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Abstract
WCET analysis is a key activity in the development of safety critical real-time systems. Whether
upper bounds on WCETs are obtained using static analysis or measurements, the confidence on the
compliance of a system with its temporal requirements directly depends on the confidence on these
estimations. Static WCET analysis based on abstract interpretation takes benefits from its formal
foundations. However, it also strongly depends on the correctness of the underlying models. We
hereby show how we have validated the version of the data flow static analyser of OTAWA applied
to the AURIX TC275 target processor.
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1 Introduction

In a real-time system, correctness in the time domain is as important as correctness in the
value domain. For instance, a sensor value (resp. a message) may be meaningless if it is
acquired (resp. delivered) too early or too late. For a software system, demonstration of
temporal correctness relies on the estimation of the application’s Worst Case Execution
Times (WCET).

WCET may be used to perform schedulability analysis or response time analysis, or
to demonstrate compliance with the synchronous execution model hypothesis. WCET can
be estimated empirically on the basis of measurements, or analytically on the basis of a
model [19]. Among various WCET-estimation strategies, static WCET analysis relies on an
appropriate abstraction of the application and execution platform to compute a safe upper
bound of the actual WCET, by means of abstract interpretation [4].

Confidence on the results produced by static analysis directly depend on (1) the correctness
on the processor model, and (2) the correctness of the analyses. In this paper, we present
the method that we have used to validate these two elements for the Aurix TC275 static
analyser for data flow. To ensure (1), we propose to compare the behaviour of an Instruction
Set Simulator (ISS) generated from the processor model with a reference ISS or the actual
platform. To ensure (2), we propose to compare the abstract states built by abstract
interpretation with the concrete states generated from a reference ISS or the actual platform.
Note that the proposed approach neither verifies all the analyses performed by the static
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analyser, nor guarantees the absolute absence of errors for the analyses that are covered – it
basically relies on testing –, but it does not require huge effort on modifying the existing
framework, stays modular and can be automated.

This paper is organised as the follows: The background is presented in section 2; an
overview of our approach is described in section 3; the application of our approach on the
AURIX TC275 is detailed in section 4; the experimental results of the application are shown
in section 5; the related and the on-going works are described in section 6; finally section 7
concludes the paper.

2 Background

This section introduces the OTAWA framework used to develop WCET static analysers, and
the Sim-NML language used to describe ISA (Instruction Set Architectures).

2.1 OTAWA - an open source framework to compute WCET
OTAWA [3] is an open-source framework to build static WCET analysers. A typical WCET
analyser is built on the following facilities provided by OTAWA: (1) the binary decoder used to
extract the program instructions and other information contained in the executable file, such
as the initial memory contents; (2) a set of static analyses based on abstract interpretation [4]
to capture the behaviours of the underlying hardware; and (3) other components to aid the
WCET computation, e.g. an ILP solver.

The binary decoder is generated by the the GLISS [13] tool from a description of the
target processor’s ISA written in Sim-NML [18]. An ISS (instruction-set simulator) is also
generated from the same description.

Being open-source and its implementation structure, the framework can be easily extended
to provide new capabilities, including the generation of any intermediate result of the static
analyses. For instance, to support the validation activities presented in this paper, it was
modified to produce the concrete processor states from the customised- and generated-ISS,
and the abstract states produced by the abstract analyser. The same strategy can be applied
to any other open-source WCET computation framework.

2.2 Sim-NML: the language to describe ISA and semantic instructions
OTAWA is designed to be platform-independent. To achieve this independence, the model of
the hardware target – including its ISA and the behaviour of its instructions – are described
in an external file using the dedicated language Sim-NML.

Listing 1 shows the mov instruction from the Tricore architecture described in Sim-NML.
The first line declares that mov operates on two data registers (of type reg_d) named c and
b. The second line describes the bit-level structure (or “image”) of the instruction: the first
4 bits contains the ID of the register c, followed by the 8-bit value 0x1F, and so forth. An
“X” indicates an unused bit. The third line describe the syntax of the operation in assembly
code. Finally, the action segment describes the behaviour of the instruction. In this example,
it assigns the value of register b to register c. This segment is used to generate the ISS using
GLISS2, and to perform some analyses such as program slicing (i.e. to propagate the register
values, the analyser needs to identify the registers that are written/read).

In order to make static analysis as independent as possible from the target platform,
OTAWA translates each instruction into a set of more primitive semantic instructions [2].
Those semantic instructions must capture the behaviours of all instructions encountered in
an execution scenario.



W.-T. Sun, E. Jenn, and H. Cassé 6:3

Listing 1 the structure of NMP that describes an instruction - mov.
op mov_reg (c:reg_d , b:reg_d)

image = format ("%4b %8b XXXX %4b XXXX %8b",c.image ,0x1F ,b.image ,0 x0B)
syntax = format (" mov %s,%s",c.syntax ,b. syntax )
action = { c = b; }

Listing 2 Provide the instruction type as an attribution to the mov instruction.
extend mov_reg

sem = { SET(D(c.i), D(b.i)); }

Semantic instructions are added to the existing operation description as shown in Listing 2
using attributes. In this example, the semantics of mov is expressed using the SET semantic
instruction; it states that register c shall get the value of register b. Note that the register
naming follows the declaration of the original operation (as shown in the second line).

Currently, the descriptions for each instruction is still produced manually, and this can
be an error-prone process. Errors may affect the selection of the registers (e.g., specifying
register d as the target instead of register c) or the translation into the semantic instructions
(which would not correctly capture the meaning of the processor instruction)1.

3 The proposed approach

Out of our experience, errors are essentially introduced (i) during the modelling of the
processor’s ISA, and (ii) during the implementation of the static analysis based on abstract
domains. To identify errors introduced in (i), we propose to cross-check the ISS (instruction-
set simulator) provided by the manufacturer (or by any other trusted source) with the ISS
generated from the processor ISA model in Sim-MNL. To identify errors introduced in (ii), we
propose to cross-check the abstract states computed by the abstract interpreter against the
concrete states computed by some trusted ISS or by the ISS generated out of the processor
ISA model.

3.1 Verification of the processor ISA model

Figure 1 shows the different steps necessary to verify the processor ISA model. In our case,
the model is crafted using the NMP format based on Sim-NML [18]. It is then fetched to an
ISS generator, e.g. GLISS2 [13], to generate an ISS automatically.

The verification process consists of executing one or several test programs (with their
stimuli) on both the real processor (or some trusted ISS, such as the Infineon’s TSIM for the
TC275) and the generated ISS, and to compare the execution traces obtained from the two
executions. Execution traces contain the successive states of the processor registers and the
memory contents. If both traces are identical, the processor model and the actual processor
are deemed equivalent (for the test programs considered). Otherwise, the execution traces are
investigated to find the causes of the discrepancy(ies), and to correct the processor Sim-NML
model. This is an iterative process that stops when equivalence is shown for all test programs.

1 An automatic translation from the behaviour description of an operation to semantic instructions is
relatively complex and not implemented in OTAWA: actual machine instructions are often very complex
and provides much more details than required by dataflow analyses.
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Figure 1 Verification of the processor model.

3.2 Verification of the static analyser

Abstract interpretation proceeds by executing a program in an abstract domain that preserves
the properties of interest. This interpretation relies on the semantics of the instructions given
in the ISA model which verification has been described in the previous section.

The static analysers interpret all the instructions of a given binary to determine the
successive states of the execution platform components, including registers, memories, etc.
To verify that the analysis is correct, we propose the approach depicted in Figure 2.

The program object code (binary) is processed by both the static analyser and the
actual processor (or an ISS). They produce a series of abstract states and concrete states,
respectively. Comparison between the two traces is performed at specific “comparison points”
corresponding to specific program locations. Comparison can be done at “fine-grain” (e.g.,
at each instruction) or at “coarse-grain” (e.g., at the end of each function call). For each
comparison point, the concrete state is checked against the corresponding abstract state.
Abstraction is deemed correct if, for all comparison points, the abstract state is a correct
abstraction of the corresponding concrete state. In Abstract Interpretation, an abstract state
is sound at a particular program point if it includes any valid concrete state generated at
this point. Note that, as for the previous verification, validity is demonstrated with respect
to one or several input programs and on or several input stimuli for each program, so, the
quality of the verification depends on the “coverage” of the program set and input stimuli.

4 Applying the proposed approach for support AURIX TC275 on
OTAWA

Applying the proposed method on the AURIX TC275 is illustrated in Figure 3, where each
step of the method is numbered. The figure is partitioned into two parts: the light gray
area covers the validation of the processor model, such as the instruction decoding and
branch-target identification. The dark grey area covers the validation process for any static
analysis used in the overall WCET estimation process.
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Figure 2 Verification of abstract states versus the concrete states.

4.1 Verification of the TC275 processor ISA model
In the first phase, the NMP files are created (1) to capture the description of the ISA,
which consists of the decoding information of the instructions as well as their behaviour (the
semantic instructions) to enable architecture-independent static analyses. The content of the
NMP files are created out of the documentation provided by the chip manufacturer. For the
TC275, for instance, the instruction timings are extracted from the data-sheet [1] and the
instruction formats and behaviours are obtained from the instruction-set user manual [17].

In the second phase, the GLISS2 tool uses the NMP files to generate a library for
instruction decoding and a standalone ISS (3).

To validate the NMP model, a program binary is loaded and executed by both the
generated ISS and a reference execution structure (simulator or actual processor). In our
case, the reference is the TSIM ISS provided by Infineon (4). The two execution traces (i.e.
the sequence of the instructions and their addresses, the register values, and the accessed
memory content) are then compared (5). Any discrepancy found during the comparison shall
lead to the correction of the ISA description and to a new iteration of the process.

4.2 Verification of the abstract interpreter for the TC275
A database of operations (IRG file) is generated by processing the ISA description using the
GLISS2 tool (6). The semantic instructions are added to operations through the use of the
extend keyword (7) as presented in Section 2.2. The target binary file is then given as input
to OTAWA for WCET estimation (8).

As the first step of the WCET estimation, OTAWA processes the binary thanks to the
instruction decoder provided with the ISS (see (3)). The structural elements of the program –
the CFGs (control-flow graph) and BBs (basic blocks) – are also identified in this step. Then
the corresponding semantic instructions are interpreted, the abstract states are computed
and associated with each BB.

Finally, an ILP problem is created with an objective function composed from the results
of the aforementioned analyses and the constraints from the program structure. The solution
of the ILP problem determines the WCET.

WCET 2019
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Figure 3 The overall workflow that combines both validation approaches.

To validate the static analysis, the abstract states associated with each BB are extrac-
ted (9). At each check point, e.g., the end of a BB, the concrete state (10) is compared with
the abstract state (11). If the concrete state is part of the abstract state, then we consider
that the verification has passed for this given binary. Verification shall be performed on
several binaries to improve confidence. Similar to the verification process of the processor
ISA model, the validation of the static analyser is also iterative: for any discrepancy detected,
a correction is applied, and the verification process is performed again.

Address/value analysis in OTAWA uses the CLP abstract domain [15, 2]. As the CLP
abstract domain is used for several subsequent analyses as data-cache analysis (to know which
address the program tries to access), dynamic-branch resolution [16], etc., its soundness and
precision is crucial for the WCET estimation. The CLP abstract states consist of the values
of each register and each accessed memory location expressed in the CLP domain. The
evolution of the abstract states are based on the interpretation of the semantic instructions
of the given program.

An example of verification is depicted on Figure 4. The target program consists of a
single if-else statement. Abstract states (DA) are displayed at the end of each BB. Only the
values of the data register D1 are shown for simplicity. The abstract state in CLP domain
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is represented as a range. At the end of BB1, D1 contains value [1]. Since static analysis
considers all possible scenarios, both execution paths to BB2 and BB3 are taken into account,
which leads to two different abstract states: [0-2] at the end of BB2, and [1-5] at the end of
BB3. These states are joined at the beginning of BB4. The resulting state is [0-5] which
encompasses both ranges. As D1 is not modified in BB4, this is also the value of D1 at the
end of the program.

The concrete states of D1 (i.e., the values computed during a concrete execution) are
denoted by DC on the figure. Note that there is no concrete state associated with BB2
because only the right branch (leading to BB3) was executed during the test. Whenever
the execution reaches the end of a BB, the current concrete state is compared with the
corresponding abstract state, e.g. for BB 3, D1 = 3 which falls in the range [1-5], so
the test passes. The validation of the address/data analyses provides two “guarantees”:
(1) the correct translation of semantic instructions in the NMP file, and (2) the correct
abstract interpretation.

BB 1

BB 2 BB 3

BB 4

D1A = [1]

D1A = [0-2] D1A = [1-5]

D1A = [0-5]

D1C = 1

D1C = 3

D1C = 3

Entry

Exit

Figure 4 An example of checking if the abstraction is satisfied.

5 Experiments and results

Our approach has been applied using two sets of input programs: a subset of the Mälardalen
benchmarks suite [8], and the set of software components of our robotic demonstrator
(TwIRTee). The coverage of the verification, expressed by the ratio between the number of
different operations executed in the programs, and the number of possible operations s (i.e.,
all the combinations of the opcodes, operands, and addressing modes, described as different
“op” in the NMP file). Due to the space limitation (35 benches from Mälardalen), partial
results are shown in Table 1.

There are 814 opcode-operand combinations (instruction types) in total for the TC1.6 (the
CPU family used in TC275), As for any test-based verification approach, the test coverage –
and so the confidence on the verification results – is highly dependant on the test inputs. In
particular, the complexity and code size of an individual benchmark does not have direct
relationship with the coverage (the number of different opcode-operand combination used).
For instance, program adpcm is around one-third smaller than program nsichneu but it
gives a higher coverage. Similarly, program bs executes around 3 times less instructions than
nsichneu, but gives a similar coverage. Moreover, all benchmarks share a common sequence

WCET 2019
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of instructions (the function _start which initialises the context area for function call and
stack) which can represent a significant part of the instruction coverage of a simple program
(this explains why the very simple binary-search application bs covers 80 combinations).

Mälardalen benchmarks cover 191 combinations (23.46%) while the TwIRTee robotics
application alone covers 209 combinations (25.68%). This tends to show that using actual
application code (involving a greater variety of algorithms) allow achieving a higher coverage
level. Together, Mälardalen benchmarks and TwIRTee only cover 28.64% of all combinations.
This may indicate that the compiler privileges a small set of opcode-operand combinations.
This limit could be overcome by directly synthesising assembly code test programs.

Table 2 gives the number of errors found in the TC275 NMP files using our method. For
each test, nearly 1/3 of the covered opcode-operand combinations were erroneous. Even
though the ratio of errors are similar among the tests, errors are not correlated. Common
errors are: (1) wrong bit-ordering, i.e. a bit range “m to n” is replaced by “n to m”, or
an erroneous bit-index is used; (2) incorrect sign-ness; (3) register-type error, e.g. using
a data register in place of an address register; and (4) mis-interpreting the ISA from the
user manual. The mappings of the semantic instructions are prone to the following errors:
(1) using the content of a register as a value rather than an index; (2) mis-interpreting the
behaviours of instructions.

Concerning the CLP analysis, few errors were detected, including one affecting the
implementation of the widening operation between two specific CLP ranges: one “corner case”
had not been considered. As a by-product of the validation process, some improvements
of the accuracy of the analysis were also identified, when applying the fixes to the errors
found, where the re-structuring of the existing codes. This includes the implementation of
the bit-wise AND operation between two CLP values. For instance, applying a bit-wise
AND with a range [-0xFF, 0xFF] and a constant 0xFF was producing the range [-0xFF,
0xFF]. While safe (i.e., all possible values were covered), this range contains negative values
(sign-extended); after modification, the result is now [0, 0xFF].

Table 1 Verification of the ISA through ISS executions.

Name Size (Byte) Instructions executed Covered op types (/814) Coverage (%)
adpcm 17,624 246,510 95 11.67%
bs 10,776 4,867 80 9.83%
fft1 13,364 83,052 148 18.18%

nsichneu 48,284 15,140 80 9.83%
Mälardalen (all) 419,728 2,795,331 191 23.46%

twIRTee 50,194 193,487,525 209 25.68%
Mälardalen + twIRTee 225 27.64%

Table 2 Results of detection.

Type Error found (full / 814, tested)
ISA model 67 (8.2%, 29.8%)

CLP analysis 71 (8.7%, 31.5%)
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6 Related and on-going works

The soundness verification of analyses involved in WCET calculation is a relatively old topic.
In 2001, Ferdinand et al. [7] presents the main principles of their tool suite, named later
aiT, as being sound-by-construction. This claim concerns mainly the use of static analysis
applied to obtain the WCET and is supported (a) by a rich scientific amount of surveys
devoted to the formal definition and verification of analyses based on Abstract Interpretation
and (b) by the automatic generation of analyses using a tool named PAG. Yet, the authors
admits that the architecture model, provided by hand, weakens the approach. More recently,
[11] proposes a verified tool that is able to compute WCET using standard IPET method.
The tool is embedded in CompCERT [10] but only targets high-level analyses – value, loop
bounds and ILP generation, and the issue of hardware verification is not treated.

In [14], Schlickling et al. present an approach to derive a timing model2 usable in a WCET
tool from a pipeline description in VHDL. The approach involves several passes of dead-code
or useless code elimination combined with abstractions driven by human interaction. The
approach is promising but (a) needs reduced but necessary human action and (b) requires
the VHDL model of the pipeline. A similar approach might be applied to automatically
extract semantics of instructions but we are not aware of any work in this direction.

There are alternatives to OTAWA’s semantic language. ALF [9] was designed as an
independent language to represent semantics of binary programs. Although several translators
from binaries to ALF exist, we are not aware of any work towards verification. CRL2 is
used in aiT [6] to represent the program whatever the underlying machine code but very few
information about it are available and specially about the support of instruction semantics.

Currently the ISA model (used in instruction decoding) and the semantic instructions
(used in the CLP analysis) are constructed separately. This prevents the bugs in the ISA
model being entailed in the semantic instructions. The human-error is the main cause when
creating both models, in particularly, i.e. two times of efforts are made to create models
which are relevant. An on-going work is to create a single model (e.g. ISA) and then the
mapping of semantic instructions will be performed automatically. To increase the coverage of
our validation process, using benchmarks such as Papabench [12] and systematic constructed
programs [5] is also under the investigation.

7 Conclusions

In this paper we have proposed and applied a method to verify some important components
of a static WCET analyser: the ISA model and the associated semantic model used by the
abstract interpreter, and some parts of the abstract interpreter itself. The verification process
is achieved by cross-checking the result produced by a reference implementation of the target
processor (a simulator or the actual hardware) and some intermediate results produced
by the WCET analysis tool. This approach has been applied on the WCET analyser for
the TC275 processor implemented using OTAWA and leads to the detection of numerous
errors in the TC275 ISA model and associated semantic model, and a few errors in the
abstract interpreter.

2 The obtained timing model is mainly an abstract simulator of the microprocessor states.
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