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1.1 VARIABILITY OF SATELLITE SEA SURFACE SALINITY 

UNDER RAINFALL 
 
 
Alexandre Supply1, Jacqueline Boutin1, Gilles Reverdin1, Jean-Luc Vergely2 and Hugo 
Bellenger3,4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract     Two L-Band (1.4GHz) microwave radiometer missions, the Soil Moisture and 
Ocean Salinity (SMOS) and the Soil Moisture Active and Passive (SMAP) missions, currently 
provide salinity measurements in the first centimeter below the sea surface. At this depth, 
salinity variability at hourly temporal scales is dominated by the impact of precipitation. The 
dependency of the salinity freshening with the instantaneous rain rate (RR) observed between 
50°S and 50°N, with SMOS and SMAP salinities, is very similar. 

We investigate the influence of rain history on salinity anomalies. By using rain rates 
retrieved from several microwave satellites measurements including Advanced Microwave 
Scanning Radiometer 2 (AMSR-2), and Special Sensor Microwave Imager Sounder 17 
(SSMIS-17 and SSMIS-16) and by taking advantage of their different crossing times, we 
estimate the temporal cross-correlation function between salinity freshening and rain rate for 
different time lags in various tropical and high latitudes regions. Whatever the region, the 
magnitude of the salinity anomaly associated with precipitation is dominated by the 
instantaneous RR for each area. The apparent correlation between salinity anomaly and rain 
history can be explained by RR auto-correlation. 

The relationship between salinity anomaly (∆S) and RR is then investigated in six 
regions, with RR provided using three different algorithms (the Unified Microwave Ocean 
Retrieval Algorithm (UMORA), the Goddard profiling algorithm (GPROF) and Integrated 
MultisatellitE Retrievals for GPM (IMERG)). Differences in RR distribution between the 
various algorithms lead to differences of up to a factor 2 in ∆S versus RR slopes. For a given 
RR product, we also observe that part of the variability in ∆S versus RR relationships is related 
to the variability in wind speed regimes as detected by SMAP wind speed.   
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1.1.1 Introduction 
 

Since 2010, the Soil Moisture and Ocean Salinity (SMOS; Kerr et al., 2010) mission 
provides the longest record of Sea Surface Salinity (SSS) from space, with a spatial resolution 
of ~50km4. Since 2015, the Soil Moisture Active and Passive (SMAP; Piepmeier et al., 2017) 
performs measurements at a similar spatial resolution. Hence, during the last 3 years, the 
complementarity of the spatio-temporal sampling by the two instruments provides the 
opportunity to improve the spatial and temporal coverage of salinity measurements from space 
and to reduce the mean time lag between two salinity estimates in a given pixel. 

Although satellite sea surface salinity (SSS) measurements are slightly noisier than in-
situ SSS measurements, recent reprocessing of SMOS and SMAP SSS estimates provide very 
realistic SSS variability with a spatio-temporal resolution not accessible from in situ 
measurements only (Tang et al. 2017; Boutin et al. 2018). They are of special interest for 
studying synoptic SSS variability at scales not resolved by Argo measurements, roughly less 
than 600km and less than one month (e.g. Boutin et al. 2015).  In particular, satellite SSS 
provides new insights into links between river discharge and interannual variability of SSS, e.g. 
in the Gulf of Mexico (Fournier et al. 2016), and in the western equatorial Atlantic Ocean 
(Fournier et al. 2017a).  At weekly and small spatial scales, strong interaction between fresh 
river plumes, currents and mesoscale eddies have been evidenced by Fournier et al. (2016) and 
Fournier et al. (2017b) in the Gulf of Mexico and Bay of Bengal, respectively. 

Rainfall influences salinity at various scales. During a year, ITCZ rainfall and Ekman 
dynamics lead to the displacement of a significant amount of freshwater, greatly reducing 
salinity in rainy areas but also in non-rainy areas by Ekman transport (Yu, 2015; Hasson et al. 
2018). Abe et al. (2018) show that accumulation of rain may induce the formation of low 
salinities eddies with low salinity reaching 70m depth. These studies, which provide 
information on various phenomena that impact SSS at temporal scales longer than typically one 
month, are an important background to consider when investigating the effect of rain rate (RR) 
on SSS at smaller temporal scales. A better understanding of salinity freshening due to rain is 
needed to improve the interpretation of satellite salinity. Actually, rain events may induce large 
differences (>1pss) between the first upper centimeter of the ocean and a few meters depth 
(Henocq et al. 2010, Reverdin et al. 2012). Current ocean general circulation models usually do 
not include a detailed description of the processes involved in the upper centimeters depth 
(Bellenger et al. 2017), so that a rain correction should be first applied to the satellite salinity 
before they can be confronted with ocean model simulations at several tens of centimeters or 
several meters depth.  

After a rain event, salinity is generally quickly restored (on the order of a few hours) to 
a level close to the one observed before the rain event (Wijesekera et al. 1999; Soloviev et al. 
2002; Reverdin et al. 2012; Drushka et al. 2016). However, in some cases, fresh lenses have 
been observed with a persistence time close to 24h (Walesby et al. 2015; Dong et al. 2017, Pei 
et al. 2018). Fresh lens emergence and their spatial and temporal evolution are not well 
understood (air-sea fluxes of heat and momentum, advection, upper-ocean mixing, etc.).  
Recent studies succeed to simulate rain-induced fresh lens formation and life cycle by using 
one-dimensional water column models, the Generalized Ocean Turbulence Model (GOTM; 
Drushka et al., 2016) or a prognostic model (Bellenger et al., 2017). In these cases, duration of 
freshwater cool lens is estimated as function of windspeed (WS) and maximum RR. With a 

                                                
4 Estimated as the diameter of the equivalent circle, centered on a Grid Point, where SSS is retrieved. The area of the equivalent 
circle is equal to the mean area of the footprint ellipses of the brightness temperatures (Tb) entering in the SSS retrieval. 
However, given that the SMOS noisiest Tb are the ones having the lowest resolution, the effective SMOS SSS resolution is likely 
between 43km (the mean diameter in the Alias Free Field Of View) and 50km. 
 



  

maximum RR of 20mm. h%&, a fresh lens may persist less than 2 hours in high WS (10m. s%&) 
conditions and up to 7 hours in the low WS (1m. s%&) case (Bellenger et al., 2017). However, 
these studies are limited to very local scale and have been validated with a limited number of 
in situ measurements. To predict the influence of rain on salinity, the Rain Impact Model (RIM) 
applies a one-dimensional turbulent diffusion model from Asher et al. (2014) considering a rain 
history from the past 24 hours that was calibrated using a few rain events observed with the 
Surface Salinity Profiler (SSP) instrument during the Kilo Moana 2011 cruise (Asher et al. 
(2014)). 

Based on satellite observations, a strong correlation between SSS negative anomalies 
(∆)) and RR at short temporal (less than one hour) scales have been reported by several studies 
(see a review in Boutin et al. 2016). Dependency of SSS freshening with RR has a similar order 
of magnitude to the ones obtained by Schlussel et al. (1997) with a surface renewal model of 
the molecular diffusion layer, 0.05mm for salinity, likely because rain mixing affects salinity 
in the first centimeters of the surface ocean (Ho et al. 2000; Zappa et al. 2009).  

 Supply et al. (2017) focuses on the relationship between ∆) and RR in the Inter Tropical 
Convergence Zone area without considering the potential influence of WS and RR history on 
the relationship despite the link shown with in-situ measurements. Santos-Garcia et al. (2014), 
use the RIM model fitted to Aquarius satellite measurements to relate Aquarius ∆) to rain 
accumulation during the previous 24h. However, given the temporal under sampling of SSS 
measured by a single satellite mission (at least 12h), these studies do not allow one to estimate 
precisely the hourly evolution of ∆) associated with a rainy event. Thus, to date, a clear 
freshening signature remaining at the sea surface a few hours after a rain event was not 
demonstrated in satellite data. We investigate here the role of RR history on SSS anomalies by 
using several RR satellites combined with SMOS and SMAP data. Models and in-situ 
measurements indicate that the relationship between RR and ∆) is influenced by WS. We also 
study this dependency with satellite measurements. 

Our study region covers all the oceans between 50°S and 50°N, after removing periods 
and areas with SSS variability driven by non-rainy processes. A better understanding of the link 
between RR and ∆) will also benefit satellite RR estimation. Validation of RR measurements 
over ocean is hindered by the low number of measurements, especially at high latitudes and the 
difficulty of comparing punctual in-situ and spatially integrated satellite measurements. 
Compared with RR satellites, SMOS and SMAP SSS measurements have very close spatial 
resolution and offer an alternative method to complement the rainfall monitoring. We analyze 
the possibility of using both satellites to assess different RR products.  

In section 1.1.2, we introduce data and methods. In section 1.1.3, results are detailed: 1/ 
intercomparison of RR and SSS products; 2/ imprint of RR history on SSS anomaly; 3/ 
variability of ∆S/RR relationship and influence of WS and rain product. In section 1.1.4, we 
discuss the results and perspectives of this study. 
 
1.1.2 Data & method 
 

SSS, WS and RR data used in this study are summarized in Table 1. 
 
1.1.2.1 Salinity and wind speed data 
 

The SMOS mission carries an L-band Microwave Interferometric Radiometer with 
Aperture Synthesis (MIRAS) from which SSS measurements are retrieved. It provides SSS 
from space since 2010 (Reul et al. 2014). We consider only SMOS retrieved SSS at +/-400km 
from the center of the swath, which are less noisy. SMOS has a revisit time between 3 and 5 
days and follows a Sun synchronous orbit with a local equator crossing time at 6:00 a.m. on the 



  

ascending node. SMAP provides SSS from space since April 2015. The SMAP swath is 1000 
km with a shorter revisit time (between 2 and 3 days). It crosses the Equator at the same local 
time as SMOS but in the opposite phase, near 6:00 a.m. for descending orbits and near 6:00 
p.m. for ascending orbits. 

In this study, we use the following level 2 SSS. SMOS SSS are corrected from land-sea 
contamination and from seasonal latitudinal systematic effects as described in (Boutin et al. 
2018) and are available at CATDS (Centre Aval de Traitement des Données SMOS) (SMOS 
CPDC L2Q products (CATDS 2017)). SMAP SSS are from the L2B version 4 product from 
JPL (Fore et al. 2017). Satellite SSS are oversampled on an Equal-Area Scalable Earth Grid 
(EASE) grid of 25km spacing for SMOS and on a swath grid of 25km spacing for SMAP. The 
effective spatial resolution of these SMOS and SMAP level 2 SSS are quite similar, close to 
60km for SMAP and 50km for SMOS. 

Erroneous SMOS L2Q SSS are removed based on the minimum and maximum 
acceptable values provided in the files (Vergely and Boutin 2017). We also remove SSS values 
identified as non-valid during the retrieval process before the application of the bias removal 
process (Vergely and Boutin 2017) and SSS values very different (difference larger than 3pss) 
from a nearby SSS flagged as valid. For SMAP, we use SSS data flagged as valid.  

SMOS and SMAP SSS are retrieved using a maximum likelihood approach. For both 
products, an SSS uncertainty is derived by taking the observed mismatches between observed 
and modelled brightness temperatures (Tbs) (e.g. like in RFI polluted areas) into account 
(Boutin et al. 2018; Fore et al. 2017). In our study we only consider SMOS or SMAP SSS with 
uncertainty lower than 0.8pss.  

We use WS provided in the SMAP files, assuming that the constant 40° incidence angle 
of SMAP and its rotating antenna would provide a WS with a more conservative error than the 
SMOS estimate that is likely dependent on the geometry in the SMOS field of view and that 
covers incidence angles from 0 to ~60° while horizontal-vertical polarization contrasted 
signature of roughness is only expected at high incidence angles. The WS retrieved by the 
SMAP CAP v4 retrieval algorithm uses National Centers for Environmental Prediction Global 
Forecast System (NCEP GFS) ancillary WS with an error of 1.5m s-1 (Fore et al. 2017). 

All SSS and WS data are interpolated for each day (ascending and descending orbits 
separately) on a regular grid of 0.2°x0.2° before deriving SSS anomalies from SMOS (∆)+,-+) 
and SMAP (∆)+,./). 

 
1.1.2.2 Rain rate data 
 

Our study takes advantage of the satellite constellation of Global Precipitation 
Measurements (GPM) project (Hou et al., 2014), dedicated to providing the best possible 
coverage for monitoring rainfall (Kidd and Huffman, 2011), with RR from three different 
algorithms: Unified Microwave Ocean Retrieval Algorithm (UMORA; Hilburn and Wentz, 
2008; Wentz et al. 2012; Wentz et al. 2014), The Goddard Profiling scheme (GPROF; 
Kummerow et al. 1996; GPM Science Team, 2016, 2017a and 2017b) and the Integrated Multi-
satellitE Retrievals for GPM (IMERG; Huffman et al, 2018). GPROF uses a Bayesian approach 
and cloud resolving models to extract rain information. UMORA simultaneously retrieves sea 
surface temperature, surface wind speed (in case of no rain), columnar water vapor, columnar 
cloud water, and surface rain rate from a variety of passive microwave sensors, after a very 
careful intercalibration of the various sensors (Hilburn and Wentz, 2008). It uses an empirical 
relationship between cloud water liquid path, RR and rain column height. These two different 
algorithms make different microphysical assumptions, cloud and rain partitioning and rain 
column height. Previous studies have shown that with temporal and spatial smoothing the two 
RR estimates are close despite some bias in rainy areas, especially in the East Pacific. In 



  

addition, comparisons of individual pixels show significant differences (Hilburn and Wentz, 
2008). The IMERG interpolated RR combines RR from various satellites of the GPM 
constellation derived with GPROF algorithm with infrared RR to provide RR estimates every 
30 min using the morphing technique from the Climate Prediction Center Morphing method 
(CMORPH: Joyce et al., 2004). IR satellites are used to monitor the displacement of the rain 
cells. Accuracy of RR derived with morphing method decreases when time shift between 
considered time and satellite overpass increases (Joyce et al., 2004). Differences between 
IMERG, GPROF and UMORA algorithm induce differences of RR distribution, as shown on 
Figure 1. 

For UMORA and GPROF, we have considered RR estimated from three different near 
polar orbit satellites. Their various local equator-crossing times are used to study the effect of 
temporal shift on the correlation between salinity anomalies and rain rate. DSMP-F17 satellite 
equator crossing time is close to that of SMOS and SMAP during 2016. DSMP-F16 is more 
distant in term of time lag from SMOS and SMAP (2 hours at the equator) and GCOM-W1 is 
the most distant in time (more than 4 hours from SMOS and SMAP at the equator). These time 
lags are slightly variable depending on the location of the measurements across the wide 
satellite swaths.  

All RR data are interpolated for each day (ascending and descending orbits separately) 
on a regular 0.2°x0.2° grid. 
Table 1: Dataset used in this study. 

Satellite Instrument Used variable Approximative 
spatial resolution of 
retrieved variable 

Approximative 
equator crossing time 
(local solar time) for 

ascending node 

Data source Algorithm 

 
SMOS 

 
MIRAS 

 
Sea Surface 

Salinity 
 

 
~50 km (averaged 

resolution; 43 km in 
the Alias Free Field 

of View) 
 

 
6:00 a.m. 

 
CATDS 

 

 
L2Q V300 (RE05) 

 
SMAP 

 
Radiometer 

 
Sea Surface 

Salinity and Wind 
Speed 

 

 
~60 km 

 
6:00 p.m. 

 
Jet Propulsion 

Laboratory 
 

 
CAP V4 

 
DSMP-F17 

 
SSMIS 

 
Rain rate 

 
~35 km (based on 37 

GHz) 

 
06:30 p.m. 

 
NASA 

Precipitation 
Processing System 

 
Remote Sensing 

Systems 

 
GPROF: clim2017v1 

 
 
 

UMORA: v07 
  

 
DSMP-F16 

 
SSMIS 

 
Rain rate 

 
~35 km (based on 37 

GHz) 

 
04:00 p.m. 

 
NASA 

Precipitation 
Processing System 

 
Remote Sensing 

Systems 
 

 
GPROF: clim2017v1 

 
 
 

UMORA: v07 
 

 
GCOM-W1 

 
AMSR2 

 
Rain rate 

 
~9 km (based on 36.5 

GHz) 

 
01:30 p.m. 

 
NASA 

Precipitation 
Processing System 

 
Remote Sensing 

Systems 
 

 
GPROF: clim2017v1 

 
 
 

UMORA: v08 
 

 
Several 

satellites 

 
- 

 
Rain rate 

 
0.1° 

 
Each 30mn 

 
NASA 

Precipitation 
Processing System 

 
IMERG v05B 

  

 



  

 
1.1.2.3 Method 
 

The relationship between RR and SSS anomalies (∆S) is investigated using the various 
RR datasets mentioned in previous section. The influence of time lag between RR and SSS is 
investigated using RR from different satellites (see Table 1).   

The study covers the period from January 2016 to December 2016 and the surface ocean 
between 50°S and 50°N. Complementarily, 6 study areas are defined for testing spatial 
variability: 

1) North Tropical Pacific area (NTPa): between 160°W and 120°W and between 
0°N and 20°N, which includes the Pacific ITCZ, 

2) South Tropical Pacific area (STPa): between 160°W and 120°W and between 
25°S and 5°S, which includes the South Pacific Convergence Zone (SPCZ), 

3) North Atlantic area (NAa): between 50°W and 25°W and between 15°N and 
40°N; 

4) South Atlantic area (SAa): between 40°W and 0°W and between 35°S and 20°S; 
5) South Tropical Indian area (STIa): between 60°E and 90°E and between 25°S 

and 0°S; 

Figure 1: Cumulative Distribution Function (CDF) of rain rates considered during the study (between 50°S and 50°N) obtained 
with three different algorithms: UMORA (solid line), GPROF (dashed line) and IMERG (dash-dotted line). Only RR higher than 1 
mm.h-1 are considered because RR distribution between UMORA, GPROF and IMERG between 0 and 100. ℎ%& strongly differ 
due to the difficulty of identifying very low rain rates and expected corresponding freshening are within the error of satellite 
salinities. 

Figure 2: Percentage of measurements retained during 2016 after filtering based on monthly values of ∆)2222 and 34. Black lines 
delimit study areas. 



  

6) Gulf of Mexico area (GMa): between 100°W and 80°W and between 18°N and 
32°N, in order to illustrate efficiency of river plumes filtering. 

 
Most of these correspond to open ocean areas where rain dominates the salinity 

variability, whereas GMa offers a more challenging case with high variability due to eddies and 
Mississippi river plume. These study areas are reported on Figure 2.  

 
 
a. Salinity anomalies 

  
The methodology we use to derive ∆S depends only of satellite measurement in order to 

discard contamination by large scale systematic biases. As shown in Supply et al. (2017), the 
goal of the ∆S derived spatially with this methodology is to be as close as possible to a temporal 
∆S, considering that the pixels surrounded by a rainy area are the most representative of 
expected salinity in the rainy area before rain happens (S678). This methodology makes use of 
the upper part of the SSS distribution, which is assumed to be affected only by a noise equal to 
the SSS uncertainty that is provided in the SSS products, to derive a mean SSS used as a 
reference SSS not affected by rain. In equation (1), S is the salinity derived from L-Band 
satellites for the considered pixel. ∆S and S678 are derived from the same swath satellite 
measurements in a 3°x3° area by using statistical assumptions: 

∆) = ) − );<=           (1) 
 

Equation (1) allows one to detect local SSS anomalies that are related to rain events, but 
also to other phenomena, creating large local SSS variability such as in river plumes and in 
regions with large mesoscale variability. 

Figure 3 shows an example of a freshening event taking place during January 2016 in 
the SPCZ. During this event, SMOS and SMAP fly over the area of interest at less than 5-mn 
apart. IMERG RR colocated with SMOS SSS in a 15-min radius suggests there was a large RR 
event in this area, with a spatial pattern very close to the spatial pattern of SMOS and SMAP 
ΔS. 

Figure 3: Study case, 20 January 2016, (a) SMOS salinity anomaly (b) SMAP salinity anomaly (black line are RR isolines in 
00.ℎ%& from IMERG collocated at less than 15-mn with SMOS). 



  

 
b. Detection of rain history 

 
Our goal is to distinguish the impact of the RR history on the observed SSS freshening 

from the impact of the instantaneous RR given the temporal auto-correlation of the RR 
(R??(δt)). Hence, we compare the observed temporal cross-correlation function between ∆S 
and RR (ΓC+;??(δt)), with the one inferred from RR temporal auto-correlation function and 
assuming that only instantaneous RR matters (ΓeC+;??(δt)) following equation (2) (r(X,Y) 
correspond to the Pearson correlation between X and Y): 

RFF(GH) = I(JJ(H), JJ(H + GH)) 
ΓC4;FF(GH) = I(Δ)(H), JJ(H + GH)) 

ΓeC4;FF(GH) = ΓC4;FF(GH = 0) × JFF(GH)     (2) 
Figure 4 illustrates two idealized case studies respecting two different hypotheses. In 

the case of no-influence of RR history on ∆S (first hypothesis (H1)), ∆S depends only on 
instantaneous RR, ∆S (solid line on Figure 4c) then evolves in phase opposition with RR, the 
maximum cross-correlation is obtained with a time lag of 0 (Figure 4d, solid line). In the case 
of the influence of rain history (second hypothesis (H2)), some information on the rain event 
lasts after the rain abated, in other words, the salinity anomaly survives the rain event (Figure 
4d dashed line). Then, the cross-correlation function is flattened towards negative time lags. 

RR and ∆S time series are built as follows. For each pixel of the considered study area, 
we construct a one year time series of ∆S taken from SMOS and SMAP and a one year time 
series of RRP,-?. retaining data from SSMIS-F17, SSMIS-F16 and AMSR-2. Then we group 
all pixel measurements per class of temporal shift (1-hour long) and compute auto-correlation 
and cross-correlation functions. We only retain cases with correlations computed with a 
minimum number of points of 1000 and a null hypothesis (no relationship between the two 
considered variables) rejected with a risk of error lower than 1%.  

c. Filtering of non-rainy processes & ∆) versus instantaneous RR relationship 
 

Figure 4: (a) Idealized Rain event (b) Auto-correlation function of RR for idealized rain event (c) Idealized salinity freshening due 
to the idealized rain event without influence of rain history (line) and with hypothetical influence of rain history (dashed-line). (d) 
Cross correlation function between RR and salinity freshening without (line) and with (dashed line) influence of time history. In b) 
and d) negative time lags concern rain before ∆S. 



  

In order to study ∆S versus instantaneous RR relationship, SMOS, SMAP and SSMIS17 
measurements are colocated within a 30-mn radius. However, before studying ∆S+,-+, ∆S+,./ 
and RR coherency, we start by filtering areas where temporal and spatial variability of ∆S are 
not due to rain. Our filtering methodology considers that rain events are very intermittent, 
leading to smaller monthly averaged absolute values of ∆S than ∆S associated with other 
processes that vary more slowly. We compute monthly running mean (∆S	2222) and standard 
deviation (σ+) of SSS in each pixel and day. Areas where ∆S variability is not dominated by 
rain as river plumes or eddies have high absolute values of ∆S	2222. We empirically set a threshold 
value for  ∆S	2222 and σ+: each pixel with ∆S	2222 lower than -0.65pss and σ+ higher than 1.75pss is 
excluded from the study. Areas impacted by the filtering are shown on Figure 2, which 
particularly highlights river plumes. Some eddies with low monthly-averaged ∆S magnitude 
and edges of rivers plumes may be omitted by this filtering methodology, which will be a small 
source of error in computing the relationship between ∆) and RR.  0.5% of 
SMOS/SMAP/SSMIS17 collocated grid points are filtered by using this criterium.  

To analyze filtering effects, we compare the relationships between ∆S and RR without 
and  with filtering. Observed ∆S	+,-+ versus RRP,-?. and ∆S	+,./ versus RRP,-?. follow 
an almost near-linear relationship (Figure 5a and 5b). Data excluded by the filtering do not 
show any correlation between ∆S and RR contrary to not-filtered data (Table 2).  Very low 
differences are found on correlation values when considering cases with and without filtering, 
but the RMSD of ∆S versus RR relationship decreases from 0.57pss to 0.54pss for SMOS and 
from 0.44pss to 0.40pss for SMAP when filtering is applied. The filtering does not significantly 
influence the slope of the relationship between ∆S and RR. Differences in correlation and 
RMSD between SMOS and SMAP datasets (Table 2) are consistent with  the difference in their 
resolution. 

For individual study areas, filtering does not influence the correlation level except in the 
Gulf of Mexico area. The filtering helps to remove large anomalies related to the river plume 
of Mississippi River and improves the correlation from -0.15 to -0.19 (-0.37 to -0.43 when 
taking only rainy cases into account). 

 
Table 2: Statistics at global scale of ∆) versus JJSTUFV relationship for different filtering (Slope is obtained with a linear 

regression (W = ∆), X = JJSTUFV) and Root Mean Squared Error JY)Z =	[(∆) − ∆)<)\	2222222222222222) = [(∆) − 0.16	JJSTUFV)\	222222222222222222222222222222  
with	∆)< estimated considering a relationship between ∆) and JJSTUFV). 

Statistic Filtering SMOS <=50km SMAP~60km Number of considered pixels 
 

Correlation 
 

Without 
filtering 

 

 
-0.18 

 

 
-0.23 

 

 
10098821 

 
 

 
Data kept after 

filtering 
 

 
-0.18 

 

 
-0.25 

 

 
10048024 

 
 

 
Data excluded 
after filtering 

 
-0.04 

 

 
0.01 

 
 

 
50797 

 
Slope 

 
Without 
filtering 

 

 
-0.1625 pss. (mm. h%&)%& 
±0.0002 pss. (mm. h%&)%& 

 
-0.1645 pss. (mm. h%&)%& 
±0.0001 pss. (mm. h%&)%& 

 
10098821 

 
 

 
Data kept after 

filtering 
 

 
-0.1607 pss. (mm. h%&)%& 
±0.0004 pss. (mm. h%&)%& 

 
-0.1626 pss. (mm. h%&)%& 
±0.0007 pss. (mm. h%&)%& 

 
10048024 

 
RMSD 

 
Without 
filtering 

 

 
0.61pss 

 
0.49pss  

 
10098821 

  
Data kept after 

filtering 

 
0.58pss 

 
0.45pss 

 
10048024 



  

 

 
1.1.3 Results 
 
1.1.3.1 Intercomparison of RR and SSS products 

 
 Considering the three RR products, the ∆S+,-+ and ∆S+,./  follow nearly the same 

dependencies with respect to RRP,-?. and RRa/?-b. Linear regressions are computed for the 
three RR products but only UMORA and GPROF follow linear relationship with ∆S contrary 
to IMERG as shown on Figure 5. Slopes obtained with the linear regression are dependent of 
the RR product used but the Pearson correlation values (r) are the same for UMORA and 
GPROF. r values are lower with IMERG due to the non-linearity of the relationship with this 
RR product. The absolute value of ∆S versus RR slope obtained with GPROF is significantly 
higher than with UMORA. These differences of slope can be explained by the difference of RR 
distribution between UMORA and GPROF shown in Figure 1.  
 Figure 5 also illustrates similar values of ∆S standard deviations per class of RR between 
the different RR products. These values are however lower for ∆S+,./ in comparison with 
∆S+,-+. Actually, the noise on ∆S+,./ is less than the noise on ∆S+,-+ in almost the same 
ratio as the spatial integration of both instruments (50km or less for SMOS, ~60km for SMAP). 
The difference in resolution also explains lower values of r with ∆S+,-+ in comparison with 
∆S+,./.  

 

Figure 5: Relationship between ∆)	and	JJ (a) for SMOS and JJSTUFV (b) for SMAP and JJSTUFV (c) for SMOS and JJcdFUe 
(d) for SMAP and JJcdFUe (e) for SMOS and JJfTgFc (f) for SMAP and JJfTgFc  after filtering (black points are average per 
class of RR and error bar standard deviation per class of RR. Grey lines are linear regression fit. The color scale corresponds to 
the log10 of the number of occurrences). Pearson correlation coefficient are computed for RR higher than 1 mm.h-1 because RR 
distribution between UMORA, GPROF and IMERG between 0 and 100. ℎ%& strongly differ due to the difficulty of identifying very 
low rain rates. The magnitude of the error at the origin derived from linear regression is 10E-4 for all cases. 



  

1.1.3.2 Which is the imprint of rain history on salinity anomalies? 
 

For this particular study, we do not apply the filtering methodology in order not to 
remove a part of its possible signature. For this reason the rain history effect is not studied in 
the GMa area because of the influence of the Mississippi river plume. IMERG is not used here 
because of non-linearity between RR and ∆S (shown in section 1.1.3.1)  and also in order to 
avoid the use of interpolated measurements. 

Figure 6 (a, b, c, d, e) shows that very similar results are obtained in the different study 
regions. The maximum of ∆S/RR cross-correlation is recorded for the shortest time lag. NTPa 
area, STPa area and STIa show higher correlation levels compared to other areas because of a 
higher signal to noise ratio (larger RR in tropical regions and lower noise in satellite SSS in 
warm waters), and the NAa and SAa areas, which contain the less precise SSS, present the 
lowest correlation. 

Figure 6 (a-e) and low error on the observed ∆S versus RR cross-correlation 
demonstrates that	∆S versus RR cross-correlation derived from RR auto-correlation fits very 

well with observed ∆S versus RR cross-correlation in all areas. Only cross-correlations 
considering RR between 1 and 2 hours before ∆S measurements seem to show a correlation 
sligthly higher (in absolute value) in comparison with the estimated cross-correlation for NTPa 
and STPa areas. The differences in RR auto-correlation (Figure 6f) do not influence the 
correspondance between the observed ∆S versus RR cross-correlation and ∆S versus RR cross-
correlation derived from RR auto-correlation. This result shows that the correlation between ∆S 
and past RR is mainly due to the temporal auto-correlation of RR. Similar results are obtained 
by using RRa/?-b.  

These results do not take into account the potential influence of WS. Figure 7 shows the 
computation of ∆S/RR cross-correlation for different classes of SMAP WS in the case of the 

Figure 6: For each study area (a, b, c, d, e): (triangle) Temporal cross-correlation between ∆S and RR (individual triangles are 
linked with a dashed line) (dots) Estimated cross-correlation between ∆S and RR inferred from RR auto-correlation and correlation 
between ∆S and instantaneous RR (individual dots are linked with a line). Grey colored areas show the 23 confidence interval for 
the ∆S versus RR cross-correlation. Negative time lags concern rain before considered freshening. (f) RR auto-correlations for 
study areas. 



  

NTPa area (chosen as one of the areas with the largest WS range (with SIa) and lower WS under 
rain). The classes of WS are defined as low WS (lower than the 0.3 quantile) and high WS 
(higher than the 0.7 quantile). If the low WS conditions are encountered over all the NTPa area, 

high WS conditions are encountered closer to the equator. For salinity, only SMAP 
measurements are considered and we use SMAP WS. These results clearly show higher 
correlation between RR and ∆S for lower WS. In addition, despite larger uncertainties, the case 
with low WS presents higher ∆S/RR cross-correlation than expected considering only RR auto-
correlation. This result seems to indicate an influence of rain history for temporal scales less 
than 5 hours in low WS conditions. This part of the study is limited by WS being only known 
at the time of the SMAP SSS measurement. WS influence on the relationship between RR and 
SSS freshening is developed in the next section. 

Figure 7: For NTPa study area and SMAP: (a) all WS (b) WS under 5.5 0. h%& (c) WS above 8 0. h%&. For the three plots: (triangle) 
Temporal cross-correlation between ∆S and RR (individual triangles are linked with a dashed line) (dots) Estimated cross-
correlation between ∆S and RR inferred from RR auto-correlation and correlation between ∆S and instantaneous RR (individual 
dots are linked with a line). Grey colored areas show the 23 confidence interval for the ∆S versus RR cross-correlation. Negative 
time lags concern rain before considered freshening. 



  

1.1.3.3 Variability of the relationship between salinity freshening and rain rate as function 
of wind speed. 

 
We then investigate the WS dependency of	∆) as a function RR over the global ocean, 

using the filtering methodology (section 1.1.2.3c) and SMOS, SMAP as well as the three RR 
products. The results present a strong dependency of freshening for a given RR according to 
WS (Figure 8). In no-rain and low rain cases, ∆S+,-+ and ∆S+,./ show some biases for high 
WS: a slight positive bias for ∆S+,./ and a slight negative bias for ∆S+,-+. Despite these slight 
biases, SMOS (Figure 8 a, b and c) and SMAP (Figure 8 d, e and f) show very similar patterns. 
with the three RR products concerning the dependency with WS. Nevertheless, as observed in 
section 1.1.3.1, the magnitude of freshening differs strongly between RR products for each RR 
classes. RRa/?-b gives the more different relationship in comparison with RRP,-?. and 
RRi,j?a. The latter RR show very similar magnitudes between 0 and 9mm. h%&, but over 
9mm. h%& freshening measured for a given RRi,j?a are lower than for the same RRP,-?. 
value. Figure 8 also shows that significant freshenings are always observed even for high WS 
(between 10 and 12m. s%&). 

Drushka et al. (2016) present a relationship allowing to express maximum ∆S (∆Sklm) 
as a function of maximum RR (RRklm) and WS during a freshening event (3): 

∆Sklm = a	.		RRklm	.WS%p (3) 
with a = 0.11	pss. (mm. h%&)%& and b = 1.1. Considering the SMOS and SMAP 

estimates, we show that the rain history produces a negligible effect on freshening at satellite 
pixel scale. However, the influence of WS is important when considering instantaneous RR. 

For this reason, we assume that ∆S and RR derived from satellites reflect in-situ ∆Sklm and 
RRklm. Hence, we replace in this equation ∆Sklm and RRklm with  ∆S and RR and derive 
parameters a and b with RR and WS from satellite data. We found different a and b values 
according to the RR product used (see Table 3). Values of a and b computed with satellites ∆S 

Figure 8: Relationship between ∆) and WSSMAP per class of RR: (a) with ∆)4TU4	and JJSTUFV (b) with ∆)4TU4	and JJcdFUe (c) 
with ∆)4TU4	and JJfTgFc (d) with ∆)4TVd	and JJSTUFV (e) with ∆)4TVd	and JJcdFUe (f) with ∆)4TVd	and JJfTgFc. Points 
correspond to ∆) and RR average for a given class of RR. Points are colored with a color correspondig to RR class. 



  

and RR are different from one RR product to another and very different from values obtained 
by Drushka et al. (2016). 
Table 3: a and b coefficient for equation (2) considering JJSTUFV, JJcdFUe and JJfTgFc. Change of sign compared to 
Drushka et al. (2016) is due to the fact that ∆)qrs is defined as the absolute value of the largest-in-magnitude negative value 
of  ∆) in Drushka et al. (2016). 

 a b 
 

UMORA 
 

-0.37 pss. (mm. h%&)%& 
 

 
0.68 

 
 

GPROF 
 

-0.90 pss. (mm. h%&)%& 
 

 
0.80 

 
 

IMERG 
 

-0.35 pss. (mm. h%&)%& 
 

0.77 
 

 
1.1.4 Discussion & Conclusion  
 

We have developed a filtering methodology that highlight ∆)+,-+ and ∆)+,./ only 
where freshening is dominated by rain. ∆)+,-+ and ∆)+,./ are very consistent. They are 
combined with RR retrieved from several satellites with different equator crossing times thus 
in order to investigate rain history imprint on SMOS and SMAP ∆S in various regions. For each 
of these regions, the apparent correlation between ∆S and past RR intensity is primarily 
explained by RR auto-correlation while ∆S magnitude is dominated by the instantaneous RR 
magnitude. Most commonly, the rain history influence seems to be negligible, even though a 
weak influence of rain history on ∆)+,-+ and ∆)+,./	is suggested at low WS (<5.5m s-1) for 
durations up to 5 hours despite larger uncertainties. These results are consistent with model 
results obtained by Bellenger et al. (2017) showing that rain induced fresh lenses have short 
durations under moderate and high WS. Results obtained in this study show that WS mainly 
affects the relationship between instantaneous RR and freshening and seems to slightly 
influence the effect of rain history based on satellite estimations. Nevertheless, this result has 
to be taken with caution as it has been obtained considering WS+,./. L-band radiometers have 
been shown to detect high WS under rainfall very well (Reul et al. 2016; Meissner et al. 2017) 
but the validity of moderate WS retrieved together with SSS under rain events has not been 
fully assessed. It is due to the difficulty of monitoring the wind speed integrated over ~50km 
resolution under rainfall by other means. The WS retrieval also depends on the quality of the 
prior WS (NCEP GFS in case of SMAP with a 1.5 m.s-1 error). Hence, further validation would 
be necessary to fully assess the meaningfulness of our observation. In our analysis, we have 
confronted SMOS SSS with WS+,./ in order to minimise error correlations between SMAP 
SSS and WS. Nevertheless, we cannot exclude that rain-induced roughness affects WS+,./ for 
WS considered in this study (Tang et al. 2015) even if these effects can be moderated by the 
fact that they are important only at very low wind speeds and are negligible for moderate to 
high rain rates (we consider only WS higher than 3m s-1 in this study). 

We provide a comparison of RRP,-?., RRa/?-b and RRi,j?a	products, through ∆S 
versus RR relationship. We find that despite different slopes in the relationship, UMORA and 
GPROF record similar correlation levels with ∆S	(Table	3). This same level of correlation 
indicates that SMOS and SMAP freshenings are not able to distinguish RRP,-?. and RRa/?-b  
pattern globally. The difference of slope is due to the difference of RR distribution between 
UMORA and GPROF (Figure 1). RRP,-?. are higher than RRa/?-b from 2 to 15	mm. h%& 
approximatively but higher RR are observed with RRa/?-b. RRi,j?a	shows a very close to 
RRP,-?. behavior for the RR versus ∆S relationship (equation 3) but RRi,j?a	records higher 
RR than RRP,-?. which saturates at high RR (Figure 1). Additionnaly, RRi,j?a and 
RRP,-?. present a better latitudinal stability of the RR versus ∆S relationship for a given WS 



  

(not shown). This proximity between RRi,j?a and RRP,-?. may be explained by the more 
thorough calibrations performed in these products. For UMORA, radiometers are 
intercalibrated at the brightness temperature level. For IMERG, RR are calibrated with respect 
to the GPM Combined Radar-Radiometer (CORRA; Grecu et al. 2016) product that uses RR 
from GPM Microwave Imager (GMI) and Dual-Precipitation Radar (DPR) instruments 
(Huffman et al. 2018). IMERG RR values are also calibrated using GPCP data thereby 
modifying RR distribution. Use of the DPR with a finer resolution compared with microwave 
imagers may explain higher RR observed with IMERG relative to UMORA.  

We show that for the range of WS between 3m. s%& and 12m. s%&, ∆S versus RR 
relationship is modulated by WS, leading to different relationships in the different areas. These 
results are in line with results obtained by Meissner et al. (2014). However, the methodology 
that we use in this study to compute	∆S allows us to homogenize the ∆S versus RR relationship 
over all oceans for a given WS. As described in previous studies (e.g. Boutin et al. 2016), the 
use of the Schlussel relationship describes at first order the	∆S versus RR relationship observed 
with satellites. However, the Schlussel relationship take into account only the molecular 
diffusion layer for salinity (0.05mm) but L-band satellite are influenced by rain induced 
freshening at 1cm depth. These phenomena are considered by Drushka et al. (2016) and 
Bellenger et al. (2017) that use RR and WS to explain ∆S spatial and temporal variability. We 
consider in this study ∆Sklm and RRklm as equal ∆S and RR to retrieve ∆S, RR and WS 
relationship determined in previous studies using satellite estimations. Derived coefficients 
differ from the Drushka et al. (2016) estimate. Diagnostic of these differences is a difficult, yet 
unsolved challenge. Dong et al. (2017) compared in-situ measurements with Drushka et al. 
(2016) coefficients for equation (3) and also found different coefficients corresponding to larger 
freshening for a given RR (using satellite RR) in comparison with freshening values found by 
Drushka et al. (2016). Differences of ∆),WS,RR relationships obtained in previous studies 
reveal the difficulties to compare results obtained at different spatial and temporal scales and 
for different depths and thus, the difficulties to compare in-situ measurements, model results 
and satellite estimations.  

Scale influence on ∆),WS,RR relationships raise the question of heterogeneity effects. 
Rain history influence on freshening observed with in-situ measurements is not observed with 
satellite measurements. This may induce that part of the rain history effect is contained in an 
influence of WS considering instantaneous RR. These hypotheses need to be investigated in 
future studies. Understanding the influence of heterogeneity and its role on ∆);WS;RR 
relationship is needed to be able to isolate other phenomenon such as rain splashing.  

This study provides a methodology that allows for the removal of the rainfall imprint 
from each SMOS or SMAP SSS estimation by using instantaneous RR from IMERG provided 
each 30-mn, proposing an alternative solution to RIM model that uses RR history from the past 
24 hours. 
 There is a need to conduct detailed process studies to better understand the reasons for 
the differences between models and in situ measurements. It may lead to estimate distribution 
of global RR over oceans only considering ∆) measured from SMOS and SMAP and thus to 
add an independant diagnostic tool of the bias error between different rain products that may 
reach relative values of 20% over the eastern Pacific Ocean (Adler et al. 2011). 
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