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Abstract

This paper proposed a control algorithm to enhance the comfort of passengers in a vehicle equipped with
Semi-Active Suspension systems, manipulating the force delivered by the Semi-Active damper. For this
goal, the vertical dynamics of the car are represented through a quasi-Linear Parameter Varying (qLPV)
model. Then, the algorithm resides in solving a set-constrained Model Predictive Control (MPC) problem,
embedding a comfort performance index to the MPC optimization function. The sub-optimality of this
algorithm resides in the fact that the MPC is synthesized considering a frozen guess for the evolution of
the qLPV scheduling parameters along the prediction horizon. Assuming bounds on the variation rates of
the qLPV scheduling parameters, the method enables a replacement of the original complex nonlinear LPV
MPC optimization by a much simpler Quadratic Program (QP). This QP includes a Lyapunov-decreasing
stage cost and embeds set-based terminal ingredients, which guarantee that the domain of attraction of the
controller is enlarged and that recursive feasibility can be maintained despite the non-exact model scheduling
(and suboptimality). The control structure is tested and compared to other optimal control approaches,
such as a clipped Linear Quadratic Regulator. The paper ends with successful realistic nonlinear simulations
of a 1/5-scaled car with Electro-Rheological suspensions, which illustrate the overall good operation and
behaviour achieved with the proposed regulation algorithm. With the proposed method, the comfort of the
passengers is substantially improved.

1. Introduction1

1.1. Semi-Active Suspension Systems2

The suspension system of a car is the mechanism that acts to enhance the driving performance with3

respect to roll handling and passenger comfort. Semi-Active (SA) suspensions are today the standard4

component in many state-of-the-art high-range cars and a good deal of academic and industrial research5

works have been focused on their control. SA suspensions are well-performing, energy-efficient and altogether6

less expensive than Active ones, for instance. Further context and details can be found in [1, 2].7

Many design algorithms have been proposed for the SA suspension control problem. The main issue is how8

to handle the dissipativity constraints of the SA dampers while ensuring good performances. Papers [3, 4]9

detail some the available methods proposed for this goal (see references therein). Some of the most modern10

techniques have been tested, such as clipped optimal LQRs in [5], H∞ techniques [6], Linear Parameter11

Varying (LPV) approaches [7], and nonlinear methods, such as backstepping [8].12

1.2. Predictive Control13

Although all these approaches achieve good performances, a more natural framework for optimal control14

of constrained process is Model Predictive Control (MPC) [9]. MPC is indisputably a very well established15
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feedback control technique, with success in many industrial applications. This method allows to explicitly16

consider input and state constraints in the design process and solves the constrained optimization problem17

at each sampling instant to determine the control policy. For its formulation, MPC requires a fidel process18

model, so that the future output predictions can be expressed with respect to current input and state values.19

The original MPC framework was attached to the idea of processes with linear time-invariant (LTI)20

models. This condition is inherently violated for almost all plants with a wide range of operating conditions,21

which require nonlinear forecasting models. Therefore, MPC has been progressively extended to embed22

nonlinear model predictions (NMPC) as discusses [10], but this kind of nonlinear design is not trivial and23

has increased numerical complexity, suffering from issues related to their high complexity when sought to24

run in real-time. It is a known fact that the computational requirements of MPC may be excessive in many25

situations, since the optimization problem which has to be solved online, at each sampling instant.26

SA suspension control consists, basically, in varying the damping coefficient, which implies in variations27

on the delivered force. The dissipativity constraints of the damper are, thus, input constraints, and this kind28

of problem falls into a saturation paradigm which is elegantly dealt with by MPC. Some papers have indeed29

employed MPC for SA suspension control. In this paper, the focus is given to reduced-order car frameworks30

(such as the quarter-car or de half-car models), which decouple the vertical dynamics by vehicle corner or31

side to reduce the complexity of the yielded MPC algorithm (quarter-car models reduce number of states by32

a third, roughly, with respect to full-car models). The idea of solving the control problem for each vehicle33

corner (or side) is appealing when passenger comfort is the main concern, because the coupling and load34

transfer distribution between corners can be neglected as their influence upon comfort is small, as discusses35

[11]. The following SA suspension control papers that apply MPC reduced-order models are recalled:36

• A methodology for performance evaluation of SA suspensions under optimal control algorithm (MPC37

included) is presented in [12]. The method enables to evaluate passenger comfort and vehicle handling38

w.r.t. differente road profiles;39

• Both [13] and [14] proposed clipped (saturated) versions of optimal control. Since the clipping action40

is not embedded into the optimization procedure due to nonlinearities that aimed to be avoided, the41

results do not represent optimality;42

• An MPC algorithm is formulated for an LPV quarter-car model in [15]. Anyhow, there are no as-43

sessments on feasibility guarantees of the proposed tool, which simply considers as if the scheduling44

parameters were fixed along the horizon, for the MPC computation;45

• In [16], the predictive controller is synthesized for a half-car model with some experimental validation,46

but the effect of the road disturbances is neglected. The achieved results are interesting and the control47

policy is implemented within 10 ms.48

Remark 1. With respect to the Author’s previous works, in [11, 17] fast MPC algorithms were developed49

considering full car models. The inputed nonlinearity and the dissipativity constraints are adapted using a50

pre-filter, which makes the model, from the MPC viewpoint, LTI. This pre-filtering technique, for practical51

purposes, may cause implementation distress, given that a bilinear term żdef (k)u(k) is converted into a52

linear term żdef (k)unom + uf (k) by this pre-filter, which means that a division by żdef (k) is necessary53

and, for situations when this velocity term approaches zero, the pre-filtering must be adapted. Note that54

near-zero piston velocity situations are very common in SA suspensions (constant straight road profile, for55

instance). Moreover, the optimization procedure is adapted using some heuristics (Infeasible Start Newton56

Method, Primal-Barrier term) so that the MPC can run within 5 ms, which also implies in sub-optimal57

results. Finally, these two papers lack analysis in the recursive feasibility property of the algorithm, which58

is required when dealing with multiple road profiles.59

1.3. Main Motivation60

It seems that the majority of predictive control algorithms applied for automotive SA suspension systems61

that are able to run in real-time achieve sub-optimal results. This fact does not mean that they do not62
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enhance the performances of these systems w.r.t. other control frameworks. Indeed, most papers show63

good performance enhancements. Nonetheless, up to the Author’s best knowledge, no paper has presented64

recursive feasibility assessments on these MPC algorithms, which are very necessary to ensure that the65

control method can run despite the model simplifications. Therefore, the main motivation of this paper is66

to present a predictive control algorithm for vehicular SA suspensions that embed the recursive feasibility67

property.68

The majority of reduced-order models for SA suspensions that handle the dissipativity constraints of the69

dampers have nonlinear characteristics. The pre-filtering method, as discussed in Remark 1 is not such a70

good option concerning real implementation.71

Today, generalized formulations of NMPC are available to deal with such models, but, as highlighted,72

they are generally not able to run fast enough. Recently, the use of LPV models [18, 19] has been brought73

to focus to tackle and facilitate the control of nonlinear processes; such models are also nonlinear, but are74

“coordinated” by bounded, known scheduling parameters ρ. Due to these parameters, LPV models are much75

simpler to represent than full nonlinear ones, being quite similar to the LTI framework; for this reason, LPV76

models have become very popular for NMPC control purposes [20]. MPC design based on LPV models has77

formally been studied since the beginning of the 00’s, but this field is still open for investigation (in Section78

3, a brief overview of the LPV MPC state-of-the-art is presented).79

In fact, feasible LPV MPC algorithms with Quadratic Programming (QP) level complexity are rather80

scarce. The available methods either rely on heavy offline procedures or are too conservative (solving a81

robust problem with respect to all possible trajectories for ρ). Moreover, the sub-optimal methods that are82

not too conservative have a lack o recursive feasibility holds.83

1.4. Contributions84

Many nonlinear processes can be described within an LPV formalism, as long as linear differential85

inclusion is respected [21], and so is the case of SA suspension systems.86

Motivated by the reasons discussed above, this paper seeks the development of a predictive control87

policy for SA suspensions that enhances the comfort of the onboard passengers. The proposed algorithm88

is adapted from [22], is based on an LPV model of the suspension and considers bounded rates of the89

scheduling parameters, as suggested by [20], and evaluating its recursive feasibility holds. The new method90

simplifies the computation of the control-invariant sets which are computed using a worst-case scenario for91

the evolution of the parameters, resulting in a practically implementable version.92

Hence, the main contributions of this paper are listed below:93

• A control-oriented LPV model for vehicular SA suspension systems is proposed (Section 2). This model94

is corroborated with respect to the comfort performance indexes proposed by [12]. The dissipativity95

properties of the SA dampers are embedded to the model as input contraints.96

• Using a frozen guess for the future evolution of the scheduling parameters, provided at each sampling97

instant k, the novel qLPV MPC algorithm is proposed (Section 4). This algorithm is based on a98

standard QP coupled to contractive terminal set constraints and a Lyapunov-decreasing terminal99

stage cost. The terminal set is computed using thanks to the bounds on the scheduling parameter100

variations.101

• Considering a high-fidelity nonlinear model for a real vehicle testbed with four Electro-Rheological SA102

dampers, numerical simulations of the proposed algorithms are presented (Section 5). The proposed103

method is compared with respect to other algorithms from the literature (as a clipped LQR). The104

results demonstrate the effectiveness of the proposed tool to enhance the comfort of the onboard105

passengers; performance indexes from [12] are used for evaluation.106

Note that a brief overview of the available LPV MPC methods is presented in Section 3. Moreover, this107

Section presents the standard MPC design or the case of systems described via qLPV models, making it108

evident how the evolution of ρ becomes a computational issue, since: i) it is (a priori) unknown; and ii) it109

transforms the optimization procedure into a nonlinear one. It is also shown how the nonlinear optimization110
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can be converted into a QP by using a frozen evolution guess for the future values of ρ. General conclusions111

of the paper and a debate on the achieved results are drawn in Section 6.112

Remark 2. Let the difference between LPV and qLPV models be cleared: the scheduling parameters in the113

LPV case are exogenous, unknown and must be pre-specified, while in the qLPV case they are available dur-114

ing the prediction horizon computations from a (possibly nonlinear) map of states and inputs fρ(x(k), u(k)).115

A direct consequence of these issues is that, considering MPC design, stability is typically dealt with in a116

robust worst-case level for the LPV case, while rendered as nonlinear programs for the qLPV scenario.117

This work is mainly concerned with the latter class of systems, addressing the issue with a sub-optimal QP118

method.119

2. A Control-Oriented qLPV Corner Model for Vehicle Vertical Dynamics120

In this paper, a SA suspension control system is developed for a vehicle with 4 Electro-Rheological (SA)121

dampers. The control system is composed of four MPC algorithms, one concerned with the performances of122

each vehicle corner. Indeed, a qLPV representation is provided in this Section for each corner of the vehicle.123

This qLPV model enables to express the nonlinear dissipativity constraints of the dampers into linear input124

contraints.125

The control-oriented qLPV corner model is adapted from [23]; it serves for design and analysis purposes.126

The model involves the vertical dynamics of the vehicle, at each corner, considering the chassis dynamics127

(zs) and the displacements of the wheel link (zus), which are meddled by the road profile disturbances (zr).128

Figure 1 shows a schematic representation of a vehicle corner. This 2DOF model is governed by the following129

laws:130 {
msz̈s(t) = −Fs(t)− Fd(t) ,
musz̈us(t) = Fs(t) + Fd(t)− Ft(t) ,

(1)

where Fs(t), Fd(t) and Ft(t) represent, respectively, the force delivered by spring, by the (controlled) damper131

and by the tire.132

Figure 1: Vehicle Corner with Semi-Active Suspension System

These forces are further detailed: the spring force and the tire force are given as respectively proportional133

to the suspension deflection (zdef = zs − zus) and the wheel deflection, as follows:134

Fs(t) = kszdef (t) , (2)

Ft(t) = kt (zus(t)− zr(t)) , (3)
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being ks and kt the stiffnesses of the spring and the tire, respectively. Finally, the damper force is given as135

follows:136

Fd(t) = k0zdef (t) + c(·)żdef (t) , (4)

where c(·) is the damping coefficient which is the control input to the SA system.137

The dissipativity constraints of the SA damper are set upon Fd(t), which must always lie within a138

feasibility set whose form is roughly illustrated in Figure 2. This dissipativity set has a hysteresis-like139

behaviour and can be represented by the following inequalities:140

F d ≤ Fd(t) ≤ F d , (5)

0 ≤ c ≤ c(·) ≤ c . (6)

Figure 2: Semi-Active Damper: Feasible Force Region

To incorporate these inequalities into a simpler framework for design purposes, the damper force is141

traced as the static nonlinear map, as suggests [24], which can be used for both Magneto-rheological or142

Electro-rheological dampers (the technologies present in majority of SA suspensions), as follows:143

Fd(t) = k0zdef (t) + c0żdef (t) + ρ(t)u(t) , (7)

where the scheduling parameter

ρ(t) = fc tanh (k1zdef (t) + c1żdef (t))

directly embeds the hysteresis-like behaviour of the SA damper. Parameters k0 and c0 denote the nominal144

stiffness and damping coefficient of the SA damper; moreover, u(t) denotes the duty cycle of a PWM signal145

that regulates the voltage input which provides the electrical field upon the damper. This electric field varies146

the viscosity of the MR/ER fluid. In practice, it is this PWM signal u(t) that acts as the control input to147

the suspension application. Then, the dissipativity constraints are expressed as simple input constraints:148

0 < u(t) < 1.149

The suspension deflection velocity variable żdef (t) is bounded, due to physical limits (converted as150

constraints on the system variables), and can be measured or, a least, accurately estimated. Therefore, ρ(t)151

is also known and bounded at each instant, serving as the scheduling variable for the qLPV model.152
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Then, the state-space representation of the qLPV consists in re-writing Eq. (1) with

x(t) = [zs(t) , żs(t) , zus(t) , żus(t)]
T

as system states:153

ẋ(t) = Acx(t) + Bc1(ρ(t))u(t) + Bc2zr(t)
y(t) = Ccx(t) + Dc1(ρ(t))u(t) + Dc2zr(t)

. (8)

Remark 3. In this paper, as done in many practical applications, the measured outputs of the SA suspension154

system are acceleration variables. These accelerations can be measured using accelerometers/inertial units,155

that are widely present in top-cars. These sensors are the ones used for the control of vertical dynamic156

behaviours. No additional sensors are needed, but the on-board ones [23].157

Remark 4. As displayed in many papers from the literature [25, 23] , with experimental validation included,158

observers can be used, using acceleration variables, to estimate the states of SA suspensions, considering159

corner models. Therefore, in the sequel, it is assumed that the system states are estimated by some observer160

scheme and available, in real-time, to the control system.161

For the reasons discussed above, the two acceleration variables from Eq. (1) are measured, i.e. y(t) =162

[z̈s(t) , z̈us(t)]
T . Therefore, the matrices in Eq. (8) are the following:163

Ac =


0 1 0 0

−(ks+k0)
ms

−c0
ms

(ks+k0)
ms

c0
ms

0 0 0 1
(ks+k0)
mus

c0
mus

−(ks+k0+kt)
mus

−c0
mus

 ,

Bc1(ρ(t)) =
[

0 −ρ
ms

0 ρ
mus

]T
,

Bc2 =
[

0 0 0 kt
mus

]T
,

Cc =

[
−(ks+k0)

ms

−c0
ms

(ks+k0)
ms

c0
ms

(ks+k0)
mus

c0
mus

−(ks+k0+kt)
mus

−c0
mus

]
,

Dc1(ρ(t)) =
[ −ρ
ms

ρ
mus

]T
,

Dc2 =
[

0 kt
mus

]T
.

Remark 5. Due to physical limits of the SA suspension, constraints are also set upon the system states,164

considering nx = 4 and nu = 1:165

x(t) ∈ X := {xj ∈ Rnx |xj ≤ xj ≤ xj} . (9)

The input constraints are:166

u(t) ∈ U := {u ∈ Rnu | 0 < u ≤ 1} . (10)

Conversely, the dissipativity constraints are:167

Fd(t) ∈ D := {Fd ∈ Rnu |F d ≤ Fd ≤ F d} , (11)

which are always respected if x ∈ X and u ∈ U .168

2.1. Performances Indexes169

As discussed by the references of automotive Semi-Active suspensions, the main objective of these systems170

is to isolate the vehicle body from the disturbances implied by the road through which the car is driven [2].171

At the same time, the comfort of the onboard passengers must be enhances.172
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These two objectives (vehicle body isolation and passenger comfort) are physically conflicting. Stiff/high173

damping enhances passenger comfort, while smooth/low damping enables easier road holding, see [12].174

Anyhow, since this paper consider a quarter-car vehicle corner model, it is assumed that a central controller175

for the braking system will be concerned with the first objective, of isolating the vehicle body from road176

trepidations, reducing the roll angle of the car and enhancing handling concerns. This kind of controller is177

seen in different papers, e.g. [26, 27].178

Therefore, the corner controllers are concerned with passenger comfort performances. As proposed in179

[12], a simple methodology to evaluate the comfort of the onboard passengers is to analyse the car’s center-of-180

gravity (COG) acceleration. At each corner, this analysis is reduced to the acceleration of the sprung-mass181

(chassis body), given by z̈s(t).182

The vertical chassis acceleration z̈s(t) response to the road disturbances zr(t) can be evaluated between 0183

and 20 Hz for comfort specifications, as discussed in [28]. The two criteria from [12] to evaluate the comfort184

of the passengers, within these frequencial bounds, are given by:185

1. Comfort performance index in the time-domain:186

J tcomfort =

∫ τ

0

z̈2
s(t)dt , (12)

where τ represents a given time period.187

2. Comfort performance index in the frequency-domain:188

Jfcomfort =
C(f{z̈controlleds }, 0, 20)

C(f{z̈nominals }, 0, 20)
, (13)

where z̈nominals and z̈controlleds refer to the car COG acceleration in a nominal (passive, uncontrolled)189

situation and when under a control scheme; moreover, f{·} represents the frequency response of the190

signal of interest, and C : R×R×R→ R, denoted C(x, h, h) =
∫ h
h
|x(µ)|2dµ, where h and h represent191

the frequency interval limits of interest.192

2.2. Vehicle Testbed193

For realistic validation purposes, when running numerical simulations, a full nonlinear vehicle model194

from [17] is used, which also embeds noises and couplings. This model has been validated and retrieved195

from a real mechatronic testbed.196

This experimental platform from which the validation model has been constructed is the INOVE Soben-197

Car, a (1/5) reduced-size vehicle, show in Figure 31. The SA dampers in this testbed are Electro-Rheological198

(ER), which means that the PWM signal u(t) controls an electric field which varies the viscosity of an ER199

fluid inside the damper chamber, increasing or decreasing the delivered force.200

Table 1 presents the parameters from the quarter-car model in Eq (8) with respect to this testbed.201

The real nonlinear behaviour of the ER SA dampers is shown in Figure 4 through Force vs. Deflection202

Speed diagrams, showing real data at the left side and fitted data at the right side, considering the use of203

Eq. (7) to compute the damper force. Clearly, the dissipativity constraints are respected if u(t) is bounded204

to U and Eq. (7) is used to compute the damper force.205

Remark 6. The INOVE Soben-Car interprets control laws using a fixed sampling frequency of fs = 200 Hz.206

This condition is quite restrictive in terms of implementation purposes, since the controller must always207

compute the control signal within 5 ms. Note that this sampling rate is realistic and adequate for actual208

top-cars [3].209

1Refer to full details in www.gipsa-lab.fr/projet/inove.
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Figure 3: INOVE Soben-Car Mechatronic Testbed

Table 1: Vehicle Model Parameters

Parameter Description Value Unit
ms Sprung mass 2.27 kg
mus Unsprung mass 0.32 kg
ks Spring stiffness 1396 N/m
kt Tire stiffness 12270 N/m
k0 Passive damper stiffness 170.4 N/m
k1 Hysteresis displacement coefficient 218.16 N/m
c0 Viscous damping coefficient 68.83 N.s/m
c1 Hysteresis velocity coefficient 21 N.s/m
fc Dynamic yield force of the ER fluid 28.07 N

2.3. Discrete-time qLPV Model210

Since the SA suspension experimental testbed is evaluated with a fixed sampling frequency of fs = 200 Hz,211

the controller must be synthesized with respect to a discrete-time model that embeds the Ts = 5 ms sampling212

period. Therefore, considering an Euler discretization method, the model is given by:213

x(k + 1) = Ax(k) +B1(ρ(k))u(k) +B2w(k) , (14)

y(k) = Cx(k) +D1(ρ(k))u(k) +D2w(k) ,

ρ(k) = fc tanh (Aρx(k)) ,

where2 w(k) = zr(k), Aρ =
[
k1 c1 −k1 −c1

]
, A = Inx

+ TsAc, B1(ρ(k)) = TsBc1(ρ(k)) B2 =214

TsBc2 , C = Cc, D1 = Dc1 and D2 = Dc2 .215

3. MPC Design for Systems with qLPV Models216

The objective of this paper is to propose a control algorithm to enhance the comfort performances of217

the onboard passengers. This algorithm must be realizable and run within the 5 ms sampling period of the218

2In this paper, Ij denotes the identity matrix of dimension j.
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Figure 4: Force-Speed Characteristics - ER Semi-Active Dampers

considered SA suspension system. Moreover, the control policy must ensure input and state contraints are219

respected.220

As discussed in the Introduction, MPC is a very elegant option for constrained processes and it is the221

method used in this paper. In this Section, a brief review on the available LPV MPC works is presented,222

highlighting why there is an intrinsic computational necessity increase with the size of the prediction horizon.223

The standard LPV MPC method is presented and the available approachs that lead to sub-optimality but224

overcome the numerical burden are presented.225

3.1. Literature Overview226

LPV MPC works are investigated since the beginning of the 00’s; the majority of the methods consider227

that the scheduling parameter is an uncertain variable along the prediction horizon, solving the MPC problem228

robustly with respect to it. Some key papers are recalled:229

• Explicit methods with stability and optimality guarantees were investigated in [29]. The downside230

is that, since the future values of the scheduling parameters are unknown, the algorithm ensures the231

constraints are satisfied for all possible system trajectories, which leads to conservative performances232

and (numerical-wise) high-demanding QPs.233

• Dynamic output feedback algorithms have also been developed [30, 31]. Some of these papers use an234

LPV Input/Output representation. Anyhow, they are all robust towards ρ, solving worst-case (usually235

referred to as “min./max.”) optimization procedures and resulting in conservative results.236

• Other papers [20, 32] present a major advance by considering bounded rates of the scheduling pa-237

rameters. This simple constraint simplifies the optimization procedure, treating the evolution of the238

scheduling parameters offline, via Linear Matrix Inequalities (LMIs) and ellipsoidal constraints. Their239

main downside is that the offline procedures are not necessarily simple to perform.240

• Papers [33, 34] also consider bounded rates of the scheduling parameters, but the problem is formulated241

robustly with the use of “tubes” to deal with the uncertainty introduced by the scheduling parameters242

along the horizon. Recursive feasibility and stabilizability are demonstrated with respect to the tube243

formulation.244

• That are also another group of papers that must be mentioned, those that parametrize the control245

inputs in finite amount of possible discrete values, solving a search algorithm to find the smallest cost246

instead of the actual optimization procedure [35, 36]247
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With regard to the previous methods, robust procedures or constraints are embedded to the MPC248

problem. To run these algorithms within 5 ms is, today, impossible. Therefore, some sub-optimal MPC249

works are recalled:250

1. Both [37] and [38] use a frozen scheduling parameter trajectory guess that iterates according to mea-251

surements, and transform the nonlinear optimization problem into a linear one. The issue that resides252

with such methods is that the results may be sub-optimal and that the system trajectory might not253

be inside the region of attraction of the MPC, resulting in infeasibility.254

2. In previous works, the Authors have also developed a QP version of the LPV MPC algorithm using255

a frozen parameter trajectory guess in [15, 39] and a Least-Squares (LS) identified parameter model256

in [22]. In the latter, a fictional set-point variable is used to enlarge the domain of attraction of the257

closed-loop system.258

In this paper, the method developed in [22] is further extended and oriented towards the case of SA259

suspensions. In this paper, a Lyapunov-decreasing terminal cost and a the use of control invariant sets are260

added to the method to ensure that recursive feasibility is maintained for any starting condition within the261

constraints set X , which addresses the issue of possible infeasibility from the previous work.262

3.2. Why Embed Sub-Optimality?263

Now, it is demonstrated why sub-optimal LPV MPC are needed for real-time implementation purposes.264

The regular MPC procedure is recalled:265

MPC policies are essentially derived by solving an optimization procedure that takes into account con-266

straints on the states, outputs and control actions. With some bland assumptions, it is possible to guarantee267

closed-loop asymptotic stability for the LTI case [40]. Predictive control is widely used to achieve reference268

tracking and disturbance rejection performances in process control [9], by solving:269

Problem 1. Standard MPC Procedure270

min
U

JNp
= min

U

Np∑
i=1

` (x, u) + V (x(k +Np|k)) (15)

s.t. x(k + i+ 1) = f(x(k + i), u(k + i), w(k + i)) , (16)

u(k + i− 1|k) ∈ U , (17)

x(k + i|k) ∈ X , (18)

where U = col{u(k|k) , . . . , u(k + Np − 1|k)} is the sequence of actions inside the prediction horizon Np
3.271

The MPC optimization cost JNp
is comprised of the sum of a stage cost `(·) along the horizon and may272

also include a terminal stage value V (x(k+Np|k)). JNp
is usually Lyapunov-decreasing to ensure recursive273

feasibility. It is implied: x ∈ Rnx and u ∈ Rnu , with X and U as the set contraints that define their274

respective feasible values (operation). The number of states is nx and the number of control inputs is nu.275

Remark 7. The load disturbances w(k) ∈ Rnw are assumed to be (partially) known for the future Np steps.276

This is reasonable for the case of the automotive suspensions, as it will be further in the sequel. The number277

of disturbance variables is nw.278

When the system model is LTI, function f(·) is inherently linear and the optimization problem becomes279

a regular constrained QP, which is easily tackled by standard solvers. For the studied case, since the system280

model is qLPV, the optimization becomes nonlinear.281

3Notation (k+i|k) stands for a predictions for instant k+i, from the viewpoint of instant k. Consider U and U , respectively,
as the maximal and minimal values this vector may assume.
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Definition 3.1. Nonlinear Programming Problem282

Consider an arbitrary real-valued nonlinear function fc(xc). A nonlinear programming problem finds the283

vector xc that minimizes fc(xc) subject to gi(xc) ≤ 0, hj(xc) = 0 and xc ∈ Xc, where gi and hj are also284

nonlinear.285

Definition 3.2. Quadratic Programming Problem286

A Quadratic Programming Problem (or simply Quadratic Problem, QP) is a linearly constrained mathe-287

matical optimization problem of a quadratic function. A QP is a particular type of nonlinear programming288

problems. The quadratic function may be defined with respect to several variables, all of which may be289

subject to linear contraints. Considering a c ∈ Rnc vector, a symmetric matrix Qc ∈ Rnc×nc , a real matrix290

Aineq ∈ Rmc×nc , a real matrix Aeq ∈ Rmc×nc , a vector bineq ∈ Rmc and another vector beq ∈ Rmc , the291

goal of a QP is to determine the vector xc ∈ Rnc that minimizes a regular quadratic function of form292

1
2

(
xTc Qxxc + cTx

)
subject to constraints Aineqxc ≤ bineq and Aeqxc = beq. The solution xc to this kind293

of problem is found by many solvers seen in the literature, based on Interior Point algorithms, quadratic294

search, etc.295

Consider a generic discrete-time qLPV model x(k+1) = A(ρ(k))x(k)+B(ρ(k))u(k), being the scheduling296

parameters endogenous, as gives ρ(k) = fρ(x(k), u(k)). These qLPV scheduling parameters are also possibly297

expressed through a dynamic recursive equation, i.e. ρ(k) = fmρ (ρ(k−1), ρ(k−2), . . . ). The vector of future298

scheduling policies, from instant k, is given by:299

Γk = col{ρ(k + 1) , ρ(k + 2) , . . . , ρ(k +Np − 1)} . (19)

Then, departing from an arbitrarily feasible initial condition x(k) = xk, Problem 1 has to internally300

elaborate constraint (16), which exhibits nonlinearities from the second iteration onward:301

x(k + 2|k) = A(ρ(k + 1))A(ρ(k))xk (20)

+A(ρ(k + 1))B(ρ(k))u(k|k) +B(ρ(k + 1))u(k + 1|k).

and so forth, up to the Np-th prediction. This results, therefore, in non-QP version of Problem 1.302

3.3. Frozen Scheduling Guess303

Nonetheless, notice that these model-based predictions as in Eq. (20) would also be linear if ρ was known304

for every iteration inside the Np horizon. To say one has knowledge of the complete future scheduling vector305

Γk is obviously false, since only ρ(k) is known. But, if a frozen guess was to be used, as done in [15],306

substituting Γk by Γ̂k, Problem 1 would be translated into a QP version, but with sub-optimal results due307

to model-process mismatches, since the linear model use for predictions would be a frozen version of the308

qLPV process. Through the sequel, it is considered that the following Assumptions holds:309

Assumption 3.3. Some algorithm provides a guess for the evolution of the scheduling parameters along the
horizon. This guess is denoted

Γ̂k = col{ρ̂(k), ρ̂(k + 1), . . . ρ̂(k +Np − 1)} .

Remark 8. It has been demonstrated in [22] that a recursive LS algorithm can be used to “predict” the310

scheduling parameters of a SA suspension system reasonably well.311

Assumption 3.4. As done in [20, 33], it holds that the ρ has a bounded variation rate, this is:312

ρ ∈ P := [ρ , ρ] and ρ̇ ∈ δP := [δρ , δρ] . (21)

Remark 9. In fact, as of Eq. (7), this is true, since fc tanh (Aρx(k)) is always bounded due to the fact that313

zdef is bounded. The derivative / difference is also inherently bounded.314
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From the viewpoint of k, the minimal and maximal prediction evolution guesses would be:315

Γ̂mink = col{ρ(k) + δρ, . . . , ρ(k) + (Np − 1)δρ} , (22)

Γ̂maxk = col{ρ(k) + δρ, . . . , ρ(k) + (Np − 1)δρ} . (23)

These bounds are taken into account by the LS algorithm as saturation limits. It is directly implied that316

Γ̂mink ⊂ Γ̂k ⊂ Γ̂maxk317

Let the generic discrete-time qLPV model be extended for the next j steps ahead of k4:318

x(k + j) =

Aj(Γk)︷ ︸︸ ︷
j−1∐
n=0

A(ρ(k + n))xk (24)

+

j−k∑
m=1−k

((
m−1∐
n=k+1

A(ρ(n))

)
B(ρ(j −m))u(j −m)

)
︸ ︷︷ ︸

Bj(Γk)U

.

Then, since the scheduling prediction is always limited to the bounds given by Γ̂mink and Γ̂maxk , the model-319

process mismatches that arise by using a frozen model are also bounded. Take µj as these mismatches, due320

to the differences between the real state x(k+ j), which is a function of Γk, and the predicted state x̂(k+ j),321

which is a function of the scheduling guess Γ̂k, as gives5:322

µj = x̂(k + j)− x(k + j) (25)

=
(
Aj(Γ̂k − Γk)

)
xk

+
(
Bj(Γ̂k − Γk)

)
U ,

which leads to:323

µ
j
≤ µj ≤ µj , (26)

µ
j

= Aj(Γ̂k − Γ̂mink )xk +Bj(Γ̂k − Γ̂mink )U ,

µj = Aj(Γ̂k − Γ̂maxk )xk +Bj(Γ̂k − Γ̂maxk )U ,

where U and U represent, respectively, a sequence maximal and minimal control inputs.324

Notice how these mismatches are bounded by the saturation conditions implied by the input constraints325

and a sequence of minimal or maximal scheduling parameter variations. Also, remark that µj increases326

along with the prediction horizon Np, departing from µ0 = 0. This issue is rather interesting, since the327

MPC procedure will re-calculate the control sequences and predictions at each sampling instant, meaning328

that if the algorithm is recursively feasible, the effects of the model-process mismatches upon the controlled329

outputs will relieved over time.330

4. Set-Constrained Recursively Feasible qLPV MPC Procedure331

Based on the discussion of the sub-optimal qLPV MPC design based on (bounded) frozen scheduling332

parameter evolution guesses Γ̂k provided in the previous Section and the considered SA suspension appli-333

cation detailed in Sec. 2, this Section develops the proposed qLPV MPC algorithm for passenger comfort334

enhancement.335

4
∐

stands for the left-side matrix product.
5Matrices Aj(·) and Bj

1(·) are affine in Γk. Therefore, Aj(Γ̂k)−Aj(Γk) = Aj(Γ̂k − Γk).
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A recursive saturated LS will provide, at each sampling instant k, an approximate guess for the evolution336

the scheduling parameters along the horizon. This frozen prediction Γ̂k is passed to the MPC, that can be337

computed using a single QP.338

Then, the design of such predictive controller must integrate some tools to guarantee reference-tracking339

despite the model uncertainties µj (that grow along the horizon). Essentially, what is done in this paper is340

to guarantee an enlarged domain of attraction of the system under closed-loop control, so that any initial341

condition that lies inside this domain can be steered as envisioned. Due to the horizon-increasing model-342

process mismatches µj , it must also guaranteed that the system is not driven out of an stability region,343

which can never be allowed. The recursive feasibility property must be verified to ensure that, although344

leading in sub-optimal results, the algorithm will stabilize and converge.345

The tools used to address this matter are adapted to the qLPV case, respectively, from two prominent346

works [41, 40]: 1) the use of pseudo-reference tracking allows an enlargement of the domain of attraction of347

MPC policies, finding more options of stable closed-loop equilibrium points and 2) the usage of a terminal set348

that contracts along the horizon and a Lyapunov decreasing terminal stage cost, which together guarantee349

that, even with bounded uncertainties, the controlled system is able to meet performance goals whilst350

stability and feasibility are maintained.351

Remark 10. These tools have previously been applied to the case of nonlinear systems; in [42], robust352

assessments are presented in terms of formal guarantees of recursitivy and feasibility.353

4.1. Pseudo-Reference Tracking354

The “MPC for Tracking” method from [41] is considered in the sequel: this control design is used to355

ensure that the controller can asymptotically steer the process a steady-state reference xs in an admissible356

manner from any feasible initial state x0. The approach consists basically in adapting the standard MPC357

cost function (i.e. weighting the quadratic difference between output and reference). The use of the “MPC358

for Tracking” design for qLPV models has been previously done in [43], where the scheduling trajectory Γk359

is taken as frozen, based on the known value ρ(k) (no guess is performed).360

Remark 11. The “MPC for Tracking” design includes an artificial reference xa and sets the system to track361

it, while, at the same time, makes it track the actual reference xs, which altogether ensures an enlarged362

domain of attraction. The target operation point pt = (xs, us) is an admissible steady-state, which is363

possible if Eq. (14) is LPV-stabilizable (refer to the definition in [44]). Anyhow, this tool still does not364

guarantee the convergence of the qLPV system to the target point pt because the model uncertainty µj365

is obviously non-null and horizon-increasing, as previously discussed. Therefore, a contractive terminal set366

constraint must also be used.367

Assumption 4.1. Consider: (1) Q ∈ Rnx×nx and R ∈ Rnu×nu as positive definite matrices; and (2)
κ ∈ Rnu×nx as an arbitrary stabilizing state-feedback control gain. For these matrices, it is implied that,
for the generic discrete-time qLPV model,

(A(ρ(k)) +B(ρ(k))κ)

is Schur. Then, there exists another positive definite matrix P ∈ Rnx×nx such that

(A(ρk) +B(ρk)κ)TP (A(ρk) +B(ρk)κ)− P = −(Q+ κTRκ)

holds for all ρk ∈ Γk.368

Then, as long as the previous Assumption holds, the MPC Problem is formulated with the following369

adjusted optimization cost:370

JNp = V (·) (27)

+

Np∑
i=1

(
||x(k + i|k)− xa||2Q + ||u(k + i− 1|k)− us||2R

)︸ ︷︷ ︸
Main Cost `(·)

,
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where the terminal stage cost is given by:371

V (·) = V xa
o +

V x
o︷ ︸︸ ︷

||x(k +Np|k)− xa||2P , (28)

with xa ∈ X and us ∈ U being artificial variables for the set-point and for the control signal. The quadratic372

offset function V xa
o penalizes the deviation between the artificial reference xa and the target operation point373

xs (actual set-point). The inclusion of a suitable penalization of the terminal state (terminal cost term V xo )374

can lead to asymptotic stability with good performances, as demonstrated in [42]. As pointed out by the375

latter, the offset cost V xs
o must be convex and respect:376

β1||xa − xs||1 ≤ V xa
o (xa, xs) ≤ β2||xa − xs||1 , (29)

where β1, β2 are positive real constants. The artificial tracking point is given by ps = (xa, us).377

Proposition 4.2. If the stage cost weights Q and R are adequately chosen, is it possible to use an MPC378

algorithm, formulated with a quadratic stage cost of the form in Eq. (27), to optimize and enhance the379

comfort of onboard passengers, with respect to nominal (uncontrolled) situations.380

Proof. Indeed, MPC as a SA suspension control system can act to ensure a better comfort of the onboard381

passengers. The MPC will, at each sampling instant, act to minimize the primary control objective ` along382

the control horizon.383

To do so, the time-domain index given in Eq. (12) is embedded to ` through Q and R. This index is
re-written with respect to the discrete-time qLPV model in Eq. (14):

J
Np

comfort =

Np∑
j=0

z̈2
s(k + j|k)Ts .

This finite sum approximates the integral in Eq. (12).384

Then, assuming that (xa, us) will converge to (xs, us) = (0, 0) (real set-point and respective control385

signal), it follows that6:386

Np∑
j=0

z̈2
s(k + j|k)Ts =

Np∑
j=0

`(·) (30)

=

Np∑
j=0

||x(k + j|k)||2Q + ||u(k + j − 1|k)||2R .

From Eq. (14), it follows that:387

z̈2
s(k + j|k)Ts = (C{1, :}x(k + j − 1|k) (31)

+ D1{1, :}(ρ(k + j − 1|k))u(k + j − 1|k))
2
Ts .

Thus, if Q and R are chosen, respectively, as:388

Q =
(
C{1, :})TTs(C{1, :}

)
, (32)

R =
(
D{1, :}(ρk))TTs(D{1, :}(ρk)

)
, (33)

where ρ(k + j − 1|k) is replaced by ρk = ρ(k), for simplicity, the MPC policy with main cost `(·) will act389

to minimize z̈2
s(t) and enhance comfort performances.390

6M{l, :} denotes the vector formed by the lth line of matrix M ; moreover, w is neglected from the sequence, since the control
law has no measures over it (it cannot be minimized, since it is an external variable).
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Remark 12. The objective of the inclusion of the artificial target point ps works as follows. Consider that391

the system evolves as predicted (with µj = 0) and that the actual target point pt = (xs, us) = (0, 0) is an392

admissible point contained inside the tracking set T := X ×U . Then, pt is an asymptotically stable point in393

closed-loop, since the MPC will ensure convergence to it. Otherwise, the achieved closed-loop equilibrium is394

given by p?s = (x?a, u
?
s) = arg minxa

V xa
o (xa, xs). Moreover, the inclusion of the artificial reference ensures395

recursively feasibility properties of the algorithm and that the achieved closed-loop equilibrium x?a is the396

closest possible to xs when it is feasible.397

4.2. Contractive Sets398

Consider the following definitions presented in [45]:399

Definition 4.3. 1-Step Robust Set:400

The 1-Step set of Υ, Q1{Υ}, stands for the set of states which can be steered in one sampling instant into401

the target set Υ by an admissible control action, despite µj 6= 0.402

Definition 4.4. Robust Controlled Positively Invariant Set:403

A set Υ ⊂ Rnx is said to be control invariant for the qLPV system in Eq. (14) if, for all possible xk ∈ Υ,404

there exists an admissible input u = κ(x) ∈ U so that x(k + 1) lies inside Υ despite µj 6= 0. This is valid iff405

Υ ⊆ Q1{Υ}.406

Definition 4.5. Nr-Step Control Invariant Sequence:407

A sequence of Nr steps SNr
:= {Υj} is the set sequence through which x can be steered through, leaping408

from one set Υj to the following Υj−1, with feasible control actions, until finally reaching the target invariant409

set Υ.410

MPC design coupled to the use of control set sequences is used to make sure the algorithm guarantees411

asymptotic convergence despite model-process uncertainties µj , which is the case of this work7. To compute412

a reachable set sequences for qLPV models, the bounds on the variation rate of the scheduling parameters413

ρ̇ must be taken into account: as gives Eq. (26), from the viewpoint of instant k, x(k + 1), for whichever414

ρ(k+1) ∈ P, is, at most, equal to x?(k+1) = A(ρ?)xk+B1(ρ?)u(k) where ρ? = ρ(k)+dρ or ρ? = ρ(k)−dρ.415

Therefore, Υ must be computed from xk, abiding to:416

ΥMax ⊆ Υ ⊆ ΥMin and pt ∈ Υ , (34)

where ΥMax and ΥMax are the sets achieved with admissible control laws and, respectively, a sequence of417

Nr maximal and minimal scheduling parameter variations Γ̂maxk and Γ̂mink .418

Then, for each iteration k, a sequence of reachable sets is computed as the intersection of the min./max.419

wider sets, found with Γ̂maxk and Γ̂mink , respectively. This is, for j = max{Nr − k, 0}, . . . , 0:420

SNr
:=

{
col{Υj} |Υj = (Ωmaxj ∩ Ωminj )

}
. (35)

Ωmaxj =
(
Aj+1(Γ̂maxk )xk +Bj+1(Γ̂maxk )U

)
, (36)

Ωminj =
(
Aj+1(Γ̂mink )xk +Bj+1(Γ̂mink )U

)
. (37)

With these definitions in mind, to guarantee that within Nr steps from the initial instant k0 the con-421

trolled qLPV system (14) reaches a terminal control invariant set Υ0 in Eq. (34) which contains the target422

equilibrium pt, the following contractive terminal set constraint is included to the design:423

x(k0 +Nr) ∈ Υj , j = max{Nr − k , 0} , (38)

assuming SNr is available from Eq. (35). Note that this terminal set Υj is equal to the larger ΥNr at the424

initial instant k0 being shrinked subsequently until, at k0 +Nr, it becomes the smallest set Υ0.425

7For this development, w(k + j) is suppressed, since it is a known variable throughout the Np horizon.
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Remark 13. This constraint makes the MPC method intrinsically time-varying, since, at least for the first426

Nr samples, the sets are contracting. In this paper, it is considered that Nr ≥ Np.427

When the above terminal constraint is coupled to the MPC optimization procedure, there is indeed an428

enlargement of its domain of attraction, giving further holds on stability and feasibility, which are needed429

due to model-plant differences µj . The sequence of control invariant sets makes sure the terminal constraints430

contracts and the states converge to the desired target pt (or as closely as possible, due to the pseudo-reference431

technique). Therefore, the main idea of the design method used in this paper is to use a constrained, finite432

horizon MPC to regulate the SA suspension system described by the discrete-time qLPV model in Eq. (14),433

from any admissible initial condition x0 ∈ X to the target goal pt using a fixed Γ̂k by minimizing the434

adjusted objective function in Eq. (27) with x(0, ρ(k)) ≡ x0 subject to the original constraints in Problem435

1 coupled to the contractive constraint in Eq. (38).436

4.3. Quadratic Stabilizability and Recursive Feasibility437

Since the terminal stage cost, terminal ingredient and primary optimization have been defined, it follows438

to verify if the proposed controller ensures quadratic stabilizability and recursive feasibility, which are439

envisioned properties of the algorithm.440

Definition 4.6. Recursive Feasibility of MPC Algorithms[40]441

Consider that the terminal set constraint on x exists such that Υ0 ⊂ X , with X closed, convex and compact442

and that the origin lies within the interior of Ω, for Ω being the largest admissible set8 such that Ω ⊆ X .443

Then, essentially, the following axioms verify if the MPC terminal cost function is Lyapunov-decreasing444

along the control horion:445

• A1) `(·) ≥ β1(||x||),∀x ∈ Ω,∀u ∈ U ,∀ρ ∈ P, for β1(·) of class K9.446

• A2) V (·) ≤ β2(||x||),∀x ∈ Υ0,∀ρ ∈ P, for β2(·) of class K10.447

• A3) V (x(k + 1))− V (x(k) + `(x(k), u(k)) ≤ 0,∀x ∈ Υ0,∀u ∈ U ,∀ρ ∈ P,∀k11.448

If these three axioms hold. the MPC will be recursively feasible for any starting condition x0 ∈ X .449

The terminal set Υ0 is given by {x ∈ Rnx |V (x) ≤ αs} such that Υ0 ⊂ Ω. Moreover, αs is some scalar450

such that for all x ∈ Ω, fm(x(k), u(k)) ∈ Υ0.451

Definition 4.7. Quadratic Stabilizability inside the Feasibility Region452

The considered qLPV system given in Eq. (14) is said to be stabilizable if there exists a positive definite453

map V : x(k) → x(k)TPx(k), where P = PT � 0 and P ∈ Rnx×nx and a state-feedback control policy454

of fashion u(k) = κx(k), with κ ∈ Rnu×nx , such that the following inequality:455

V (A(ρ(k))x(k) +B(ρ(k))κx(k))− V (x(k)) ≤ (39)

−x(k)T
(
Q+ κTRκ

)
x(k)

holds for all x ∈ X and ρ ∈ P, with Q = QT � 0 and R = RT � 0. Then, the origin is globally456

exponentially stable within the feasibility region X is globally exponentially stable for x(k+ 1) ∀ ρ ∈ P and457

any initial condition x0 ∈ X .458

Remark 14. The above notion of quadratic stabilizability “inside the feasibility region” is slightly smoother459

than the notion of pure quadratic stabilizability, which would require the verification of the inequality for460

all x ∈ Rnx . The notion of the feasibility regionalization implies that only X must be considered, which461

may be a priori a smaller proper C set than Rnx (inequality must hold for all x ∈ X instead of Rnx).462

8In fact, this set must also be positively control invariant, such that Ω is the one-step-step from Υ0.
9This axiom implies that ` is function-wise lower bounded.

10This axiom implies that V is function-wise upper bounded.
11This axiom implies that V decreasing along the horizon.
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Definition 4.8. K refers to the class of positive and strictly increasing scalar functions that pass through463

the origin. A given function f : R → R is of class K if f(0) = 0 and limξ→+∞ f(ξ) → +∞.464

Assumption 4.9. (i) There exists a K function β1(||x||) that lower bounds the horizon cost `(x); and (ii)465

there exists another K function β2(||x||) that upper bounds the terminal cost V (x(k +Np)).466

Proposition 4.10. Quadratic Stabilizability inside the Feasibility Region467

The considered qLPV system, when regulated by the MPC policy conducted through u(k) = κx(k) is quadratic468

stabilizable.469

Remark 15. The MPC policy yields a quadratic stabilizability property if the third recursive feasibility470

axiom verifies, with V = x(k)TPx(k), as demonstrated in the sequel. Moreover, full conditions for the471

satisfaction of A3 are demonstrated in [46], where LMI-solvable remedy to ensure this axiom is satisfied is472

proposed, concerning the case of scheduling parameter assumed as if they were held constant over Np.473

Proposition 4.11. Recursive Feasibility474

The proposed algorithm is recursively feasible inside the feasibility set for any starting condition x(k0) =475

x0 ∈ X .476

Proof. Since only the measured (state-feedback from an observer) variable x(k) and scheduling sequence Γ̂k477

are used to solve Problem 1, at the following discrete-time instants k > k0 = 0, the online optimization is478

not related to any disturbance variables and, thus, the recursive feasibility property can be analysed albeit479

disturbances (feedforward compensation is neglected in this proof).480

Assume that Problem 1 is feasible for an initial condition x0, based on a Γk0 scheduling sequence,481

resulting in U?k0 as the optimal sequence of control action which solves Eq. (15) at instant k0; this optimal482

control policy leads to a minimal state sequence with respect to the cost function JNp(·). It holds that483

x?(k0 + i) ∈ Υj and u(k0 + i − 1|k0) ∈ U ∀ i ∈ N[1,Np]. Moreover, it is implied that x?(k0 + Np) ∈ Υ0,484

which is a positive invariant set for the qLPV model.485

The MPC control policy u(k0) = u?(k0|k0) is applied to the process and steers the system from the486

initial state x0 to a successor state x(k0+1) = x̂?(k0+1|k0) = x?(k0+1|k0) = x?. Next, it is demonstrated487

that, at instant k1 = k0 + 1, for initial condition x1 = x(k1) and scheduling sequence Γk1 , there exists a488

feasible solution to Problem 1. The feasibility of the solution at instant k0 is used to construct a feasible489

solution at this following sample k1.490

Take the bounds of the variation of the scheduling parameters into account, as follows:491

x(k1 + 1) = A(ρ(k1))x1 +B1(ρ(k1))u(k1), (40)

since u(k1) = κx1 = κx? and ρ(k1) = ρ(k0) +
∑k1−k0
l=0 ∂ρ(l), one arrives at:492

x(k1 + 1) = A(ρ(k0) + ∂ρ(k0))x? +B1(ρ(k0) + ∂ρ(k0))κx?

= [A(ρ(k0) + ∂ρ(k0)) +B1(ρ(k0) + ∂ρ(k0))κ]x?

= (A(ρ(k0) +B1(ρ(k0))κ)︸ ︷︷ ︸
Acl(ρ(k0),x?)

x?

+ (A(∂ρ(k0)) +B1(∂ρ(k0))κ)x?︸ ︷︷ ︸
w(k1)

.

Since w(k1) is ultimately bounded due to its construction (given that µj is bounded and residing on the493

fact that scheduling parameters variation rates are also bounded), ∂ρ ≤ ∂ρ(k) ≤ ∂ρ, and the bounds on x494

(i.e. x ∈ X ), it holds that x(k1 + 1) is indeed an admissible point, contained inside the feasibility set for x495

(it does not diverge), this is: Acl(ρ(k0), x?)x? + w(k1) ∈ X (.496

Finally, apart from this induction development, the three recursive feasibility axioms will also be verified497

individually:498
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A1) Indeed `(x) is K-class lower bounded, i.e.12:499

`(x) =
(
x(k + i)TQx(k + 1) + u(k)TRu(k)

)
(41)

= (A(ρ)x+B1(ρ)u)
T
Q (A(ρ)x+B1(ρ)u) + xTκTRκx

= xT (A(ρ)TQA(ρ) + 2AT (ρ)QB1(ρ)κ

+κTBT (ρ)QB1(ρ)κ+ κTRκ)x

= xT (A`(ρ, x))x ≥ xTβ1x = β1(||x||) ,

which means that it is always possible to choose a real constant scalar β1 which is ≤ A`(ρ, x)∀x ∈ Ω = Υ1.500

A2) Indeed the terminal stage cost V (·) is K-class upper bounded; departing from x(0) = x, it follows13:501

V (x(k +Np)) = xT (k +Np)Px(k +Np) (42)

=
(
ANp(Γk)x+B

Np

1 (Γk)κ
−→
Xk,Np

)T
P(

ANp(Γk)x+BNp(Γk)κ
−→
Xk,Np

)

= xT

AV (Γk)︷ ︸︸ ︷
(ANp(Γk)PANp(Γk))x

+ 2xT

h(Γk,
−→
Xk,Np )︷ ︸︸ ︷(

(ANp(Γk))TPBNp(Γk)κ
)−→
Xk,Np

+
−→
XT
k,Np

(
κT (BNp(Γk))TPBNp(Γk)κ

)︸ ︷︷ ︸
BV (Γk,

−→
Xk,Np )

−→
Xk,Np

≤ xTβ2x = β2(||x||) ,

which means that it is always possible to find a real constant scalar502

β2 ≥ (AV (Γk) + 2h(Γmaxk ,
−→
Xk,Np),

−→
Ak,Np)

+
−→
A
T

k,Np
BV (Γmaxk ,

−→
Xk,Np)

−→
Ak,Np) ,∀x ∈ Υ0.

A3) Finally, the last axiom is verified: consider x(k + j + 1) = x(k + 1) and x(k + j) = x, for notation503

simplicity, which is valid for all j ∈ 0 , . . . , Np − 1.The terminal ingredient should be decrescent along the504

solution of x. Of course, the use of the contracting terminal constraints x(k + Np|k) ∈ Υj , implies that505

the state trajectories are steered further towards theQP target set goal as k increases, this, by itself, should506

guarantee that V is decrescent[47, 41]. The decay of V (·) is demonstrated:507

V (x(k + 1))− V (x) + `(x) ≤ 0

x(k + 1)TPx(k + 1)− xTPx+ xT (A`(Γk, x))x ≤ 0

xT (A(ρ(k))TPA(ρ(k)) + 2A(ρ(k))PB(ρ(k))κ

+κTBT (ρ(k))PB(ρ(k))κ)x

−xTPx+ xT (A`(Γk, x))x ≤ 0 ,

12Notation is simplified, the (k + i) is dropped.
13Notation

−→
Xk,j denotes the collection of sequence of states from x(k) to x(k + j).
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which is equivalent to:508 (
AT (ρ(k))(P +Q)A(ρ(k))− P

)
+(κTBT (ρ(k))(P +Q)A(ρ(k))

+AT (ρ(k))(P +Q)B(ρ(k))κ)

+
(
κTBT (ρ(k))(P +Q)B(ρ(k))κ

)
≤ κTRκ,

which is inherently verified due to the choice of P under Assumption 4.1, being Q also full-rank and positive509

definite by definition. This concludes proof.510

4.4. Implementation Remarks511

This Section presented an MPC design procedure for the control of SA suspension systems, aiming to512

enhance passanger comfort performances. This procedure converts the nonlinear optimization problem with513

the original qLPV model into an LTI-scheduled model and QP complexity. To make sure the simplifications514

of using a scheduling trajectory guess do not compromise the control performances, a pseudo-reference and515

control invariant set sequences are used s.t. feasibility is guaranteed. This MPC design is sub-optimal516

due to model-process mismatches, but it has a major advantage of using a single QP, which makes it517

computationally practicable under the 5 ms sampling period of the vehicle.518

For the implementation of the algorithm, it is assumed that the road profile (load disturbances) w(k)519

are known for the future Nr steps. This information can be pursued with different schemes from the520

literature, such as frequencial preview loops, adaptative estimation schemes or even extended observers that521

estimate the road together with the states. Some options for these algorithms are available in [48, 5, 17, 49].522

Notice that when computing the terminal set sequences, the road profile information is embedded. The523

implementation of the proposed MPC algorithm is described in Algorithm 1.524

5. Numerical Results525

In the Section, numerical simulation results are presented to illustrate the performances of a SA sus-526

pension system under the control of the proposed qLPV MPC algorithm. The following results have been527

obtained with textitMatlab, Yalmip toolbox and Gurobi solver. The simulation is performed with a realis-528

tic, validated, full vehicle nonlinear model of the experimental testbed of a vehicle equipped with four ER529

dampers.530

Once again, recall that the control input for the SA suspension system is the PWM signal u(t), which531

varies the damping coefficient of the ER dampers by changing the electric field applied over them, which532

varies the amount of force that is delivered.533

Recall that the primary control objective `(·) is taken in order to minimize chassis accelerations, to ensure534

that a smoother ride is provided and the comfort of the passengers is enhanced. The indexes provided in535

Section 2.1 will be used to evaluate the enhancement provided by the proposed control scheme.536

In the following Figures, the proposed method is denoted “qLPVMPC”, while “COLQR” denotes a537

clipped optimal LQR, computed with the LTI versions (frozen Γ̂k) of the qLPV process and the same538

weights Q,R and P . The results obtained with a purely passive, uncontrolled SA damper are marked as539

“PDamp” (for this, u is taken as null).540

According to [17], the prediction horizon Np is taken as 10 samples, while the contractive horizon Nr541

is taken as 25, meaning that the positively invariant control sets shrink 2.5 times slower than the sliding542

horizon. For evaluation of the control strategy itself, the computational processing time for the sequence of543

sets is excluded from the nominal elapsed time of the algorithm, since they could have been performed all544

offline, as done in [50].545

The following results consider the SA suspension at the front-left corner of the vehicle. Similar results546

were obtained for the other three corners. The chosen road profile zr(t) = w(t) stands for a car running in547

a straight line on a dry road, when it encounters (t′ = 0.5 s) a sequence of 5 mm bumps on all its wheels,548

19



Algorithm 1 LPV MPC for Passenger Comfort Enhancement

1. Use some estimation algorithm to get the future values for the road profile disturbances w along the
next Nr steps;

2. Use a saturated recursive LS procedure to estimate the scheduling parameters of the system along the
horizon Γ̂k, these parameters represent a hyperbolic tangent function of the deflection velocity and
suspension deflection variables;

3. Compute the LTI model that approximates the process along the horizon, based on the scheduling
evolution guess Γ̂k for j = 1 , . . . , Np.

4. Compute the final set that contains the desired reference Υ0 according to Eq. (34). This step has also
a QP complexity, see [41];

5. Loop with i = 1 : 1 : Nr, from k = k0:

6. Compute the sequence Υj of (Nr−i) sets, according to Eq. (35). These sequences of sets are computed
using relaxations/contractions from the present state until the target final set Υ0.

7. Solve the following QP:

min
U

JN (x, u) (43)

s.t. System Evolution: Eq. (14) ,

u(k + i− 1|k) ∈ U ,

x(k + i|k) ∈ X ,

x(k +Nr|k) ∈ Υj , j = max{Nr − k , 0} ,

8. From U , take the first entry u(k|k) = κx(k) and apply it to the process.
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Figure 5: Road Profile and Scheduling Parameters

exciting the bounce motion, which must be counteracted by the suspension controller. This simulation549

scenario comprises 13 s. Figure 5 shows these bumps and the scheduling parameters along the simulation.550

Most importantly, Figure 6 depicts both controlled outputs (z̈s, z̈us) and the delivered damping force551

(as well as the dissipativity constraints D). Clearly, it is evident that the proposed predictive controller552

yields the smoother results, further minimizing the control objective `(·). Due to saturation effects, the553

LQR strategy achieved almost the results as those with a passive damper (in open-loop).554

To better evaluate these results, the time index J tcomfort is computed through a normalized root-mean-555

square (RMS) function of the acceleration variables. Table 2 shows the RMS obtained for the passive case556

for both z̈s(t) and z̈us(t) and the enhancements achieved with the COLQR and qLPVMPC methods with557

respect to the passive condition. As evidenced, the proposed method yields a 14.25 % passenger comfort558

enhancement in terms of the chassis acceleration variable. This is quite significant as it the algorithm is559

computed for a scaled vehicle model.560

Table 2: Performance Enhancement

RMS Method Value Enhancement
Reference PDamp 0.4650 0 %
Tracking COLQR 0.4646 0.08 %
z̈s(t)→ 0 qLPVMPC 0.3984 14.32 %
Reference PDamp 3.008 0 %
Tracking COLQR 3.005 0.1 %
z̈us(t)→ 0 qLPVMPC 2.611 13.18 %

Concerning the frequencial index Jfcomfort, Figure 7 shows the FFT results of z̈s(t) for both PDamp and561

qLPVMPC cases, under the 0−20 Hz frequency range. As discussed by [12], the important issue is to reduce562

the peaks caused when a road profile income appears. In numerical terms, the peak with the qLPVMPC563

method is 16.25 % smaller than the one with the passive damper, which demonstrates furthermore the564

enhancement provided to the passengers.565

It must be remarked that the proposed method with its sets computations can be performed using parallel566
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Figure 8: Controlled Outputs Tracking Plane

computing tools; in fact, this QP step that is used to compute the control law (Step 7 of the Algorithm567

in Section 4.4) allows to achieve a quite reasonable numerical effort (elapsed within 0.035 s < Ts). If the568

original nonlinear programming problem was to be considered (without the frozen guess for the scheduling569

parameter), much greater effort would be necessary and the law would not be able to be implemented for570

real-time purposes.571

Concerning the qLPV results, some additional results must be presented: Figure 8 shows a żs(t) × żus(t)572

plane and the (2D-cut) contracting sets Υj . Clearly, the sets tool works to constrain the convergence of573

theses velocities to a (target) final region, despite the disturbance and model-process mismatches. Finally,574

Figure 9 shows a 3D polyhedra cut version of ΥNr
(which is, in fact, 4D) and the polyhedra obtained for575

the evolution of the last three states; this Figure demonstrates how the initial polyhedra contains the state576

evolutions, which finally converge to Υ0. This result also corroborates with the validity of the recursive577

feasibility axioms (specially A3).578

6. Conclusions579

This paper elaborated a novel MPC method for the enhancement of passenger comfort using SA sus-580

pension systems. The suspension is modelled within a qLPV framework, and the damping force is modelled581

through a nonlinear hyperbolic tangent function, as suggested by the literature. The method embed the582

nonlinearities within a scheduling parameter, which is estimated through the prediction horizon at each583

sampling instant. The frozen scheduling evolution guess is used to transform the nonlinear prediction prob-584

lem into a linear QP, which can be solved within some mili-seconds. Set-based tools (terminal ingredient585

and stage cost) are included to the MPC so that it maintains quadratic stability and recursive feasibility,586

despite model-process mismatches. These properties are analytically demonstrated. The optimization cost587

function of the MPC is shown to embed comfort constraints, with regard to performance indexes from588

the literature. The algorithm is successfully applied to the control of a Semi-Active suspension system via589

realistic simulation, achieving good results compared to existing control optimal control methods.590
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Figure 9: Polyhedra Υj and states
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[32] Casavola, A., Famularo, D., Franzè, G., Garone, E.: ‘A fast ellipsoidal MPC scheme for discrete-time polytopic linear657

parameter varying systems’, Automatica, 2012, 48, (10), pp. 2620–2626658
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