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ABSTRACT: 

 

In this work, we present the complete workflow used to acquire a large hyperspectral dataset on a western Africa historical 

hydrocarbon production site, and its processing. Our goal is to study how state-of-the-art hyperspectral processing techniques can 

help detect hydrocarbon bearing soil either of natural origin or accidental by monitoring the health of the vegetation for exploration 

or environmental monitoring purposes. We present our complete workflow, from acquisition, atmospheric correction, image 

annotation and classification using modern machine learning techniques, and show how state-of-the-art research can be applied to 

real-world use cases. 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

As remote sensing technology progresses, automated data 

mining of Earth Observation data can be used for new 

applications. The objective of this work was to combine state of 

the art sensors and algorithms to extract knowledge from remote 

- 

Thanks to previous studies showing that hyperspectral data can 

be leveraged to characterize hydrocarbon (Arellano et al., 

2015), (Lassalle et al., 2018)  through indices related to 

vegetation health (Noomen et al., 2012) and recent advances in 

statistical learning for hyperspectral image processing (Ben 

Hamida et al., 2016), it becomes feasible to investigate fully 

automated stressed vegetation detection from remote sensing 

data. However, we will see that not all the detected anomalies 

can be related to hydrocarbon impact.  

The area of interest is located in Western Africa in a coastal 

region where sparse and dense vegetation with partial 

urbanization are present. Offshore and onshore hydrocarbons 

have been produced for over 50 years in that area. At the time of 

acquisition reclamation works were ongoing but we had the 

opportunity to acquire a large hyperspectral dataset before an 

old oil bearing well mudpit was cleaned. The objective was to 

develop a methodology to detect and identify surface 

hydrocarbons whether natural or resulting from anthropic 

activity, in similar environments.   We present a complete 

hyperspectral image processing workflow using machine 

learning to show how state of the art remote sensing techniques 

can be used to extract meaningful information from such a real-

world dataset. 

 

2. DATA ACQUISITION AND PRE-PROCESSING  

The hyperspectral acquisitions over area of interest were made 

using two HySpex cameras from NEO (Norsk Elektro Optikk): 

a VNIR1600 and a SWIR320m-e which have respectively 160 

spectral bands in the VNIR domain [0.4 µm - 1.0 µm] and 256 

bands in the SWIR domain [1.0 µm - 2.5 µm]. Airborne 

hyperspectral images were acquired at an altitude of about 1750 

m, which lead to a ground sampling distance of 1.3 m for the 

VNIR – equipped with a field of view expander – and 2.6 m for 

the SWIR. The field of view expander on the VNIR camera was 

added to cope with the high velocity of the plane (Falcon20 jet). 

The cameras were installed inside a pod located below the left 

wing, as illustrated in Fig. 1. Characteristics of these cameras 

are detailed in Table 1. 

 

 

 
Figure 1 Camera VNIR1600 and SWIR256m-e inside the front 

part of the pod. 

 

 

The conditions of acquisition were quite good with very few 

clouds. The radiometric correction was made using the NEO 

software which makes an offset and gain correction and 

produced at sensor radiance images thank to calibration 

parameters measured in the laboratory.  Due to aerodynamic 

constrains of the pod, the cameras must look through a quartz 

window. So, another radiometric step was conducted which 

consists in dividing the signal by the transmission of this 

window as seen by each spectral band of the sensors.  

 

Hyperspectral Radiance images were then corrected from 

atmospheric and environment effects using COCHISE (Miesch 

et al.,2005), which is based on the use of hyperspectral 
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information combined with the radiative transfer code 

MODTRAN (Berk et al., 1999). The final products are ground 

reflectance images. The ortho-rectification step was made with 

PARGE software and VNIR and SWIR images were registered 

using GeFolki (Plyer et al., 2015). The final image is 1576 × 

1000 pixels with 416 spectral bands. 

 

Hyperspectral data analysed in the following paragraphs are 

extracted from a single flight line. 

 

Main Features Hyspex VNIR +                

Hyspex SWIR  

Imaging Pushbroom Pushbroom 

   

Spatial pixels 1600 320 

Field of view 34° 14° 

Spectral range 0.4 −1 µm 1 −2.5 µm 

Spectral bands 160 6 nm 

Spectral sampling distance 3.7 nm 6 nm 

Ground sampling distance 1.3 m 2.6 m 

 

Table 1 Camera specifications 

 

3. GROUND TRUTH ANNOTATION  

An in-situ campaign allowed us to acquire multiple 

photographs, ASD field spectrometer and humidity 

measurements on the ground to identify the different classes and 

create ground truth image. The co-registered hyperspectral 

pixels were then manually annotated based on the ground 

measurements. This annotation process is long and tedious 

compared to cat and dog images labelling or urban environment 

annotation: each pixel needs to be very precisely geolocalized to 

match it with the ground description. Stressed vegetation has no 

structure or shape as a building or a road. The resulting ground 

truth (Fig. 2c) covers a small part of the image (42,384 pixels). 

Therefore, we extended the annotations based on a very strict 

similarity measure. A pixel with reflectance ρ1 is associated to 

the class i if it fulfils these criteria with at least one-pixel ρ2 

from class i: 

 

• Spectral reflectances have similar shapes, i.e. the spectral 

angle between reflectances is below a threshold: 

 

E1 = cos−1 ( (ρ1|ρ2) / (||ρ1||*|| ρ2||) ) < S1 

 

 

• Reflectance amplitudes are not too different, i.e. the 

difference of the Euclidean norms of the reflectances is below a 

threshold: 

 

E2 = | ||ρ1||− ||ρ2|| | < S2 

 

This criterion allows us to discriminate between pixels with 

similar shapes but different amplitudes (e.g. stressed vegetation 

and gray sand). 

 

 

• The two spectra present the same specific absorption, if 

any (e.g. clay, carbonate...), i.e. the maximal difference between 

normalized reflectances is below a threshold: 

 

E3 = max | ρ1(λ)/||ρ1|| − ρ2(λ)/||ρ2|| |< S3 

                                λ  

While the spectral angle is a global criterion, this allows us to 

detect local dissimilarities between spectra. 

S2 and S3 are set respectively to 0.1 and 0.05. S1 is the most 

critical threshold, since it defines the confidence level of the 

extended ground truth. We chose a conservative value of 1° for 

a limited but very reliable extrapolation. This clustering allows 

us to obtain the ground truth illustrated in Fig. 2d comprised of 

157,259 annotated pixels (10% of the image).  

This extended ground truth was further validated by the team 

that has been on the ground. 

 

 

4.           CLASSIFICATION 

Considering that our goal is to find direct and indirect clues 

related to the presence of hydrocarbons, we investigate several 

machine learning strategies for land cover classification. 

 

4.1  Healthy/stressed vegetation classification 

Recent studies showed that vegetation health is a good indicator 

of soil pollution due to oil or gas (Arellano, 2015), (Noomen, 

2012), (Lassalle, 2018). The differences in parenchyma 

structure and cell morphology due to stress induce a variable 

response in the near-infrared (NIR), while the variations in plant 

Figure 2 (a) True color image (b) SWIR image                  (c) Ground truth (in situ)       (d) Ground truth (extrapolation)   

Legend: blue: water, grey: grey sand, orange: laterite, red: concrete, purple: old backwater (north), magenta: old backwater (south), 

brown: short stressed vegetation and naked soil, yellow: short stressed vegetation, dark green: sparse green vegetation, light green: 

dense green vegetation. 
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structural materials (lignin and cellulose) and water content 

induce a response in the short-wave infrared (SWIR) domain 

(Sils et al., 2002), (Ustin et al., 2009), (Cheng et al., 2006). 

Therefore, a first approach consists in identifying three main 

classes on the hyperspectral image: “water”, “bare soil/man-

made structure”, “healthy vegetation”. The remaining 

unclassified pixels are assumed to be the stressed vegetation 

that might indicate a contaminated soil. We rely on specific 

absorption indexes based on wavelengths situated in optical 

atmospheric windows. Although this requires expert 

knowledge, it can be done without any pixel annotation. 

 

Healthy vegetation is characterized using a combination of the 

biomass predictor NDVI (Normalized Difference Vegetation 

Index) (Rouse, 1974), (Thenkabail et al., 2000), the carotenoid 

pigment index PRI (Photochemical Reflectance Index) (Gamon 

et al., 1992) and SAVI (Soil Adjusted Vegetation Index) (Huete, 

1998).  PRI is sensitive to changes in carotenoid pigments in 

live foliage and uses reflectance at 531 and 570 nm 

wavelengths. The narrow-band version of the NDVI results in 

the combination of NIR (830 nm) to red (640 nm) reflectances. 

It is considered as a good predictor of wet and dry green 

biomass and reduces sensitivity to non-photosynthetic 

vegetation. The predominant vegetation on the site is 

herbaceous with moderate leaf area index value and there is no 

risk of NDVI saturation. SAVI is used to improve canopy 

structure estimates and minimize the impact of the atmosphere 

and substrate. It uses the spectral bands at 700, 780 and 900 nm. 

 

The bare soil/man-made structure is classified using the revised 

OSAVI (WU et al., 2008) to separate bare soil and arid 

vegetation, and NDBI (Normalized Difference Built-Up Index) 

(Zha et al., 2003) and UI (Urban Index) (Kawamura et al., 

1996).  

The revised OSAVI index is used to separate the pixels between 

the bare soil and the arid vegetation. It exploits the spectral band 

at 705 nm and 750 nm. NDBI and UI have been employed in 

various studies for mapping the built-up and bare land in urban 

areas. NDBI and UI are applied to narrow spectral bands even if 

there were specified for satellite with broad spectral bands. 

NDBI is based on the spectral bands at 855 and 1635 nm. UI 

uses the bands at 830 and 2210 nm. 

 

Finally, we detect water bodies pixels by combining the HDWI 

(New Hyperspectral Difference Water Index) (Xie et al., 2014) 

and NDWI (Normalized Difference Water Index) indices. 

NDWI was initially specified to delineate open water features 

using the green and NIR bands of Landsat TM. HDWI is 

constructed to increase the contrast between water and other 

dark surfaces like shadowed regions by taking advantage of the 

differences in the spectral amplitudes, particularly in the red and 

the NIR regions of the spectra. 

 

The classified image using the index combination is shown in 

Fig. 3. The unclassified pixels (in black) are considered as 

stressed vegetation. Stressed vegetation areas are located near 

the factory, along the pipeline and around the pit. These results 

are consistent with what was observed in the field. Notably, the 

vegetation that grew over the well mudpit is distinctively 

detected. This mudpit is indeed surrounded by an earth dam 

made of sand, which is consolidated by adding heavy 

hydrocarbons, as a sort of tarmac. In addition, the vegetation on 

top the dam is regularly mawn.  

 

 

 
Figure 3 True colour image (left) and classification results 

(right). Legend: red: bare soil/man-made structure, blue: water, 

green: healthy vegetation, black: stressed vegetation. 

 

 

Further to the North-East (Fig.4), the vegetation on top of the 

ridge covering a pipe also appears as stressed. In the field it 

appeared as a different vegetation than the one observed on both 

side of the pipe as seen on Fig. 5.  

The ground soil is very sandy and permeable. As a result, the 

humidity level at the top of the ridge was less than 1%, which is 

very low. This very low water content probably explains the 

sparse vegetation and the presence of different plant species 

than in the more humid flanks of the pipe. 

 

 

 

 
Figure 4: Respective locations of mudpit and pipe 
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4.2 Unmixing and endmember classification 

Based on these promising results, we try to investigate further 

how much information can be extracted from the hyperspectral 

image. Especially, we aim to identify different kinds of 

materials and vegetations and their distribution in the scene. 

In order to give an overview of the polluted area in a context 

wherein no prior information about the scene available, we use 

an original automatic classification called UM-SVM, combining 

unmixing and SVM classification (support Vector Machine) 

(Achard et Al., 2018) . 

 

 
Figure 5: South-East ward looking view showing sparse drier 

vegetation on top of pipe compared to the vegetation on the 

sides. Humidity on top on pipe is less than 1%. 

 

First, we apply an automatic endmembers (EM) extraction 

(AEE) process using a deterministic approach based on OSP 

(Orthogonal Subspace projection) [20]. Abundances are then 

computed with fully constrained unmixing method. We extract 

learning samples from the abundance maps and use them to 

train a SVM for classification. 

 

 
Figure 6: Endmembers obtained with OSP 

 

Determining the number of EM in hyperspectral unmixing is a 

complex issue that has motivated several works (Boucas-Dias, 

Nascimento, 2008), (Chang, Du, 2004). Here, we benefit from 

OSP AEE as increasing the EM numbers do not change the 

already extracted EM. Thus, we are less sensitive to the initial 

number of EM. When selecting learning samples from 

abundance maps, some classes are rejected based on a criterion 

of too small set of samples with significant abundances. This 

step, also makes the method less sensitive to the chosen EM 

number, seeing that if enough EM are chosen, the smallest sets 

will be automatically filtered out. In this study, we initially 

choose 20 endmembers, 16 of which are finally retained. The 

corresponding endmembers are shown in Fig. 6. 

 

Finally, we apply an SVM classification on the whole image 

using a polynomial kernel of degree 3. The result is illustrated 

on Fig. 7. We can then manually map the endmembers with the 

classes of interest. This approach was already tested by Achard 

et Al. in a similar environment (Achard, 2018) and giving good 

results. Here, the classification results are consistent with the 

extended ground truth although the “stressed vegetation” covers 

a very wide area. This confirms that the class taxonomy is 

consistent with the actual pure materials present in the 

hyperspectral image, but questions where to set the limit of 

what is defined as stressed vs healthy vegetation. 

 

 
Figure 7: Classification map obtained using UM-SVM. 

Legend: Blue: water (EM10), Yellow: Bare soil/very sparse 

vegetation (EM19), Very dark green: Stressed vegetation 

(EM6), Dark green: Green vegetation (EM13,14), Green: Green 

vegetation (EM 1,18,20), Light green: Green vegetation (EM3). 

Other colors: man-made and bare soils (EM 5, 7, 11, 12, 16, 

17). 

 

4.3 Deep learning-based classification 

Finally, we investigate the use of deep neural networks for 

automated classification using all the classes identified by the 

in-situ campaign. The goal is to see whether it is feasible to 

automatically parse the data using a deep network to 

automatically identify the materials of the scene, especially 

when dealing with future acquisitions. Deep learning has 

established new state-of-the-art for hyperspectral image 
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classification using 2D and 3D Convolutional Neural Networks. 

These approaches use trainable convolutional kernels stacked 

with non-linear activation functions that operates both in the 

spectral and spatial dimensions. This allows the network to 

automatically learn a representation of the data that combine 

spectral and spatial features suitable for classification. Deep 

networks are known to be one of the must data-hungry 

statistical learning model, however the hyperspectral dataset is 

larger than all of the publicly available annotated hyperspectral 

datasets such as Pavia or Indian Pines. 

We choose to compare three different models for this multi-

class classification task: a baseline linear SVM, a 1D 3-layers 

deep fully connected neural network and the 3D CNN proposed 

in [3]. This covers both spectral and spatial-spectral approaches. 

We train each network on the original ground truth (Fig. 2c) and 

we measure the agreement score with the extrapolated 

annotations from Section 3 (Fig. 2d). Results are detailed in 

Table 2 and show that neural networks can significantly 

improve over traditional SVM approaches. Moreover, it stresses 

out that spectral approaches can be very effective but also 

improve performance for classes that possess specific spatial 

properties, such as concrete structures and homogeneous dense 

vegetation patches. Discriminating between types of soil is 

challenging (e.g. separating the dried backwater from short 

vegetation mixed with soil) and could be addressed separately 

to improve the accuracy. 

 

 

 

5. CONCLUSION 

This work presents a real-world use case of hyperspectral 

imagery and its applications in material and vegetation 

classification. Especially, we acquire a large dataset over a 

production area with over 50 years of production history in 

order to assess the feasibility of performing hydrocarbon 

detection using vegetation health as a proxy.  

Based on sparse in situ measurements, we develop a traditional 

index based classification, an unsupervised UM-SVM 

classification and two machine learning strategies to extract 

knowledge from the hyperspectral data. First, we show that 

hand-crafted reflectance indices can be used for classification of 

healthy and stressed vegetation. In this case study, this approach 

is quite efficient.  Then, we show how an unsupervised un-

mixing can be used to bootstrap an SVM for land cover 

classification. Land cover classification is god but with 

probably a too large stressed vegetation class. Finally, we show 

that deep neural networks can effectively leverage large amount 

of hyperspectral data for land cover classification and 

vegetation health monitoring. If we are looking at precision 

metrics neural networks are performing well.  

This case study revealed that they were several types of 

vegetation stresses; hydrocarbon related stress was observed 

around the mudpit, hydric stress even in this tropical 

environment on top of pipes, and stressed vegetation at the 

bottom of dried near shore lagoons. The classification map is 

therefore not a map of oil impacted areas, but it will help reduce 

significantly the areas to check on the ground to identify 

impacted areas. 

 

ACKNOWLEDGEMENTS  

This work was performed as part of TOTAL-ONERA NAOMI 

collaboration. 

 

REFERENCES 

 

Achard V., Fabre S., Alakian A., Dubucq D., Déliot P., 2018 : “ 

Direct or indirect on-shore hydrocarbon detection methods 

applied to hyperspectral data in tropical area”, SPIE Remote 

Sensing, Sep 2018, BERLIN, Germany. 10.1117/12.2325097. 

hal-01969425 

 

Arellano P., Tansey K., Balzter H., et al., 2015: “Detecting the 

effects of hydrocarbon pollution in the Amazon for-est using 

hyperspectral satellite images,” Environmental Pollution, vol. 

205, pp. 225–239, Oct. 2015. 

Ben Hamida A., Benoit A., Lambert P., et al., 2016: “Deep 

Learning Approach for Remote Sensing Image Analysis,” in 

Big Data from Space, Santa Cruz de Tenerife, Spain, Mar. 

2016, p. 133. 

Berk A., Anderson G. P., Bernstein L. S., et al., 1999: “MOD-

TRAN4 radiative transfer modeling for atmospheric correction,” 

vol. 3756, International Society for Optics and Photonics, Oct. 

1999, pp. 348–354. 

Bioucas-Dias J. M., Nascimento J. M. P., 2008: “Hyper-spectral 

subspace identification,” IEEE Trans. Geosci. Remote Sens., vol. 46, 

no. 8, pp. 2435–2445, Aug. 2008. 

Chang C.-I., Du Q., 2004: “Estimation of number of spectrally 

distinct signal sources in hyperspectral im-agery,” IEEE Trans. 

Geosci. Remote Sens., vol. 42, no. 3, pp. 608–619, Mar. 2004. 

Chang C. I., Xiong W., Chen H. M., et al., 2011: “Maximum 

orthogonal subspace projection approach to estimating the number of 

spectral signal sources in hyperspectral imagery,” IEEE Journal of 

Selected Topics in Signal Processing, vol. 5, no. 3, pp. 504–520, Jun. 

2011. 

Cheng Y.-B., Zarco-Tejada P. J., Riaño D., et al., 2006: “Estimating 

vegetation water content with hyperspectral data for different canopy 

scenarios: Relationships be-tween AVIRIS and MODIS indexes,” 

Remote Sens. Environ., vol. 105, no. 4, pp. 354–366, Dec. 2006. 

Gamon J. A., Peñuelas J., Field C. B., 1992: “A narrow-waveband 

spectral index that tracks diurnal changes in photosynthetic 

efficiency,” Remote Sens. Environ., vol. 41, no. 1, pp. 35–44, Jul. 

1992. 

Huete A. R.,1988: “A soil-adjusted vegetation index (SAVI),” 

Remote Sens. Environ., vol. 25, no. 3, pp. 295–309, Aug. 1988. 

Table 2: Classification scores for three ML algorithms 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-395-2020 | © Authors 2020. CC BY 4.0 License.

 
399



 

 

Kawamura M., Jayamana S., Tsujiko Y.,1996: “Relation between 

social and environmental conditions in Colombo, Sri Lanka and the 

Urban Index estimated by satellite remote sensing data.”, ISPRS 

Ann. Photogramm. Remote Sens. Spat. Inf. Sci, vol. 31, no. B7, pp. 

321–326, 1996. 

Lassalle G., Credoz A., Hédacq R., et al.,2018: “Assessing Soil 

Contamination Due to Oil and Gas Production Using Vegetation 

Hyperspectral Reflectance,”, Environmental Science & 

Technology, 2018 52 (4), 1756-1764. DOI: 

10.1021/acs.est.7b04618 

Miesch C., Poutier L., Achard V., et al.,2005: “Direct and inverse 

radiative transfer solutions for visible and near-infrared 

hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 

43, no. 7, pp. 1552–1562, Jul. 2005. 

Noomen M. F., van der Werff H. M. A., van der Meer F. D., 

2012: “Spectral and spatial indicators of botanical changes 

caused by long-term hydrocarbon seepage,” Ecological 

Informatics, vol. 8, pp. 55–64, Mar. 2012. 

Plyer A., Colin-Koeniguer E., Weissgerber F.,2015: “A new 

coregistration algorithm for recent applications on urban sar images,” 

IEEE Geosci. Remote Sens. Lett., vol. 12, no. 11, pp. 2198–2202, 

Nov. 2015. 

Rouse J. W.,1974: “Monitoring vegetation systems in the Great 

Plains with ERTS,” in 3rd Earth Resource Technology Satellite 

(ERTS) Symposium, vol. 1, Jan. 1974, pp. 48–62. 

Sims D. A., Gamon J. A., 2002: “Relationships between leaf 

pigment content and spectral reflectance across a wide range of 

species, leaf structures and developmental stages,” Remote Sens. 

Environ., vol. 81, no. 2, pp. 337–354, Aug. 2002. 

Thenkabail P., Smith R., De Pauw E.,2000: “Hyper-spectral 

vegetation indices for determining agricultural crop characteristics,” 

Remote Sens. Environ., vol. 71, pp. 158–182, 2000. 

Ustin S. L., Gitelson A. A., Jacquemoud S., et al.,2009: “Retrieval 

of foliar information about plant pigment sys-tems from high 

resolution spectroscopy,” Remote Sens. Environ., vol. 113, S67–

S77, Sep. 2009. 

Xie H., Luo X., Xu X., et al., 2014: “New hyperspectral difference 

water index for the extraction of urban water bodies by the use of 

airborne hyperspectral images,” J. Appl. Remote Sens, vol. 8, no. 1, 

pp. 85–98, Jul. 2014. 

Wu C., Niu Z., Tang Q., et al.,2008: “Estimating chlorophyll content 

from hyperspectral vegetation indices: Model-ing and validation,” 

Agricultural and Forest Meteorol-ogy, vol. 148, no. 8, pp. 1230–

1241, Jul. 2008. 

Zha Y., Gao J., Ni S.,2003: “Use of normalized differ-ence built-up 

index in automatically mapping urban ar-eas from TM imagery,” 

International Journal of Remote Sensing, vol. 24, pp. 583–594, Feb. 

2003. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-395-2020 | © Authors 2020. CC BY 4.0 License.

 
400




