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• High contribution of brown carbon to
aerosol absorption was observed at
nine locations in France during winter.

• Major sources of brown carbonwere at-
tributed to wood burning emissions
from residential heating.

• Mass absorption cross section of less ox-
idized BBOAwas higher than that of the
more oxidized.
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Brown carbon (BrC) is known to absorb light at subvisible wavelengths but its optical properties and sources are
still poorly documented, leading to large uncertainties in climate studies. Here, we show its major wintertime
contribution to total aerosol absorption at 370 nm (18–42%) at 9 different French sites. Moreover, an excellent
correlation with levoglucosan (r2 = 0.9 and slope = 22.2 at 370 nm), suggesting important contribution of
wood burning emissions to ambient BrC aerosols in France. At all sites, BrC peaks were mainly observed during
late evening, linking to local intense residential wood burning during this time period. Furthermore, the geo-
graphic origin analysis also highlighted the high potential contribution of local and/or small-regional emissions
to BrC. Focusing on the Paris region, twice higher BrC mass absorption efficiency value was obtained for less
oxidized biomass burning organic aerosols (BBOA) compared to more oxidized BBOA (e.g., about 4.9 ± 0.2 vs.
2.0 ± 0.1 m2 g−1, respectively, at 370 nm). Finally, the BBOA direct radiative effect was found to be 40% higher
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when these two BBOA fractions are treated as light-absorbing species, compared to the non-absorbing BBOA
scenario.

© 2020 Published by Elsevier B.V.
1. Introduction

Carbonaceous aerosols, consisting of black carbon (BC) and organic
matter (OM), account for a substantial fraction of atmosphericfine aero-
sols (Zhang et al., 2007). They have both direct and indirect effects on
the Earth's energy budget and thus on climate change (Bond et al.,
2013; IPCC, 2013). BC is known as a major absorber of solar radiation
from the ultraviolet to the infrared part of the spectrum. Part of organic
aerosols (OA), so-called brown carbon (BrC) (Andreae and Gelencsér,
2006), can also absorbs solar radiation, mainly in the ultraviolet region
(Laskin et al., 2015;Moise et al., 2015).While BC absorption is relatively
well characterized, the knowledge on sources and optical properties of
BrC remains limited, inducing large uncertainties in the radiative forcing
assessment at the global scale (Saleh, 2020; Saleh et al., 2015).

Atmospheric BrC can be emitted by primary sources or formed by
secondary processes, involving anthropogenic and biogenic origins
(Laskin et al., 2015; Moise et al., 2015). Regarding primary emissions,
combustion sources have been widely demonstrated as substantial
BrC contributors at various types of locations (Chen et al., 2020; de Sá
et al., 2019; Moschos et al., 2018; Qin et al., 2018; Washenfelder et al.,
2015; Xie et al., 2019). Globally, open biomass burning (e.g., fire emis-
sions) was reported as an important BrC source (Saleh et al., 2015). In
particular, residentialwood burning -which is now recognized as a pre-
dominantwintertime OA source inWestern Europewithin emission in-
ventories (Denier van der Gon et al., 2015) - has been assessed as a
major source of BrC at various urban (Favez et al., 2009; Moschos
et al., 2018; Zhang et al., 2018) and rural (Golly et al., 2019) environ-
ments. Moreover, a growing number of studies are also indicating sig-
nificant contributions of secondary organic aerosols (SOA) to BrC
concentrations, while comprehensive source apportionment exercises
of light absorbing OA are still needed (Chen et al., 2018; Gilardoni
et al., 2016; Kumar et al., 2018; Lambe et al., 2013; Moise et al., 2015;
Moschos et al., 2018; Xie et al., 2020).

The carbonaceous aerosols' contribution to radiative budget is not
only determined by its total burden in the atmosphere, it is also largely
affected by the specific optical properties of the different types of light
absorbing compounds. These properties are commonly investigated
via the aerosol absorptivity (Romonosky et al., 2019; Saleh et al.,
2014) and absorption coefficients are usually normalized by the mass
of absorbing particles to determine the wavelength-dependent mass
absorption efficiency (MAE) (Bond et al., 2013). The MAE is further ap-
plied in climate models to explain the relationship between radiative
impacts and concentrations of a given aerosol type (Bond et al., 2013).
BrC MAE can span several orders of magnitude according to the differ-
ent types of aerosols from various sources observed in different regions
(Chen et al., 2020; de Sá et al., 2019; Kumar et al., 2018; Laskin et al.,
2015; Moschos et al., 2018; Qin et al., 2018; Washenfelder et al.,
2015). However, most climate models still roughly treat OA as non-
absorbing aerosols (Li et al., 2016; Saleh, 2020), since the main sources
and light-absorption properties (e.g., MAE) of brown carbon in the am-
bient air remain poorly understood.

In this context, we investigated the relationship between BrC light
absorption (measured using multi-wavelength aethalometer) and bio-
mass burning aerosols in winter at nine (peri-)urban sites distributed
over France and so, under various climatic conditions.We also benefited
of high-time resolutionOA source apportionment (based onquadrupole
aerosol chemical speciation monitor (ACSM) measurements) at one of
these sites (located in the Paris region) to estimate component-
specific BrC MAE using multiple linear regression (MLR) analysis.
Finally, we evaluated the potential radiative forcing effect of two types
of biomass burning-related OA.

2. Materials and methods

2.1. Sampling site and measurements

Online measurements and filter samplings were performed during
the 2014–2015 winter season at different urban areas over France, in-
cluding Rouen, Reims, greater Paris (SIRTA), Nantes, Poitiers, Lyon, Gre-
noble, Bordeaux, and Marseille (see Fig. 1 and Table S1). All these sites
correspond to urban background stations operated by regional air qual-
ity monitoring networks, except for the SIRTA facility, which is part of
the European Research Infrastructure for the observation of Aerosol,
Clouds and Trace gases (ACTRIS). This research platform is located
25 km southwest from the Paris city center and is representative of
the background for the determination of air quality within the Paris
region.

Spectral dependence of aerosol light absorption coefficients was
measured at all sites using a seven-wavelength (370, 470, 520, 590,
660, 880, and 950 nm) Aethalometer (Magee scientific, AE33, PM2.5

size cut-off, 5 L min−1 and 1 min time resolution). This instrument no-
tably allows for the automatic correction of the so-called filter loading
effect, as detailed in (Drinovec et al., 2017; Drinovec et al., 2015). Briefly,
the sampled ambient air is divided and the sample is deposited onto
two filter spots at different flowrates, leading to uneven loadings on
the respective filter spots. A compensation parameter k is retrieved
from the different loading effect magnitudes influencing these two
spots, and k is further used to determine the light attenuation (bATN)
due to carbonaceous aerosols. Absorption coefficients (babs) are eventu-
ally obtained at each wavelength following Eq. (1):

babs ¼
bATN
C

ð1Þ

where C represents the overall filter multiple-scattering enhancement
parameter (Drinovec et al., 2015). In accordance with previous studies
at SIRTA (Zhang et al., 2018; Zhang et al., 2019) and other ACTRIS sites
(Zanatta et al., 2016), a wavelength independent C value of 2.57was ap-
plied to AE33 data measured at each site of the present study. At SIRTA,
the data of equivalent mass concentration of wood burning BC (eBCwb)
used in the present studywas obtained from our previous study (Zhang
et al., 2019).

Meanwhile, concentrations of levoglucosan - commonly used as a
marker for biomass burning aerosols (Simoneit, 2002) - was obtained
from off-line analysis of PM10 filter samples collected using DAH-80
high volume samplers at a flow rate of 30 m3 h−1 (Digitel) at all sites.
Filters were collected on a daily time-base, near-continuously from
mid-November 2014 to mid-April 2015, and a part of them was ana-
lyzed. The selection of filters to be analyzed (with a total number rang-
ing from24 to 50filters, depending on the site)was achieved to obtain a
good temporal representativity of the investigated period (typically
every third day) but also according to the actual filter availability as
well as the availability of co-located AE33 data. Levoglucosan quantifi-
cation was performed using high-performance liquid chromatography
followed by amperometric detection (HPLC-PAD) (Waked et al., 2014).

Finally, concentrations of non-refractory major chemical species
within submicron aerosol (NR-PM1) have been continuously measured
at SIRTA using the ACSM (Aerodyne Res. Inc.) at a time resolution of
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Fig. 1. Contributions of black carbon (BC) and brown carbon (BrC) to total aerosol absorption at 370 nm observed across France during the 2014–2015 winter season.
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approximately 30 min. These measurements notably include the OA
fraction and its mass spectra. Detailed descriptions of the ACSM and
its set-up at SIRTA can be found elsewhere (Ng et al., 2011; Zhang
et al., 2019).

2.2. Determination of BrC absorption coefficients

The wavelength dependence of BrC absorption coefficients (bBrC,λ)
was calculated assuming that BC is the only absorber at 880 nm. The ab-
sorption Ångström exponent (AAE) is a widely used parameter that de-
scribes the wavelength (λ) dependence of aerosol light absorption
(Eq. (2)). The spectral dependence of BC absorption (bBC,λ) can be de-
rived based on the measured total aerosol absorption coefficients
(btotal,λ) using Eq. (3) (Kumar et al., 2018). BC AAE values usually
range between 0.9 and 1.1 (Bond et al., 2013; Lu et al., 2015). In this
study, an AAE of 1 was applied for the estimation of bBC,λ, which is nota-
bly consistent with previous studies at SIRTA (Zhang et al., 2018). To
evaluate impact of this BC AAE value range on quantification of BrC,
we performed a sensitivity test using the BC AAE values at 0.9, 1, and
1.1, respectively (see Fig. S1). As indicated by the result of this sensitiv-
ity test, an uncertainty (ratio of standard deviation to mean) of approx-
imately 11% at 370 nm was observed when using these different AAE
values to calculate BrC. Finally, the bBrC,λ at 370, 470, 520, 590, and
660 nm could be calculated following Eq. (4):

AE λ1;λ2ð Þ ¼ In babs;λ1

� �
−In babs;λ2

� �
In λ1ð Þ−In λ2ð Þ ð2Þ

bBC;λ ¼ btot;880nm � 880 nm
λ

� �AAE

ð3Þ

bBrC;λ ¼ btot;λ−bBC;λ ð4Þ

2.3. Source apportionment of OA

Prevalent OA sources at SIRTA were resolved by positive matrix fac-
torization (PMF) (Paatero and Tapper, 1994) applied to ACSM organic
mass spectra, using the source finder (SoFi) toolkit (Canonaco et al.,
2013) equipped with a multilinear engine (ME-2) (Paatero, 1999).
More description about PMF can be found in Text S1. Considering to
large interferences of internal standard of naphthalene at m/z's
127–129 – which may provide some uncertainties for the PMF
analysis – only m/z b 100 was used here for the ME-2 analysis (Zhang
et al., 2019). As reported by our previous study (Zhang et al., 2019),
two major POA sources, i.e., traffic (HOA) and biomass burning
(BBOA) emissions, were identified at SIRTA across a long-term period
(six years). Although a single BBOA factor was chosen as the “best esti-
mate” for the PMF runs in the context of such amulti-year investigation
(Zhang et al., 2019), two types of wood burning organic aerosols
(i.e., less and oxidized BBOA) – which have been identified using high
resolution aerosol mass spectrometer PMFmethod during cold seasons
at SIRTA (Crippa et al., 2013; Fröhlich et al., 2015) – could be expected
when, focusing only on the winter period. To further explain the differ-
ent types of BBOA factors, the referencemass spectral profiles of the two
BBOA (Crippa et al., 2013; Fröhlich et al., 2015) has been applied in the
present ME-2 analysis to constrain these factors. The mass spectrum of
HOA was also constrained using the one mainly related traffic source
from (Crippa et al., 2013), while an oxygenated OA (OOA) factor was
unconstrued. Overall, the four-factor solution was resolved in the pres-
ent study to account for the OA components in winter, including HOA,
less (LO-BBOA) or more (MO-BBOA) oxidized biomass burning OA,
and OOA. More discussion on these OA factors has been given in
Section 3.3.
2.4. Air mass back trajectory analysis

The 72-h back trajectories of air masses arriving at each sampling
site at a height of 100 m above ground level were calculated every 1 h
by using the HYbrid Single-Particle Lagrangian Integrated Trajectory
model (Draxler and Rolph, 2003). The Global Data Assimilation System
(GDAS)meteorological data was used for these calculations. The poten-
tial source contribution function (PSCF) (Polissar et al., 1999) was ap-
plied here to evaluate possible geographic origins of high absorption
coefficients of brown carbon. As the PMF OA factors were available at
SIRTA (Paris area), the PSCF analysis has been also applied to further un-
derstand the geographic sources of these OA factors. Briefly, to
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determine the possibility of the geographic origin area, the probability
function (i.e., PSCF) was calculated using Eq. (5). In this equation, i and j
indicate latitude and longitude for a two-dimension grid cell (i, j), respec-
tively.mij refers to the total number of selected trajectory endpoints (i, j)
linked to the given observed absorption coefficients of brown carbon or
mass concentrations of OA factors, which are higher than the threshold
value (i.e., 75th percentile of each variable during the entire observation
period). nij is the total number of trajectory endpoints at each grid cell
(i, j). wij is an arbitrary weighting function (Waked et al., 2014), which
is applied here to reduce uncertainty of PSCF modeling due to small nij
values. The detailed description of this weighting function can be found
in Waked et al. (2014). The grid resolution was set by 0.25° × 0.25°. The
trajectory data was filtered by rainfall (higher than 1 mm h−1) to reduce
wet deposition impact, andwas limited by the airmass altitude threshold
up to 2000 m. The PSCF analysis was performed using an IGOR-based
toolkit (ZeFir) (Petit et al., 2017).

PSCF i; jð Þ ¼
mij

nij

� �
∙wij ð5Þ

2.5. Determination of source-specific MAE

The MLR analysis was applied to determine MAE of the OA factors
discussed hereabove, following:

babs−BrC ¼ m1 � HOA½ � þm2 � LO−BBOA½ � þm3 � MO−BBOA½ � þm4
� OOA½ � þ intercept ð6Þ

In Eq. (6), babs−BrC indicates brown carbon absorption coefficient
(Mm−1) and the unit of these four OA factors is mass concentration
(μg m−3). All of these data are 1-h time resolution. The coefficients, in-
tercepts, and standard deviation from theMLR analysis have been given
in Table S2. Fig. S2 presents the correlations of brown carbon absorption
coefficients (babs-BrC) between observed and calculated from the MLR
method. Overall, excellent agreements (r2 = 0.78–0.87, slope =
0.93–0.99) between the observation and the calculation at different
wavelengths (including 370, 470, 520, 590, and 660 nm) are observed,
highlighting negligible residual of the MLR analysis. More detailed dis-
cussion about the OA-factor-specific MAE values are given in
Section 3.4.

3. Results and discussion

3.1. Multi-site measurements of BrC

The averaged total absorption coeffients at 370 nm (babs,370) ranged
from approximately 13 to 53 Mm−1 for the different sites of the study
(Table S1). As shown in Fig. 1, BrC contributed up to more than 40% to
aerosol absorption at this wavelength. Highest mean contributions
(32–42%)weremainly observed in Northeastern regionswhile the low-
est one (18%) was obtained for the Southeastern site (Marseille). This
spatial distribution is reflecting variations in the Angström Absorption
Exponent (AAE, in the range 370–950 nm) values among those sam-
pling sites (Table S3). Furthermore, as presented by Fig. 2, a very good
correlation (r2 = 0.90) has been observed between daily-averaged
BrC absorption coeffients (bBrC,370) and levoglucosan concentrations
across all the sites. This latter result suggests the predominance of
biomass-combustion source for ambient brown carbon during winter-
time in France. As a matter of fact, the displayed bBrC,370 diel profiles
were consistent with those generally observed for residential wood
burning aerosols (Favez et al., 2010; Sciare et al., 2011; Zhang et al.,
2019), with late evening maxima (see Fig. 3) at all sampling sites.

All these observations are confirming the overwhelming influence of
residential wood burning emissions on BrC loadings in France during
wintertime. Accordingly, BrC absorption coefficients might then be
considered as an accurate proxy for biomass burning aerosols during
this period of the year. As shown in Table S3 and Fig. 4, AAE values of
BrC in the lower wavelength range region (370–520 nm) are compara-
ble from one investigated site to another, with a small standard devia-
tion (4.80 ± 0.28, mean ± 1σ), suggesting that biomass burning
organic aerosols have overall similar optical and/or chemical properties
at those sites. Based on PM10 filter-based PMF analyses achieved for 15
different sites,Weber et al. (2019) found that levoglucosan accounts for
8 ± 2% of the total wood burning aerosol concentrations over France.

Combining this number ð Levoglucosan
PM10;wood burning

¼ 8� 2%Þ with the slope

value obtained from Fig. 2 ð bBrC;370
Levoglucosan

¼ 22:2� 0:4 m2 g−1Þ , we

could propose a BrC-levoglucosan-tracer method to roughly estimate
mass concentration of biomass burning aerosol concentrations
(PM10,wood burning), as illustrated by Fig. S3. To examine the validity of
this method, we applied it to 2 independent datasets for which AE33
and levoglucosan data as well as PMF outputs were already available
elsewhere. These datasets are corresponding to i) an intensive field
campaign with 4 h-filter samplings during Spring 2015 at SIRTA
(Srivastava et al., 2018) and ii) daily filter-based measurements in
Metz (Petit et al., 2019). As shown in Fig. S3, a good correlation (r2 =
0.83, slope = 1.11 ± 0.03, N = 227) was obtained between PMF
wood burning factor and PM10,wood burning, supporting the good perfor-
mance of the BrC-levoglucosan-tracer method to quantify biomass
burning source emissions. It should be noted that such a tracer method
might be essentially applicable for conditionswhere biomass burning is
the predominated source of ambient particulate brown carbon, for in-
stance in Franceduring cold seasons.Moreover, considering that the im-
portance of biomass burning from residential wood burning sector has
been widely recognized in western Europe (Crippa et al., 2014;
Daellenbach et al., 2017; Denier van der Gon et al., 2015; Moschos
et al., 2018), the performance and uncertainty of the BrC-
levoglucosan-tracer method proposed here could be further evaluated
at other locations in future studies.

3.2. Geographic origins of BrC

Fig. 5 shows maps for the PSCF analysis of brown carbon at different
city sites. At SIRTA (Paris area), brown carbon presents high PSCF values
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located to local scale and the southeast and south of the sampling site
(Fig. 5a). This PSCF pattern is consistent with the high possible source
region of BBOA factors observed in the present study (see further dis-
cussion in Section 3.3) and our previous study for multi-year winters
(Zhang et al., 2019). These results suggest that both local emissions
and regional transport could dominate the high loadings of brown car-
bon aerosols in the Paris region. As shown in Fig. 5b, the high-PSCF re-
gion of brown carbon is characterized with local scale and two distinct
transport pathways, i.e., the southeast and northwest of Rouen, respec-
tively. The former pathway is highly similar as the possible source re-
gion of brown carbon observed at SIRTA, indicating a similar
geographic origin of high BrC loadings observed at the two city areas
(i.e., Paris and Rouen). It should be noted that the latter pathway is orig-
inated from a region in the eastern UK, reflecting possible influence of
biomass burning emissions and subsequent transport from the UK on
ambient brown carbon aerosols observed in Rouen. As shown in
Fig. 5c, the high potential origins of brown carbon are mainly located
to local scale, the northern (e.g., originated from the northern region
of Belgium) and the southeastern areas of Remis. These results highlight
an important role of local emissions and regional transport in contribut-
ing to the high BrC loadings observed in Reims. As indicated by the PSCF
analysis in these three city areas (i.e., Paris, Rouen, and Remis), the high
potential geographic origins over the northeastern region in France
could substantially contribute to atmospheric brown carbon during
cold months.

At bothNantes and Lyon sites (Fig. 5d and e), the small region of high-
PSCF values is observed predominantly from local scale. This suggests that
local biomass burning emissions were an important source for the high
loadings of brown carbon in these two city regions. As shown in Fig. 5f,
there are two distinct hot spots of the high PSCF values observed in Gre-
noble. One is distributed at local scale, while another is related to regional
transport originated from a region near Poitiers (see Fig. 5g). In Poitiers
(Fig. 5g), an evident high-PSCF region of brown carbon is located to a
small area from the south of the sampling site. Meanwhile, the relatively
high PSCF values observed in Poitiers could be associatedwith the poten-
tial source origins of brown carbon observed in Reims (Fig. 5c). Thismight
suggest a regional transport pathway of brown carbon aerosols from the
northeast to the southwest of France. In addition to high potential source
froma local scale, a narrowhigh-PSCF bond located to the northeast of the
sampling site was observed in Bordeaux (Fig. 5h). This possible reginal
transport is originated from the highly possible source region of brown
carbon over the northeastern area of France (Figs. 5a–c). In Marseille
(Fig. 5i), the high PSCF values are located to the local area and the region
over Grenoble (Fig. 5f). This reflects that brown carbon observed in Mar-
seille could be influenced by local emissions and regional transport origi-
nated from the Grenoble region.
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Overall, these PSCF analysis highlighted that local emissions and re-
gional transport could be a high potential source for high levels of
brown carbon aerosols observed at thesemost receptor sites. Especially,
wood burning emissions from local scale and/or short-distance trans-
port may be a predominant geographic origin for brown carbon aero-
sols. Furthermore, the diel variations of brown carbon (see Fig. 3) –
which are characterized by evident late evening peaks at all sampling
sites – could further support important contribution of local emissions
to brown carbon. These diel cycle patterns is also consistent with the
variations of wood-burning aerosols (e.g., BBOA and eBCwb) reported
by some previous studies at various sites during cold months in
France (Favez et al., 2009; Favez et al., 2010; Languille et al., 2020;
Weber et al., 2019; Zhang et al., 2019), as well as the funding in this
study (see Fig. 6). Interestingly, the BrC PSCF patterns described above
seems coherent with the spatialized emission inventories available for
residential wood burning in France (Denier van der Gon et al., 2015).
All of these findings above could support that wood burning emissions
from residential sector in France are a ubiquitous and important source
for atmospheric brown carbon aerosols during wintertime.

3.3. Sources of organic aerosol at SIRTA

As shown in Fig. 6a, the mass spectrum of HOA is characterized by
the dominating CxH2x+1

+ and CxH2x+1
+ ion family, which is generally as-

sociated with traffic-related POA in urban environment (Sun et al.,
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oxygenatedOA (OOA), obtained from the PMFACSMOAdataset observed at SIRTA. The upper a
within the box correspond to median values; the whiskers above and below boxes refer to 95t
2011; Zhang et al., 2011). The diurnal cycle of the HOA factor presents
two high peaks at morning and evening rush hours (Fig. 6b), mainly
due to intense traffic emissions (Zhang et al., 2019). As shown in
Fig. S4a, the mass concentration of HOA resolved in this study is excel-
lently correlating (r2 = 0.99) with the one from our previous study
(Zhang et al., 2019). As shown in Fig. S4b, the difference of HOA be-
tween Zhang et al. (2019) and the present study is correlated well
with wood burning black carbon aerosol (eBCwb), demonstrating that
the lower HOA in this study is mainly due to less biomass burning influ-
ence compared to Zhang et al. (2019). Hence, thenewOA factor solution
in this study could reduce influence, to some extent, of biomass burning
emissions on such HOA factor (Zhang et al., 2019).

The mass spectrum of LO-BBOA presents strong signal fractions at
m/z 29, 60 and 73, which is similar at the ones widely observed under
ambient environments influenced by fresh biomass burning emissions
(Cubison et al., 2011; de Sá et al., 2019; Lanz et al., 2010; Zhang et al.,
2015). Compared to the LO-BBOA, MO-BBOA has lower m/z 60 and
higher m/z 44 fractions in its mass spectrum (Fig. 6a), representing for
a more oxidized or aged BBOA factor (Crippa et al., 2013; Cubison
et al., 2011; de Sá et al., 2019; Zhang et al., 2015). As presented in
Fig. 6b, both LO-BBOA andMO-BBOA show evidently high peaks during
nighttime linking to enhanced residential wood burning emissions due
to intense heating purpose. LO-BBOA andMO-BBOA have good correla-
tions (r2 = 0.55–0.69) with wood burning source tracer, i.e., eBCwb

(Figs. S4 c and d). Moreover, the sum of LO-BBOA and MO-BBOA
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shows a very good correlation with BBOA used in Zhang et al. (2019)
(Fig. S4e). These results further support that our two-factor BBOA solu-
tion could be associatedwith residentialwood burning emissions sector
(Denier van der Gon et al., 2015; Zhang et al., 2019).

The mass spectrum of OOA is characterized by a dominate peak at
m/z 44 (Fig. 6a), which has been observed worldwide in urban environ-
ments (Crippa et al., 2014; Daellenbach et al., 2017; Jimenez et al., 2009;
Zhang et al., 2011). As shown in Fig. 6b, OOA exhibits highmass concen-
trations during nighttime with a similar diurnal trend as biomass burn-
ing aerosols. As shown in Fig. S4f, OOA also has an excellent correlation
(r2 = 0.97, slope = 1.0) with the total OOA that is from (Zhang et al.,
2019), supporting that our new PMF factor solution can fully explain
the OOA factor fraction. As presented in Zhang et al. (2019), we have
demonstrated that thewintertime OOA factor could be substantially in-
fluenced by local-and/or small regional-scale residential wood burning
emissions (Zhang et al., 2019). In fact, such a OOA factor, relevant to bio-
mass burning source, has been also widely observed in some western
Europe regions during wintertime (Bozzetti et al., 2017; Daellenbach
et al., 2017).

Fig. 7 presents the PSCF value distributions for different PMF OA fac-
tors observed at SIRTA. As Fig. 7a shows, the high PSCF values for LO-
BBOA are mainly distributed in the area near the sampling site, indicat-
ing that local-scale wood burning emissions could significantly contrib-
ute to the high concentration of freshly-generated BBOA at SIRTA. In
addition, a small high-PSCF region was observed located to the south-
east of the sampling site, suggesting potential contribution of short-
distance transport to LO-BBOA observed at SIRTA. Compared to LO-
BBOA, MO-BBOA presents a larger high-PSCF region, including local
and the area from the south to southeast of the Paris region (see
Fig. 7b). This highlights that the important sources of themore oxidized
60

55

50

45

40

35

30
-20 -10 0 10 20

0.40.30.20.10.0LO-BBOA

6

5

5

4

4

3

3

60

55

50

45

40

35

30
-20 -10 0 10 20

HOA

6

5

5

4

4

3

3

a

c
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BBOA could be associatedwith local emissions and regional transport of
residential wood burning. Moreover, these results could help to partly
explain the different oxidation state for these two BBOA factors. For ex-
ample, LO-BBOA could be considered as a freshly-generated factor
mainly from local emissions, while MO-BBOA could represent for a
more processed factor that was formed during regional transport and/
or by rapid oxidation transformation once its precursors are emitted
into the atmosphere (Nalin et al., 2016). Nevertheless, it's worthful for
further investigating more detailed formation mechanism of these two
BBOA factors in further study. As shown in Fig. 7c, HOApresents a highly
similar PSCF pattern as the two BBOA factors, which is characterized by
high values associatedwith both the local scale and the region located to
the south and southeast of the sampling site. This is mainly due to that
the HOA factor here is a mixed OA factor emitted from fossil fuel and
biomass combustion, which has been demonstrated by some previous
studies performed at SIRTA (Petit et al., 2014; Srivastava et al., 2018;
Zhang et al., 2019). Interestingly, as shown in Fig. 7d, OOA also presents
a very similar PSCF pattern as the two BBOA factors. This could support
that the formation of high concentration of this SOA factor could be
linked to wood burning source sector from local scale and regional
transport. This result is also consistent with our previous findings that
high concentration of wintertime OOA was mainly associated with
wood burning source (Zhang et al., 2019).

3.4. Sources and optical properties of BrC at SIRTA

BrC sources could be further examined at SIRTA using outputs of the
specific PMF analysis performed on the OAmass spectra obtained from
ACSMmeasurements inwinter 2014–2015 and applyingMLR to bBrC,370
data (see Section 2.5). BrC absorption coefficients estimated from this
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MLR analysis are quite consistent with those measured at different
wavelengths (Fig. S2), indicating that the four OA factors can reasonably
explain total BrC absorption coefficients. As shown in Fig. 8a, the main
BrC contributors were found to be the two biomass burning OA factors
(with more than 40% and 30% of total BrC absorption for LO-BBOA and
MO-BBOA, respectively), followed by OOA (18%), and HOA (8%) on av-
erages, reinforcing our conclusion that biomass burning was the pre-
dominant BrC source at SIRTA.

Fig. 8b presents wavelength-dependent MAE of the PMF OA factors
in the range 370–660 nm, and subsequent AAE values, as retrieved
from MLR analysis at the different wavelengths (see also Table S3).
AAE values obtained for BrC attributed to the two BBOA factors
(i.e., about 8.8 and 6.6 respectively for MO-BBOA and LO-BBOA) are
much higher than the ones obtained for OOA (3.45) and then HOA
(2.75). This indicates amore significant wavelength dependence of bio-
mass burning brown carbon aerosols than any of OOA and HOA. As a
matter of fact, OA emitted from primary biomass burning contains the
largest part of brown carbon chromophores which strongly absorb
light at near-UV wavelengths (Huang et al., 2018; Kumar et al., 2018;
Lu et al., 2015; Wang et al., 2019). Moreover, the stronger wavelength
dependence obtained for MO-BBOA (compared to LO-BBOA, which
can be considered as fresher emissions) is consistent with the features
of primary vs. secondary biomass burning OA (or oxidized primary
OA) reported by Saleh et al. (2014).

Regarding absorptivity, the MAE at 370 nm of LO-BBOA was of
4.85 ± 0.18 m2 g−1, which is in agreement with the value of freshly-
generated BBOA from wood burning laboratory experiments
(Kirchstetter et al., 2004; Kumar et al., 2018). Compared to LO-BBOA, a
lower MAE (2.02 ± 0.12 m2 g−1) was estimated for MO-BBOA (a
more oxidized biomass burning factor), which is comparable to aged
brown carbon particles generated from awood burning chamber exper-
iment (Kumar et al., 2018). These results evidence that the less oxidized
BBOA has stronger effective absorptivity than the more oxidized BBOA,
as previously observed by other studies in ambient air (de Sá et al.,
2019). The calculated HOA MAE at 370 nm is of 1.06 ± 0.23 m2 g−1,
which is higher than the value observed for HOA in tunnel environment
in Zurich (below 0.4 m2 g−1) (Moschos et al., 2018). This can be partly
explained by the fact the HOA factor at SIRTA is not made of traffic-
emitted organic aerosols only during cold months and can be mixed
with biomass burning organic aerosols (Petit et al., 2014; Srivastava
et al., 2018; Zhang et al., 2019).

Finally, to evaluate the potential climate implications of residential
wood burning BrC absorption observed in the conditions of the present
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study, we performed simplified BC and BBOA radiative effect calcula-
tions. More description and equations used for these calculations are
given in Text S2. Briefly, the real refractive index and mean diameter
of BrC particles were held constant at 1.55 and 160 nm, respectively.
The imaginary part of refractive index of brown carbon aerosols from
biomass burning emissions (kOA) can be parameterized using the BC-
to-OA ratio (see Text S2) (Lu et al., 2015; Saleh et al., 2014). This
means that variations in the calculated radiative effect of BrC were
driven by wavelength-dependent kOA in this calculation. In the present
work, we used of the eBCwb-to-BBOA ratio, in good agreement with the
data treatment strategy used recently by Lu et al. (2015). A minimum
and maximum range (0.10–0.95) of eBCwb-to-BBOA ratios were esti-
mated considering BBOA to be equivalent to the two BBOA factor
cases: i) the only LO-BBOA from fresh emissions and ii) the sum of
both of fresh and more oxidized fractions, respectively. Such a range is
in accordancewith the ones commonly obtained from field and simula-
tion chamber experiments (from ~0.01 up to ~1) (Lu et al., 2015; Saleh
et al., 2014). In the present study, it was assessed to be associatedwith a
30–70% uncertainty range in the kOA calculation and thenwithin BrC di-
rect radiative forcing estimates. As illustrated by Fig. 9, these calcula-
tions indicated an increase of up to approximately 40% of the direct
radiative effect associated to BBOA, when these compounds are treated
as light-absorbing species (using absorption property parameters esti-
mated hereabove).

4. Conclusions

From our 9-site observations, we observed high BrC contributions to
total aerosol absorption at near-ultraviolet wavelengths. Furthermore,
BrC absorption coefficient at 370 nm showed an excellent correlation
with levoglucosan concentrations across all sampling sites, highlighting
the predominant influence of wood burning emissions onto ambient air
BrC concentrations and suggesting that BrC could be used as an efficient
proxy to estimate biomass burning aerosol concentrations at those sites
duringwintertime. The latter result might find practical applications for
air quality purposes. Further studies are still needed to evaluate the ro-
bustness of such a tracermethod at other locations. The distinct BrC diel
patterns with peaks during late evening at all sites, supporting the im-
portance of local residential wood burning in contributing to ambient
brown carbon aerosols. Moreover, potential source analysis suggested
that high BrC loadings could be substantially originated from local
and/or small-reginal wood burning emissions. We also observed that
the less oxidized BBOA fraction is associated with a stronger effective
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absorptivity than more oxidized BBOA in the Paris region. Furthermore,
the wavelength-dependent mass absorption efficiencies obtained for
BrC associated to both of the BBOA fractions was found to substantially
influence the overall direct radiative forcing of biomass burning aero-
sols. A stronger regulation of residential wood burning emissions over
France (andmore largely over Europe, and globally)may then favorably
influence not only air quality but also the climate at a regional scale dur-
ing wintertime.

Data availability

Online AE33 and ACSMmeasurements that have been performed at
the SIRTA facility are available through the ACTRISData Centrewebpor-
tal (https://actris.nilu.no, last access: 11th March 2020). Other datasets
(including 9-site brown carbon absorption and PM10 filters, as well as
SIRTA ACSM PMF organic aerosol factors) are available at https://
www.researchgate.net/publication/339831243_BrC_data_9_French_
sites_2014-2015winter, doi: 10.13140/RG.2.2.21813.63200 (last access:
11th March 2020).
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