N
N

N

HAL

open science

Guarded Attribute Grammars and Publish /Subscribe
for implementing distributed collaborative business
processes with high data availability

Maurice Tchoupé Tchendji, Joskel Ngoufo Tagueu

» To cite this version:

Maurice Tchoupé Tchendji, Joskel Ngoufo Tagueu.
lish/Subscribe for implementing distributed collaborative business processes with high data avail-

ability. 2020. hal-02924307

HAL Id: hal-02924307
https://hal.science/hal-02924307

Preprint submitted on 27 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Guarded Attribute Grammars and Pub-

https://hal.science/hal-02924307
https://hal.archives-ouvertes.fr

Guarded Attribute Grammars and
Publish/Subscribe for implementing distributed
collaborative business processes with high data
availability

Maurice TCHOUPE TCHENDJI! and Joskel NGOUFO TAGUEU?

Department of Mathematics and Computer Science
University of Dschang, PO Box 67, Dschang-Cameroon
LIRIMA, FUCHSIA associate team

1 maurice.tchoupe @univ-dschang.org, ttchoupe @yahoo.fr
2 ingoufotagueu @yahoo.com

ABSTRACT. With the ever-increasing development of the Internet and the diversification of communication me-
dia, business processes of companies are increasingly collaborative and distributed. This contrasts with tradi-
tional solutions deployed for their management which are usually centralized, based on the activity flow or on
the exchanged documents. Moreover, the users who are usually the main actors in collaborations are often rele-
gated to second place. Recently, a distributed, data-driven and user-centric approach called Guarded Attributed
Grammar (GAG) has been proposed for the modeling of such processes; it thus provides an answer to most of
these limitations. In this paper, we present an approach for implementing business processes modeled using
GAG in which communications are done by publish/subscribe with redirection of subscription (pub/sub-RS). The
pub/sub-RS—which we propose—guarantees high data availability during the process execution by ensuring that
an actor, perceived as a subscriber, will always receive a data he needs to perform a task as soon as it is pro-
duced. Moreover, if the data is semi-stuctured, and produced collaboratively and incrementally by several actors,
its subscribers will be notified as soon as one of its components (a prefix) is produced simultaneously, as they
will be subscribed in a transparent way to the remaining components (the suffix).

RESUME. Avec le développement toujours croissant de I'lnternet et la diversification des moyens de communi-
cation, les processus métiers sont de plus en plus collaboratifs et distribués. Ceci contraste avec les solutions
traditionnelles déployées pour leur gestion qui sont habituellement centralisées, basées sur le flux d’activités ou
sur les documents échangés. Bien plus, les utilisateurs qui sont généralement les acteurs principaux dans la col-
laboration y sont souvent relégués au second rang. Récemment, une approche distribuée, centrée sur I'utilisateur
et pilotée par les données appelée Grammaires Attribuées Gardées (GAG), a été proposée pour la modélisation
de tels processus; elle fournit donc une réponse a la plupart de ces limitations. Dans ce papier, nous présentons
une approche de mise en ceuvre de processus métiers modélisés a I'aide des GAG dans laquelle les communi-
cations se font par publish/subscribe avec redirection de souscriptions (pub/sub-RS). Le pub/sub-RS (que nous
proposons) garantit une haute disponibilité des données pendant I'exécution d’'un processus en assurant qu’'un
acteur (pergu comme un abonné) recevra toujours une donnée dont il a besoin pour effectuer une tache dés
qgu’elle est produite. De plus, si la donnée est semi-structurée et produite collaborativement et incrémentalement
par plusieurs acteurs, ses abonnés seront notifiés dés qu’'une de ses composantes (un préfixe) est produite en
méme temps qu’ils seront abonnés de maniére transparente aux composantes résiduelles (le suffixe).

KEYWORDS : Collaborative business processes, GAG, Artifact, Publish/Subscribe, Subscription redirection,
Semi-structured data, Service oriented computing, Software architecture

MOTS-CLES : Processus métiers collaboratifs, GAG, Artefact, Publish/Subscribe, Redirection de souscriptions,
Données semi-structurées, Calcul orienté service, Architecture logicielle

1. Introduction

Business processes are processes that represent the activities of companies. Their pur-
pose is to orchestrate activities that contribute to the achievement of organizational goals.
The ever-increasing development of the Internet and the diversification of means of com-
munication has led to the emergence of new needs, including the need for distributed
process execution. Most business tasks in large organizations are performed collabora-
tively by actors possibly positioned in remote geographical locations, requiring therefore,
the need for rapid information transfer for consistent decision-making.

Generally, collaborative business process management models are either based on the
process activity flow [12, 11]; or on the documents exchanged during the process [13, 6,
14]; or on both, as in models centered on the artifact ! [8, 4, 10, 5]. A disadvantage of these
models is that they model the users of the process as second-class actors, when they are
not simply ignored. Indeed, although they are very often the main actors of collaboration,
they are usually modelled as plain resources performing specific tasks in a context [3]. It
is entirely appropriate that collaborative business process models explicitly highlight the
roles played by users, as long as their implications would be predominant in collaboration:
this is what Badouel et al. propose in the GAG (Guarded Attribute Grammars) model
[3, 2], which is a grammatical approach to model collaborative, distributed, data-driven
and user-centric business processes.

Intuitively, a GAG is a collection of semantic rules 2 or business rules describing for a
business process how to produce data (synthesized attribute values) from information of
the environment (inherited attribute values and user inputs). In the GAG execution model,
the artifacts are used to represent and manage the flow of activities, the data and the life
cycle of processes. They are intentionally modeled by trees whose nodes represent the
tasks and have attributes to contain all the information about a process from its creation
in the system to its completion. These nodes can be divided into two subsets: the one
of the closed nodes corresponding to the completed tasks, and the one of the open nodes
corresponding to the pending or running tasks. The choice of how to perform a task
associated with a given open node is left to the discretion of the user, who performs it
by selecting one of the business rules (from the GAG) applicable to that open node (see
section 2). The business rules applicable to an open node at any given time are a function
of data previously generated in the process, and data provided by users: it is in this sense
that the GAG model is said to be data-driven and user-centric.

The objective of this paper is to present an approach for implementing distributed col-
laborative business processes modeled using GAG 3 and communicating through a new
variant of publish/subscribe * called publish/subscribe with redirection of subscriptions
abbreviated as pub/sub-RS. We are therefore specifically interested in collaborative busi-
ness processes involving several actors located on different geographical sites who work
in parallel and communicate asynchronously. With the pub/sub-RS protocol, we want to

1. “An artifact is a document that conveys all the information concerning a particular case from its inception in
the system until its completion. It contains all the relevant information about the entity together with a lifecycle that
models its possible evolutions through the business process" [3]. So we can assimilate it to an active document

[1] combining data and processing.

2. A variant of the semantic rules of attribute grammars.

3. In the rest of this manuscript, we will name “GAG processes" business processes modeled using GAG.

4. The publish/subscribe is an asynchronous communication scheme between publishers and subscribers.
Subscribers express their interest in data through subscriptions and publishers publish data for subscribers. A

subscriber is notified each time a publication corresponds to a subscription he has made.

guarantee a high availability of information (even if it is only partially produced) in order
to allow the actors to start processing as soon as possible.

Paper contributions: the majors contributions of this paper are the proposal of a
new variant of publish/subscribe communication protocol called publish/subscribe with
redirection of subscriptions (pub/sub-RS), the proposal of a scheme of implementation of
GAG processes communicating by pub/sub-RS, and an approach for deploying such an
implementation on a component-based architecture. The pub/sub-RS allows the exchange
of potentially semi-structured data (whose components can eventually be produced by
different peers) asynchronously, incrementally and without intermediaries >.

Manuscript organization: section 2 provides an overview of business process mod-
eling with GAG; some formal definitions are also given. The pub/sub-RS protocol as
well as our approach to implementing the coupled model GAG - Pub/sub-RS is presented
in section 3. Section 4 presents how to deploy and execute GAG with pub/sub-RS on a
distributed component-based architecture. Section 5 is devoted to the conclusion.

2. Business process modeling with GAG

In this section, we present some fundamental concepts of the GAG model for business
process modeling. The interested reader can find a more complete presentation of GAG
in 3, 2].

2.1. Business process, business rule and artifact

A business process can be interpreted as a task (#y) to be executed which, depending
on its complexity, can be branched/decomposed into subtasks (¢, ...,#,) potentially ex-
ecuted by different actors. Conceptually, this decomposition can be modeled by a rule
called business rule that can be represented by a production of the form P : sy — s7...5,
expressing the fact that the service sp to be invoked to execute the task 7y must invoke
the (sub)services sy, ...,s, which are the services to be invoked to execute the subtasks
t1,...,t, of ty respectively. We call s-production a production having s on the left hand
side. For a same service s, we can have several applicable business rules (i.e. several
ways to perform a task) and therefore several s-productions. In this case, the choice of the
business rule to be applied is up to the actor of the process responsible for executing the
task associated with the service (reminder: the execution of a GAG is user-centric).

Each process is associated with an artifact modeled by a tree whose nodes are sorted.
We write X :: s to indicate that the artifact node X is of sort s; this means that it is an
instance of the service s. An artifact is defined by a set of equations of the form X =
P(Xi,...,Xy), indicating that X :: s is a node labeled by the production P : s — s; .. .s, and
has as successors, the nodes X :: s1,...,X, :: Sp. A node X :: s that is not defined by any
equation is called open node %; it corresponds to a pending task and will have to be refined
(i.e. extended into a subtree, see figure 1) by applying a production corresponding to its
sort s (a s-production P : s — s1...5,).

This refinement allows to “close"” the node X which is now defined by the equation
X =P(X,...,X,) such that Xi, ..., X, are new open nodes created; they have for respective
sorts s1,...,s, (see figure 1).

5. A data produced by a peer X to a peer Y is sent directly to it without passing through a peer Z.
6. In the tree representation of the artifact it is a leaf not labeled by a production.

To execute a process, we start from an initial artifact reduced to an open node (of
the sort of one of the axioms, see definition 2) and refine it by successive application of
business rules, until we obtain an artifact containing only closed nodes: it is said closed
(closed artifact).

S S
<> refinement
(7)) ZEEEED . (P)
S1 Sn
AT y \
(4) (? |
N v hN v

Figure 1. Refinement of an open node [2]

2.2. Data flow and configuration of a GAG process

To model the data exchanged between the different services associated with open
nodes, more information is attached to the open nodes using attributes. Each sort s is
then equipped with a set of inherited attributes and a set of synthesized attributes whose
values are terms defined over a ranked alphabet. Recall that a term, in this case, is ei-
ther a variable or an expression of the form ¢(71,...,#,) where c is a n rank symbol, and
t1,...,t, are terms. The inherited attributes represent the input values of the services and
the synthesized attributes represent the output values. Taking into account the attributes,
the complete form of specifying a business rule is as follows:

SO(p17"'7pn)<u1""7um> — Sl(tfl)w“a }gl}))<y(]l)a7y}('r:1)>
[1]
sty et YO)
where p;, u;, and tj- are terms and ylj are variables. This new form allows, in addition
to representing the ramification of a service s into services sy, ..., Sy, to also specify the
existing dependencies between their data. For example, the rule so(po(x,y)){uo(z,1)) —
51(){z)s2(x){tr) means that the service so must invoke the services s; and s, by providing
s> with the parameter x; much more, these services must respectively return the z and ¢
values after their execution. Let’s now introduce the notion of form which offers a simpler
notation for writing business rules.

Definition 1. A form of sort s is an expression F = s(t1,...,t){(u1,...,un) where t; and
uj are terms. The terms ty,...,t, (resp. uy,...,uy) give the values of the inherited (resp.
synthesized) attributes attached to the form F. A form of sort s is noted F :: s.

With this notion, the rule of the equation 1 for example can be rewritten simpler as
follows: Fy — Fj...F, where the F; are forms. Moreover, it also allows us to define more
formally a GAG and its configuration at a given time as follows:

Definition 2. (Guarded Attribute Grammar (GAG)). Given a set of attribute sorts S, a
GAG G is defined by a set R_of rules R : Fy — F\...Fy such that F; ::s; (s; € S) are forms,
and a set of sorts A C S called axioms: G = (R, A). A sort is used (resp. defined) in
G if it appears in the right (resp. left) hand side of a rule. Axioms are the sorts that are

defined, but not used; they correspond to the services for starting processes. The sort that
are used, but not defined, are called terminals; they correspond to external services. We
note N the set of defined sorts and T the set of terminals.

Definition 3. (Configuration of a GAG). A Configuration I of a GAG G = (R, 4) is a
set of sorted nodes X where each node is associated with an equation written in one of the
following two forms depending on whether the node is closed or open: for closed nodes,
X =R(Xy,....,Xy) withR € R and X|, ...,X,, the successor nodes of X. For open nodes,
X = sty tn){x1,...,x%) where X is of sort s; t1,...,t, are terms representing the values
of the inherited attributes of X, and x1, ..., X} are variables associated with the synthesized
attributes of X.

Roughly speaking, the configuration is an artifact in which data are explicitly repre-
sented. With the concept of configuration, the execution of a GAG process consists in
starting from an initial configuration reduced to an open node (of the type of one of the
axioms), and making it evolve (move from one configuration to another) by applying a
business rule to one of its open nodes. The operation is reiterated until a configuration
with only closed nodes is obtained.

2.3. Example of GAG process: the process of submitting a thesis defense
application in a doctoral school

In this sub-section, we present an example of the use of GAG to model the process
of submitting a thesis defense application in a doctoral school. This example is strongly
inspired by what is done in the doctoral school of the Faculty of Science of the Uni-
versity of Dschang (Cameroon). We will get back to this example later to illustrate our
implementation scheme with pub/sub-RS in a distributed component-based architecture
(section 4).

Example 1. When a student of the Dschang University Doctoral School (called Dschang
School) has finished writing his thesis, he prepares a defense application file and submits
it to his home department. There, the department carries out a set of processing opera-
tions at the end of which it is either rejected or passed on to the hierarchy. In order to
be validated, the file must successively be approved by the services of the Department,
the Dschang School, the DAAC 7 and the Rectorate. At the end of the tour, the student
is notified of the Rectorate’s decision and can, in case of rejection, introduce a request at
the Department level. One may wish to carry out this process in such a way as to inform
the student as soon as a new treatment is applied to his file.

The example 1 can be modeled using GAG by considering that: 1) it is a distributed
process involving 5 actors; 2) all the processing carried out by the actors on the file is
considered as composite information, the components of which are produced incremen-
tally by each actor at the appropriate time (on receipt of the file) and disseminated to the
other actors, according to their needs. The tables 1 to 5 present the GAGs specifying the
behaviors of the different actors in the process. The global GAG defining the process is
composed? of these different GAGs. In the modeling of these behaviors, we consider that

7. Division des Affaires Académiques et de la Coopération (Academic and Cooperation Affairs Department).
8. The GAG composition operator noted & is defined in [3]. It allows to create a GAG G called Global GAG

from a set of local GAGs Gy,...,G: G=G1 @ ... D Gy.

the outputs of treatments are stored incrementally in a term of the algebraic type ? list 1.
The objective is to have, at any time, on each site, a list containing incrementally, all the
outputs of treatments that have already been applied and which are of it (the site) interest:
each service (Department, Dschang School, DAAC or Rectorate) concatenating the result
of its treatment.

Remark 1. In the specifications of the tables 1 to 5, we use parametric rules. The val-
ues of the parameters will be provided by the actor applying the rule. For example, to
apply the rule RectorateDecision of the table 5, the rector must provide the value of the
parameter decision.

Table 1. Local GAG of student

InitApplication[application] ~: Submission()() —
DepartmentService(application)(processing)
InitRequest|applicationld ,attachments] : Request()() —

DepartmentRequest(applicationld,attachments)(processing)

Table 2. Local GAG of department

DptProcessing|processing] : DepartementService(application)(Cons(processing,n)) —
DschangSchoolService(processing,application)(n)
Request : DepartmentRequest(applicationld,attachments){processing) —
DepartmentService(new (applicationld,attachments)){processing)
DptRejection[rejectionReasons| : DepartmentService(application){Cons(rejectionReasons,Nil)) — €

Table 3. Local GAG of Dschang School

DschProcessing[processing] : DschangSchoolService(DptP,application){Cons(processing,n)) —
DaacService(processing,application)(n)
DschRejection|re jectionReasons] : DschangSchoolService(DptP,application){Cons(re jectionReasons,Nil)) — €

Table 4. Local GAG of DAAC

DaacProcessing[processing] : DaacService(DschP,application){Cons(procesing,n)) —
RectorateService(processing,application)(n)
DaacRe jection[rejectionReasons] : DaacService(DschP,application){Cons(re jectionReasons,Nil)) — €

Table 5. Local GAG of Rectorate
RectorateDecision[decision] : RectorateService(DaacP,application)(Cons(decision,Nil)) — €

9. An algebraic type is a composite data type, which combines the functionalities of product types (tuplets or
records) and sum types (disjoint union). In combination with recursivity, it is used to express structured data such

as lists and trees.
10. Reminder: The list type is defined by two constructors: Nil, which allows to create an empty list, and Cons

which allows to create a new list by adding an element to a pre-existing list.

3. Implementation of distributed GAG processes communicating by
pub/sub-RS

3.1. The publish/subscribe with redirection of subscriptions: an overview

In a distributed context, each actor participates in the process from his site, applying
locally and asynchronously the business rules of his local GAG. Note that for a given
actor, his local GAG defines the services of the process that he provides in the form of
axioms, the way he proceeds to execute these services in the form of business rules, and
the services of other actors that he may need in the form of terminals. As the work is
distributed and asynchronous, an actor may be responsible for executing a service for
which certain input data must be provided by other actors (they correspond to some out-
puts of their services). Similarly, he may also be responsible for the execution of services
whose output data are expected by other actors. To ensure the efficient and without in-
termediaries exchange of (semi-structured) data between actors, we have designed an
asynchronous protocol for data exchange between actor based on the publish/subscribe
called publish/subscribe with redirection of subscriptions in short pub/sub-RS.

The pub/sub-RS is a new variant of the publish/subscribe protocol particularly suitable
for the exchange of semi-structured data whose components can be produced incremen-
tally by different actors. As in the classic publish/subscribe, any actor has the possibility
to subscribe to one or more events in order to be notified as soon as a publisher gener-
ates an occurrence of an event corresponding to one of his subscriptions [7]. However,
unlike the traditional publish/subscribe, in the pub/sub-RS, since the exchanged data are
potentially semi-structured and can be produced incrementally (by collaboration of sev-
eral actors), they are also delivered incrementally. In fact, as soon as a prefix x of a data to
which an actor has subscribed is produced, it is immediately sent to him simultaneously as
he (the actor) is subscribed (subscription redirection) in a transparent way to the residue
(the suffix) of the initial data.

The pub/sub-RS’s operating mode is therefore as follows: each time an actor needs
a data to be produced by another actor, he must subscribe to it; if it is produced incre-
mentally, the prefix produced must each time be sent to him at the same time as he is
subscribed to the residue. More concretely, if an actor A needs a data dj, to be produced
by an actor B, then a subscription of A to the data dj, must be stored on the actor B’s site in
a subscription list provided for this purpose and, A will be notified as soon as B produces
dp. If d, is semi-structured and is produced incrementally, then A will be notified as soon
as d, components are produced. For example, if d}, is a list of the form d, = db : d,b,
then A will be notified as soon as d;b is generated by B and automatically subscribed to
the residual data d;b (which will not necessary be produced by B). It is the fact that an
actor A subscribes to a data d and is then automatically and transparently subscribed to the
residual data of d (d;b in the current example) that we call redirection of subscriptions.

3.2. Workspace of an actor

An actor’s workspace is represented by two data structures: the local configuration
I" of his local GAG and the list of subscriptions on the data he must produce called LS
(figure 2 shows an illustration of a workspace). The local configuration of an actor I'
informs him about the tasks in which he participates and the data necessary to perform
them. Thus, all the data he handles are associated with local variables of his configuration.
However, in case of sharing data, a same data can be associated with many variables

belonging to different configurations. We say in that case that those variables have the
same publication identifier. We define the publication identifier of a variable x—noted X
—as the global unique name of the data intended to be stored there. For example, in the
previous description (section 3.1), the data dj can be stored in the configuration of A in
the variable x, and in the configuration of B in the variable x;; the variables x, and x;
in that case must have the same publication identifier (¥, = x},) since they correspond to
local names of d,.

The subscription list LS is the set of subscriptions on the data that the actor must
produce and publish. A subscription is a pair of the form (X,b) where X is the global
unique name (i.e a publication identifier) of the data to which the subscription relates and
b is the identifier of the remote actor who subscribes.

81 R] 52 R:g ?}’2

/A

sa(z) ()1 yz)@ 54| Ry

/R\
| B]

Configuration T' Subscription list LS

Figure 2. lllustration of an actor’s workspace with two subscriptions on output value

3.3. Local application of a business rule

Each actor in the process works locally using the business rules contained in his
local GAG. In the following, we will assimilate an actor to the site on which he operates
by designating him by the identifier of his site. Let’s consider a site named a with a
configuration I" and a list of subscriptions LS. Let’s also consider X = F' an open node
of I and R = Fy — F)...Fj a business rule such that F's variables are disjoint from those
of I'. Apply a business rule R to X is equivalent to sequentially perform the following
four operations (see figure 3): 1) update the local configuration I'; 2) notify the sites
subscribing to the data that have been produced; 3) update the subscription list LS; 4) call
remote services (if necessary). Let’s now precisely present the treatments carried out by
each of these operations:

(1) Update from I to . The application of R to the node X refines it into open
successor nodes X1, ..., X, associated with sub-services sy,...,s, of Fi,...,F,. Thus, it is
necessary to add to the configuration the new nodes created and close the node X. The
new configuration is then I":

F/

{X=R(X,....X)}
{Xl :Flc,...,XkZFkG}
{X'=F|(X'=F)eT, X' #X}

Cc C

where & =match'! (Fy,X) is a substitution that matches the input values of F to the
input values of F and the output values of F' to the output values of Fj. For each variable
x of the forms F;, 0 <i < n, we assign its name to the data that will be stored there: X = x.
To ensure that this name is globally unique, one can simply use a local name generator
that creates variable names prefixed by the site identifier.

Remark 2. We consider that a business rule R is only applicable to an open node X =
S(t1, oo tn) V1, s V) If the t;,1 < i < n are completely defined values, i.e. no longer
contain variables.

(2) Subscriber notifications. The application of the rule allows new data to be generated
using substitution 6. An equation of the form (x =¢) in 6 means that the variable x is now
assigned the value 7. By doing so, all sites that have subscribed to the data represented
by x must be notified. These are the sites b as it exists a subscription (X,b) in LS. All
notifications are therefore: NS = {(x=1¢, b) | (x=1) € 0 and (%,b) € LS}, where each
element (x = ¢, b) is a notification meaning that the site b (when b # a) will receive the
equation (X = global(t)); x is the (local) variable associated with the data to which b had
subscribed and 7 is its value; the function global(t) renames the variables in ¢ by their
publication identifiers: global(t) =t[y/y]. When for an element (x =z, b) of NS we have
b = a, no message is sent, it means that the current site a has produced a data to which it
is itself subscribed. In that case, we simply update the local configuration with the value
ofx: ' =T[y/t | y=x].

(3) Update of the subscription list LS to LS. Once the notifications have been
made, the local subscription list must be updated: subscriptions on data that have already
been sent to subscribers (OLS) are removed, and new subscriptions (NLS) from sites
related to dependencies between the data defined in the rule are added. The new local
subscription list on the site a is therefore: LS’ = LS\ OLS U NLS where

OLS = {(xb)|(x=1b)ENS}and

NLS = U NLS(X;).

Xjiisi,8,€EN

The X; in NLS are new created nodes that have to be refined by the current site. NLS(X;)
is the set of subscriptions on the data to be produced by a new non-terminal node X;. It is

defined by: NLS(X;) = U { (%,0) | b € SUBSgsns(x) } where out(X) is the set of
x€out(X;)

variables associated with the synthesized attributes of X and SUBSg ¢ ys(x) is the set of

sites that need the value of a variable x; the following paragraph describes how this set is

constructed.

Computation of subscriber sites to a variable. The set of sites to be subscribed to a
variable x of a new node is computed from three parameters: the business rule R whose
application allowed to create the variable x, the substitution ¢ produced following the
application of the rule and all notifications NS generated by the application of R. It is
noted SUBSg 5 ns(x) and is created from the combination of three sets:

11. The function match is defined in [3]. It returns a substitution © itself consisting in two main substitutions
Gin and G,,,. For a specific refinement of a node X = F into successor nodes X| = Fj to X, = F, via a rule
Fy — Fi...F,, 6i;, matches the input values of Fy to the input values of F' and 6,,, matches the output values of
F to the output values of Fy. 6 = Gy UGiyGour [3].

SUBSgons(x) = {owner(x)}
U BROTHERg(x)
U REDIRECTys(x)

with :

— owner(x): the site that created the variable x. We consider that each site is interested
in the variables it creates. For a variable x created on a site a, we define the function
owner(x) = a. Variables are created during business rule applications, service call and

notification receptions.

— BROTHERR s(x): all the sites that will execute a service with x as input variable. If
R = Fy — Fj...Fj then all the new nodes created by the rule application are NODERg s =
{X;=Fo|1<i<k} and we have BROTHERg 5(x) = { b | (X = F) € NODEg s, x €
in(X), provider(X) = b } where in(X) is the set of inherited attributes (input variables)
of X. For a node X :: s, provider(X) returns the identifier of the site that provides the
service s (it is equal to the current site when s is a defined sort).

— REDIRECTys(x): the set of subscriptions created by the redirection of sub-
scriptions. Since the redirection of subscriptions occurs when a data d to which
sites had subscribed is partially produced, sites that had subscribed to d (they are in
NS'?) must therefore be subscribed to its residual data. If the term ¢ is the partial
produced value of d, then the residual data of d correspond to the variables of t:
REDIRECTys(x) ={ b | (y=t, b) € NS, xis a variable of ¢ }.

(4) Remote service calls. For each new open node created X :: s such that s is a terminal,
a service call must be made to the site providing the service s (s is an axiom of its local
GAQG). This service call must also contain the subscription list for the data to be produced
by the service. A service call therefore consists in sending a message m = (X = F, LSTy),
where X is the node representing the service, F' the form associated with X and LSTy
the list of subscriptions to be transferred to the site that will refine the node X. Service
calls to be made are extracted from the set I = {(X; = F;0,LSTrsns(X;),b) | X; :: si,

si € T, b = provider(X;)} where LSTrsns(X) = U {(*D) | b € SUBSgsns(x)}.

xEout(X)
Each element (X = F,LST,b) € I means that the current site a will send the service call

(X = global (F),LST) to the site b.

" O
% W%

Updating configuration Notification events Updating subscriptions Service calls
R

@s— ®s [Ls s (& L) ED LS s

/ s R
RS i R0 S i ool -l o

T

Figure 3. Different execution steps when applying rule

12. Recall that NS is the set of notifications created by the application of the rule.

3.4. Processing of messages

Messages received by a site correspond to service call messages or data production
notifications.

When a site receives a service call, (a) it updates its local configuration by creating
a new local node matching the remote node received via the service call. The variables
created in the new local node have the same publication identifiers as those of their cor-
respondents in the remote node received (this will be used for notifications). After that,
(b) subscriptions from remote sites are added to the local subscription list. The following
formulas (fa) and (fb) summarize these treatments in equational form:
ifm= (Y =s(t1,....ta)(y1,.-.,q), LSTy) is the service call message received, then :

(fa)T' =T U { Y =s(f1,....0n) V1,-..,Yg) } With & = t;[x/%], ¥ a new local node
matching the node Y; the X and y; are new local variables created such that ¥= X, y".] =V
(fb) LS’ = LSULSTy.

In the case of receiving a notification, the site merely updates its local configuration
using the publication identifier to know which variable of the configuration to update. The
following formula summarizes this treatment in equational form:
if m = (x =1t) is the notification message received, then:

—T' =Ty/7 | $ = x] where 7 = t[z/Z], the Z being new variables such that 7 = z;
- LS =1LS.

3.5. lllustration

In this section we illustrate the use of the pub/sub-RS communication protocol in a
GAG process through an example. A visual representation of the effects of the various
operations on the sites involved is given in figure 4.

Example 2. Let’s consider a process with five actors A, B, C, D and E, such that the
actor A has the configuration Ty = { X = sa(){(da) } and the local GAG G4 con-
taining a business rule R = ss()(sum(dp,5,dc)) — sp(){(dp) sc(dp){dc) (s provided
by B and sc provfded by C). Suppose in addition that the subscription list of A is
LSy ={ (da,D),(ds,E) }.

If A applies the business rule R on the node X of T4 then we will have 6;, = 0 and
G = G = { do = sum(dp,5,dc) }; dp and dc being new variables with d.B =dp
and d.c = dc. As ds was partially produced, the actors D and E must be notified
of the production of this partial data. To do this, we use the set NS = { (dx =
sum/(dp,5,dc),D), (dy = sum(dp,5,dc),E) } containing the notifications generated
by the application of the rule. And then, D and E must be subscribed to the residual data
dB and dc OfdA N REDIRECTNs(dB)= REDIRECTNs(dc) = {D7 E }

Since the actor C provides the service sc which has dp in its input, he
must be subscribed to dg : BROTHERRs(dg) = { C }. Finally, the set of
subscriptions to the variables dg and dc are SUBSgons(ds) = {A,C,D,E} and
SUBSgons(dc) = {A,D,E}; while the service call to be sent to B and C are re-
spec‘tivel.y nt .: (X1 :. SB()<d£3>,{(dB,A),(dB,C),(dB,D),(dB,E)}) and np = (Xz =
SC(dB)<dC>7 {(dC’A)v (dCaD)’ (dC7E>})‘

Site A Site A
ite s ite 5a - —
[dalp] o -
dy | E _ ~
2] sp()dp) (%) (1) soldp){do)
M@ —) sal)
Sf’u‘ﬂ’% Subscription
028 de commzion | |Site B Site ©
LS LS
O I (z \ FAEN
(daf SCGB) o i
ONIrE)
site & Site € ss()ds) (LLEI]] oo (dp)de)

Figure 4. lllustration of the application of a business rule in a distributed context with the pub/sub-RS

4. Deployment of GAG processes communicating via pub/sub-RS on
a distributed component-based architecture

In this section, we show how to deploy and execute a GAG process using a distributed
application made up of a set of peers who communicate across the network. In our pro-
posal each peer hosts an instance of a software component (called in the following GAG
software component) from which an actor of the process operates. The actors can thus
contribute to the process execution through a dedicated GUI provided by a GAG soft-
ware component. The underlying idea is to correspond each local GAG of an actor to a
software component which allows him to participate to the process. In the following, we
present the generic architecture of a GAG software component, as well as its deployment
for the execution of an example of a GAG process (the one presented in the example 1).

4.1. Generic architecture of a peer participant in the execution of a GAG
process

We propose to run a GAG process on a peer-to-peer (P2P) application in which the
different peers result from the deployment of a generic component—called GAG software
component—on actor’s sites. Practically, the architecture of a peer (see figure 5) consists
of two main parts: the GAG software component and the peer network interface.

The GAG software component is responsible for the local management of GAG pro-
cesses in which the local actor is involved. It is made up of four modules (GUI, control,
execution and storage). It provides a set of services to other peers and required some ser-
vices (from other peers) in return. The provided services correspond to the axioms of the
local GAG to which is added a notification service ' allowing to keep the peer informed
as soon as a data to which it had subscribed is produced. The required services correspond
to the local GAG terminals.

The GUI module allows an actor to visualize the current states of the processes in
which he is involved. It allows him also to contribute to their execution/evolution by
applying business rules to his local configuration in accordance with his local GAG.

At the heart of the GAG software component is the execution module whose main role
is to manage the life cycle of local GAG process configurations. To do so, it encapsulates

13. The notification service is used by a component A to notify a component B, when a business rule applied
at the level of the component A produces a data to which the component B had subscribed.

all the mechanisms for applying business rules, notifications, service calls and redirection
of subscriptions. It relies on the storage module to store the data it manages (local GAG,
local configurations, subscription list, etc.), and on the control module to send or receive
data and commands in formats suitable for their processing.

GAG software component
Storage
' N PP
Local GAG / N N Notification
Specification Configurations Subscriptions Service
—
B o I —0
[
Q
Execution .g
(N (Provided 3L
Analyzer and GAG engine services c g
parser fwxioms) | x| 3
\ 5| 2
O |z| 2
Control o =
- \ c
Data and command o
[T}
controller Requied | &
services
(terminals)
Gul
-
User view ‘ C

Figure 5. The peer architecture.

Peer-to-peer communication is provided by a middleware '4 which, by connecting in
P2P the GAG software components across the network, allows them to mutually invoke
their provided services.

4.2. Example of deployment of a GAG process: case of the process of
processing application files for thesis defense in a doctoral school

To illustrate the implementation of GAG processes communicating by pub/sub-RS
on a component-based architecture, we have developed and deployed the application
TinyTSP (Tiny Thesis Submit Process). TinyTSP is a software prototype for managing
thesis defense application files in a doctoral school; it is an implementation of the process
presented in example 1.

TinyTSP is made of 5 types of peers (see figure 6) corresponding to the 5 types of
actors (student, department, Dschang School, DAAC, rectorate) found in the process de-
scribed in example 1. Each peer hosts an instance of a GAG software component; the
local GAG that it encapsulates (see tables 1 to 5) is consistent with the role played by the
actor associated with the peer.

TinyTSP provides for each actor a dedicated GUI allowing him to contribute to a
process, but also to follow the evolution of an application. The figure 7 for example
presents a screenshot of the GUI of submission of an application on a student’s site. Once

14. A middleware is third-party software that creates a network for information exchange between different
computer applications. For our experiments, we used the SON (Shared-data Overlay Network) middleware:
“SON is a generic lightweight P2P middleware that assists application developers by providing an automatic
code generation which handles several requirements (e.g., communication mechanisms, message queue man-
agement, broadcasting messages, etc.)"[9].

an application is submitted, it is sent to the department at the same time as the student
subscribes to the outputs of treatments that will be performed on it.

Before producing a data (i.e. applying a treatment to an application file), each actor
can find out via a tooltip which actors are subscribed to it. We can observe for example
on the figure 8, which presents an execution status of the process on the Dschang School
site, that the student and the department are subscribed to the processing that the Dschang
School has to perform. Note that the student has been subscribed to it by redirection
of subscriptions. The figure 9 shows the status of the process on a student’s site after
approval by the rectorate.

QQvy

1o

Peer Rectorate

Peer Student 1

¢
3 Peer student joini
© Network eer student joining
and leaving the
Peer DAAC
Middleware (SON) network
<
8
10

Peer Dschang School

< Peer Student n

Peer Department

Figure 6. TinyTSP deployment architecture

TinyTSP is implemented in JAVA and the communication between peers is ensured
by the SON middleware [9]. The figure 6 presents a synoptic view of its deployment
architecture.

E2)] Submission X
File Tools Help? About

(0) H Submit a thesis.
MENU Applications | Pri
[Business ules [student] NUMBER | FIR First name [a | CERLE LCTICHS
Name [student
Level E |

A coupled GAG-Publish/subscribe mode!
forimplementing distributed collaborative
business processes

Theme

Attachments thesis.pdf

Figure 7. GUI for submitting a file on a student’s site

[£) Dschangschool - o X
File Tools Help? About

[=3 Business rules [DschangSchd

[Process |

[v]

Subscribers

& deparment processin next
file " " ’ — ’/
——— D
I ol service T

department
» student

Figure 8. A status of the process when the file arrives at the Dschang School site with a highlight of
the subscribers

[student - o X
File Tools Help? About

(0) ‘ Submit a thesis ‘
MENU i

[Process | \

[Business rules [student]

Lol

Figure 9. A status of the process on the student site after its approval by the rectorate

5. Conclusion

In this paper we have presented an approach of implementing GAG’s distributed
collaborative business processes in which communication is handled via a new variant
of publish/subscribe protocol called publish/subscribe with redirection of subscriptions
(pub/sub-RS). The main advantage of this protocol is that, it permits in real time to in-
form data’s subscribers on the evolution of the processing operations by incrementally
transferring to them any data they have subscribed to. This can encourage the early initi-
ation of other operations if they are lazy (lazy evaluation): the degree of parallelism and
the speed in decision-making are thus improved.

We have also proposed an approach to deploy GAG processes communicating via
pub/sub-RS on a component-based architecture. This architecture, as well as the pub/sub-
RS protocol, have been experimented with great satisfaction through the implementation
we made of it in a prototype application for managing the process of submitting a thesis

defense application in a doctoral school. Some screenshots of this application have been
presented in this paper. For the development of this application, starting from the textual
description of the process, we followed a set of steps (identification of the actors, specifi-
cation of their local GAGs, development of a GAG engine, etc.) that obviously must be
followed identically for the development of any other distributed application using GAG
and communicating via pub/sub-RS. The precise presentation of this approach, as well as
the production of tools to automate certain steps (for example, the production of the GAG
engine) seems to us to be a work worthy of being carried out following this one.

References

[1] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active xml. In PODS
’04: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 35-45, New York, NY, USA, 2004. ACM.

[2] Eric Badouel, Loic Hélouét, Georges-Edouard Kouamou, and Christophe Morvan.
A grammatical approach to data-centric case management in a distributed collabo-
rative environment. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, pages 1834-1839, New York, NY, USA, 2015. ACM.

[3] Eric Badouel, Loic Hélouét, Georges-Edouard Kouamou, Christophe Morvan, and
Nisaibirni Robert Fondze, Jr. Active workspaces: Distributed collaborative systems
based on guarded attribute grammars. SIGAPP Appl. Comput. Rev., 15(3):6-34,
October 2015.

[4] Elio Damaggio, Alin Deutsch, and Victor Vianu. Artifact systems with data depen-
dencies and arithmetic. ACM Trans. Database Syst., 37(3):22:1-22:36, 2012.

[5] Elio Damaggio, Richard Hull, and Roman Vaculin. On the equivalence of incre-

mental and fixpoint semantics for business artifacts with guard-stage-milestone life-
cycles. Inf. Syst., 38(4):561-584, 2013.

[6] J. Dang, C. Toklu, K. Hampel, and U. Enke. Human workflows via document-
driven process choreography. In 2008 International MCETECH Conference on e-
Technologies (mcetech 2008), pages 25-33, Jan 2008.

[7] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114-131, 2003.

[8] Richard Hull. Artifact-centric business process models: Brief survey of research
results and challenges. In On the Move to Meaningful Internet Systems: OTM 2008,
OTM 2008 Confederated International Conferences, CooplS, DOA, GADA, IS, and
ODBASE 2008, Monterrey, Mexico, November 9-14, 2008, Proceedings, Part II,
pages 1152-1163, 2008.

[9] Ayoub Ait Lahcen and Didier Parigot. A lightweight middleware for developing P2P
applications with component and service-based principles. In 15th IEEE Interna-
tional Conference on Computational Science and Engineering, CSE 2012, Paphos,
Cyprus, December 5-7, 2012, pages 9-16, 2012.

[10] Anil Nigam and Nathan S. Caswell. Business artifacts: An approach to operational
specification. IBM Systems Journal, 42(3):428-445, 2003.

[11] OASIS. Web services business process execution language version 2.0. http:
//docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.pdf, April 2007.

[12] OMG. Bpmn specification, business process model and notation. http://www.
bpmn.org/.

[13] Nelly Schuster, Christian Zirpins, Stefan Tai, Steve Battle, and Nils Heuer. A
service-oriented approach to document-centric situational collaboration processes.
In I8th IEEE International Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises, WETICE 2009, Groningen, The Netherlands, 29 June
- 1 July 2009, Proceedings, pages 221-226, 2009.

[14] Lin Zhao, Jianping Xing, and Lingguo Meng. The research and realization of a new
workflow model with step-task two layers based on document. In Proceedings of The
Ist IEEE Asia-Pacific Services Computing Conference, APSCC 2006, December 12-
15, 2006, Guangzhou, China, pages 285-292, 2006.

