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Abstract—The Cloud already represents an important part
of the global energy consumption, and this consumption keeps
increasing. Many solutions have been investigated to increase
its energy efficiency and to reduce its environmental impact.
However, with the introduction of new requirements, notably
in terms of latency, an architecture complementary to the Cloud
is emerging: the Fog. The Fog computing paradigm represents a
distributed architecture closer to the end-user. Its necessity and
feasibility keep being demonstrated in recent works. However,
its impact on energy consumption is often neglected and the
integration of renewable energy has not been considered yet. The
goal of this work is to exhibit an energy-efficient Fog architecture
considering the integration of renewable energy. We explore three
resource allocation algorithms and three consolidation policies.
Our simulation results, based on real traces, show that the
intrinsic low computing capability of the nodes in a Fog context
makes it harder to exploit renewable energy. In addition, the
share of the consumption from the communication network
between the computing resources increases in this context, and
the communication devices are even harder to power through
renewable sources.

I. INTRODUCTION

The growing importance of the Cloud paradigm has led
to many propositions to reduce its costs and to improve
its profitability. Energy consumption is an important part of
the operational cost of Cloud architectures. It is becoming a
limiting factor to build more data centers and is also becoming
dominant in the Total Cost of Ownership (TOC) [21]. In
addition to its energy consumption, the environmental impact
of the Cloud, and IT technologies in general, increases dra-
matically. Between 2013 and 2017 the share of electricity
consumed in the world by the IT sector went from 11%
to 14% and keeps growing [11]. Regarding the utilization
phase of IT, data centers were responsible for 32% of the
global consumption of the sector in 2017. The network, which
is essential for Cloud computing, was responsible for 34%
of this consumption [11]. Cloud providers are pressured by
governments to reduce their environmental impact and they
also want to provide a better image to the end-user. In order
to reduce this impact, research around greener Cloud has been
important in the last few years.

Many works have been conducted to reduce the environ-
mental impact of the Cloud, either by reducing its overall
consumption [3], [8], or by considering the usage of energy
coming from renewable sources [12], [18], [23], [2], [5].
These works present noticeable advancements, according to
the current architectures of the Cloud. However, the emerging

Fog paradigm is supposed to be deployed in the near future [1].
This new architecture, as an extension of the Cloud, brings new
challenges concerning energy consumption and environmental
impact. Works have been conducted around the deployment
of Fog architectures taking into account its energy consump-
tion [9], [28], [16] and low-latency requirements [1].

The concept of Fog is still recent and there is no consensus
on its definition yet. In this work, we consider it as a dis-
tributed architecture composed of geographically distributed
low-capabilities nodes and a distributed resource management
(i.e. no centralized control node). In this model, each node, or
Point-of-Presence, receives and processes local or close users’
requests without general coordination. This work aims to find
solutions to adapt the recent Fog paradigm to the current
trend toward reduction of energy consumption and increasing
use of green energy (i.e. produced by renewable sources).
More and more Cloud providers resort to producing their
own renewable energy, like Apple for instance [5]. Yet, the
distributed nature of Fog resources makes it harder to exploit
locally-produced green energy as more sites are considered.
The main challenges tackled in this work are:

• job scheduling in a fully distributed architecture;
• dealing with the intermittent production of energy from

renewable local sources (solar panels);
• improving energy consumption of the Fog without im-

pacting severely its benefits in terms of latency.
The results show that exploiting green energy in a Fog

context is a tough task. The low capabilities of the nodes limit
severely the number of jobs a node can host, leading to issues
in properly exploiting the green energy produced locally.
Another main result of this work is that the energy used by the
communication network between the Fog nodes constitutes the
major part of the energy consumption of the whole platform,
and should consequently concentrate the attention for reducing
the overall Fog impact.

The remainder of the paper is structured as follows: Sec-
tion II presents related work; Section III details the employed
models; Section IV describes our approach; Section V presents
the experimental setup and the results; Section VI concludes
this work and introduces future work.

II. RELATED WORK

On average, an idle server can consume up to 70% of
the power consumed by the server running at the full CPU
speed [3]. In addition, many servers inside data centers are



under utilized or even not utilized at all. In 2010, a study
on 188 data centers estimated that 10% of the servers inside
them are never utilized [21]. Therefore, a simple solution to
reduce energy consumption is to switch-off unused machines
and gather used resources on the smallest number of machines.
This problem, known as consolidation, is widely explored.

Beloglazov and al. [3] present a work to reduce energy
consumption with consolidation, while respecting the SLA
(Service Level Agreement), crucial for Cloud providers. Their
work is based on thresholds policy concerning the CPU usage
of a physical machine. On the one hand, a lower threshold
defines if VMs on the server should be migrated and the
servers are switched-off to save energy. On the other hand,
an upper threshold defines if VMs on the server should be
migrated to ensure sufficient elasticity for the remaining VMs.

Decentralized Clouds are geographically distributed over
a large area to provide better Quality-of-Service. Several
data centers, each with their own on-site renewable source,
contribute to the same Cloud system. In a context of Cloud
providers aiming to improve their consumption of green
energy, the decentralized approach offers new possibilities.
The intermittent production of green energy on a single site
might be counterbalanced by an overproduction in another
site. Multi-site Clouds bring new challenges and solutions to
optimize their green energy consumption. Tang and al. [23]
propose a solution to reduce the brown energy consumption
between multiple, widely geographically distributed, data cen-
ters. The main idea is to take advantage of a complementary
production of green energy over the various data centers.

Several works have introduced some principles to imple-
ment the Fog, but few took in consideration its energy con-
sumption. Deng and al. [9] present a vision of the Fog-Cloud
interplay, while taking into account the trade-off between
power consumption and latency. The latency sensitive requests
are processed locally on the Fog devices, whereas the others
are dispatched in the Cloud using wide area network (WAN).

The feasibility and interest of the Fog keep being demon-
strated by recent works. But, its energy consumption and envi-
ronmental impact is often neglected. Some research consider
the energy-efficiency of Fog architectures, but only consider it
as a trade-off between latency and power consumption and
do not intend to improve it. In addition, the usage of on-
site green energy has not been explored in this context. The
goal of our work is to optimize the green energy consumption
of distributed Fog architectures while also considering overall
energy-efficiency.

III. FOG COMPUTING MODEL

A. Fog Architecture

Two main Fog architectures stand out in literature. The first
one is a fully connected Fog: it typically refers to a Fog
covering a small area, such as a city or just a building or
a factory. Such architecture is adapted to applications looking
for communication between nodes, such as augmented reality
video games [24] or coordinating machines in a factory [20].
The second one is a hierarchical Fog, it allows to cover a

larger area, and thus is adapted to applications looking for
aggregating data over a wide area, such as video surveillance
applications [19] or balance the load between Cloud and
Fog, such as low-latency image-recognition applications [10].
Also, green energy production may varies between different
localization, thus, the larger area covered by a hierarchical Fog
architecture may allows to mitigate the green production.

Here, we consider an ISP-like network where the Fog
computing nodes are the Internet boxes of the end-users (also
called home gateways). Such an architecture was considered
even before the appearance of the Fog paradigm by ISP to de-
liver low-latency services to their users [26]. This architecture
is adapted to applications looking for aggregating data over
a wide area, such as video surveillance applications [19] or
balance the load between Cloud and Fog, such as low-latency
image-recognition applications [10]. Relying on the existing
ISP network to build a Fog architecture ease the deployment
and maintenance operations.

The main objective of a Fog architecture is to process users
requests, named hereafter jobs. Conversely to other Cloud-
oriented work presented, we consider here a fully-distributed
Fog environment, which means that jobs are not submitted to
a central scheduler. Each new job is sent from an IoT or end-
user device to the closest Fog node. Jobs are continuously
submitted to the platform and treated as soon as they are
received. We do not consider a distributed file system such
as a network file system. We assume that jobs do not require
to share data among them, as it is typically the case for video-
stream decoding applications for instance [26].

B. Power models

For simplicity sake, we consider an homogeneous Fog
architecture, where all nodes are identical, with the same
number of cores and power profile to ease the understanding of
scheduling policies’ behavior. The power model comes from
Kaup and al. [17]. Nodes have a static power consumption
based on their idle consumption (Pidle), Ethernet consump-
tion (Peth,idle) and WLAN consumption (Pwlan,idle); and a
dynamic consumption (Pcpu(u)) based on the CPU usage (u).
In addition, while booting or shutting down, the consumption
is modified to reflect the actual device behavior.

P = Pidle + Pcpu(u) + Peth,idle + Pwlan,idle

A virtual machine (VM) is created to host each job and this
VM is deleted after the end of the job. The only parameter
for the creation of a VM is the number of required cores.
Cores are not shared between VMs (i.e. we do not consider
over-commitment here as it would modify the performance
and energy consumption model of jobs).

The power model used for the network consumption comes
from Guegan and al. [13]. The energy consumption of a
link corresponds to the consumption of the its two Ethernet
devices’ ports connected by the link. It is the sum of the
idle power consumption of both ports (Pnet

idle), and its max-
imum dynamic power consumption is given by the following



equation depending on the maximum packet size (Maximum
Transmission Unit), the transmitted data volume (D), the link
bandwidth (BW ), and an energy cost per processed byte
(Ebyte) and per processed packet (Epkt):

Emax =
Pnet
idle ×D

BW
+ 2×

(
8×D × Ebyte +

Epkt ×D

MTU

)
C. Energy Production

Concerning the power supply, we distinguish two kinds of
production: brown energy (from the regular electrical grid)
and green energy (from on-site renewable sources). Although
nodes are all linked to the electrical grid, some of them can
also consume on-site green energy, produced by photovoltaic
panels connected to them. The green energy production is
variable over time and not known in advance. For simplicity’s
sake, the excess of produced green energy is not re-injected
in the electrical grid. Similarly, to simply examine the inte-
gration of renewable energy sources into Fog platforms, we
do not consider here energy storage devices. Indeed, their
sizing requires specific studies depending on the nodes power
consumption and on the photovoltaic panel production, and it
would thus add variability to our results [18].

IV. INTEGRATION OF ON-SITE RENEWABLE ENERGY

The Fog paradigm is strongly latency-oriented. A key metric
for this kind of architecture is the latency perceived by
application users. The goal of this work is to explore the
interest of a trade-off between the latency and the optimiza-
tion of the green energy consumption in a distributed Fog
architecture. Our approach consists in exploring several job
allocation algorithms and consolidation policies to evaluate
whether green energy can be exploited within this context. In
particular, we play with the latency constraint to determine
if its release can bring significant improvements in terms of
brown energy consumption.

As latency is a strong constraint, greedy algorithms are
favored to provide fast energy-efficient allocation policies. We
first explicit three greedy allocation algorithms used to select
a host for a job submitted to a specific node: Lowest Latency,
First Green, and Most Green (detailed hereafter). Then, we
provide three greedy consolidation policies used to consolidate
the Fog workload: Consolidate All, Consolidate Brown, and
Consolidate Ratio. The energy efficiency of these algorithms
is explored in Section V.

A. Allocation Algorithms

To place jobs, the criteria are the latency between the Fog
node and the user, and the green energy produced at the node
site. All three algorithms are greedy by latency in their search
for a host. The first algorithm only considers latency and is
used as baseline. The two others consider green energy in
addition to the latency. Note that we consider here VM, but
the proposed algorithms would work without any change with
containers, since we do not consider VM migration.

1) Lowest Latency: This first algorithm aims to reduce the
end-to-end latency of a job, from the initial node to the host
of the job. The initial node is the node on which the job was
submitted and is by definition the closest node to the end-
user. The host is the node on which the job is running. The
algorithm performs a search in the hierarchical architecture to
find the available node that is the closest to the initial node,
and consequently to the end-user. This algorithm is expected
to provide the overall best latency of the studied algorithms.

2) First Green: The second algorithm, Algorithm 1, aims
to find a host with the lowest latency, but producing locally
green power. The idea is similar to the previous algorithm: this
algorithm will continue searching until it has found a node
that can host the job, but only considering nodes powered by
green energy. Yet, returning a node producing green energy is
considered as a weak constraint, otherwise it could cause an
extremely inefficient allocation. Indeed, if the algorithm finds
a potential host producing green power, this node may be very
far from the initial node, thus heavily impacting the latency.
One of the principal goal of the Fog is to be close to the end-
user, often for latency issues. In that sense, we consider that,
in order to run properly, some applications require a specific
latency threshold. This threshold is given as a parameter of the
algorithm and is exceeded only if one cannot find a host in
this latency range (whether it produces green energy or not).

The initial node is added to an array of nodes kept sorted by
increasing latency as detailed in Algorithm 1. As long as we
do not meet a termination condition, we successively remove
the first node of the array and add its direct neighbors. The
first node explored with enough free cores to host the job is
stored as brown host. Termination conditions are:

• there are no more nodes in the array;
• a node with enough free cores and producing green power

has been found;
• the maximum latency has been exceeded and we have

found a node powered with brown energy.
This algorithm explores the compromise between latency

and green energy consumption. The submitted jobs are ex-
pected to be hosted further from their initial submission node,
but with less brown energy consumption in comparison with
the first algorithm.

3) Most Green: This third algorithm is similar to the second
one (Algorithm 1). The only difference is that it searches for
the node producing the most green power in its latency range,
and does not stop at the first node producing green energy.

B. Consolidation Policies

The consolidation process implies to switch-off machines
in order to save the static energy consumption of the nodes.
Switching-off a machine implies a period during which it is
unavailable; and the machine must be switched-on to host jobs
again, making it unavailable again for a specific duration. To
measure the impact of consolidation, we use the number of
nodes that are placed on a booting host, i.e, a host which is
awaken by the placement of the job on it, or a host already
in the booting process. The unavailability of nodes can reduce



Algorithm 1: First Green

1 Inputs: initial host, job cores, max latency ;
2 Outputs: suitable host for the job ;
3 potential hosts + = initial host ;
4 brown host = NULL ;
5 host = potential hosts[0] ;
6 while host 6= NULL && (host→latency ≤

max latency || brown host == NULL) do
7 if host→spare cores ≥ job cores then
8 if host→green power > 0 then
9 return host

10 end
11 else
12 if brown host = NULL then
13 brown host = host ;
14 end
15 end
16 end
17 potential hosts.pop() ;
18 potential hosts + = host→neighbors ;
19 host = potential hosts[0] ;
20 potential hosts.sort() ;
21 end
22 return brown host

the responsiveness of the architecture. Some jobs might have
to wait for a machine to boot up until they can run on it.
However, once a job is allocated, the boot duration is not
an issue anymore: it does not impact the latency perceived
by the user anymore. In this sense, we introduce the notions
of final latency: the time from initial node to the host after
the allocation and eventual booting duration, only taking into
account the communication time, i.e., latency due to the
distance between users and Fog nodes.

Jobs with consequent duration and many interactions with
the end-user should optimize final latency, for example an
application hosting a video game. Conversely, applications
submitting many jobs with short duration should tend to reduce
the number of jobs placed on booting hosts. In this work,
we consider jobs looking to optimize the final latency as
they usually last longer and consequently can better make
advantage of renewable energy sources. The consolidation
routine intervenes whenever a job ends on a node, and can
only shutdown a node if there is no job placed on it. Three
greedy consolidation policies are explored in this work.

1) Consolidate All: The first consolidation policy is rather
simple: whenever a job ends on a host, if it has no other job
placed on it, then it is switched-off. This consolidation policy
is expected to significantly reduce the energy consumption,
but will surely increase the initial latency.

2) Consolidate Brown: The second consolidation policy
consists in consolidating only nodes which do not produce
green energy. As this energy has a negligible cost, it could
be interesting to keep the nodes with green energy turned-

on, and thus reducing the impact on the responsiveness of the
architecture. However, a node previously shut down because
it did not produce green energy at this moment will not
be switched on because it produces green energy again. It
will be switch on when a job is allocated on it. This policy
is particularly suitable for the allocation algorithms First
Green and Most Green. These algorithms always search for
nodes producing green power to place jobs, and with this
consolidation policy, these nodes will be kept turned-on, thus
reducing initial latency.

3) Consolidate Ratio: The third consolidation policy con-
siders the trade-off between initial latency and reducing en-
ergy consumption. While previous consolidation policies only
consider the state of the current host, this policy considers the
state of all nodes with the same feeder node as him, i.e., in the
same district, as detailed in Section V-A1. The routine checks
the availability of the other nodes to take a decision. A node is
considered available if it is switched-on and has a percentage
of cores available at least equal to the per-node availability
threshold, given as a parameter to the routine. A core is
available if it is not used by a VM on the node. The routine
classifies each node as available or not available and maintains
a target node availability ratio, given as a parameter of the
routine. The node availability ratio is the percentage of nodes
available among the nodes checked. If shutting down this node
maintains the node availability ratio, then it is shutdown. If it
cannot be shutdown, the routine determines how many nodes
should be switched-on to recover the node availability ratio,
and tries to switch on this number of nodes among the checked
nodes. The idea behind this node availability ratio consists of
reducing the initial latency: available nodes are kept powered
on even if they are not used for speeding up the deployment
of new incoming jobs.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

For the evaluation, we use SimGrid [6], a simulation
toolkit designed for parallel and distributed large-scale system
analysis. Its models include CPU, network, VMs and energy
consumption, and have been theoretically and experimentally
proved to be efficient and accurate [14], [25], [15].

1) Fog Architecture: As mentioned in Section III, we
evaluate our policies on a hierarchical Fog architecture based
on the ISP topology provided in [7]. This architecture com-
prises five levels of network devices: core, backbone, metro,
feeder, and end-user. There is 5 to 10 end-users per feeder.
Latency is not included in the original paper [7]. We used
real measurements between European cities as a reference for
the latency. The used values are presented in Table I. They
are randomized following a Gaussian function to reflect the
dynamic conditions of ISP networks.

2) Job Traces: To the best of our knowledge, there are
currently no available traces for Fog infrastructures. Hence,
we chose to use regular Cloud traces for our experiment.
Eucalyptus traces are anonymized traces built from the log
files of several systems running Eucalyptus private clouds [27].



TABLE I
LATENCIES USED FOR THE LINKS (FROM https://wondernetwork.com/ ).

Network distance
(km)

Distance between
cities (km)

Source city Destination city Latency (ms) Standard deviation

0.1-0.5 14 Rotterdam Alblasserdam 0.721 0.05
5-15 14 Rotterdam Alblasserdam 0.721 0.05
1-50 35 The Hague Alblasserdam 1.478 0.161
50-500 300 Munich Frankfurt 8.122 1.552
550-600 610 Paris Marseille 18.607 0.07

The traces have been reworked to fit our architecture: jobs
have been scaled for each job not to ask for more cores than
the number of cores of one node, i.e., four cores (a unique job
is not distributed, it can only take place on one host at a time).
After being scaled, jobs are duplicated in the traces, so at the
busiest moment of the simulation 73% of the available Fog
cores are used. This allows to have the architecture neither
underutilized nor overutilized.

3) Green Power Traces: The traces used to represent the
green energy production on our nodes are from real traces
of photovoltaic panels as part of the Photovolta project [22],
carried out at the University of Nantes in France. The ac-
tual electricity production of the panels is logged every five
minutes. We use production traces of 35 sessions recorded at
various dates to represent the heterogeneity of the production
at different locations. These production traces are scaled to
match the energy consumption of the Fog nodes. Each scaled
production trace covers, on average, half of the maximal
consumption of a node. As nodes of the same district are
geographically close, we employ the same trace for each node
producing green energy in the same district (i.e. attached to the
same feeder in the ISP network). We distribute the 35 scaled
traces over the 260 districts considering that close districts also
have the same solar irradiance.

4) Nodes Power Model: We simulate our Fog archi-
tecture considering each node as a Raspberry Pi(RPI)
3 B (cf. https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/ ). This kind of single-board computer meets our
vision of the Fog, being easily deployable and replaceable with
a low consumption profile, but still significant computational
capacity [17]. Values used for the power model are summa-
rized in Table II. Note that Peth,idle is negative to account for
the periodic CPU activity even when Ethernet network is not
used; this activity stops when the network is active.

TABLE II
POWER MODEL OF THE RASPBERRY PI 3 B, IN WATT [17].

Function Value
Pidle 1.488

Peth,idle -0.1176
Pwlan,idle 0.899
Pcpu(u) 0.6191u (with u ∈ [0, 1] the CPU utilization)

This power values come from Kaup and al. [17]. The job
traces used in our simulation do not refer to data exchange
between nodes and we suppose that data exchange time is
far lower than data processing time for the considered Fog

applications. It corresponds to highly distributed applications
where data is produced and consumed locally. During shutting
down or booting, a node consumes as much as if all its cores
were fully loaded. Each node is considered to take 150 seconds
to boot and 10 seconds to shut down [5].

5) Network Power Model: As explained in Section III-B,
the network power model is from a paper by Guegan and
al. [13]. Values used are described in Table III.

TABLE III
NETWORK POWER MODEL VALUES [13].

Parameter Description Value
Pnet
idle idle power 1.12 W

Ebyte energy per byte 3.4 nJ
Epkt energy per packet 197.2 nJ
MTU maximum packet size 1500 bytes
BW bandwidth 10 to 100 GBps

B. Results Analysis

We run simulations to explore the interest of distributed
allocation algorithms and consolidation policies in order to in-
tegrate renewable energy sources to power Fog infrastructures.
The parameters varying through simulations are summarized
in Table IV. Latency range do not apply for the algorithm
Lowest Latency and the parameters Availability ratio and
Availability threshold only applies when the consolidation
policy is set to Consolidate Ratio. Each simulation runs for
a simulated duration of three days and with a configuration
file fixing the variable parameters for this specific simulation.
Each configuration is simulated 10 times, the results provided
hereafter exhibit the average and standard deviation values of
these 10 runs for each configuration.

TABLE IV
PARAMETERS EXPLORED IN THE SIMULATIONS.

Variables Values Explored
Allocation Algorithm Lowest Latency, First Green, Most

Green
Consolidation Policy None, Consolidate All, Consolidate

Brown, Consolidate Ratio
Number of green producers per
district

1, 3, 5

Latency Range (ms) 0, 5, 10, 20
Node availability ratio 0.1, 0.2, 0.3, 0.4
Per-node availability threshold 0.25, 0.5, 0.75



Fig. 1. Energy consumption of nodes depending on the consolidation policy.
The allocation algorithm First Green is used. The number of green producers
per district is fixed at 1 and the latency range is fixed at 5ms.

1) Energy Consumption of Nodes: The energy consumption
of nodes for the allocation algorithm First Green is shown
in Figure 1. It presents the energy consumption of the in-
frastructure for the nodes, depending on the consolidation
policy. The policies are those detailed in Section IV: NC : No
Consolidation, CA : Consolidate All, CB : Consolidate Brown,
CR : Consolidation Ratio. The behavior of the consolidation
policy Consolidation Ratio depends on two parameters, as
explained in Section IV: node availability ratio and per-node
availability threshold.

The other allocation algorithms follow the same trend and
are omitted for saving space. For each allocation algorithm,
the energy consumed by the nodes is similar. Without consol-
idation the infrastructure consumes significantly more energy.
Among the consolidation policies, Consolidate Ratio is the
one consuming the most energy since it consolidates less
nodes by keeping some available nodes. The overall green
energy consumption is small compared to the brown energy
consumption, but it is coherent considering that only one user
node per district produces green energy and they can produce
only during daytime.

The allocation algorithms First Green and Most Green
have an additional parameter compared to Lowest Latency:
the latency range. Concerning more particularly the allocation
algorithm First Green, the results of the simulations exploring
the impact of the latency range and the number of green pro-
ducers per district is shown in Figure 2. For these experiments,
we do not apply any consolidation policy in order to isolate
the latency effect.

The number of green energy producers has an obvious
impact on green energy consumption as it significantly im-
prove its green energy consumption. Increasing the latency
range, allowing to search farther for a node producing green
power, does not significantly improves the consumption of

Fig. 2. Energy consumption of nodes depending on the number of green
producers and latency range. The allocation algorithm First Green is used
and no consolidation policy is applied.

Fig. 3. Percentage of jobs placed on booting host depending on consolidation
policy and with allocation algorithm First Green.

green energy, as shown in Figure 2.
2) Energy Consumption of the Network: The network

energy consumption account for an important part of the
platform total energy consumption. As the major part of
the consumption is due to its idle consumption, network
energy consumption is nearly identical in every simulation
and represents, on average, 53.6% of the total platform energy
consumption.

C. Impact of Consolidation on Latency

Latency is a key feature in the Fog. We have seen in
Section V-B1 that consolidation policies reduce significantly
the energy consumption of the nodes in a Fog environment.
However, consolidation implies to switch-off nodes, and then
switch them back on when needed. Figure 3 presents the
percentage of jobs placed on a booting node, or on a node
being woken up to host this job, depending of the consolidation
policy applied. We observe that the percentage of jobs placed
on a booting host decreases quickly as the consolidation policy
becomes less aggressive, and thus less efficient to save energy.

D. Final Latency

Figures 4, 5 and 6 present the impact of allocation al-
gorithms on final latency, i.e., how far the jobs are placed



Fig. 4. Final latency with the allocation algorithm Lowest Latency and one
node producing green energy per district.

Fig. 5. Final latency with the allocation algorithm First Green, one node
producing green energy per district and a latency range of 20 ms.

Fig. 6. Final latency with the allocation algorithm Most Green, one node
producing green energy per district and a latency range of 20 ms.

from the initial node in terms of latency. The number of
green producers per district is fixed to one and there is no
consolidation policy applied. For the allocation algorithms
First Green and Most Green (Figures 5 and 6), the latency
range is fixed to 20 ms.

As expected, allocation algorithms follow their constraints.
Lowest latency provides the best results as it only searches for
the closest available node. First Green goes slightly farther
as it looks for a node producing green energy. Finally, Most
Green provides the worse results: as its main constraints is to
find the node producing the most green energy in its latency
range, it will often allocate jobs far from the node on which
they were submitted. The spike at 7 ms and the Gaussian-like
distribution around 14 ms are due to the architecture, e.g.,
there is no node distant by 5 ms but many are distant by 7 ms
in the architecture.

E. Discussion

To summarize, consolidation is an important feature to
reduce the energy consumption of Fog computing. But, it
requires to deal with applications that are not heavily impacted
by being launched on a booting node, increasing considerably
its initialization. That is to say, consolidation is primarily

oriented for applications running on long periods of time, or
being highly predictable. Yet, using small nodes, as Raspberry
Pi, which are often considered in literature as a key target
for Fog nodes, does not allow to take advantage of efficient
allocation policies. A greedy first fit allocation performs almost
as good as more advanced greedy algorithms.

In this work, jobs are allocated at submission time and
stay on the same node for all their duration. The benefits of
migrating job between nodes to exploit more green power or
to improve the consolidation could be investigated [5]. Also,
here we consider a fixed Fog architecture that is connected
through wired networks. Future Fog architectures could in-
clude mobile Fog nodes relying on wireless communications.
As our proposed algorithms are fully distributed, they would
be suitable for such a case.

The Fog nodes considered in this work are homogeneous,
which may not reflect reality. Relaxing this assumption of
homogeneous nodes requires to consider greedy algorithms
with optimization metrics other than the availability of green
energy – metrics including a trade-off between the energy-
efficiency of the nodes and local green availability. However,
heterogeneity could be interesting to explore from an energy-
efficient perspective. Indeed, the interest of producing green
energy on a given location could vary with the computing
capability and consequently, the energy efficiency of the nodes
located nearby.

In this work, we consider on-site renewable energy produc-
tion with sources owned by the Fog operator, as it is the case
for large-scale Cloud providers [5]. Yet, as we have shown
through simulation, exploiting local renewable energy sources
in a low-power Fog architecture is complex, even when the
geographic distribution allows for variable green production,
and even with simple models (e.g. homogeneous nodes) that
limits the hidden and cascade effects. While green energy
produced but not consumed is considered as wasted here, other
work explore alternatives like reselling it to the grid or sharing
it through a virtual pool [4].

VI. CONCLUSION

On average, consolidation policy Consolidate All allows
to reduce the energy consumption of the nodes by 12.4%
compared to simulations without consolidation. But, due to
the nature of consolidation, the responsiveness of the infras-
tructure is considerably reduced with, on average, 46.4% of
the jobs placed on a booting node, and consequently delayed.
This may seem to be an important issue considering that
major goals of the Fog consist in being more responsive than
the Cloud and reducing the end-to-end latency. However, the
consolidation only impacts the allocation of new jobs, which
will have to wait for the node to boot up and/or the VM to
start. This behavior may be inadequate for jobs with a small
lifetime, as the boot duration will be more impacting. But, for
longer jobs, the problem can be considered differently. The
initialization of a job will be longer, in average, to start on a
node, but the real application latency will remain low during
the job execution, and it will consume green energy.



We tried to allocate jobs on specific nodes to benefit at most
of the green energy produced locally. But, even if the green
production is important, a Fog node in itself does not consume
much energy, even when fully loaded. In addition, in our
Fog context without batteries, the nodes have low processing
capabilities, reducing the number of jobs that can be hosted on
a single node. We also found that, in our context, network in
between the Fog nodes accounts for 53.6% of the total energy
consumption, on average, although we do not rely heavily on
the network as we do not use job migration for instance.

Distributed Fog architectures must be considered in the
future. Many applications are envisioned to rely on their
capabilities. The energy consumption of such architectures
has to be considered to reduce their running cost and en-
vironmental impact. The optimization of green energy has
not been conclusive in our performance-oriented context with
small Fog nodes and without batteries. However, consolidation
may be considered to reduce its consumption. It consequently
decreases the energy consumption, but may not be adapted
to every kind of application. Also, the consumption of the
network between the Fog nodes should be taken into account
as it represents the main energy consumption share.

As future work, we would like to explore the use of local
energy storage devices in order to evaluate at which cost
it would be feasible to have a Fog architecture completely
autonomous in terms of electricity (as it is the case, at a
different power scale, in wireless sensor networks with energy
harvesting capabilities for instance). This may require the use
of energy storage devices and prediction methods for green
production.
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