v, p) is given by Newton’s law:

σf (v, p) = 2νe(v)− pI, (3.2)

in which e(v) = 1
2 (∇v +∇vT ) is the rate of strain tensor, ν is the dynamic viscosity of the fluid, and I is

the identity 2 × 2 matrix. The temperature field T inside the air phase Ωf is then determined in terms of
the velocity v through the following convection–diffusion equation:



























−div(kf∇T ) + ρcpv · ∇T = 0 in Ωf

T = Tin on ∂Ωf,in

−kf
∂T

∂n
= 0 on ∂Ωf\∂Ωf,in

T = Toil on Γ,

(3.3)

where kf and cp are the thermal conductivity and the thermal capacity of the fluid, respectively. Let us
emphasize that, thanks to the thermostatic boundary condition T = Toil imposed on the interface Γ, no model
is needed for describing the motion of the oil phase in Ωs, and the coupled system of physical equations (3.1)
and (3.3) is posed solely on Ωf .

In our application, the “cold” air flow is entering the domain D on the left-hand side with a temperature
Tin = 310. The temperature on the interface Γ is set to Toil = 400. The density and the capacity coefficients
of the fluid are ρ = 1 and cp = 1. Since we do not rely on a turbulence model in the Navier–Stokes equations
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Configuration Input velocity ||v0|| Pressure loss threshold DP0 Re Pe J0

#1 10 1300 40 475 4500

#2 25 1030 100 1200 10,000

#3 40 475 160 1900 9500

Table 1. Configurations considered for the input velocity and pressure constraint values.

(3.1) for the determination of the fluid velocity and pressure (v, p), our study is restricted to moderate values
of Reynolds and Péclet numbers Re and Pe. The viscosity and conductivity coefficients ν and kf are set so
that the values

Re :=
ρ||v0||∞H

ν
Pe :=

ρcp||v0||∞H

kf
,

are those associated to the three different configurations described in Table 1.

3.2. Formulation of the shape optimization problem

3.2.1. Definition of the objective and constraint functions

In this first physical setting, the heat exchanged between the air, Ωf , and the oil, Ωs, phases is maximized,
while imposing an upper bound DP0 on the static pressure drop between the inlet and the outlet of the
device. The considered shape and topology optimization problem (2.1) reads in this case:

min
Ωf⊂D

J(Ωf ) := −

∫

Ωf

ρcpv · ∇Tdx

s.t. DP(Ωf ) :=

∫

∂Ωf,in

pds−

∫

∂Ωf,out

pds ≤ DP0.

(3.4)

Upon integration by parts, the objective function J(Ωf ) rewrites exactly as the difference between the heat
entering from the inlet ∂Ωf,in and that exiting from ∂Ωf,out:

J(Ωf ) = −

(

∫

∂Ωf,in

ρcpTv · nds+

∫

∂Ωf,out

ρcpTv · nds

)

,

where we recall that the normal vector n is pointing outward D. The first term in the above right-hand side
is constant since v = v0 on ∂Ωf,in, so that minimizing J(Ωf ) is equivalent to maximizing the heat leaving
the device through ∂Ωf,out, which is also the heat extracted from the oil channels Ωs.

Remark 2. Strictly speaking, sufficient regularity is expected for the pressure p, which is only a priori
an element of L2(Ωf ), to have a trace on the inlet and outlet boundaries. The shape derivative of DP(Ωf )
is computed with the formulas of [40], which requires the solution to a fluid adjoint system involving the
linearized transpose of the Navier–Stokes operator and a boundary integral involving a pressure test variable
as a right-hand side.

3.2.2. Minimum thickness constraint for the oil phase cross-section Ωs

As evidenced by the results of section 3.3 below, the solution of the optimization problem (3.4) tends to
produce very thin and elongated patterns for the oil cross-section Ωs. From a physical point of view, these
would induce an important pressure drop in the transverse oil channels of the underlying three-dimensional
device, making the overall design impractical. Furthermore, such thin and elongated components are nu-
merically instable. Indeed, patterns of the design smaller than the prescribed mesh size tend to disappear
in the course of the remeshing steps due to smoothing. This calls for the addition of a constraint on the
minimum thickness dmin of the oil channels Ωs in the shape optimization problem (3.4), which also improves
the manufacturability of the optimized device. Our modeling of this constraint follows the strategy proposed
in [68]: we replace the shape and topology optimization problem (3.4) with a variant where the performance
of the system J(Ωf ) is constrained to be at least as good as a threshold value J0. The minimized function
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E(Ωf ) favors areas of D\Ωf thicker than dmin, and its shape derivative vanishes in those regions which are
already thicker than dmin:

min
Ωf⊂D

E(Ωf ) := −

∫

D\Ωf

d2Ωf
max(−dΩf

+ dmin/2, 0)
2dx

s.t.

{

DP(Ωf ) ≤ DP0

J(Ωf ) ≥ J0.

(3.5)

In the present setting, the minimum thickness value is set to dmin := 0.027. As already mentioned, the shape
derivatives of the “mechanical” functionals J(Ωf ) and DP(Ωf ), depending on Ωf via the solutions v(Ωf ),
p(Ωf ), and T (Ωf ) to the physical equations (3.1) and (3.3), have been calculated in our previous work [42],
and their expressions are omitted for brevity. The shape derivative of the functional E(Ωf ), of the form
(2.10), is evaluated numerically with the variational method of section 2.4. The threshold J0 measuring the
performance of the heat exchanger is determined empirically from the values obtained from the solution of
the original problem (3.4) without the minimum thickness constraint. This value is set depending on the
configuration considered according to Table 1.

3.3. Numerical results

We optimize the design of the considered heat exchangers without and with the minimum thickness constraint
of section 3.2.2. Namely, we solve both optimization problems (3.4) and (3.5), for the three sets of parameters
of Table 1. In order to further illustrate the strong dependence of optimized designs on the corresponding
initializations, we propose a set of 24 exploratory results, corresponding to 4 different initial topologies and 3
sets of imposed velocities and allowed pressure drops (plus the 2 cases with or without thickness constraint).
These are reported in Table 2 below where the final temperature and kinetic energy fields are also displayed.
Let us note that the existence of different (local) minima which can be obtained by using as many different
initializations is often seen as a drawback in mathematical optimization; the present numerical experiment
shows, however, that it is rather an advantage from an engineering perspective since it leaves the room for
many possible designs which can accommodate other practical constraints, not yet taken into account.

As is visible on Table 2, the maximum pressure drop constraint is not saturated in all the situations
where ||v0||∞ = 10. In test cases #3, #5, thin structures have been removed due to remeshing in the course
of the optimization process. For some of the other test cases, the topology changes due to the elongation
of the oil phase which creates additional connected components (e.g. in #19 and #20 where the number
of oil components increases from 5 to 7). Last, in the configurations featuring the minimum thickness
constraint formulated as (3.5), the prescribed threshold values J0 and DP0 are often too ambitious. As a
result these constraints are slightly violated by the final design because the optimization algorithm had to
find a compromise between the two. This is visible for instance on #24, where the pressure drop DPfinal

is much worse as in the corresponding case #23 where the thickness constraint is not imposed, but which
features also a much better heat exchanged Jfinal.

Since the heating of the air flow is due to a Dirichlet boundary condition on the oil channels, the optimiza-
tion algorithm has a tendency to increase the length of the oil/air interface, which simultaneously increases
the amount of heat exchanged between oil and air. For large velocities, the oil channels are elongated with an
aerodynamic profile in order to meet the pressure drop limit. Note that the volume of the oil channels is not
constrained and thus varies a lot from one case to another. In some cases, such as #8, #10, #14, #19, #20,
#22 and #24, the initial topology is a collection of oil “islands” and it is transformed, after optimization,
into a kind of oil “matrix” perforated by air channels. This is a feature of topology optimization algorithms
which cannot be achieved in practice by parametric optimization algorithms, even if the geometry of the
shape can be modified by moving the mesh. The key point is here the use of a remeshing algorithm which
allows for very large mesh deformations.

Remarkably, the optimization algorithm generates recirculating fluid patterns opposed to the direct flow,
e.g., on cases #8–#12 and #20–#24, which increase the amount of exchanged heat by widening the surface
contact area between the hot oil phase and the incoming flow. Note that [78] has also reported the benefit
of recirculating patterns, such as counter-rotating vortices, when it comes to heat exchange. Furthermore,
the conducted numerical procedure has selected aerodynamic designs for the transverse oil channels so as to
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limit the output pressure loss. Finally, the effect of the minimum thickness constraint in (3.5) is particularly
significant on the configurations where the input velocity is maximum, ||v0||∞ = 40, which are also those
favoring the most elongated structures.

A few intermediate shapes illustrating the shape optimization process in some of these experiments are
reported in Figs. 4a to 4c. Finally, all these results were produced with a rather fine mesh resolution for the
bounding box D: the minimum edge size was of the order of hmin = 0.003, which corresponds to meshes
with approximately 30,000 vertices. The whole optimization process of a single test case involves about 400
iterations which took about 12 hours without the use of parallel computing. As an illustration the mesh of
the final shape is displayed on Figure 5 for one of the 24 situations considered.
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Test case T (initial design) T (optimized design) ||v||2 (optimized design)

#1
||v0||∞ = 10
DP0 = 1300
Jfinal = 4350
DPfinal = 1113
Without min.

thickness
constraint

#2
||v0||∞ = 10
DP0 = 1300
Jfinal = 4346
DPfinal = 1217

With min.
thickness
constraint

#3
||v0||∞ = 25
DP0 = 1030
Jfinal = 8089
DPfinal = 983
Without min.

thickness
constraint

#4
||v0||∞ = 25
DP0 = 1030
Jfinal = 9742
DPfinal = 1030

With min.
thickness
constraint

#5
||v0||∞ = 40
DP0 = 475

Jfinal = 3472
DPfinal = 392
Without min.

thickness
constraint
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Test case T (initial design) T (optimized design) ||v||2 (optimized design)

#6
||v0||∞ = 40
DP0 = 475

Jfinal = 7285
DPfinal = 520
With min.
thickness
constraint

#7
||v0||∞ = 10
DP0 = 1300
Jfinal = 4086
DPfinal = 1308
Without min.

thickness
constraint

#8
||v0||∞ = 10
DP0 = 1300
Jfinal = 4168
DPfinal = 1188

With min.
thickness
constraint

#9
||v0||∞ = 25
DP0 = 1030
Jfinal = 7667
DPfinal = 968
Without min.

thickness
constraint

#10
||v0||∞ = 25
DP0 = 1030
Jfinal = 7508
DPfinal = 1112

With min.
thickness
constraint
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Test case T (initial design) T (optimized design) ||v||2 (optimized design)

#11
||v0||∞ = 40
DP0 = 475

Jfinal = 5731
DPfinal = 479
Without min.

thickness
constraint

#12
||v0||∞ = 40
DP0 = 475

Jfinal = 6847
DPfinal = 524
With min.
thickness
constraint

#13
||v0||∞ = 10
DP0 = 1300
Jfinal = 4208
DPfinal = 1140
Without min.

thickness
constraint

#14
||v0||∞ = 10
DP0 = 1300
Jfinal = 4252
DPfinal = 1157

With min.
thickness
constraint

#15
||v0||∞ = 25
DP0 = 1030
Jfinal = 7785
DPfinal = 1022
Without min.

thickness
constraint
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Test case T (initial design) T (optimized design) ||v||2 (optimized design)

#16
||v0||∞ = 25
DP0 = 1030
Jfinal = 8711
DPfinal = 1106

With min.
thickness
constraint

#17
||v0||∞ = 40
DP0 = 475

Jfinal = 6236
DPfinal = 470
Without min.

thickness
constraint

#18
||v0||∞ = 40
DP0 = 475

Jfinal = 7822
DPfinal = 498
With min.
thickness
constraint

#19
||v0||∞ = 10
DP0 = 1300
Jfinal = 3361
DPfinal = 1149
Without min.

thickness
constraint

#20
||v0||∞ = 10
DP0 = 1300
Jfinal = 3582
DPfinal = 1064

With min.
thickness
constraint

18



Test case T (initial design) T (optimized design) ||v||2 (optimized design)

#21
||v0||∞ = 25
DP0 = 1030
Jfinal = 2972
DPfinal = 986
Without min.

thickness
constraint

#22
||v0||∞ = 25
DP0 = 1030
Jfinal = 5330
DPfinal = 1589

With min.
thickness
constraint

#23
||v0||∞ = 40
DP0 = 475

Jfinal = 2847
DPfinal = 476
Without min.

thickness
constraint

#24
||v0||∞ = 40
DP0 = 475

Jfinal = 4925
DPfinal = 1051

With min.
thickness
constraint

Table 2. Topology optimization results for the air–oil heat exchanger case study of section 3
associated to various sets of parameters and initial designs.

4. Design optimization of 2D two-tubes heat exchangers involving a non-mixing constraint

This section and the next section 5 are devoted to the optimization of a different type of heat exchangers.
These are composed of two tubes, containing two different fluids that are separated by a solid phase and
must not interpenetrate. The present section is devoted to the 2D case, and the considered physical setting is
described in section 4.1. The mathematical formulation of the optimization problem is outlined in section 4.2.
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(a) Test case 8, ||v0||∞ = 25.

(b) Test case 10, ||v0||∞ = 10.

(c) Test case 12, ||v0||∞ = 40.

Figure 4. Iterations 0, 10, 20, 100, 200, and 400 of the optimal design process of the 2D air–oil
heat exchanger of section 3, for several test cases.

Figure 5. Mesh of the final shape in test case 10 of the air–oil heat exchanger optimization example
of section 3. The diameter of the black circle on the right-hand side corresponds to the prescribed
minimum thickness dmin = 0.027.
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(a) Counter-current exchange test case: A hot fluid phase
Ωf,hot ⊂ D is entering from the upper left side of D with
a temperature Thot, and a cold fluid phase Ωf,cold is entering
in the reverse direction from the lower right inlet.
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(b) Co-current exchange test case: a hot fluid phase Ωf,hot ⊂ D

is entering from the upper left side ofD with a temperature Thot,
and a cold fluid phase Ωf,cold is entering in the same direction

at the lower left inlet (boundary conditions not represented).

Figure 6. Settings of the two test cases considered in the design optimization of the heat exchangers
of section 4 featuring the non-mixing condition d(Ωf,hot,Ωf,cold) ≥ dmin.

The non-penetration constraint between the fluid channels is modeled in section 4.3. Finally, numerical
results are presented in section 4.4. 3D results are treated in the next dedicated section 5.

4.1. Description of the physical setting

In the present context, the hold-all domain is the square D = (0, 10)2 = Ωs ∪ Ωf , which is composed of the

two disjoint fluid and solid phases Ωf and Ωs, respectively. These are separated by the interface Γ = Ωs∩Ωf ,
where the fluid satisfies the no-slip boundary condition v = 0. The fluid phase Ωf = Ωf,hot ∪ Ωf,cold itself
consists of two distinct channels Ωf,hot and Ωf,cold whose shapes are to be optimized and kept separated. The
boundary ∂D of the total device D contains the reunion ∂ΩD

f of the inlets of both channels, and the reunion

∂ΩN
f of the outlets. The hot (resp. cold) fluid is entering D through ∂ΩD

f ∩ ∂Ωf,hot (resp. ∂ΩD
f ∩ ∂Ωf,cold)

with the temperature Thot = 100 (resp. Tcold = 0) and a parabolic velocity profile v0. Both fluids exit D

with vanishing normal stress. The remaining part ∂ΩN := ∂D \ ∂ΩD
f of the boundary of D is adiabatic,

bearing homogeneous Neumann condition ∂T
∂n

= 0 for the temperature field T . Both fluids share the same
physical properties: their thermal conductivity kf , thermal capacity cp, kinematic viscosity ν, and density ρ
are equal.

We consider two configurations regarding the location of the inlets, see Figure 6 for an illustration:

(i) counter-current exchange test case (Figure 6a): the two liquid phases enter D from opposite sides.
The inlet and outlet cross-sections share a common size a = 2. The initial design is depicted on Figure 7
(left);

(ii) co-current exchange test case (Figure 6b): the two liquid phases enter from the same side of D
and the inlet and outlet cross-sections have a smaller common size a = 1. The initial design is that on
Figure 7 (right).

The physics involved in this problem are those considered in [42]: the velocity and the pressure (v, p)
of the fluid obey the incompressible steady-state Navier–Stokes equations in the total fluid domain Ωf =
Ωf,cold ∪ Ωf,hot:
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(a) Counter-current exchange test case. (b) Co-current exchange test case.

Figure 7. Initial distribution of the fluid domain Ω0

f (in white) in both test cases considered in section 4.
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−div(σf (v, p)) + ρ∇v v = 0 in Ωf

div(v) = 0 in Ωf

v = v0 on ∂ΩD
f

σf (v, p)n = 0 on ∂ΩN
f

v = 0 on Γ,

(4.1)

where the viscous stress tensor σf (v, p) is defined by (3.2). The temperature field T is determined by the
equations of convection–diffusion in the reunion of the solid and liquid phases Ωs and Ωf :
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−div(kf∇Tf ) + ρcpv · ∇Tf = 0 in Ωf

−div(ks∇Ts) = 0 in Ωs

T = 100 on ∂ΩD
f ∩ ∂Ωf,hot

T = 0 on ∂ΩD
f ∩ ∂Ωf,cold

−kf
∂Tf
∂n

= 0 on ∂ΩN ∩ ∂Ωf

−ks
∂Ts
∂n

= 0 on ∂ΩN ∩ ∂Ωs

Tf = Ts on Γ

−kf
∂Tf
∂n

= −ks
∂Ts
∂n

on Γ,

(4.2)

where Ts and Tf denote the restrictions of T to respectively the solid and the fluid subdomains Ωs and Ωf .

As far as numerical values are concerned, in both test cases, the common density of the fluids is ρ = 1,
and their thermal conductivity is kf = 10. The maximum norm of the inlet velocity reads ||v0||∞ = 1. The
viscosity ν is computed by the formula ν := ρa||v0||∞/Re where the Reynolds number is set to Re = 60.
Likewise, the capacity coefficient of the fluids is calculated by cp := kfPe/(νRe), where the value of the
Péclet number is prescribed to Pe = 500. The thermal conductivity of the solid Ωs is chosen to be about ten
times larger than that of the fluids: ks = 110.

4.2. Definition of the objective functional and of the pressure drop constraint

The aim of the optimal design problem is to find the shapes of the “hot” and “cold” components Ωf,hot and
Ωf,cold of the fluid phase Ωf that maximize the heat exchanged between both components. Two constraints
are added on the design: one is about the maximum allowed pressure drop between the inlets and the
outlets of the two channels, while the other imposes that Ωf,cold and Ωf,hot do not interpenetrate. The latter
geometric constraint is discussed more thoroughly in the next section 4.3.
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The exchanged heat between both components Ωf,hot and Ωf,cold is mathematically appraised by the
shape functional J(Ωf ) ≡ J(Ωf ,v(Ωf ), p(Ωf ), T (Ωf )) defined by

J(Ωf ) := −

(

∫

Ωf,cold

ρcpv · ∇Tdx−

∫

Ωf,hot

ρcpv · ∇Tdx

)

. (4.3)

This quantity can indeed be interpreted as the opposite of the transferred heat since an integration by part
implies that

J(Ωf ) =

∫

∂Ωf,hot

ρcpT v · nds−

∫

∂Ωf,cold

ρcpT v · nds, (4.4)

where we recall that the unit normal vector n is pointing outward D. Since the velocity vanishes on the
lateral channel boundaries, the above expression is exactly the difference between the heat conveyed by the
hot phase through its output (to be minimized), and that conveyed by the cold phase (to be maximized),
up to additional constant terms, depending only on the inlet boundary values (which are not subject to
optimization). We favor the volume expression (4.3) which lends itself to more accurate estimates than the
surface expression (4.4). This approach is rather standard in numerical fluid mechanics, see, e.g., [17, 37].

The maximum pressure drop constraint DP(Ωf ) reads:

DP(Ωf ) :=

∫

∂ΩD
f

p ds−

∫

∂ΩN
f

p ds ≤ DP0,

where p ≡ p(Ωf ) is the pressure inside the fluid and DP0 is a given threshold value. Note that there is a
single constraint for the union of the two fluid components (“hot” and “cold”). In our implementation, the
threshold value is set for each of the two test cases considered as follows:

DP0 :=

{

2DP(Ω0
f ) in the counter-current exchange test case,

5DP(Ω0
f ) in the co-current exchange test case.

Remark 3. With an abuse of notations, the objective functional (4.3) , as several others in the sequel of
the article, is written as a function of the fluid phase Ωf while, strictly speaking, it depends on the two
sub-phases Ωf,hot and Ωf,cold.

4.3. The non-mixing constraint between the fluid channels Ωf,hot and Ωf,cold

In this section, the formulation of the non-mixing condition between the two fluid phases Ωf,cold and Ωf,hot is
discussed. Taking advantage of our numerical environment where a clear “black-and-white” and, even more,
meshed representation of these phases is available at each stage of the process, this constraint is formulated
in a simple geometric fashion. Our modeling is based on the signed distance function dΩf,hot

to Ωf,hot. We
require that the distance between the hot and the cold phase be greater than a positive value dmin which
reads, mathematically:

∀x ∈ Ωf,cold, dΩf,hot
(x) ≥ dmin, (4.5)

or equivalently
∀x ∈ ∂Ωf,cold, dΩf,hot

(x) ≥ dmin. (4.6)

Obviously, the roles of Ωf,hot and Ωf,cold can be interchanged in (4.5) and (4.6). The minimum distance
parameter is set to dmin = 0.15 for the counter-current exchange test case and dmin = 0.05 for the co-
current one. Following the strategy in [10, 68], we then construct averaged-penalty functionals in order to
approximate the pointwise constraint (4.6). To this end, we first note that (4.6) is equivalent to the following
requirement:

∣

∣

∣

∣

∣

∣

∣

∣

1

dΩf,hot

∣

∣

∣

∣

∣

∣

∣

∣

−1

L∞(∂Ωf,cold)

≥ dmin. (4.7)

We then classically approximate the supremum norm in the above equation with an Lp norm, for a sufficiently
large value of p, so as to obtain a differentiable shape functional. Our approximate version of (4.6) reads:

Pcold→hot(Ωf ) ≥ dmin, where Pcold→hot(Ωf ) :=

∣

∣

∣

∣

∣

∣

∣

∣

1

dΩf,hot

∣

∣

∣

∣

∣

∣

∣

∣

−1

Lp(∂Ωf,cold)

=

(

∫

∂Ωf,cold

1

|dΩf,hot
|p
ds

)− 1
p

. (4.8)
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The quantity Pcold→hot(Ωf ) can be interpreted as an averaged measure of the distance d(Ωf,cold,Ωf,hot)
between both phases. In our implementation, the parameter p involved is set to p = 4.

Remark 4. A similar average criterion to (4.8) could have been constructed from (4.5) as an integral over the
whole cold phase Ωf,cold, and not only the boundary ∂Ωf,cold. We nevertheless prefer the formulation (4.6)
and (4.8) because we expect that averaging on a smaller set in (4.8) yields a more accurate approximation
of the infinity norm.

Remark 5. The constraint (4.7) on the distance between the two connected components Ωf,cold and Ωf,hot

amounts to imposing that there be a solid wall of minimum thickness dmin between the two phases. It is
quite different (and easier) from the requirement of a minimum thickness for the whole solid phase Ωs (which
we do not aim to impose).

In order to balance the effect of the constraint (4.8) over both fluid phases, we introduce the symmetric
counterpart of (4.8):

Phot→cold(Ωf ) :=

(

∫

∂Ωf,hot

1

|dΩf,cold
|p
ds

)− 1
p

. (4.9)

Eventually, we consider the symmetrized non-penetration constraint obtained by the harmonic mean of
Phot→cold and Pcold→hot. Our non-mixing constraint (4.7) finally reads:

Qhot↔cold(Ωf ) ≥ dmin, where Qhot↔cold(Ωf ) :=
2

1/Phot→cold(Ωf ) + 1/Pcold→hot(Ωf )
. (4.10)

All in all, the considered optimization problem in this 2D setting is:

min
Ωf⊂D

J(Ωf ) = −

(

∫

Ωf,cold

ρcpv · ∇Tdx−

∫

Ωf,hot

ρcpv · ∇Tdx

)

s.t.
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DP(Ωf ) =

∫

∂ΩD
f

p ds−

∫

∂ΩN
f

p ds ≤ DP0

Qhot↔cold(Ωf ) ≥ dmin.

(4.11)

Again, the shape derivatives of the “physical” functionals J(Ωf ) and DP(Ωf ) are computed thanks to the
formulas provided in our previous work [42], while that of the geometric constraint functional Qhot↔cold(Ωf )
is evaluated numerically thanks to the variational method presented in section 2.4.

4.4. Numerical results

The optimization problem (4.11) is solved with the numerical strategy described in section 2 and summarized
in algorithm 1. The obtained results for both test cases 1 and 2 of Figure 6 are depicted on Figs. 8 to 11 and
Figs. 13 to 16, respectively. In each situation, we display the initial and final designs, the temperature T and
the velocity field v within the latter, as well as several intermediate shapes obtained with our algorithm and
the convergence histories for the objective and constraint functionals. Both constraints (minimum distance
and maximum pressure drop) are saturated at convergence. The resulting serpentine shapes are similar to
those observed in [76].

Remark 6. The convergence histories of Figs. 11 and 16 reveal that the design obtained at convergence
is not the “best” one among all those obtained during the optimization process, in terms of the objective
function J(Ωf ). Indeed, the intermediate designs at iteration 100 and 150 are slightly better than the final
ones, in the context of the counter-current and the co-current heat exchanger test case, respectively. This fact
can be explained with the treatment of the kind of solid “crack” (or thin wall) featured by these intermediate
designs, by means of the remeshing process of our optimization methodology. The latter indeed attempts to
find a compromise between the physical performance of the shape, of its smoothness, and the enforcement
of minimum and maximum mesh size constraints. As a consequence, the “cracks” appearing in the corners
of the fluid pipes are smoothed or even broken in the course of the remeshing process (see for instance the
iteration 155 of Figure 15 for the co-current heat exchanger test case), which results in a slight degradation
of the physical performance of the shapes.
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(a) Initial design. (b) Optimized design.

Figure 8. Initial and final designs for the counter-current exchange test case of section 4. The
diameter of the black disk on the right-hand side indicates the value of the minimum distance
constraint.

Remark 7. The discrepancy between the pressure drop ratios DP(Ωf )/DP(Ω
0
f ) attained at convergence

(1.7 and 4.7 in respectively Figs. 11 and 16) and the imposed upper bounds (which equal 2 and 5 for the
counter-current and the co-current test cases, respectively) can be accounted for by the high sensitivity of
the pressure constraint to rather small variations of the domain in the vicinity of the tip of its solid “crack”
(or thin wall). Indeed, Remark 8 in [43] suggests an a posteriori tolerance bound for the fulfillment of this
constraint. Because of the imposed minimum mesh size hmin, one can only expect that, at convergence, the
optimized domain Ωf satisfies the constraint up to a deformation field θ ∈ W 1,∞(D,Rd) with magnitude
||θ||L∞(D) ≈ hmin. Therefore, the uncertainty over the values of the constraint functional C(Ωf ) is of the
order:

max
||θ||L∞(D)≤hmin

|DC(Ωf ) · (θ · n)| = max
||θ||L∞(D)≤hmin

∣

∣

∣

∣

∣

∫

∂Ωf

vC(Ωf )θ · nds

∣

∣

∣

∣

∣

≤ ε := hmin

∫

∂Ωf

|vC(Ωf )|ds,

where vC(Ωf ) is the scalar field featured in the surface expression (2.6) of the shape derivative of the pressure
drop constraint. At convergence, we find numerically ε ≃ 5 and ε ≃ 60 for respectively the co-current and
counter-current heat exchanger test cases. Therefore, the achieved discrepancy of order 0.3 seems acceptable
with respect to these bounds.

The optimized shapes suggest two comments. At first, our approximation (4.8) of the infinity norm by the
Lp norm with p = 4 works well: the distance constraint is clearly respected at almost all intermediate itera-
tions. Secondly, our method is able to improve continuously the optimized design even after the saturation
of the distant constraint, which happens very early in the optimization process.

Finally, let us mention that our computations do not require a very fine mesh of the solid region Ωs

lying between the cold and the hot domains Ωf,cold and Ωf,hot so as to properly handle the distance con-
straint (4.10). As an illustration of this fact, we plot on Figs. 12 and 17 the final meshes of the optimized
shape for both test cases. For the co-current exchange test case, a resolution of about ten mesh elements
(that is, the skeleton Σ of Ωf lies at approximately five mesh elements from the boundary ∂Ωf only) in
between the two pipes proves sufficient to obtain a satisfactory approximation of the shape derivative of the
geometric constraint functional Qhot↔cold(Ωf ) from the variational method of section 2.4.

5. Shape and topology optimization of a 3D fluid-to-fluid heat exchanger involving a
non-mixing constraint

In this section, the optimal design of a three-dimensional two-tube heat exchanger is investigated. The
physical setting is the three-dimensional counterpart of that described in section 4.1. Here, the hold-all
domain is the cube D = (0, 1)3, as in Figure 18. A cold channel is flowing in the x-direction from a disk-
shaped inlet of radius a = 0.1 located on the left face of ∂D, and is exiting through a disk with the same
radius a located on the opposite face. A hot channel is flowing in the z-direction between similar disk-shaped
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(a) Initial temperature field. (b) Final temperature field. (c) Final norm of the fluid velocity.

Figure 9. Plots of the state variables at the last iteration for the co-current exchange test case of
section 4.

Figure 10. Intermediate iterations 0, 10, 20, 30, 40, and 400 for the counter-current exchange test
case of section 4.
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(a) Objective function J(Ωf ). Final
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Figure 11. Convergence histories for the counter-current exchange test case of section 4.

Figure 12. Zoom on a mesh of an intermediate optimization iteration occurring during the solution
of the counter-current exchange test case of section 4.
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(a) Initial design. (b) Optimized design.

Figure 13. Initial and final designs for the co-current exchange test case of section 4. The diameter
of the black circle on the right-hand side indicates the value of the minimum distance constraint.

(a) Initial temperature field. (b) Final temperature field. (c) Final norm of the fluid velocity.

Figure 14. Plots of the state variables at the last iteration for the co-current exchange test case
of section 4.

Figure 15. Intermediate iterations 0, 15, 50, 88, 155 and 400 in the co-current exchange test case
of section 4.
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Figure 16. Convergence histories for the co-current exchange test case (where the cold and hot
inlets are located on the same side of ∂D) of section 4.

27



Figure 17. Zoom on a mesh of an intermediate optimization iteration occurring during the solution
of the co-current exchange test case of section 4.

x

z
y

d(Ωf,hot,Ωf,cold) ≥ dmin

Thot

Tcold

D

Ωf,hot

Ωf,cold

Figure 18. Schematic of the 3D setting of section 5.

input and output located on the bottom and top faces of ∂D. The input temperatures for the hot and cold
channels are the same as in the previous 2D case: Thot = 100 (resp. Tcold = 0).

Similarly to the 2D case, we solve the Navier–Stokes system (4.1) and the convection–diffusion equation
(4.2) for the velocity, pressure, and temperature fields (v, p, T ). This step is achieved in FreeFEM [50] and
the parallel preconditioning features of PETSc [16, 15], see [45] where the implementation is described in
details. The values of the physical parameters featured in there are reported in Table 3. After describing the
considered shape optimization problem in the present 3D situation in section 5.1, we discuss in sections 5.2
and 5.3 a few numerical issues that are quite specific to the present three-dimensional context, before turning
to numerical results in section 5.4.
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Re dmin ρ kf ks Pe cp DP0 V0

100 0.1 or 0.04 10 1 10 2,000 200 3.72 0.15

Table 3. Numerical values of the physical parameters for the 3D setting of section 5.

5.1. Formulation of the optimization problem

Although very similar in spirit, the three-dimensional character of the shape and topology optimization
problem addressed in this section raises the need for several adjustments in the formulation of the 2D
problem treated in section 4.

At first, topological changes are much more likely to occur in 3D than in 2D. Thus, it becomes crucial
for our purpose to enforce strictly a maximum pressure loss constraint on each of the two channels in order
to prevent them from becoming disconnected. Indeed, the thermal conductivity ks in the solid phase Ωs

is larger than kf in the fluid phase, and so the algorithm may accidentally find it beneficial to reduce too
much the pipe cross-sections to favor the transport of heat through diffusion. Therefore, for an increased
robustness of the optimization path selected by our null space algorithm, we consider two static pressure loss
constraints in the minimization problem (5.1) below, one for each of the channels Ωf,hot and Ωf,cold, instead
of just one in the whole fluid phase Ωf as in the 2D case.

In the same spirit, we express our minimum distance constraint between the two channels as two con-
straints Phot→cold(Ωf ) and Pcold→hot(Ωf ) given in (4.8) and (4.9) instead of considering the symmetrized
quantity Qhot↔cold from (4.10). Although slightly redundant, this formulation tends to impose the distance
constraint in a more stringent way, while still attributing symmetric roles to Ωf,hot and Ωf,cold. Finally, we
add to the problem a constraint on the volume of each of the two channels in order to ensure that these are
balanced in mass.

All things considered, the optimal design problem of interest in this section reads:

min
Ωf⊂D

J(Ωf ) = −

(

∫

Ωf,cold

ρcpv · ∇Tdx−

∫

Ωf,hot

ρcpv · ∇Tdx

)

s.t.
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Vol(Ωf,hot) :=

∫

Ωf,hot

dx ≤ V0

Vol(Ωf,cold) :=

∫

Ωf,cold

dx ≤ V0

DP(Ωf,hot) =

∫

∂ΩD
f,hot

pds−

∫

∂ΩN
f,hot

pds ≤ DP0

DP(Ωf,cold) =

∫

∂ΩD
f,cold

pds−

∫

∂ΩN
f,cold

pds ≤ DP0

Phot→cold(Ωf ) ≥ dmin

Pcold→hot(Ωf ) ≥ dmin,

(5.1)

where we have defined ∂ΩD
f,hot := ∂ΩD

f ∩ ∂Ωf,hot, ∂Ω
D
f,cold := ∂ΩD

f ∩ ∂Ωf,cold, and likewise for ∂ΩN
f,hot and

∂ΩN
f,cold.

5.2. Selection of an initial design

One crucial point in the solution of shape and topology optimization problems in the framework of Hadamard’s
method is the choice of an adequate initial design. In the present physical context, the initial shapes of Ωs,
Ωf,hot, and Ωf,cold have to comply with the topological constraints of two-fluid heat exchangers, namely:

• the cold and hot inputs of the fluid subdomain Ωf must be connected to their associated outputs;
• the initial fluid subdomain has to be the disjoint reunion Ωf = Ωf,cold ∪ Ωf,hot of the hot and cold

phases.
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Figure 19. Initial distribution of fluid considered for the 3D heat exchanger test case of section 5.
The hot and cold phase are depicted in red and blue respectively and are disjoint regions. Cut with
respect to the z-axis on the right.

In two space dimensions, these requirements do not leave room for many changes in the topology with
respect to the initial setting, which naturally resembles those depicted on Figure 7. The only possible
topological enrichment would be the addition of solid inclusions in each of the fluid phases. In the present
three-dimensional situation, there is much more freedom about the selection of the initial shapes of Ωs,
Ωf,hot, and Ωf,cold. In the implementation, we consider two nested but non-mixing cell arrays of pipes which
are connected to their respective inputs and outputs. This initial design is displayed on Figure 19. Its
construction is achieved by means of simple min/max operations on primitive level-set functions associated
to elementary patterns (e.g., cylinders, cubes, or spheres), corresponding respectively to union/intersection
of their associated subdomain [72]. The initial design is chosen with a rich enough topology of channels
because the minimum distance constraint will not allow for the crossing of cold and hot channels.

Note that although both hot and cold phases should constitute two distinct connected components at the
initialization, the condition that both phases be separated from a minimum distance dmin does not need to
be strictly satisfied: these violations of the optimization constraints are automatically corrected by the null
space algorithm from section 2.3 at subsequent iterations.

5.3. Numerical solution of the topology optimization problem

The overall methodology for the solution of the heat exchanger design problem (5.1) is identical to that of
the 2D case of section 4 and it relies on all theoretical ingredients recalled in section 2. However, the three-
dimensional character of the problem requires specific implementation changes regarding mesh operations
and the solution of linear systems.

Remeshing operations and isosurface discretization on tetrahedral meshes are notoriously more computa-
tionally expensive in 3D than in 2D. These are performed thanks to the open-source library Mmg [27, 26] in
our implementation. For now, this task is sequential, however it should be possible to perform it in parallel
in the near future with the next version of ParMmg [24].

Then, the large dimension of the finite element systems at stake is overcome by parallel computing with
the help of modern domain decomposition techniques and suitable preconditioning. For further details on
these implementation aspects, the reader is referred to our previous work [45].

In order to show the robustness of our method, we run the optimization on two test cases for two possible
values of the minimum wall thickness dmin = 0.1 and dmin = 0.04. In both cases, the computational time
required for running 359 iterations of the optimization algorithm is about 8 days on 30 processing units of
an Intel(R) Xeon(R) CPU E5-2407 @ 2.4GHz. We recall that only the finite element assemblies and linear
system solutions are performed in parallel. The computational meshes were obtained with the isosurface
discretization feature of Mmg by prescribing a maximum mesh element size hmax = 0.04 in the whole domain
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Operation Runtime (iteration 1) Runtime (iteration 20)

Computation of the mesh connected
components and removal of isolated
fluid parts

41 sec 21 sec

Computation of the signed distance
function to Ωf

31 sec 21 sec

Computation of the signed distance
function to Ωf,hot

14 sec 10 sec

Computation of the signed distance
function to Ωf,cold

22 sec 17 sec

Solution of the state equations (30 pro-
cesses)

344 sec 253 sec

Computation of shape sensitivities (30
processes)

340 sec 259 sec

Advection of the solid–fluid interface 11 sec 8 sec

Isosurface discretization and remeshing
into a new computational mesh

696 sec 521 sec

Total 26min 19min

Table 4. Main computational times for iterations 1 and 20 of the topology optimization algorithm
in the solution of the 3D test case of section 5 with dmin = 0.1.

and a local maximum mesh element size hmax,loc = 0.015 on the solid–fluid interface. This means that in
the more “dangerous” configuration dmin = 0.04, the wall thickness prescribed between the two phases is of
the order of only five times the local mesh size.

The initial mesh features about 3.8 million tetrahedra, 2.3 million of which lie inside the fluid domain. At
every iteration, the mesh connected components associated with the hot and cold fluid channels are computed.
Small isolated fluid components sometimes appear at topological changes during the optimization process.
These are detected and removed at the beginning of every iteration.

The computational times observed for iterations 1 and 20 in the configuration dmin = 0.1 are reported in
Table 4. Similar running times are observed in the case dmin = 0.04. During the optimization process, the
mesh size decreases because the topology of the solid–fluid interface becomes simpler. For instance, in the
case dmin = 0.1, the last mesh features of the order of 1.7 million tetrahedra including 686,000 in the fluid
domain. As a result, the computational burden quickly decreases after a few iterations and remains constant
after the 20th iteration till the end of the optimization process.

We note that the additional computational cost induced by the operations necessary to ensure the min-
imum distance constraint, which are carried out in parallel, is not substantial when compared to the total
computational time of one iteration. Indeed, for the first iteration, the parallel assembly and solution of the
variational problem (2.14) took about 70 sec of the time allotted to compute shape sensitivities, 340 sec, cf.
the 6th row of Table 4.

5.4. Three-dimensional numerical results

The optimized distribution of the two fluid components Ωf,hot and Ωf,cold, as well as several views of the fluid
and the solid components Ωf and Ωs are represented on Figure 20 in the case dmin = 0.1, and on Figure 23
for dmin = 0.04. A few iterations of the optimization process are shown on Figs. 21 and 24 for these two
respective configurations. For ease of visualisation in the configuration dmin = 0.04, the hot and cold phases
are represented on two separate plots on Figure 26. These plots emphasize the fact that valid designs with
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a well-defined solid–fluid interface are available throughout the optimization process. We note that in both
cases dmin = 0.1 and dmin = 0.04, the optimization algorithm favors the appearance of transverse tubes
in the hot phase during the first 200 iterations, before making them disappear in the last ones so that the
pressure drop constraint be enforced more stringently.

The convergence histories for the objective and constraint functions are plotted on Figs. 22 and 25. We
observe that in both configurations, the volume constraint on the hot fluid channel does not get saturated
during the optimization process while it is the case for the cold fluid channel. The minimum distance
constraint is initially violated but it becomes and remains satisfied after about 30 iterations, although
dramatic topological and shape changes still occur thenceforth.

The optimized designs are rather unconventional, since they do not feature a network of pipes as one would
have intuitively expected, but rather an arrangement of fluid surfaces. We note that the final distribution
of fluid are naturally free from nonphysical three-dimensional solid islands, a feature which not enforced by
explicit means in our computation.

6. Conclusion and perspectives

This article proposed a framework for the shape and topology optimization of two models of heat exchangers,
based on the boundary variation method of Hadamard. In a first part, a simplified cross-flow 2D model
was investigated, demonstrating the ability of our numerical method to generate a large variety of optimized
designs associated to different physical parameters and initial guesses. Our results pointed out that, according
to the initial topology, different optimal shapes may be satisfactory candidates for one single configuration
of the heat exchanger design problem.

A second part considered more realistic two-network heat exchangers models, for which our framework
conveniently allowed to enforce a non-penetration constraint between both types (hot and cold) of channels.
The efficiency of our approach was demonstrated on two 2D cases and on a moderately large-scale 3D case.
Although the test cases considered in this paper remains somehow academic, our results further highlight
the capabilities of topology optimization to generate unconventional designs which could be of interest in
the prospect of longer-term industrial applications.

One natural lead for future work would be to deal with other physical models than those of sections 3.1
and 4.1, in order to handle, for instance, turbulent situations. Let us mention, however, that several diffi-
culties are still to be expected regarding the applications of the present shape optimization methods to such
realistic industrial applications featuring large Reynolds and Péclet numbers, which are typically of the order
of 30,000 or beyond. Indeed, when the Reynolds number is large, the assumption of stationary velocity and
pressure fields may break down because stationary solutions become asymptotically unstable. The time-
dependent solution rather tends to evolve to an attractor [88]. This could motivate the need for considering
turbulence models which enable to approximate the mean stationary fields and to capture boundary layers
by using sufficiently fine meshes. In a second extent, one could consider time-dependent models in such
situations, although these are known to induce substantial additional computational costs due to the need
for computing adjoint solutions backward in time, see [9] for one instance of such a situation.

Finally, the current shapes of industrial heat exchanger suggest that optimized designs could be realized by
multi-scale patterns, featuring many small details such as fins or tubes, repeated in a periodic fashion. Such
designs would be quite difficult to mesh explicitly, and so to capture with the method of Hadamard. However,
it is tempting to consider the use of homogenization approaches in this context, which are specifically devised
to generate multi-scale geometries.

The recent works [75, 46, 8] offer interesting perspectives regarding the automatic generation of optimized
microstructures from homogenized models in the context of linear elasticity. In [41], a few preliminary
theoretical contributions are outlined towards the application of such methods in the context of fluid systems.
In complement, let us mention the recent publication [32] where promising results are discussed regarding
the dehomogenization of fluid flow channel networks based on the Darcy model.
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(a) Optimized distribution of the cold and hot fluid

components, respectively colored in blue and red.

(b) Sectional view of the topologically optimized fluid do-

main. The color corresponds to the temperature profile.

(c) Sectional view of the topologically optimized
solid domain. The color corresponds to the tem-

perature profile. Observe the wall thickness greater
than 0.1 prescribed between the two fluid compo-
nents.

(d) Sectional view of the topologically optimized solid do-
main with tetrahedral mesh elements made visible. Ob-

serve that both fluid components are separated from only
9 to 10 mesh elements. The diameter of the sphere on
the right-hand side is equal to the prescribed minimum
distance constraint dmin = 0.1.

Figure 20. Final design for the three-dimensional heat exchanger test case of section 5.
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