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Abstract—Building a sustainable Exascale machine is a very
promising target in High Performance Computing (HPC). To
tackle the energy consumption challenge while continuing to
provide tremendous performance, the HPC community have
rapidly adopted GPU-based systems. Today, GPUs have became
the most prevailing components in the massively parallel HPC
landscape thanks to their high computational power and energy
efficiency. Modeling the energy consumption of applications
running on GPUs has gained a lot of attention for the last years.
Alas, the HPC community lacks simple yet accurate simulators
to predict the energy consumption of general purpose GPU
applications. In this work, we address the prediction of the
energy consumption of CUDA kernels via simulation. We propose
in this paper a simple and lightweight energy model that we
implemented using the open-source framework SimGrid. Our
proposed model is validated across a diverse set of CUDA kernels
and on two different NVIDIA GPUs (Tesla M2075 and Kepler
K20Xm). As our modeling approach is not based on performance
counters or detailed-architecture parameters, we believe that our
model can be easily approved by users who take care of the
energy consumption of their GPGPU applications.

Index Terms—GPGPU computing, CUDA Kkernels, Energy
modeling, Simulation.

I. INTRODUCTION

Many technical reports on building an Exascale machine
recognize the energy consumption as one of the major chal-
lenges to achieving those systems. Actually, to reach an Ex-
ascale performance, we should provide approximately 3-fold
increase in energy efficiency [1]. Meanwhile, to address this
challenge, extreme-scale computing systems such as Top500
[2] and Green500 [3] lists, that rank the world’s fastest and
most energy-efficient supercomputers, have combined multi-
core CPUs with general purpose GPUs. Hence, CPU-GPU
computing has become a mainstream trend in these systems:
6 systems from the top 10 of the last updated Green500 list
adopt the CPU-GPU heterogeneous architecture [3].

For many years, GPUs have been dedicated only for graph-
ics. However, since a decade now, they are continually evolv-
ing to support a wide range of massively parallel applications
in scientific computing such as weather forecasts, simulations
of molecular dynamics and real-time analytics. Today, GPUs
are at heart of Deep Learning (DL) applications, accelerating
breakthroughs in Artificial Intelligence. Even though, GPU-
based systems have made tremendous progress in delivering
high performance and energy efficency, these systems still
draw great amounts of electrical power.

A lot of research efforts have been made to predict the
performance and energy consumption of GPUs. Indeed, ac-
curate predictions of performance and energy consumption
of GPGPU applications could be very helpful for the study
of energy-related policies and optimization techniques. For
example, Hong et al. [4] proposed the first integrated power
and performance (IPP) system that aims to predict the optimal
number of cores needed to achieve the highest energy effi-
ciency. Similar to other proposed GPU power simulators [5],
[6], the IPP model is a product-specific model that requires ex-
pertise of the underlying architecture. Moreover, performance-
counters models, very popular among the CPU power mod-
eling community, are rapidly adopted in the research area of
GPUs. Early works [10], [11] used linear-based approaches
to characterize the relationship between performance counters
and power. Recently, [12], [13] rely on more sophisticated
non-linear approaches. However, counter-based models lack
portability as some performance counters may be not present
with existing or future architectures. Plus, those models lack
flexibility as their number is increasing with every new GPU
generation, making the selection a tedious task [9]. Therefore,
the HPC community lacks simple yet accurate simulators to
predict the energy consumption of CUDA kernels.

In this article, we address the problem of predicting the
energy consumption of CUDA kernels through simulation. In
particular, we propose a simple and lightweight energy model
that relies only on the number of blocks as the independent
variable. Based on the CUDA programming and execution
model, we notice the strong correlation between the energy
consumed and the number of blocks. Unlike many works
that rely on performance counters or architectural parameters,
our modeling approach is totally coarse-grained. For that, we
believe that our model can be easily adopted by programmers
who take care of the energy consumption of their GPGPU
applications. Hence, we implement our model using the open-
source simulation framework SimGrid [23]. Then, we validate
it across a wide range of CUDA kernels retrieved from CUDA
SDK samples [8] and the Rodinia benchmark suite [7] on two
commercial Tesla NVIDIA GPUs: M2075 and K20Xm.

The remainder of this paper is organized as follows. Section
II introduces an overview of the GPU architecture and CUDA
execution model. Then, in Section III, we present our measure-
ment methodology, our experimental setup and a description
of CUDA kernels used for the study. Section IV presents
our analytical study to model the performance and energy



consumption of CUDA kernels . In Section V, we introduce the
SimGrid simulation toolkit and we explain how to implement
and calibrate our proposed energy model . Last but not least,
we discuss in Section VI results obtained via the comparison
of simulation to measurements on real hardware. Finally, we
conclude in Section VII.

II. BACKGROUND

In this section, we introduce some fundamental information
about the NVIDIA GPU architecture and its execution model.

A. NVIDIA GPU architecture

Each GPU has several streaming multiprocessors (SMs).
Hundred to thousands of Stream Processors (SPs), known
as Compute Unified Device Architecture (CUDA) cores, are
organized into an SM, along with a few special function units
(SFUs) and load/store units. CUDA cores execute the same
instruction on different data, that is why we call them Single
Instruction on Multiple data (SIMD) cores. For more recent ar-
chitectures, NVIDIA started to scale the number of its CUDA
cores by adding more SMs in the GPU card. This design
has resulted in significant overall GPU performance improve-
ments. The organization of SMs changes from a generation
to another, either by adding new units like Double Precision
(DP) units and Tensor cores, or by partitioning the SM into
blocks to facilitate the scheduling process. From the memory
hardware perspective, each SM includes on-chip register files
used by all thread blocks and a (read/write) shared/L1 cache
memory. GPUs also contain an L2 cache memory, which is
accessible by all SMs. Finally, the DRAM can be accessed
through several different abstractions in CUDA, including
global memory (off-chip), and read-only texture memory (on-
chip) and constant memory (on-chip). The access to the global
memory by all threads is very expensive, this explains why
GPUs have multiple levels of memory hierarchy.

B. GPU execution model

CUDA is both the platform and the programming model
built by NVIDIA for developing applications on NVIDIA
GPUs cards. The CUDA programming model is an extension
to the C programming language, which makes it easy for
programmers to port their applications to GPUs. The heart of
CUDA performance and scalability lies in its execution model.
CUDA exposes a high abstract view of the GPU parallel
architecture in order to simplify the mapping of the parallelism
within an application to the underlying hardware.

Therefore, CUDA proposes three key programming abstrac-
tions: threads, blocks and grids. Actually, when a kernel is
launched, a grid of blocks is generated and threads are grouped
into blocks, refer to Figure 1. A thread block is a set of
threads that can cooperate among themselves through barrier
synchronization and shared memory. Each thread block has
a block ID within its grid. A thread within a thread block
executes an instance of the kernel, and has a thread ID that
can be calculated uniquely from the indexes of the block
and the grid it belongs to. Further, instructions are issued
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Fig. 1. Grids of blocks in the GPU programming model [18]

to groups of CUDA threads, called warps. A warp, a group
of 32 consecutive threads, is the basic unit for scheduling
work on the GPU. Indeed, to hide memory latencies, the
GPU implements multi-level Thread Level Parallelism (TLP).
Memory pending warps are replaced by other ready warps
to maintain GPU resources busy. To handle all this, CUDA
provides two-level of scheduling. Actually, the programmer
has no direct control on the scheduling. Indeed, a global
scheduling is assured by the GigaThread scheduler, which
assigns one or more thread blocks to each SM. And a local
scheduling is assured by the SM warp schedulers, which select
every clock cycle active warps and dispatch them to execution
units.

III. EXPERIMENTAL SETUP AND METHODOLOGY

In this section, we explain our measurement methodology
of the execution time, power and energy proposed in this
study. Also, we introduce in detail our system configuration
and evaluated CUDA kernels.

A. Measurement Methodology

In this work, we rely on CUDA events for accurate timing
of the kernel execution time (T) and on the built-in GPU power
sensors for power measurements. Indeed, we use the NVIDIA
system management interface (NVSMI) [15] to monitor the
power consumption (P) and other relevant metrics. NVSMI is
based on the C-based NVIDIA Management Library (NVML),
which is mainly dedicated to help users in the management
and monitoring of their NVIDIA GPU devices [16]. Unlike
some related works [19], [21] in which authors create their
own tool based on NVML to monitor power consumption, we
rely directly on NVSMI for its ease of use (command-line
utility) and availability to everyone owning a GPU.

In our experiments, we collect the last measured power
draw (P) for the entire board in Watts. This reading is
accurate to within +/- 5 Watts according to [15]. Among other
metrics, we collect the GPU utilization, memory utilization,
the power/performance state, SM clock and temperature (if



available). All these information are logged into a file follow-
ing a csv format for further processing. The sample period for
collecting those metrics depends on the hardware [15]. Thus,
we conducted a brief study to characterize the sampling rate
and we found out that 50 milliseconds (20 Hz) is adequate to
accurately monitor the power on both studied GPUs.

For the post-treatment of the log file, we extract only power
draws when the performance state is equal to PO (the highest
state). Similar to our measuring approach, authors in [22] use
the pstate value PO to detect GPU activity. Actually, the simple
launch of NVSMI would get the driver loaded and thus the
GPU moving automatically to pstate PO. For that, they invoke
every time NVSMI seconds before launching a program.
While, we propose to enable the persistence mode on our GPU
devices for accurate measurements. By activating this mode,
the GPU is kept initialized even when no users are connected
to it and the power/performance state is moved down to a
certain level (usually P8). Indeed, we ensure by enabling
the persistence mode that the power draw before launching
NSVMI is stable. Finally, we obtain accurate measurements
of the energy consumption (E) of a kernel running on a GPU
by integrating its power (P) over its corresponding execution
time (T).

B. System configurations

In this work, we rely on two different infrastructures for
the availability of different generations of GPU on each. We
run our experiments on the the Grid’5000! infrastructure, in
particular on the orion cluster. The orion cluster is composed
of 4 homogeneous nodes, each consisting of 2 Intel Xeon ES5-
2630 with 6 physical cores per CPU, 32 GiB of RAM and an
NVIDIA Tesla M2075 GPU card. Our GPU is based on the
Fermi architecture. It is connected to the rest of the system
using a PCI-Express 2.0 x16 interface. We use Linux x86_64
Driver Version and CUDA runtime version 8.0 on a custom
Debian GNU/Linux image.

Also, we run our experiments on the ENS Lyon infras-
tructure, mainly on the grunch cluster. The grunch cluster is
composed of 2 Intel Xeon E5-2695 with 14 physical cores per
CPU, and 2 NVIDIA Kepler K20Xm GPU cards (we count
only on one card in this work). Our GPU is based on the
Kepler architecture. It is connected to the rest of the system
using a PCI-Express 3.0 x16 interface. We use Linux x86_64
Driver Version 418.74 and CUDA runtime version 10.0 on
a custom Debian GNU/Linux image. A brief description of
resource characteristics of Tesla M2075 and Kepler K20Xm
is presented in Table I. We enabled the persistence mode and
the Error Correcting Code (ECC) for both GPUs during our
experiments.

C. CUDA kernels

For our study, we use two simple CUDA kernels and three
GPGPU applications in order to cover a variety of application
domains and different kernel features such as data access

Thttps://www.grid5000.fr

TABLE I
TESLA M2075 AND KEPLER K20XM RESOURCES DESCRIPTION

Device M2075 K20Xm
Architecture Fermi Kepler
Capability 2.0 3.5
#SMs 14 14
#CUDA cores/SM 32 192
Memory bus width 384-bit 384-bit
Registers/Block 32768 65536
GM size (GB) 5.301 5.701
Max #threads/block 1024 1024
Max #of threads/SM 1536 2048
Limit Power Draw (W) | 225 235

patterns and diverse computing units usage such as Single
Precision (SP) cores, Double Precision (DP) units or Special
Function Units (SFU). In the following, we explain in detail
CUDA kernels’ characteristics.

1) Simple CUDA Kernels: As a start, we rely on two repre-
sentative kernels taken from the CUDA SDK samples as each
represents a kernel type where: vectorAdd is a memory-bound
kernel and matrixMul with shared memory is a compute-bound
one. We modify their source code by adding a loop inside each
kernel because the block execution time is very small (order of
microseconds). For that, we use large loop sizes as shown in
Table III. Concerning the vectorAdd launch configuration, we
vary the vector sizes and test with three different block_sizes
(1024,1,1), (512,1,1) and (256,1,1). While for matrixMul, we
use block_sizes equal to (32,32,1) and (16,16,1) and we only
vary the width of matrix B to ensure the launch of blocks with
same amount of work.

2) Applications: We rely on CUDA kernels originated from
both the Rodinia Benchmark suite [7] and the CUDA SDK
samples as shown in Table II. Thus, we use three real-world
applications: BlackScholes, Hotspot and Back Propagation.
Indeed, BlackScholes is an option pricing application that
implements the BlackScholes model for European options.
Hotspot is a popular thermal simulation tool in physics sim-
ulation used for processor temperature estimation. Moreover,
Back Propagation is a machine-learning algorithm used during
the training process of a layered neural network. This appli-
cation contains two phases: a forward phase and a backward
phase, which corresponds each to a CUDA kernel. In order
to have enough reliable power measurements, we modify
our CUDA applications to execute the same kernel multiple
times (refer to Table III). We present in the following kernel
launch configurations for the different studied kernels: for
BlackScholes, we use the block_size (128,1,1) and we only
vary the number of options. For Hotspot, we vary the grid
size and use the block_size (16,16,1). For Back Propagation,
we vary the number of nodes in the input layer, and we use
the block_size (16,16,1).



TABLE II
OVERVIEW OF KERNELS’ CHARACTERISTICS

Kernel Type Main Kernel Usage

Backprop_K1 | compute-bound Shared Memory, SP operations

Backprop_K2 | memory-bound Global Memory, DP operations

BlackScholes | compute-bound Global Memory, SP, SFU opera-

tions

Hotspot compute-bound Shared Memory, DP, SP, SFU op-
erations

VectorAdd memory-bound Global Memory, SP operations

MatrixMul compute-bound Shared Memory, SP operations

IV. MODELING THE PERFORMANCE AND ENERGY
CONSUMPTION OF CUDA KERNELS: THE ANALYTICAL
APPROACH

In the section, we present the feature selection process, the
scheduling algorithm obtained through our empirical study, as
well as the performance and energy models formulated into
simple mathematical equations.

A. Feature Selection

We conduct several experiments in order to study the impact
of different execution configuration parameters (number of
blocks, number of threads per block) and the number of
active SMs on performance, power and energy consumption of
CUDA kernels. Our findings reveal that the number of blocks
and number of threads per block are highly correlated to the
performance and energy consumption for different types of
applications. Taking into account this correlation and the fact
that the number of block is a user-defined parameter and not an
architecture parameter, we select the number of blocks (NB)
as a key component in our modeling approach. Indeed, we
assume that all blocks of a certain CUDA kernel have the
same amount of work.

B. Blocks Scheduling

According to NVIDIA, each block can be scheduled on
any of the available SMs ”in any order, concurrently or se-
quentially depending on available resources such as registers,
shared memory or limited number of warps per SM” [18].
Based on our observations on both NVIDIA devices, the
CUDA runtime system maps blocks to SMs following a round-
robin fashion. Even though details about blocks and/or warps
scheduling are not publicly documented by NVIDIA, many
works such as [31] claim as well that it follows a round-robin
algorithm. Indeed, we capture clearly this aspect on micro-
benchmarks (using vectorAdd for instance) where the work
done by a single block is long enough.

In Figure 2 (a), the execution time of vectorAdd with
block_size equal to 1024 follows a stepwise curve on both
GPUs. Every time we have a number of blocks higher than
the number of SMs on M2075, we wait until it finishes its
execution on the 14 SMs first. This is mainly due to the
fact that only one block of size 1024 can reside per SM.
For K20Xm (see Figure 2 (b)), we observe that the runtime
execution increases each time after the execution of 28 blocks.
Actually, on this GPU the number of max resident blocks
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Fig. 2. Profiling the runtime of vectorAdd with TB=1024 on M2075 (a) and
K20Xm (b)

of size 1024 per SM is equal to 2. The maximum amount
of resident blocks per SM is calculated with the CUDA
occupancy calculator [24]: an XLS file that allows us to
compute the ratio of active warps/blocks to the maximum
number of warps/blocks supported on a SM for a given CUDA
kernel. We highlight here that the scheduling algorithm is
crucial for our simulation approach.

C. Performance and Energy models

The execution time of running a CUDA kernel can be cal-
culated using the equation 1 where the slope of the regression
line is a and b is the intercept:

T(NB)=ax NB+b (D)

The energy consumption E of a program can be written
as the sum of its dynamic energy F,; and static energy F
(equation 2). Where dynamic energy represents the variable
power consumed by the active use of components during the
execution of a program. While static energy represents the
fixed power consumed due to the loss of energy from the
capacitors during the same interval of time. On this basis,
we propose to predict the energy consumption of a CUDA
kernels with (NB) blocks following those equations (equation
3). Where Ej, denotes the dynamic energy of one block, Ps is
defined as the static power and T'(NB) is the execution time
obtained with the equation 1.

E(NB) = E4(NB) + E,(NB) )

E(NB) = E, x NB+ P, x T(NB) 3)

To predict the energy consumption of blocks (NB)
following the equation 3: First, we make the assumption
that the static power P is equal to the idle power. We
obtain this value by monitoring the GPU when it is ON and
no application is running. Second, we predict the dynamic
energy of one block (F3). For that, we subtract the static
power from measured power values. Then we measure the
dynamic energy by multiplying the sum of dynamic power



values by the sampling rate. Finally, we apply a Simple linear
Regression (SLR) on the dynamic energy profile. We consider
the slope as the dynamic energy of one block.

We can extend our models further by taking into consider-
ation the round-robin scheduling of blocks and the number of
SMs (nbSMs). We can re-write them as shown in equations 4
and 6, where T, and E, represent respectively the execution
time and the energy consumption of executing a round. We
predict the runtime of a round 7, by relying on the slope of
equation 1. Actually, we make the abstraction that during a
round the GPU executes a number of blocks which is equal to
the number of SMs in order to simplify our models because
we see no need to add more parameters. In reality, this is not
always the case, especially with small block_sizes where more
than one block can reside by SM.

., NB
T(NB) =T, x cezl(anMS) 4)
T. =axnbSMs (5)

., NB
E(NB)=E, x cezl(anMS) (6)
E, = Ey x nbSMs + P, x T, 7

We rely on predicted values of Ej and P; to calculate the
energy consumption of one round (see equation 7). By using
the predicted energy consumption of executing a round and
its execution time, we deduct the average power consumption
of a round P,.

V. PREDICTING THE PERFORMANCE AND ENERGY
CONSUMPTION OF CUDA KERNELS: THE SIMGRID
APPROACH

Simulation is a very pervasive approach to study the be-
havior of GPGPU applications in terms of performance and
energy consumption. In this section, we present the SimGrid
framework then we describe the simulation process from
building to calibration for accurate energy predictions.

A. The SimGrid Framework

SimGrid is a versatile open-source framework for develop-
ing simulators and studying the behavior of distributed com-
puting systems such as grids, clouds, or peer-to-peer systems
[23]. It provides models and APIs that the user can rely on to
create his/her own simulator. As SimGrid’s simulation models,
we can find the multicore machine model, the TCP model
and the churn model for P2P networks, etc. Indeed, it yields
the S4U interface mainly dedicated to describe and simulate
abstract algorithms as well as the SMPI interface dedicated
to the simulation of existing MPI applications. Furthermore,
users can extend SimGrid without modifying it via the plugin
mechanism. Some plugins are distributed by default with
SimGrid such as the Energy plugin.

B. How to build and calibrate the simulator?

For our work, we rely on the S4U interface to describe our
algorithm and on the plugin Energy to simulate the energy
consumption of our CUDA kernels. First, we need to activate
the Energy plugin by calling sg_host_energy_plugin_init().
As for a classical SimGrid simulation, we need to describe
our application. We implemented our algorithm based on the
round-robin scheduling. For that, we should provide three
input parameters:

1) The number of SMs
2) The number of Blocks
3) The number of flops to be executed at each round.

More specifically, the value of flops in a round is defined
as the number of flops executed when the number of blocks
is equal to the number of SMs. For example, for our GPU
devices M2075 and K20Xm, it is the number of flops when
running a round of 14 blocks. Second, we need to describe our
platform file as shown in Figure 3. We define our GPU as a
monocore host with a certain capacity of computation, referred
as Speed. We have made this abstraction to avoid the default
execution model of mutlicore machines in SimGrid, where
cores support multithreading. Because calibration is the key for
good predictions, we highlight how we obtain the speed value.
Speed is only the flops/s of executing a round. For that, we
need to provide the number of flops used for running a round
and the time it takes 7. The number of flops for each kernel
could be calculated or monitored (via the NVIDIA profiler),
depending on the complexity of the algorithm.

According to our observations, the linear regression model
requires only three real measurements: two small blocks and a
medium one or inversely for the modeling process. Last but not
least, we represent an example with two scenarios: (1) GPU is
ON and (2) GPU is OFF, of our energy model parameters for
kernel vectorAdd with Tb=1024 on M2075 (refer to Figure
3):

1) Ps=29.4W: when the GPU is running but it has no work

to do.

2) P,=153.65W: when the number of blocks is equal to the

number of SMs.

3) P,;y=10W: when the host is off (cost of the network

card on Grid’5000 waiting to wake up in mode wake on
LAN)

Indeed, the idle power consumption of M2075 and K20Xm
is respectively equal to 29.4W and 19.18W.

<platform version="4.1">
<zone 1d="AS@" routing="Ful
<host id="G spee 13f"
<prop id="watt
<prop id="wattage
</host>
</zone>
</platform=

core="1" =
_s e" value="29.4
off" value="10" />

:153.65" [=

Fig. 3. Platform file calibrated for vectorAdd with TB=1024 on M2075



TABLE III
OVERVIEW OF DATASETS RANGES USED FOR VALIDATION
Kernel Validation Datasets Configurations
Backprop layersize in range(25600,10%) loop_size=10%
BlackScholes | nboptions in range(10°,107) loop_size=10%
Hotspot gridsize in range(200,1024) pyramid_height=2,
sim_time=20000,
temp_file=temp_1024,
power_file=
power_1024
VectorAdd vectorsize in range(1024,107) loap_size:107
MatrixMul MatrixBx in range(132,30000) loop_size:lO6

VI. EVALUATION

In this section, we present our evaluation methodology: data
sets, kernels configuration and evaluation metrics. Then we
discuss the simulation results compared to real measurements.

A. Evaluation methodology

For validating our models through simulation, we choose
our data sets randomly with the NumPY Library dedicated
for scientific computing with Python. Indeed, we were very
careful that values from datasets used for validation are
different from ones used for modeling. As shown in Table III,
we present datasets ranges and other configurations. For eval-
uation metrics, we rely on the Worst Relative Error (WRE),
the Best Relative Error (BRE) and the Average Relative Error
(ARE), obtained with the equation 8, where y; and y; are
respectively the measured energy and the simulated energy.

(Ui — i)

%

ARE =100 X", (®)

B. Results

The evaluation on the Tesla M2075 GPU exhibits good
predictions in terms of average relative error (ARE) for all
evaluated kernels as shown in Table IV. For different types of
kernels, we have accurate predictions and more particularly on
compute-bound kernels such as matrixMul and BlackScholes.
This can be explained by the simple fact that the GPU
succeeds in hiding latencies by executing computations and
especially when we have many blocks at hand. Thus, the
correlation between runtime and the number of blocks is
perfectly linear in those cases. For memory-bound kernels
such as vectorAdd, we can notice that the model struggles a
bit especially with small block_sizes. Indeed, when running
blocks with block_size equal to 1024 on M2075, we are
forcing the GPU to run one block per SM. This configuration
likely ensures a fixed latency unlike with smaller blocks_sizes,
where we can have more than one block per SM. Hence, the
memory bandwidth can be saturated for a certain number
of blocks, making the curve not smoothly linear. Plots in
Figure 4 illustrate the accuracy of our predictions where we
can observe the normalized measured vs. simulated runtime
and energy for three different CUDA kernels on Tesla M2075.
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Fig. 4. Simulated vs. measured normalized Runtime and Energy of Backprop
kernel 1 and 2, BlackScholes and Hotspot on M2075

On the other hand, the evaluation on the Kepler K20Xm
GPU shows also promising results, even though we have
higher worst relative errors (WRE) comparing to results on
Tesla M2075. After analyzing our data, we find out that those
values are mainly present for the first blocks in the evaluation
dataset. The question that may arise here is: why we have this
more pronounced on our K20Xm than on M2075 ? Actually,
the Kepler device for some kernels such as Hotspot is capable
to optimize for runtime and energy with a higher number
of blocks. We estimate that would not be very possible on
M2075, as the Kepler generation offers significant increase in
double precision performance comparing to Fermi generation



TABLE IV
EVALUATION OF CUDA KERNELS SIMULATIONS ON M2075

Time (%) Energy (%)
Kernel WRE| BRE | ARE| WRE| BRE | ARE
Backprop K1 | 133 | 0.00038] 0.457| 2.16 | 0.0313 | 0.836
Backprop K2 | 3.02 | 027 | 2.42 | 429 | 0.00085 1.23
BlackScholes | 6.64 | 0215 | 22 | 580 [ 0.18 | 1.74
Hotspot 379 [ 00785 | 13 | 539 | 00220 | 1.2
VectorAdd 1024 | 3.60 | 0877 | 341 | 7.62 | 0.083 | 147
vectorAdd 512 | T1.84] 03 483 [ 1682 0.193 | 5.10
VectorAdd 256 | 20.76| 0.0693 | 6.60 | 17.47] 0.0164 | 6.86
matrixMul_1024 | 4.12 | 0.0145 | 094 | 10.83] 0.0251 | 1.65
matrixMul 256 | 9.62 | 0.240 | 240 | 7.79 | 0.007 | 2.06
TABLE V

EVALUATION OF CUDA KERNELS SIMULATIONS ON K20XM

Time (%) Energy (%)

. WRE| BRE | ARE | WRE| BRE | ARE
Backprop_KI | 8.88 | 335 10 | 585 | 3.77 716
Backprop_K2 | 2.21 | 0.249 | 0.518| 3.79 | 1.39 3.10
BlackScholes | 18.04] 0.292 | 251 | 9.56 | 0.14 .16

Hotspot 16.46| 0015 | 352 | 7.81 | 0202 | 2.83
vectorAdd_1024 | 24.52| 0.009 | 2.26 | 24.40| 0.05 3.06
vectorAdd_512 | 15.20] 1.0 367 | 17.98] 0.169 | 2.97
vectorAdd_256 | 13.73] 0.02 236 | 14.02] 0.04 377
matixMul_1024 | 19.72] 0917 | 6.54 | 17.73| 0.864 | 8.33
matrixMul_256 | 13.69] 0.858 | 542 | 15.52| 0.086 | 5.95

and provides higher number of cores and special function units
(SFUs). Those units are indeed used in the Hotspot kernel as
shown in Table II. We recommend to use at least one large
value for the number of blocks to model on K20Xm, in order
to capture the optimization done by the device.

C. Limitations of our Energy Model

As shown in Section V, results are very promising for
different types of kernels. However, the model simplicity is not
without any cost. First, though our model is mainly inspired
from the CUDA execution model, we can not explore all
applications or kernels written in CUDA. Here, we point to
applications that rely on subroutines such as the ones available
within the CUDA Basic Linear Algebra Subroutine library
(cuBLAS). With this programming approach, the developer
does not know beforehand the number of blocks or some-
times the number of kernels that would be launched. Instead,
librairies and/or compiler take care of everything. Second, our
energy model has shown limitations at predicting the energy
consumption of kernels with a small number of blocks. We
believe that this limitation is not very critical as the heart
core of GPGPU programming is to dispatch a huge amount
of work to the GPU. Last but not least, we need to provide
calibration values for each CUDA kernel. Finally, unlike low-
level models, our high-level model does not point out directly
bottlenecks.

VII. RELATED WORK

Since the emergence of GPU-based systems, studies of GPU
performance as well as power modeling and simulation have
received a lot of attention among the research community. In

this section, we focus only on related works tackling GPU
power modeling and simulation.

A. GPU power models

Indeed, we can find in the literature performance-counter
models [10], [11] that use linear-based statistics to estimate
GPU power consumption. For instance, authors in [10] adopt
the Support Vector Regression (SVR) model, as it outper-
formed the traditional square based linear regression (SLR).
However, their model lacks global memory access counts,
as the profiling of this metric was not available with the
tested GPU. We can find as well performance-counter models
that use non-linear statistical methods such as sophisticated
random forest [12], Artificial Neural Network (ANN)[13] and
regression trees [14]. Comparisons between linear-based and
non-linear based methods conducted in [13] shows that ANN
is more accurate than Multiple Linear regression (MLR).
Nonetheless, according to [9], neural network accuracy is
highly correlated to “many configurations such as the number
of layers, activation functions, and optimization options, which
can be costly to test and configure”. More recently, the roofline
model orginally proposed by [25], was extended to better suit
the GPU architecture and its related characteristics such as in
[26] and [28]. Despite the fact that roofline models offer simple
visual representations, they mainly rely on a representative
number of parameters or on performance counters such as in
[27].

B. GPU simulators

Sheaffer et al. [29] was the first work to propose Qsilver,
a functional graphics performance, power and temperature
simulator. Although, their work can not be immediately ap-
plicable to modern general purpose GPUs, it has served
as basis for most of the literature on energy and power
simulation for GPUs. Their approach is based on predicting
hardware events (from a model of the GPU architecture and the
application code) which are used as input to the power model.
More recently, two open-source GPU power models, namely
GPUWattch [6] and GPUSimPow [5] are proposed, which
adopt the same methodology. Both models are built on and
available with GPGPU-Sim [30], an open source framework
that simulates every detail of the GPU. Moreover, they rely on
the McPAT tool [33] to model the micro-architecture elements
of their studied GPUs. However, they differ in the way GPU
architecture and power are modeled, for example only in the
work [5] that the Warp Control Unit (WCU) was modeled.
In addition, Lim et al. [32] proposed a GPU power model
using McPAT to model each sub-component of an NVIDIA
GTX580 GPU. Despite the high accuracy of those cycle-level
simulators, most of them demand an in-depth knowledge of the
architecture to tune them for other GPU architectures. Thus,
it could be a real burden of a GPU programmer who simply
wants to predict the energy consumption of his kernel.

VIII. CONCLUSIONS

In this work, we simulate the energy consumption of
CUDA kernels using the open-source framework SimGrid.



Our approach is based on the core of the CUDA execution
model, where the kernel work is divided into blocks and
dispatched to Streaming Multiprocessors (SMs). Our model
predicts the energy consumption of a CUDA kernel using only
one single variable: the number of blocks. In other words, it
far exceeds the limitations of counter-based and architecture-
detailed models. Also, we expect our model to be portable
across generations as we rely on the number of blocks, which
is a highly generic parameter.

The accuracy of the energy model is highly dependent on
the accuracy of the runtime model. For that, we take care of
accurately building and calibrating our simulator. We validate
our model using six different CUDA kernels exhibiting various
characteristics on two commercial Tesla NVIDIA GPUs. We
compare our real measurements to simulation results based
on the average relative error. Indeed, we report the highest
average relative errors on M2075 equal to 6.69% and 6.86%
for runtime and energy respectively. For the evaluation on
K20Xm, we observe the highest average relative errors equal
to 6.54% and 8.33% for runtime and energy respectively.
Finally, we look forward with those promising results of
our models to extend them for studying energy efficiency by
exploring optimization techniques such as concurrent kernels
and Dynamic Voltage Frequency Scaling (DVES).
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