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THE BINARY GOLDBACH CONJECTURE IS ALSO TRUE

The binary Goldbach conjecture asserts that every even integer greater than 4 is the sum of two primes. In a preceding paper we have proved that there exists a positive integer Kα such that every even integer x > p 2 k can be expressed as the sum of two primes, where p k is the kth prime number and k > Kα. In this paper we provide an estimation for Kα, and from this result it follows that the binary Goldbach conjecture is true.

Introduction

This paper is the continuation of the author's work [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF] and proves the binary Goldbach conjecture.

Main Theorem . Every even integer x greater than 4 can be expressed as the sum of two primes.

Let S k (k ≥ 4) be a given partial sum of the series s k . Recall the notation m k for the period of the partial sum S k . For every partial sum S h from level h = 1 to level h = k, let us consider the interval I[1, m k ] h , the Left interval I[1, p 2 k ] h and the Right interval I[p 2 k + 1, m k ] h . Furthermore, recall the notation δ h , δ L k h and δ R k h for the density of permitted h-tuples within the intervals I[1, m k ] h , I[1, p 2 k ] h and I[p 2 k + 1, m k ] h , respectively. In the previous paper [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF] we showed that there exists K α > 4 such that every even number greater than p 2 k (k > K α ) is the sum of two primes. In the present paper we provide an estimate for K α , proving this way the Goldbach conjecture.

We need first to complement the discussion in [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF] about the behaviour of δ L k h and δ R k h (in the Left and Right blocks of the partition of the first period of S k , respectively) with additional observations, that we shall make in the following subsections.

1.1 The behaviour of δ R k h in the Right block of the partition.

Recall the notation c L k

h to denote the number of permitted h-tuples within the Left interval I[1, p 2 k ] h , and the notation c R k h to denote the number of permitted h-tuples within the Right interval I[p 2 k + 1, m k ] h ; furthermore, recall the notation c h for the number of permitted h-tuples within a period of the partial sum S h and c h to denote the number of permitted h-tuples within the interval I[1, m k ] h of every partial sum S h (1 ≤ h ≤ k).

We begin by the following lemma.

Lemma 1.1. Let S k be a given partial sum of the series s k . Let p k be the characteristic prime modulus of the partial sum S k . Let c k be the number of permitted k-tuples within the period of S k . We have p 2 k = o(c k ). Proof. Using [2, Proposition 2.3], we have

p 2 k c k = p 2 k (p 1 -1) (p 2 -2) (p 3 -2) • • • (p k -2) = (1) = 1 (p 1 -1) (p 2 -2) (p 3 -2) • • • (p k-2 -2) p k p k-1 -2 p k p k -2 .
Let g k-1 denote the gap p k -p k-1 ; so, p k /(p k-1 -2) = (p k-1 + g k-1 )/(p k-1 -2). By the Bertrand-Chebyshev theorem, we have g k-1 < p k-1 =⇒ (p k-1 +g k-1 )/(p k-1 -2) < 2p k-1 /(p k-1 -2). It follows that lim k→∞ p k /(p k-1 -2) < lim k→∞ 2p k-1 /(p k-1 -2) = 2. Since lim k→∞ p k /(p k -2) = 1, returning to [START_REF] Oliveira E Silva | Empirical verification of the even Goldbach conjecture and computation of prime gaps up to[END_REF] 

[p 2 k + 1, m k ] h (1 ≤ h ≤ k)
approximates the proportion of permitted h-tuples within the respective interval I[1, m k ] h more and more closely as the level k increases. Therefore, as the level k increases, we expect that every value of δ R k h (1 ≤ h ≤ k) approximates the respective average δ h more and more closely, regardless of the combination of selected remainders in the sequences s h that form the partial sum S k .

The following lemma shows that as k → ∞, the h-density within the Right interval 

I[p 2 k + 1, m k ] h of every partial sum S h (1 ≤ h ≤ k) converges
(m k -p 2 k )/p h (1 ≤ h ≤ k). Denoting by c R k h the number of permitted h-tuples within I[p 2 k + 1, m k ] h , by definition, we have δ R k h = c R k h (m k -p 2 k ) /p h (1 ≤ h ≤ k). (2) 
Step 2. Let us denote by m h the period of the partial sum S h and by c h the number of permitted h-tuples within a period of the partial sum S h . For every level from h = 1 to h = k, let c h be the number of permitted h-tuples within the interval I[1, m k ] h of the partial sum S h . Using [2, Lemma 6.1], we obtain

c 1 = c 1 p 2 p 3 • • • p k , (3) 
c 2 = c 2 p 3 p 4 • • • p k , . . . c h = c h p h+1 p h+2 • • • p k , . . . c k = c k .
Note that c h increases as the level decreases from

h = k to h = 1 (see [2, Proposition 2.3]). For every level from h = 1 to h = k, since I[1, m k ] h = I[1, p 2 k ] h ∪ I[p 2 k + 1, m k ] h , the number of permitted h-tuples within the Right interval I[p 2 k + 1, m k ] h cannot exceed c h , so we have c R k h ≤ c h .
On the other hand, the number of permitted h-tuples within the Left interval I[1, p 

c h -p 2 k (m k -p 2 k ) /p h ≤ δ R k h ≤ c h (m k -p 2 k ) /p h (1 ≤ h ≤ k),
so, extracting the common factors c h and m k , we have

c h m k /p h 1 -p 2 k /c h 1 -p 2 k /m k ≤ δ R k h ≤ c h m k /p h 1 1 -p 2 k /m k . Now, by definition, m k = p 1 p 2 p 3 • • • p h p h+1 p h+2 • • • p k = m h p h+1 p h+2 • • • p k .
Then, using (3) and canceling common factors, we obtain

c h m h /p h 1 -p 2 k /c h 1 -p 2 k /m k ≤ δ R k h ≤ c h m h /p h 1 1 -p 2 k /m k .
By definition

δ h = c h m h /p h ,
thus, for every partial sum S h from level h = 1 to level h = k, regardless of the combination of selected remainders in the sequences s h that form the partial sum S k , we have the bounds

δ h 1 -p 2 k /c h 1 -p 2 k /m k ≤ δ R k h ≤ δ h 1 1 -p 2 k /m k . ( 4 
)
Step 3. Now, let > 0 be a given small number, and let N ≥ 12. For level h = k, from (4) we have

δ k 1 -p 2 k /c k 1 -p 2 k /m k ≤ δ R k k ≤ δ k 1 1 -p 2 k /m k .
On the one hand, p 2 k = o(m k ); on the other hand, c k = c k , by (3), thus, by Lemma 1.1, p 2 k = o(c k ). Moreover, it follows from [2, Proposition 2.3] that c k < m k . Therefore, we can take sufficiently large N that for level k > N ,

δ k - 2 < δ k 1 -p 2 k /c k 1 -p 2 k /m k ≤ δ R k k ≤ δ k 1 1 -p 2 k /m k < δ k + 2 , (5) 
at level h = k.

Step 4. Now, the rightmost inequality in (5) implies

δ k 1 1 -p 2 k /m k -1 < 2 .
For a given level h < k, since k > N ≥ 12 by hypothesis, it is easy to check using [2, Lemma 3.2] and [2, Corollary 3.3] that δ h ≤ δ k . Hence,

δ h 1 1 -p 2 k /m k -1 < 2 =⇒ δ h 1 1 -p 2 k /m k < δ h + 2 . (6) 
Step 5. The leftmost inequality in (5) implies

δ k 1 - 1 -p 2 k /c k 1 -p 2 k /m k < 2 .
For a given level h < k, since k > N ≥ 12, we have δ h ≤ δ k (see Step 4). On the other hand, c k = c k < c h < m k , where 1 ≤ h < k (see (3) and [2, Proposition 2.3]). Hence, replacing δ k with δ h and c k with c h , we obtain

δ h 1 - 1 -p 2 k /c h 1 -p 2 k /m k < 2 =⇒ δ h - 2 < δ h 1 -p 2 k /c h 1 -p 2 k /m k . (7) 
Step 6. We now prove the lemma. By (4), (5), ( 6) and (7), for k > N we can write

δ h - 2 < δ h 1 -p 2 k /c h 1 -p 2 k /m k ≤ δ R k h ≤ δ h 1 1 -p 2 k /m k < δ h + 2 ,
for every level from h = 1 to h = k. This result implies |δ R k h -δ h | < for every level from h = 1 to h = k (k > N ), regardless of the combination of selected remainders in the sequences s h that form every partial sum S k . Let us consider every partial sum S h from h = 1 to h = k. Regarding the Left and Right intervals, although the increase in the number of permitted h-tuples within one interval is equal to the decrease in the number of permitted h-tuples within the other interval, clearly the increase in the h-density within one interval is not equal to the decrease in the h-density within the other interval. The following lemma gives the relationship between the h-density within I[1, p h for all the combinations of selected remainders in the sequences that form the partial sum S h (see [2, Lemma 7.3]); in the same way, we use the notation {δ

The behaviour of δ

R k h } to denote the set of values of δ R k h . Lemma 1.3. There is a bijective function f h : {δ L k h } → {δ R k h } such that f h (x) = δ h -(x -δ h ) p 2 k m k -p 2 k , and 
f -1 h (x) = δ h + (δ h -x) m k -p 2 k p 2 k .
Proof. For a given level h (1 ≤ h ≤ k), if we change the combination of selected remainders in the partial sum S h , some permitted h-tuples will be transferred from the Left interval 

I[1, p 2 k ] h to the Right interval I[p 2 k + 1, m k ] h ,
δ R k h . Therefore, for a given level h (1 ≤ h ≤ k), we can define a bijective function f h : {δ L k h } → {δ R k h }. Now, for the partial sum S h assume that the h-density within both I[1, p 2 k ] h and I[p 2 k + 1, m k ] h is equal to the average δ h .
Then, suppose that some permitted h-tuples are transferred from the Right interval to the Left interval. We have an increase (δ L k h -δ h ) in the h-density within the Left interval and a decrease (δ h -δ R k h ) in the h-density within the Right interval. See [2, (21)]. Since there are p 2 k /p h subintervals of size p h within the Left interval

I[1, p 2 k ] h , by definition, the number of permitted h-tuples entering the Left interval is equal to (δ L k h -δ h )p 2 k /p h .
In the same way, within the Right interval

I[p 2 k + 1, m k ] h there are (m k -p 2 k )/p h subintervals of size p h , so, the number of permitted h-tuples exiting the Right interval is (δ h -δ R k h )(m k -p 2 k )/p h .
Since the number of permitted h-tuples entering the Left interval must be equal to the number of permitted h-tuples exiting the Right interval,

δ L k h -δ h p 2 k p h = δ h -δ R k h m k -p 2 k p h =⇒ δ R k h = δ h -δ L k h -δ h p 2 k m k -p 2 k .
Therefore, we have a bijective function

f h : {δ L k h } → {δ R k h }, such that f h (x) = δ h -(x -δ h )(p 2 k /(m k -p 2 k )), and we can check that f -1 h (x) = δ h + (δ h -x)(m k -p 2 k )/p 2 k . Remark 1.1. Note that for a given level h (1 ≤ h ≤ k), the image of max{δ L k h } under the function f h of the preceding lemma is min{δ R k h }, and the image of min{δ L k h } under f h is max{δ R k h }. See the proof of Lemma 1.3 and [2, (21)].
By [2, Theorem 4.3], the average density of permitted h-tuples within every Left interval I[1, p 2 k ] h is equal to δ h , that is, is equal to the h-density within the period of the partial sum S h . The following lemma shows that the values of the h-density within the Left interval I[1, p 2 k ] h of every partial sum S h (1 ≤ h ≤ k) converge uniformly to the respective average δ h as k → ∞, no matter the combination of selected remainders in every partial sum S k . Definition 1.1. We define the extended function ϕ h : R + → R + such that ϕ h = f h , where f h is the first function of Lemma 1.3, and we define the extended function ϕ -1 h : R 

+ → R + such that ϕ -1 h = f -1 h , where f -1 h is the second function of Lemma 1.3, for every h (1 ≤ h ≤ k). Remark 1.2. Note that for a given level h (1 ≤ h ≤ k),
δ h -∆ < min{δ L k h } ≤ δ L k h ≤ max{δ L k h } < δ h + ∆ (8)
when k > K, for every Left interval I[1, p 2 k ] h from h = 1 to h = h , regardless of the combination of selected remainders in S k .

Step 2. Let P be the sequence of the primes. Given the small number ∆, we define the sequence { k } = 1 , 2 , 3 , 4 , . . . by the equations

1 = 1, 2 = 1, 3 = 1, and k = ∆ p 2 k m k -p 2 k for k ≥ 4, p k ∈ P.
Note that k decreases and tends to 0 as k → ∞.

Now, let us consider the Right interval I[p 2

k + 1, m k ] h in every partial sum S h from level h = 1 to level h = h . Applying the function ϕ h to each member of (8) and using remarks 1.1 and 1.2, we obtain

ϕ h (δ h -∆) > ϕ h min{δ L k h } ≥ ϕ h δ L k h ≥ ϕ h max{δ L k h } > ϕ h (δ h + ∆) if k > K,
for every partial sum S h from h = 1 to h = h , regardless of the combination of selected remainders in S k . Then, since the function f h is the restriction of ϕ h to the set {δ L k h }, we can write

ϕ h (δ h -∆) > f h min{δ L k h } ≥ f h δ L k h ≥ f h max{δ L k h } > ϕ h (δ h + ∆) ,
so, using the sequence { k } and Remark 1.1 we obtain

δ h + k > max{δ R k h } ≥ δ R k h ≥ min{δ R k h } > δ h -k (9) 
for the Right interval I[p 2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = h and k > K, regardless of the combination of selected remainders in S k .

Note that given ∆ (for the Left interval I[1, p 2

k ] h ), the bounds δ hk and δ h + k (for the Right interval

I[p 2 k + 1, m k ] h
) approximates δ h more and more closely as k increases, for every level from h = 1 to h = h , since { k } is a decreasing sequence.

Step 3. Now, given a level h (1 ≤ h ≤ h ), let us consider the quotient (max{δ

R k h } -δ h )/ k for the Right interval I[p 2 k + 1, m k ] h . Using the bijective function f h we can write max{δ R k h } -δ h k = f h min{δ L k h } -δ h k = δ h -min{δ L k h } p 2 k m k -p 2 k ∆ p 2 k m k -p 2 k , thus, we obtain max{δ R k h } -δ h k = δ h -min{δ L k h } ∆ . ( 10 
)
In the same way it can be checked that

δ h -min{δ R k h } k = max{δ L k h } -δ h ∆ . (11) 
By [2, Proposition 5.3] (see the explanation given in Step 1), the right-hand side of ( 10) and (11) tend to 0 as k → ∞, so, it follows that (max{δ

R k h } -δ h ) and (δ h -min{δ R k h }) are both o( k ) as k → ∞.
Step 4. As we have seen in Step 2, the inequalities in (9) are satisfied for the Right interval I[p 2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = h , for k > K. In this and the next step we prove that these inequalities are also satisfied from level h = h + 1 to level h = k, for sufficiently large k.

We make the following remark: At the same time that the values of max{δ R k h } and min{δ R k h } from h = 1 to h = h converge uniformly to δ h as k → ∞, by Lemma 1.2, the values of δ h + k and δ hk tend also to δ h for every level from h = 1 to h = h , since k → 0 as k → ∞, as we have seen in the last paragraph of Step 2. However, max{δ R k h } and min{δ R k h } converge to δ h more rapidly than δ h + k and δ hk respectively, as k → ∞, for every level from h = 1 to h = h , by the result of the preceding step.

Step 5. Now, we know that from h = 1 to h = k the values of max{δ R k h } and min{δ R k h } approximate δ h more and more closely as k increases, by Lemma 1.2. Furthermore, max{δ R k h } and min{δ R k h } converge to δ h faster than δ h + k and δ hk respectively as k → ∞, for every level from h = 1 to h = h , by the remark in the preceding step. Hence, for every sufficiently large k there must exist some (0

< < k ) such that max{δ R k h } < δ h + < δ h + k and min{δ R k h } > δ h -> δ h -k for every level from h = 1 to h = k, since the convergence of max{δ R k h } and min{δ R k h } to δ h (1 ≤ h ≤ k) is uniform, by Lemma 1.
2. This means that there exists

K > K such that max{δ R k h } < δ h + k and min{δ R k h } > δ h -k
for every level from h = 1 to h = k, whenever k > K . Thus, we can write

δ h + k > max{δ R k h } ≥ δ R k h ≥ min{δ R k h } > δ h -k (12) 
for the Right interval I[p 2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = k, for every k > K , regardless of the combination of selected remainders in S k .

Step 6. Now, applying the function ϕ -1 h to each member of (12) and using remarks 1.1 and 1.2, we obtain

ϕ -1 h (δ h + k ) < ϕ -1 h max{δ R k h } ≤ ϕ -1 h δ R k h ≤ ϕ -1 h min{δ R k h } < ϕ -1 h (δ h -k ) (k > K ), (13) 
for every Left interval I[1, p 2 k ] h from level h = 1 to level h = k, regardless of the combination of selected remainders in S k . Now, since the function f -1 h is the restriction of ϕ -1 h to the set {δ R k h }, we can write

ϕ -1 h (δ h + k ) < f -1 h max{δ R k h } ≤ f -1 h δ R k h ≤ f -1 h min{δ R k h } < ϕ -1 h (δ h -k ) (1 ≤ h ≤ k, k > K ). (14) 
Then, by definition we have

ϕ -1 h δ h + ∆ p 2 k m k -p 2 k < f -1 h max{δ R k h } ≤ f -1 h δ R k h ≤ f -1 h min{δ R k h } < (15) < ϕ -1 h δ h -∆ p 2 k m k -p 2 k (1 ≤ h ≤ k, k > K ), so, δ h -∆ < min{δ L k h } ≤ δ L k h ≤ max{δ L k h } < δ h + ∆ (1 ≤ h ≤ k, k > K ).
From this it follows that

|δ L k h -δ h | < ∆,
for the Left interval I[1, p 2 k ] h in every partial sum S h from h = 1 to h = k, for every k > N = K , regardless of the combination of selected remainders in S k . In words, while the h-density in every Right interval I[p 2 k + 1, m k ] h from h = 1 to h = k approximates the corresponding average δ h more and more closely as k → ∞ (by Lemma 1.2), the h-density in every Left interval I[1, p 2 k ] h (1 ≤ h ≤ k) approximates δ h as well. The lemma is proved.

Note that using the preceding lemma and [2, Theorem 3.4] the crucial result [2, Lemma 7.1] can be easily proved. By [2, Lemma 3.2], the factor by which we must multiply the h-density within the interval I[1, m k ] h (denoted by δ h ), to obtain the (h + 1)-density within the interval I[1, m k ] h+1 (denoted by δ h+1 ), for every level transition h → h + 1 from h = 1 to h = k -1 is (p h+1 -2)/p h , and this is the 'average' case. Using this factor at each level transition from h = h to h = k -1, we can write

δ k = δ h p h +1 -2 p h p h +2 -2 p h +1 • • • p k -2 p k-1 = δ h k-1 h=h p h+1 -2 p h . (16) 
Now, suppose given an specific combination of selected remainders in the sequences

s h (1 ≤ h ≤ k) that form S k , and let δ L k h , δ R k h be the h-density of permitted h-tuples in every interval I[1, p 2 k ] h , I[p 2 k + 1, m k ] h respectively. Let us denote by φ L k h (φ R k h
) the 'true' factor by which we must multiply the h-density within

I[1, p 2 k ] h (I[p 2 k + 1, m k ] h ) to obtain the (h + 1)-density within I[1, p 2 k ] h+1 (I[p 2 k + 1, m k ] h+1 ), for every level transition h → h + 1 from h = 1 to h = k -1. In symbols δ L k h+1 = δ L k h φ L k h (1 ≤ h < k), ( 17 
) δ R k h+1 = δ R k h φ R k h (1 ≤ h < k).
Therefore, in the case of the Left intervals I[1, p 2 k ] h , we can write

δ L k k = δ L k h φ L k h φ L k h +1 • • • φ L k k-1 = δ L k h k-1 h=h φ L k h ,
and in the case of the Right intervals

I[p 2 k + 1, m k ] h (1 ≤ h ≤ k), we can write δ R k k = δ R k h φ R k h φ R k h +1 • • • φ R k k-1 = δ R k h k-1 h=h φ R k h .
(Compare this formulas with (16), given for the 'average' case.) Note that for every level transition h → h + 1 (1 ≤ h < k), the factor φ L k h (φ R k h ) can be greater or lesser than the corresponding average factor (p h+1 -2)/p h given by [2, Lemma 3.2] (see [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF]Remark 7.2]). Furthermore, it is obvious that the set of factors

φ L k h , φ L k h +1 , φ L k h +2 , . . . , φ L k k-1 (φ R k h , φ R k h +1 , φ R k h +2 , . . . , φ R k k-1 ) depends on the combination of selected remainders in S k . Remark 2.1. Let us consider the Left interval I[1, p 2 k ] h of every partial sum S h from h = 1 to h = k,
where k is sufficiently large. Since the selected remainders in every sequence s h remove permitted (h -1)-tuples from the partial sum S h-1 , the number of permitted h-tuples in I[1, p 2 k ] h decreases from level h = 1 to level h = k. From this, one might wrongly think that the rate of increase of the h-density in I[1, p 2 k ] h between h = 1 and h = k could be less than the rate of increase of the average δ h , for a given combination of selected remainders in S k . In other words, suppose we assume the following: For every sufficiently large k, there exists a particular combination of selected remainders in the sequences

s h (1 ≤ h ≤ k) that form S k such that δ L k h < δ h (and thus δ R k h > δ h for the respective Right interval I[p 2 k + 1, m k ] h ) for every level from h = 1 to h = k.
Clearly the preceding assumption contradicts [2, Remark 7.2]. Now, suppose that there exists a combination of selected remainders in the sequences that form S k and a corresponding set of factors

φ L k h , φ L k h +1 , φ L k h +2 , . . . , φ L k k-1
(which satisfy the equation ( 17)), such that

min{δ L k k } = min{δ L k h }φ L k h φ L k h +1 • • • φ L k k-1 , (18) 
for every sufficiently large k. In this case, if φ L k h < (p h+1 -2)/p h for every h (h ≤ h < k) then ( 18) contradicts [2, Remark 7.2], as we have seen in Remark 2.1; furthermore, the combination of selected remainders in S k for the minimum value of the h -density in the Left interval I[1, p 2 k ] h is not necessarily the same as the combination for the minimum value of the k-density in I[1, p 2 k ] k . (A similar formula for max{δ L k k } is not possible either, for the same reasons.) However, for sufficiently large k the values of δ L k h (1 ≤ h ≤ k) are very close to the average δ h by Lemma 1.4, so, for every level transition h → h + 1 (1 ≤ h < k) the factor φ L k h will be very close to the average factor (p h+1 -2)/p h , regardless of the combination of selected remainders in S k . Therefore, it seems reasonable to think the following: Between h = h and h = k, the increase from min{δ L k h } to min{δ L k k } (and the increase from max{δ L k h } to max{δ L k k }) is approximately proportional to the increase from δ h to δ k , given by equation ( 16).

These fact allows us to establish a lower bound for δ L k k in the following lemma. Lemma 2.1. Let S k (k > 4) be a partial sum of the series s k . Let us consider the Left interval I[1, p 2 k ] h in every partial sum S h from h = 1 to h = k. Given a fixed level h = h (4 ≤ h < k) and a number ∆ (0 < ∆ < δ h ), we have

δ L k k > δ k - δ k δ h ∆ ( 19 
)
for sufficiently large k, regardless of the combination of selected remainders in S k .

Proof. By Lemma 1.4, given a number ∆ (0 < ∆ < δ h ) there exists N (depending only on ∆) such that

δ h + ∆ > δ L k h > δ h -∆ (1 ≤ h ≤ k) (20) 
for every k > N , regardless of the combination of selected remainders in S k . Thus, for level h = h we can write

min δ L k h > δ h -∆ (k > N ).
Now, multiplying both sides by δ k /δ h , we obtain

δ k δ h min δ L k h > δ k - δ k δ h ∆ (k > N ). (21) 
By the explanation given before this lemma, the left-hand side of (21) will be very close to min δ L k k for sufficiently large k. Thus, for sufficiently large k we can assume

min δ L k k > δ k - δ k δ h ∆. ( 22 
)
We prove that the preceding assumption is true. By (20) we have min δ L k k > δ k -∆ for sufficiently large k; on the other hand

δ k /δ h ∆ > ∆, since δ k /δ h > 1; furthermore δ k > δ k /δ h ∆, since ∆ < δ h by hypothesis. From these facts it follows that min δ L k k > δ k -∆ > δ k - δ k δ h ∆,
so the lower estimate (22) holds and this implies

δ L k k > δ k - δ k δ h ∆,
for sufficiently large k, no matter the combination of selected remainders in S k .

(Note that the right-hand side of (19) is increasing, since δ k is increasing for k > 4.) Now, taking ∆ = 0.1 and h = 5 as a fixed level we can check, using [2, Lemma 5.2], that

δ h -∆ < δ L k h < δ h + ∆ (1 ≤ h ≤ h ), for every k ≥ 32. Assume that δ h -∆ < δ L k h < δ h + ∆ is also true from h = h + 1 to h = k for k ≥ 32
. Thus, using this value of ∆ in formula (19) we obtain the graphs of Figure 1, where for each k between 50 and 250 (the horizontal axis), a black dot represents δ k and a blue box represents the right-hand side in (19). Remark 2.2. Given a small number ∆ > 0, from the result of Lemma 1.4 we also have the lower bound

δ L k k > δ k -∆,
for sufficiently large k.

3 Estimating a value for K α Let us consider the partial sum S k (k ≥ 4) of the series s k . Recall that [2, Theorem 7.1] and [2, Corollary 7.2] ensure the existence of a number K α > 4 such that δ L k k > δ 4 for every k > K α , regardless of the combination of selected remainders in S k . Furthermore, recall that [2, Theorem 8.3] establish that every even integer x > p 2 k is the sum of two primes when k > K α . In this section we provide an estimate for K α .

As we have seen in the last paragraph of [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF], the binary Goldbach's conjecture has been verified using powerful computers for every even number greater than 4 up to even numbers that grow year after year (see [START_REF] Oliveira E Silva | Empirical verification of the even Goldbach conjecture and computation of prime gaps up to[END_REF]). Now, if the estimated value of K α is such that p 2 k (k > K α ) is excessively large, it may happen that the even numbers that satisfy [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF]Theorem 8.3] exceed the largest even number verified by computers. In such a case the Goldbach's conjecture would remain unproven. Therefore, in order to prove this well-known conjecture, we need to find a number K α that satisfies the following two conditions: Condition I. The largest even number that satisfies Goldbach's conjecture, which has been verified by computers, must be greater or equal to p 2 k + 1, where k = K α .

Condition II. Every even number greater than p 2 k is the sum of two primes if k > K α (see [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF]Theorem 8.3]).

Thus, we first choose a candidate K for K α , and we check that it satisfies the Condition I, which is easy to verify. Next we must show that it also satisfies the Condition II, the hard part of our task. In this case, if we prove that δ L k k > δ 4 for every k greater than K (regardless of the combination of selected remainders in S k ) the Condition II will also be satisfied, by the proof of [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF]Theorem 8.3].

Let us take K = 2800. At the present time the strong Goldbach conjecture has already been verified for every even number x > 4 up to 4 × 10 18 [START_REF] Oliveira E Silva | Empirical verification of the even Goldbach conjecture and computation of prime gaps up to[END_REF]. We can check that 4 × 10 18 is greater than p 2 k + 1, where k = K, thus, our candidate K satisfies the Condition I. In the following we have to find out if K also satisfies the Condition II.

Given a fixed level h = h (1 ≤ h < k), the h-density in the Left interval I[1, p 2 k ] h (denoted by δ L k h ) converges to the average δ h for every level from h = 1 to h = h as k → ∞, by [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF]Proposition 5.3]. In addition, given a small number ∆, for sufficiently large k we have δ h -∆ < δ L k h < δ h + ∆ for every level from h = 1 to h = h , by [2, Lemma 5.2] (see [START_REF] Barca | Every sufficiently large even number is the sum of two primes[END_REF]Lemma 7.1, steps 3 and 4]). However, this lemma does not guarantee that δ h -∆ < δ L k h < δ h + ∆ for every level from h = 1 to h = k and sufficiently large k, which is necessary for our purposes.

On the other hand, by Lemma 1.4 we have δ h -∆ < δ L k h < δ h + ∆ from h = 1 to h = k and sufficiently large k, regardless of the combination of selected remainders in S k . Furthermore, Lemma 2.1 also establish a lower bound for δ L k k , for sufficiently large k. Now, how can we ensure that our candidate K is sufficiently large so that the value of δ L k k is greater than δ 4 for every k greater than K, regardless of the combination of selected remainders in S k ? Given the first period of the partial sum S k , we have control over the h-density within the intervals I[1, m k ] h (the average density δ h ) from h = 1 to h = k, for every k; furthermore, we have control over the h-density within the Right intervals I

[p 2 k + 1, m k ] h (1 ≤ h ≤ k)
for sufficiently large k, since p 2 k = o(m k ) (see the paragraph below Lemma 1.1). However, we have no control over the h-density within the Left intervals I[1, p 2 k ] h for all the levels between h = 1 and h = k.

In view of these facts, to give an answer to the preceding question we must proceed as we did in the proof of Lemma 1.4: we have to 'take a detour' through the Right block of the partition to be sure that δ R k h is sufficiently close to the average δ h from h = 1 to h = k for every k > K that the result from Lemma 1.4 is valid (see the Step 5 in this lemma). Using this idea, the next lemma shows that δ L k k is greater than δ 4 when k is greater than K, no matter the combination of selected remainders in every partial sum S k .

Lemma 3.1. Let S k be a partial sum of the series s k . If K = 2800, for every k > K we have δ L k k > δ 4 , regardless of the combination of selected remainders in S k .

Proof. Step 1. Given the partial sum S k (k > 5), let us take h = 5 as a fixed level. Furthermore let K = 2800 and ∆ = 0.1. We begin by establishing bounds for δ

L k h in every Left interval I[1, p 2 k ] h from h = 1 to h = h . Given a level k > K we have p 2 k > 644702881, thus, for the Left interval I[1, p 2 k ] h , using [2, Lemma 5.2] we can check that δ h -∆ < δ L k h < δ h + ∆, (23) 
for every level from h = 1 to h = h and k > K, regardless of the combination of selected remainders in S k .

Step 2. Applying the function ϕ h to every member of (23) and using Remark 1.2, for k > K we have

ϕ h (δ h -∆) > ϕ h δ L k h > ϕ h (δ h + ∆) , so, δ h + k > δ R k h > δ h -k (24) 
for every Right interval 

I[p 2 k + 1, m k ] h from h = 1 to h = h ,
= k (k > K), in every Right interval I[p 2 k + 1, m k ] h the value of δ R k
h will be very close to δ h (almost equal to δ h ), for every combination of selected remainders in S k (see the paragraph below Lemma 1.1).

Step 4. Now, δ R k h tends uniformily to δ h for every level from h = 1 to h = k by Lemma 1.2, and simultaneously δ L k h tends uniformily to δ h for every level from h = 1 to h = k by Lemma 1.4, as k → ∞. Therefore, it seems reasonable to think as follows: If for sufficiently large k is δ R k h very close to δ h for every level from h = 1 to h = k, then δ L k h will be quite close to δ h for every level from h = 1 to h = k, regardless of the combination of selected remainders in S k .

Since δ R k h is almost equal to δ h for every level from h = 1 to h = k when k > K (no matter the combination of selected remainders in S k ) by Step 3, we assume that the closeness of max{δ R k h } (min{δ R k h }) to the respective value of δ h is almost exactly uniform from h = 1 to h = k. From this it follows that (24) is also satisfied for every level from h = h + 1 to h = k when k > K (see Step 5 in Lemma 1.4). Thus, by applying to (24) the procedure in Step 6 of the proof of Lemma 1.4 we obtain

δ h -∆ < δ L k h < δ h + ∆ (1 ≤ h ≤ k, k > K),
regardless of the combination of selected remainders in S k ; so, we can see that the result of Lemma 1.4 holds for every k > K. In particular for h = k, we have the lower estimate

δ L k k > δ k -∆ (k > K) (25) 
(see Remark 2.2).

Step 5. On the other hand, from (25) it follows that

δ L k k > δ k - δ k δ h ∆ ( 26 
)
for every k > K, by the proof of Lemma 2.1.

Step 6. Now, note that δ k > 102.62 and the ratio δ k /δ h is greater than 159.63 for k > K. Thus, using (25) we obtain

δ L k k > δ k -∆ = 102.52 (27) 
and using (26) we obtain

δ L k k > δ k - δ k δ h ∆ = 86.66 (28) 
for every k > K, regardless of the combination of selected remainders in S k . Clearly, by the lower estimates ( 27) and (28) we conclude that δ L k k > δ h = δ 5 > δ 4 for every level k > K, regardless of the combination of selected remainders in S k . The lemma is proved.

Conclusion

We are now in position to prove the Main theorem.

Proof of the Main Theorem. By [2, Lemma 7.1] and [2, Corollary 7.2], there exists K α such that δ L k k > δ 4 if k > K α , for every combination of selected remainders in the sequences s h that form the partial sum S k . On the other hand, by Lemma 3.1, taking K α = K = 2800 the preceding statement is satisfied (that is, taking K α = 2800 the Condition II in Section 3 is satisfied). Thus, from [2, Lemma 7.3] and [2, Lemma 8.2] it follows that the sifting function of the Sieve associated to x (Sieve I) is greater than p k /2 for every even number x > p 2 k whenever k > K α (see the proof of [2, Lemma 8.3]). Therefore, by [2, Lemma 8.3], every even integer x > p 2 k is the sum of two primes for every k > K α ; that is, if x is greater than p 2 2800 = 644702881 it can be expressed as the sum of two primes. Since the Condition I in Section 3 is also satisfied for K α = 2800 (see the second paragraph below the conditions in Section 3), we conclude that every even number x > 4 can be expressed as the sum of two primes; thus, the binary Goldbach conjecture is proved and we are done.
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 1 Figure 1: δ k vs. right-hand side in (19) for k ranging from 50 to 250.

  where k is a member of the sequence defined in the Step 2 of Lemma 1.4.Step 3. For a partial sum S k where k > K the ratio of the size of the Left interval I[1, p 2 k ] to the size of the interval I[1, m k ] is less than 1.4×10 -301 . Thus, the size of the Left interval I[1, p 2 k ] is completely negligible compared to the size of I[1, m k ]. Hence, for every level from h = 1 to h

  uniformly to the average δ h . Lemma 1.2. Let S k (k ≥ 4) be a partial sum of the series s k . Let us consider the Right interval I[p 2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = k. For every > 0, there exists N (depending only on ) such that k > N implies |δ R k h -δ h | < , for every partial sum S h from level h = 1 to level h = k, regardless of the combination of selected remainders in the sequences s h that form every partial sum S k . Proof. Step 1. The size of the Right interval I[p 2 k + 1, m k ] h of the partial sum S h , by definition, is equal to m k -p 2 k , so the number of subintervals of size p h within the Right interval is equal to

  2 k ] h (denoted by δ L k h ) and the h-density within I[p 2 k + 1, m k ] h (denoted by δ R k h ). Recall the notation {δ L k h } to denote the set of values of δ L k

  the image of an upper bound for δ L k h under the function ϕ h is a lower bound for δ R k h , and the image of a lower bound for δ L k h under ϕ h is an upper bound for δ R k h . See the proof of Lemma 1.3 and [2, (21)]. Lemma 1.4. Let S k (k ≥ 4) be a partial sum of the series s k . Let us consider the Left interval I[1, p 2 k ] h in every partial sum S h from h = 1 to h = k. For every ∆ > 0 there exists N (depending only on ∆) such that k > N implies |δ L k h -δ h | < ∆ for every partial sum S h from h = 1 to h = k, regardless of the combination of selected remainders in S k .

Proof. Step 1. Let us choose h = h (1 < h < k) as a fixed level and let ∆ > 0 be a small number. As k → ∞, for every level from h = 1 to h = h the size of the Left interval I[1, p 2 k ] h increases, so, the values of δ L k h converge uniformly to the respective average δ h , by [2, Proposition 5.3]. Therefore, there exists K such that
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  Lower bounds for δ L k k Let S k (k ≥ 4) be a partial sum of the series s k . Let us consider the Left interval I[1, p 2 k ] h and the Right interval I[p 2 k + 1, m k ] h in every partial sum S h from level h = 1 to level h = k. Furthermore, consider a fixed level h (4 ≤ h < k).
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