Article Dans Une Revue Cluster Computing Année : 2020

OLAP operators for social network analysis

Résumé

The multidimensional data model and implementations of social networks come with a set of specific constraints, such as missing data, reflexive relationship on fact instance. However, the conventional OLAP operators and existing models do not provide solutions for handling those specificities. Therefore, we should invest further efforts to extend these operators to take into consideration the specificities of multidimensional modeling of tweets as well as their manipulation. Face to this issue, we propose, in this paper, new OLAP operators that enhance existing solutions for OLAP analyses involving a reflexive relationship on the fact instances and dealing with missing values on dimension members. For each OLAP operator, we suggest a user-oriented definition as an algebraic formalization, along with an implementation algorithmic.
Fichier principal
Vignette du fichier
ben-kraiem_26306.pdf (5.64 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02923943 , version 1 (27-08-2020)

Identifiants

Citer

Maha Ben Kraiem, Mohamed Alqarni, Jamel Feki, Franck Ravat. OLAP operators for social network analysis. Cluster Computing, 2020, 23 (1), pp.2347-2374. ⟨10.1007/s10586-019-03006-z⟩. ⟨hal-02923943⟩
77 Consultations
126 Téléchargements

Altmetric

Partager

More