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We describe moduli spaces of logarithmic rank 2 connections on elliptic curves with n ≥ 1 poles and generic residues. In particular, we generalize a previous work by the first and second named authors. Our main approach is to analyze the underlying parabolic bundles; their stability and instability play a major role.

In this paper, we investigate the geometry of certain moduli spaces of connections on complex elliptic curves C. We will consider pairs (E, ∇) where E → C is a rank 2 vector bundle and ∇ : E → E ⊗ Ω 1 C (D) is a logarithmic connection with (reduced) polar divisor D = t 1 + • • • + t n with n ≥ 1. We also prescribe the following data:

• The eigenvalues (ν + i , ν - i ) of Res ti (∇), for each i = 1, . . . , n, such that: (1) ν ǫ1

1 + • • • + ν ǫn n / ∈ Z, for any ǫ i ∈ {+, -}; (2) and ν + i = ν - i , for i = 1, . . . , n; • A trace connection (L, ζ), i.e. det(E) = L and tr(∇) = ζ;

In particular i ν + i + ν - i = -deg(L)
which is called the Fuchs relation. Once we have fixed this data, we can define the moduli space Con ν of those pairs (E, ∇) up to isomorphism. Due to Inaba's construction [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF], Con ν is a smooth irreducible quasi-projective variety of dimension 2n, equipped with an algebraic symplectic structure. These moduli spaces have been constructed much earlier in the analytic setting (see for instance [START_REF] Simpson | Harmonic bundles on noncompact curves[END_REF][START_REF] Nakajima | Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces[END_REF]): they are building blocks for the non-abelian Hodge correspondance. They turn out to be hyperkahler manifolds diffeomorphic to tamely ramified Higgs bundle moduli spaces (see also [START_REF] Iwasaki | Moduli and deformation for Fuchsian projective connections on a Riemann surface[END_REF][START_REF] Nitsure | Moduli of semistable logarithmic connections[END_REF][START_REF] Konno | Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface[END_REF]). We also note that these moduli spaces occur in geometric Langlands correspondance (see [START_REF] Arinkin | Orthogonality of natural sheaves on moduli stacks of SL(2)-bundles with connections on P 1 minus 4 points[END_REF]), Riemann-Hilbert correspondance and isomonodromic deformations (see [START_REF] Inaba | Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI[END_REF]).

We will consider the forgetful map π : (E, ∇) → (E, p) which associates to a connection an underlying quasi-parabolic bundle. Given a choice of signs ǫ i ∈ {+, -} for each i = 1, . . . , n, the parabolic data p ǫ (∇) = (p ǫ1 1 (∇), . . . , p ǫn n (∇)) consists of the ν ǫi i -eigenspace p ǫi i ⊂ E| ti for Res ti (∇) at each pole; these are well-defined since ν + i = ν - i . There exist 2 n underlying quasi-parabolic structures for each connection, according to the choice of ǫ = (ǫ 1 , . . . , ǫ n ) giving rise to 2 n forgetful maps π ǫ : (E, ∇) → (E, p ǫ (∇)).

In Section 2 we study the quasi-parabolic bundles (E, p) over (C, D) that admit a connection ∇ with prescribed trace and eigenvalues, compatible with parabolic directions. The major difference from the case n = 2 investigated in [START_REF] Fassarella | Flat parabolic vector bundles on elliptic curves[END_REF] is that, when n is odd, there exist pairs (E, ∇) such that all the underlying quasi-parabolic bundles (E, p ǫ (∇)) are not µ-semistable for any choice of weights; it occurs for the item 3 of Lemma 2.4. Following the study of stability, we describe a wall-crossing phenomenon in Lemma 2.7 and Lemma 2. [START_REF] Fassarella | A torelli theorem for moduli spaces of parabolic vector bundles over an elliptic curve[END_REF].

In Section 3 we study the logarithmic connections. We investigate Con ν via the forgetful map to an underlying quasi-parabolic structure. We are especially concerned with the µ-stability of these quasi-parabolic bundles. It turns out that there exists an open subset of Con ν where the underlying vector bundle is E 1 , the unique indecomposable vector bundle of degree one, with given determinant. We call this open subset Con ν and consider the map Par : Con ν -→ (P

1 × P 1 ) × • • • × (P 1 × P 1 ) (E, ∇) -→ p + 1 (∇), p - 1 (∇), . . . , p + n (∇), p - n (∇)
that associates to each connection all its residual eigenspaces (i.e. with respect to all eigenvalues ν + i and ν - i ). The image of Par is contained in S n , where S is the complement of the diagonal in P 1 × P 1 . We show that this map is an isomorphism (cf. Theorem 3.3).

We also study the open subset Con ν st ⊂ Con ν formed by pairs (E, ∇) which admit a µ-stable parabolic bundle (E, p ǫ (∇)) for some ǫ and some weight vector µ. We call Z n = Con ν \ Con ν st its complement. We describe Z n in Theorem 3.10, it is empty for n even and has four irreducible components which are isomorphic to C n for n odd. Assuming ν + i -ν - i / ∈ {0, 1, -1} for i ∈ {1, • • • , n}, we see that Con ν

st admits an open covering given by open subsets isomorphic to S n . It leads to the following characterization of Con ν st (cf. Theorem 3.8): Theorem A. Assume that ν + iν - i / ∈ {0, 1, -1} for i ∈ {1, • • • , n}. Then Con ν st is obtained by gluing a finite number of copies of S n via birational maps Ψ δ,ǫ J,I : S n S n .

Moreover, if ǫ = δ, then Ψ δ,ǫ J,I preserves the fibers of π ǫ . In the remainder of our work, we do a finer analysis of the open subset Con ν . Let Bun denote the moduli space of parabolic vector bundles whose underling vector bundle is E 1 ; it is isomorphic to (P 1 ) n . In Section 4, we describe the affine bundle Con ν → Bun via Fuchsian systems; this construction yields a vector bundle E whose projectivization compactifies Con ν . Although P(E) does not depend on the eigenvalues, the boundary divisor is determined by ν i = ν + iν - i , i = 1, . . . , n (cf. Theorem 4.4):

Theorem B. The moduli space Con ν has compactification Con ν = P(E), where the boundary divisor is isomorphic to PHiggs, the projectivization of the space of Higgs fields on E 1 . Moreover, the inclusion PHiggs ֒→ P(E) is determined, up to automorphisms of P(E), by (ν 1 , . . . , ν n ).

In Section 5, we deal with the symplectic structure of the moduli space and compute the explicit expression in the main chart Con ν ≃ S n , see (5.10). We show that (ν 1 , . . . , ν n ) is detected by the symplectic structure (cf. Corollary 5.9): Theorem C. If there exists a fiber preserving symplectic isomorphism (Con ν , ω)

Con ν , ω Bun Bun

π + Φ ∼ π + φ ∼
then there exists a permutation σ of n elements such that νk = ν σ(k) for every k ∈ {1, • • • , n}.

In Theorem C, we have a fixed underlying space of parabolic bundles, Bun, and we can recover (ν 1 , . . . , ν n ) from the symplectic structure. The main result of [START_REF] Fassarella | A torelli theorem for moduli spaces of parabolic vector bundles over an elliptic curve[END_REF] is a Torelli type result which asserts that the moduli space of parabolic bundles determines the punctured curve (C, D). We wonder if the same is true for Con ν , or Con ν . This belief is based on some results in the literature, see [START_REF] Sebastian | Torelli theorems for moduli of logarithmic connections and parabolic bundles[END_REF][START_REF] Biswas | A Torelli type theorem for the moduli space of rank two connections on a curve[END_REF][START_REF] Biswas | The Torelli theorem for the moduli spaces of connections on a Riemann surface[END_REF].

In Section 6, we conclude the paper by studying the Apparent map. A global section of E 1 plays the role of a cyclic vector for connection ∇, which yields a second order ODE on C; the map App assigns to ∇ the apparent singular points of this equation, see [START_REF] Loray | Lagrangian fibrations in duality on moduli spaces of rank 2 logarithmic connections over the projective line[END_REF]. It leads to an interesting result about the birational geometry of Con ν (Theorem 6.2):

Theorem D. The map π + × App induces a birational map

π + × App : Con ν Bun × |O C (w ∞ + D)|
whose indeterminacy locus is contained in Con ν \Con ν . Moreover, given (E, p) ∈ Bun, the rank of

(π + × App)| π -1 + (E,p) : π -1 + (E, p) -→ {(E, p)}×|O C (w ∞ + D)|
coincides with the cardinality of the set {i | p i ⊂ O C }.

Logarithmic connections on elliptic curves have being investigated by several authors. First, they were studied in the works of Okamoto and later by Kawai in [START_REF] Kawai | Isomonodromic deformation of fuchsian projective connections on elliptic curves[END_REF] in relation with isomonodromic deformations. In particular, the symplectic form of [START_REF] Kawai | Isomonodromic deformation of fuchsian projective connections on elliptic curves[END_REF]Theorem 1], when restricted to a fixed punctured curve (C, D), must coincide to that one we give in (5.10). However, as [START_REF] Kawai | Isomonodromic deformation of fuchsian projective connections on elliptic curves[END_REF] is dealing with analytic differential equations written in terms of Weierstrass zeta functions, it is not so easy to relate the computations with ours. More recently, our moduli space has been considered and proved to be related to some moduli spaces of logarithmic connections on P 1 for the special cases n = 1 (see [START_REF] Loray | Isomonodromic deformations of Lamé connections, the Painlevé VI equation and Okamoto symmetry[END_REF]), and n = 2 with special eigenvalues (see [START_REF] Loray | A map between moduli spaces of connections[END_REF]). We expect that our explicit algebraic approach will allow us in a forthcoming work to relate with Kawai's parameters and provide an algebraic expression of isomonodromy equation in our context. Remark 1.1 (Notation and convention). Throughout the text C will denote a genus one curve and D = t 1 + • • • + t n will be a reduced divisor on C. Let w ∞ ∈ C be a point and let w 0 , w 1 and w λ be the torsion points of the elliptic curve (C, w ∞ ). In the construction of Con ν , we will assume (without loss of generality) that the determinant is O C (w ∞ ) and that D + w 0 + w 1 + w λ is reduced.

Aknowledgements. We warmly thank the anonymous referee for many useful comments and suggestions.

Parabolic vector bundles

Let C be an elliptic curve with w ∞ ∈ C being its distinguished point. A rank two quasi-parabolic vector bundle (E, p) on (C, D), D = t 1 + • • • + t n , consists of a holomorphic vector bundle E of rank two on C and a collection p = {p 1 , . . . , p n } of 1-dimensional linear subspaces p i ⊂ E ti . We refer to the points t i as parabolic points, and to the subspace p i ⊂ E ti as the parabolic direction of E at t i .

A triple (E, p; µ) of a quasi-parabolic vector bundle and an n-tuple µ = (µ 1 , . . . , µ n ) of real numbers in the interval (0, 1) is called parabolic vector bundle of rank two. We often write (E, p) for a parabolic vector bundle when the choice of the weight µ is clear.

Let (E, p; µ) be a parabolic vector bundle and let L ⊂ E be a line subbundle then we define

Stab µ (L) := deg E -2 deg L + p k =Lt k µ k - p k =Lt k µ k .
We say that (E, p; µ) is semistable if Stab µ (L) ≥ 0 holds for every L ⊂ E. It is stable if the strict inequality holds for every line subbundle L ⊂ E. We call Stab µ (L) the parabolic stability of L ⊂ E with respect to µ. We denote by Bun µ w∞ the moduli space of semistable parabolic vector bundles (E, p; µ) on (C, D) A connected component of the complement in (0, 1) n of all these hyperplanes H(d, I) is called a chamber. If µ and μ belong to the same chamber then Bun µ w∞ = Bun μ w∞ , see for example [START_REF] Mehta | Moduli of vector bundles on curves with parabolic structures[END_REF] or [START_REF] Boden | Variations of moduli of parabolic bundles[END_REF]Lemma 2.7].

with det E = O C (w ∞ ). In this case, either E ≃ L ⊕ L -1 (w ∞ ) or E ≃ E 1 , where E 1 is the unique non trivial extension 0 -→ O C -→ E 1 -→ O C (w ∞ ) -→ 0. If there exists L ⊂ E such that Stab µ (L)
In the next result, we define an interesting chamber; the underlying vector bundle is fixed and the corresponding moduli space is a product of projective lines.

Proposition 2.1. The following assertions hold:

(1) The set

C := {µ ∈ (0, 1) n | n k=1 µ k < 1} is a chamber. (2) If µ ∈ C then Bun µ w∞ = {(E, p) | E = E 1 }.
Moreover, it is isomorphic to (P 1 ) n . Proof. Note that C is convex, hence connected. Then (1) follows from proving that C does not intersect any wall H(d, I). This is straightforward and we leave it to the reader. Now we prove [START_REF] Arinkin | Isomorphisms between moduli spaces of SL(2)-bundles with connections on P 1 \ {x 1[END_REF]. Recall that det

E = O C (w ∞ ) implies that either E = E 1 or E = L⊕L -1 (w ∞ ) with deg L ≥ 1. For the later we have Stab µ (L) = 1 -2 deg L + p k =Lt k µ k - p k =Lt k µ k ≤ 1 -2 deg L + n k=1 µ k < 2 -2 deg L ≤ 0 for any µ ∈ C, hence E cannot be µ-semistable. Hence E = E 1 and each parabolic bundle is completely determined by (p 1 , . . . , p n ) ∈ P (E 1 | t1 ) × • • • × P (E 1 | tn ) ≃ (P 1 ) n .
Thus we get the desired isomorphism.

For a weight vector µ = (µ 1 , . . . , µ n ) ∈ (0, 1) n and a subset I ⊂ {1, . . . , n} of even cardinality, we consider the map ϕ I : (0, 1) n -→ (0, 1) n defined by

ϕ I (µ) := (µ ′ 1 , . . . , µ ′ n ) ∈ (0, 1) n where µ ′ i = µ i if i ∈ I, and µ ′ i = 1 -µ i if i ∈ I.
Note that ϕ I is continuous and preserves the walls H(d, J). Then the image of C by ϕ I yields a new chamber

C I := µ ∈ (0, 1) n k / ∈I µ k - k∈I µ k + |I| < 1 (2.1)
where |I| is the cardinality of I. When I = ∅ then C I = C.

Each ϕ I admits a modular realization as an elementary transformation, which we now describe. Consider the following exact sequence of sheaves

0 -→ E ′ α -→ E β -→ i∈I (E ti /p i ) -→ 0
where for each (local) section s of E we define β(s) = (β 1 (s), . . . , β n (s)) by β j (s) = s(t j ) (mod p j ) if s is defined at t j , and β j (s) = 0 otherwise. Then E ′ is a vector bundle of rank two such that

det E ′ = det E ⊗ O C - i∈I t i .
In particular, E ′ has degree 1 -|I|. We define a natural quasi-parabolic structure for E ′ as follows.

If i ∈ I then α ti : E ′ ti -→ E ti is an isomorphism and p ′ i = (α ti ) -1 (p i ) ⊂ E ′ ti
is the parabolic direction at t i . If i ∈ I we define p ′ i = ker(α ti ) as the parabolic direction at t i . This operation corresponds to the birational transformation of ruled surfaces P(E) P(E ′ ) obtained by blowing-up the points p i ∈ P(E ti ) and then blowing-down the strict transforms of the fibers P(E ti ) to the points p ′ i ∈ P(E ′ ti ), i ∈ I. This is well-defined since the p i lie on different fibers.

P(E) P(E ′ ) Figure 1. Elementary transformation
Since |I| is even, we can fix a square root L 0 of the line bundle O C i∈I t i , i.e.

L 2 0 = O C i∈I t i .
This gives a correspondence elm I : (E, p) -→ (E ′ ⊗ L 0 , p ′ ) between quasi-parabolic vector bundles on (C, D) which have O C (w ∞ ) as determinant line bundle.

The reader can check that if (E, p) is semistable with respect to µ, then elm I (E, p) is semistable with respect to ϕ I (µ). We conclude that the correspondence elm I defines an isomorphism between moduli spaces elm I : Bun µ w∞ -→ Bun ϕI (µ) w∞ . Definition 2.2. Given I ⊂ {1, . . . , n} of even cardinality, let µ ∈ C I . We will denote Bun I = Bun µ w∞ . When I is the empty set, we write simply Bun instead of Bun ∅ ; it corresponds to the moduli space of parabolic vector bundles whose underlying vector bundle is E 1 .

Remark 2.3. From Proposition 2.1, we conclude that Bun I ≃ (P 1 ) n for any I ⊂ {1, . . . , n} of even cardinality.

A quasi-parabolic vector bundle (E, p) is called decomposable if there exist (L, p ′ ) and (M, p ′′ ) such that (E, p) ≃ (L, p ′ ) ⊕ (M, p ′′ ) as quasi-parabolic vector bundles. Otherwise it is called indecomposable. Note that (E, p) can be indecomposable with E decomposable as a vector bundle. Lemma 2.4. Let (E, p) be a rank two indecomposable quasi-parabolic bundle, over (C, D), with det E = O C (w ∞ ). Then one of the following holds:

(

1) E is indecomposable, i.e. E = E 1 ; (2) E = L ⊕ L -1 (w ∞ ) and 2 ≤ 2 deg L ≤ n; (3) E = L ⊕ L -1 (w ∞ ) with L 2 = O C (D + w ∞ ), hence 2 deg L = n + 1.
Moreover, every parabolic direction lies on L -1 (w ∞ ) except for one that lies outside both subbundles.

Proof. When E = E 1 we have nothing to prove. So suppose that

E = L ⊕ L -1 (w ∞ ). Since L ⊕ L -1 (w ∞ ) ≃ M ⊕ M -1 (w ∞ ) with M = L -1 (w ∞ ) we can assume deg L = s ≥ 1.
To decompose (E, p) we need to find an embedding of L -1 (w ∞ ) in E passing through every direction that does not lie on L. Note that this is the same as finding an automorphism of E that sends every direction outside L to (0 : 1). Let p j = (u j : 1) denote the parabolic direction over t j which is outside L. Recall that

End(E) = α β 0 δ α, δ ∈ C, β ∈ H 0 (C, L 2 (-w ∞ )) . If 2s ≥ n + 2 then h 0 (L 2 (-w ∞ -D + t j )) = 2s
n ≥ 2 and we are free to choose β j that vanishes on t i for i = j and such that β j (t j ) = -u j . Thus, choosing β = n j=1 β j , α = 1 and δ = 1, the corresponding automorphism sends any direction p j outside L to (0 : 1). Now set 2s = n + 1. By the same argument as above, to show that (E, p) is decomposable, we need to find a section β j of H 0 (C, L 2 (-w ∞ )) that vanishes on t i for i = j and such that β j (t j ) = -u j , for each j ∈ {1, . . . , n}. We can find

β j as required if L 2 (-w ∞ -D) = O C . Indeed, assume L 2 (-w ∞ -D + t j ) ≃ O C (x j
) with x j = t j , and take any section α j of L 2 (-w ∞ -D + t j ) with α j (t j ) = 0. The desired section is defined as

β j = - uj αj (tj ) α j . Hence (E, p) is decomposable when L 2 (-w ∞ -D) = O C . If L 2 = O C (D + w ∞ )
we can apply the same argument for Dt 1 instead of D to find an embedding of L -1 (w ∞ ) passing through n-1 parabolic directions outside L. In particular, if (E, p) is indecomposable then there exists no parabolic direction on L and this finishes the proof.

Remark 2.5. The parabolic bundles in the third case of Lemma 2.4 have a peculiar property: they are never µ-semistable, whatever is µ. Indeed, for E = L ⊕ L -1 (w ∞ ) with 2 deg L = n + 1, no parabolic direction lying on L, and any weight µ, we have

Stab µ (L) = -n + n j=1 µ j < 0.
We can give a partial converse to this fact. Note that if E = E 1 then any quasi-parabolic bundle is stable for µ ∈ C. Lemma 2.6. Let (E, p) be an indecomposable quasi-parabolic bundle such that E = L ⊕ L -1 (w ∞ ) and p j lies outside L, for every j. If 2 ≤ 2 deg L ≤ n then there exists I ⊂ {1, . . . , n}, with |I| = 2 deg L, such that (E, p) ∈ Bun I .

Proof. Given that every direction p j lies outside L, we may find an embedding of L -1 (w ∞ ) that passes through some of these directions. Any subset of directions with cardinality 2 deg L-1 admits at most one embedding of L -1 (w ∞ ) passing through them. Since (E, p) is indecomposable, such embedding cannot pass through all p j . In particular, we can find k ∈ {2 deg L, . . . , n} such that no embedding of L -1 (w ∞ ) passes through the directions indexed by I = {1, . . . , 2 deg L -1, k}. It is straightforward to verify that (E, p) ∈ Bun I . Until now we have only considered a rank two E and its line subbundles L ⊂ E. But a more general setting will be suitable for the next results; we may allow subsheaves that are not saturated. We will consider general morphisms L → E that do not, necessarily, lead to an embedding of L in E. Recall that, over a curve, being a subbundle means that there exist an injective morphism L ֒→ E whose cokernel is also a line bundle, i.e. L is a saturated subsheaf of E. For a general morphism φ : L → E this does not need to be true. However, we can factor out a divisor Z where φ vanishes, leading to an injective morphism L(Z) ֒→ E. For details, see [START_REF] Friedman | Algebraic surfaces and holomorphic vector bundles[END_REF]Chapter 2,Proposition 5]. On the other hand, given a subbundle L ⊂ E we can produce a morphism L(-Z) → E that vanishes on the fibers over the support of Z.

Given a morphism φ : L → E we say that its image passes through p j ⊂ E tj if φ tj (L tj ) ⊂ p j .

Lemma 2.7. Let I ⊂ {1, . . . , n} have cardinality 2k + 2 with k ≥ 0 and fix µ ∈ C I . Then (E 1 , p) is not µ-semistable if and only if there exists a line bundle L of degree deg L = -k and a morphism L → E 1 whose image passes through p j for all j ∈ I.

Proof. Fix µ = (µ 1 , • • • , µ n ) ∈ C I and recall that µ = ϕ I (µ ′ ) for some µ ′ ∈ C. First assume that (E 1 , p) is not µ-semistable and let M ⊂ E 1 be a subbundle such that Stab µ (M ) < 0. Denote A = {j ∈ {1, • • • , n} | p j = M tj } so that 0 > Stab µ (M ) = 1 -2 deg M + j / ∈A j∈I µ j + j / ∈A j / ∈I µ j - j∈A j∈I µ j - j∈A j / ∈I µ j = 1 -2 deg M + j / ∈A j∈I (1 -µ ′ j ) + j / ∈A j / ∈I µ ′ j - j∈A j∈I (1 -µ ′ j ) - j∈A j / ∈I µ ′ j = 1 -2 deg M + |I| -2|A ∩ I| - j / ∈A j∈I µ ′ j + j / ∈A j / ∈I µ ′ j + j∈A j∈I µ ′ j - j∈A j / ∈I µ ′ j .
From j µ ′ j < 1 and |I| = 2(k + 1) we get that 

-deg M + k + 1 -|A ∩ I| ≤ -1.
φ : M ⊗ O C (-Z) -→ E 1 (-Z) -→ E 1 ,
with the property that it gives the same directions over D -Z and vanishes over Z. Hence the image of φ passes through every direction from I and L := M (-Z) is our desired line bundle. Conversely, suppose that there exists a degree -k line bundle L and a nontrivial morphism φ : L → E 1 passing through every p j , j ∈ I. Let Z be the zero divisor of φ and consider the reduction φ ′ : L(Z) → E 1 . Then φ ′ realizes L(Z) as a subbundle of E 1 and, in particular, deg Z ≤ k.

On the other hand, we have that p j lie on L(Z) for every j such that t j ∈ SuppZ. If A is given as above, we have

|A ∩ I| ≥ 2k + 2 -deg Z red , hence 1 -2 deg L(Z) + |I| -2|A ∩ I| = 4k + 3 -2|A ∩ I| -2 deg Z ≤ 2(deg Z red -deg Z) -1 ≤ -1, which implies Stab µ (L(Z)) < 0 for µ ∈ C I .
We now see the real advantage of switching to this slightly more general setting. The previous lemma describes a wall-crossing phenomenon. And the next lemma can be used to describe geometrically the space of quasi-parabolic bundles that become unstable when we cross a wall. Lemma 2.8. Let n = 2k + 2 for some k ≥ 0. Let V ⊂ (P 1 ) n be the locus of points that correspond to quasi-parabolic bundles (E 1 , p) satisfying the following property: there exist a line bundle L of degree -k and a morphism φ : L -→ E 1 whose image passes through p. Then V is a hypersurface of degree (2, . . . , 2).

Proof. Let π j : (P 1 ) n -→ (P 1 ) n-1 be the projection given by forgetting the jth component and let h j be the class of a fiber of π j . Then we only need to show that V ∩ h j = 2 for every j. Up to permuting indices we only need to consider j = 2k + 2.

If k = 0 the result follows from [START_REF] Vargas | Geometry of the moduli of parabolic bundles on elliptic curves[END_REF]Proposition 3.3]. Indeed, for each degree 0 line bundle L ∈ Pic 0 (C) there exists a unique map φ : L → E 1 and the map L → φ t1 (L) ∈ P 1 is generically 2 : 1. Then, for a generic direction p 1 , there exist two choices for L ∈ Pic 0 (C) such that φ t1 (L) ⊂ p 1 . Therefore, (p 1 , p 2 ) ∈ V if and only if p 2 is one of the directions defined by these line bundles, i.e. V ∩ h 2 = 2. Now we consider k ≥ 1. We will show that we can reduce to the previous case. Fix p 1 , . . . , p 2k generic directions. By generic we mean that there exists no subbundle of degree at least 1-k passing through these directions. Let L ∈ Pic -k (C) be any line bundle. To give a map φ : L -→ E 1 passing through p 1 , . . . , p 2k is equivalent to giving a map L -→ E ′ , where E ′ is obtained by elementary transformation with respect to p 1 , . . . , p 2k . Indeed, we have

0 -→ E ′ α -→ E 1 β -→ 2k j=1 (E 1 ) tj /p j -→ 0 and β • φ = 0 if and only if there exists φ ′ : L -→ E ′ such that φ = α • φ ′ . Nonetheless, this is equivalent to giving a map φ ′ ⊗ 1 : L ⊗ M -→ E ′ ⊗ M where M is a line bundle such that M 2 = O C (t 1 + • • • + t 2k ).
Since p 1 , . . . , p 2k are generic, E ′ is indecomposable. In particular, E ′ ⊗ M = E 1 . We then apply the same argument of the case k = 0 to the directions p 2k+1 and p 2k to show that V ∩h 2k+2 = 2. Definition 2.9. Let n ≥ 2 be an integer and let I ⊂ {1, . . . , n} be a subset of even cardinality. We will denote by Γ I ⊂ (P 1 ) n the subvariety that parameterizes quasi-parabolic bundles (E 1 , p) that are not µ-semistable for µ ∈ C I .

Corollary 2.10. The subvariety Γ I ⊂ (P 1 ) n is a hypersurface of degree (d 1 , . . . , d n ), where d i = 2 if i ∈ I and d i = 0 otherwise. Proof. Note that the formation of Γ I depends only on the directions indexed by I. Then it will be a product Γ I ≃ V × (P 1 ) n-|I| . Therefore, we may reduce to the case Γ I = V , i.e. |I| = n and the conclusion follows from Lemma 2.7 and Lemma 2.8.

Remark 2.11. A quasi-parabolic bundle (E 1 , p) is not µ-semistable for µ ∈ C I if and only if elm I (E 1 , p) = (E, p ′ ) is not µ ′ -semistable for µ ′ = ϕ I (µ) ∈ C.
The later occurs if and only if E splits. Therefore Γ I corresponds, via elm I , to the locus in Bun I of those quasi-parabolic bundles whose underlying vector bundles split.

Logarithmic connections

A logarithmic connection on a rank two vector bundle E over C with polar divisor

D = t 1 +• • •+t n is a C-linear map ∇ : E -→ E ⊗ Ω 1 C (D) satisfying the Leibniz rule ∇(f s) = s ⊗ df + f ∇(s) for (local) sections s of E and f of O C . If t ∈ C is a pole for ∇ and U ⊂ C is a small trivializing neighborhood of t, we write ∇| U = d + A where d : O C -→ Ω 1
C is the exterior derivative and A is a 2 × 2 matrix whose coefficients are 1-forms with at most simple poles on t. Note that A depends on the trivialization, but its similarity class does not. Then the residue endomorphism

Res t (∇) := Res t (A) ∈ End(E t ) is well defined. Let ν + k and ν - k be the eigenvalues of Res t k (∇). The data ν = (ν + 1 , ν - 1 , ..., ν + n , ν - n ) ∈ C 2n are called the eigenvalues of ∇. The induced trace connection tr(∇) : det(E) → det(E) ⊗ Ω 1 C (D) satisfies Res t k (tr(∇)) = ν + k + ν - k and
Residue Theorem yields the Fuchs relation:

deg E + n k=1 (ν + k + ν - k ) = 0.
Remark 3.1. Hereafter we will fix the following data:

(1) A 2n-tuple of complex numbers ν

= (ν + 1 , ν - 1 , ..., ν + n , ν - n ) satisfying the Fuchs relation 1 + n k=1 (ν + k + ν - k ) = 0
and the generic condition:

ν ǫ1 1 + • • • + ν ǫn n / ∈ Z for any ǫ k ∈ {+, -}, to avoid reducible connections; and ν + k = ν - k for all k ∈ {1, . . . , n}, so that the residues have distinguished eigenspaces; (2) A fixed trace connection ζ : O C (w ∞ ) → O C (w ∞ ) ⊗ Ω 1 C (D) satisfying Res t k (ζ) = ν + k + ν - k for all k = 1, ..., n.
Then we define the moduli space:

Con ν = (E, ∇) ∇ has eigenvalue ν, det E = O C (w ∞ ), tr∇ = ζ / ∼
where ∼ stands for S-equivalence. In fact, the condition (1) on ν implies that ∼ may be thought as equivalence up to isomorphism. Algebraic constructions of moduli spaces of connections goes back to the works of Simpson and, in the logarithmic case, Nitsure in [START_REF] Nitsure | Moduli of semistable logarithmic connections[END_REF]. In our setting, it is more convenient to refer to the works of Inaba, Iwasaki and Saito [START_REF] Inaba | Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI[END_REF], and more precisely Inaba [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF]. Indeed, under our generic assumption on ν, each connection ∇ on E defines a unique parabolic structure, by selecting the eigenspace p k ⊂ E| t k associated to ν + k at each pole t k ; therefore, Con ν can equivalently be viewed as the moduli space of parabolic connections as considered in the work [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF] of Inaba. Then it follows from [13, Theorem 2.1, Proposition 5.2] that it is quasi-projective and irreducible of dimension 2n. Moreover, [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF]Theorem 2.2] shows that it is moreover smooth. In fact, in order to fit with the stability condition [13, Definition 2.2], we set α

(k) 1 = 1-µ k 2 and α (k) 2 = 1+µ k 2 ;
our moduli space therefore corresponds to the fiber det -1 (L, ζ) of the determinant map considered at the beginning of [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF]Section 5]. When ν + k = ν - k for some k, there exist connections with scalar residue (apparent singular point) which give rise to a singular locus in the moduli space; the role of the parabolic structure in [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF] is to get a smooth moduli space even in that case.

Then the moduli space Con ν is a smooth irreducible quasi-projective variety of dimension 2n, provided that the condition (1) on ν is satisfied. The case n = 1 is not covered by [START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF], but it follows from [START_REF] Loray | Isomonodromic deformations of Lamé connections, the Painlevé VI equation and Okamoto symmetry[END_REF]; we will discuss this case at the end of this section.

There exists also an analytical construction for Con ν following Nakajima [START_REF] Nakajima | Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces[END_REF]. There, moduli spaces of rank two parabolic connections were constructed via hyper-kähler quotients. Thus Con ν has a holomorphic symplectic structure ω.

In the study of Con ν , it is useful to consider the quasi-parabolic bundles underlying a connection. Let us assume ν + k = ν - k for all k ∈ {1, . . . , n}. Given a connection (E, ∇), we associate, for each k = 1, . . . , n, a pair of "positive" and "negative" eigenspaces of Res t k (∇)

p + k (∇), p - k (∇) ∈ P(E t k ) corresponding to the eigenvalues ν + k and ν - k respectively. Given an n-tuple ǫ = (ǫ 1 , • • • , ǫ n ), where each ǫ i ∈ {+, -}, we denote p ǫ (∇) = {p ǫ1 1 (∇), • • • , p ǫn n (∇)
} and consider (E, p ǫ (∇)) the quasi-parabolic vector bundle defined by these directions.

Remark 3.2. The hypothesis that ν a1

1 + • • • + ν an n / ∈ Z, for every a ∈ {+.-} n , ensures that (E, p ǫ (∇)) is an indecomposable quasi-parabolic bundle. Indeed, if (L, p) is rank one direct sum- mand of (E, p ǫ (∇)) then the residues of the induced connection on L are either ν + j or ν - j ; their sum is -deg L, see [9, Corollary 2.3].
One can then ask for the stability of these quasi-parabolic bundles with respect to some weight. We define

Con ν st = (E, ∇) ∈ Con ν ∃ ǫ ∈ {+, -} n and ∃ I ⊂ {1, . . . , n} such that (E, p ǫ (∇)) ∈ Bun I .
Recall that |I| is always assumed to be even. It follows that

Con ν = Con ν st ⊔ Z n where Z n denotes the complement of Con ν st . Our aim in the next subsections is to describe these varieties. We will show that Con ν st can be covered by simple open subsets and that Z n falls in two cases: either n is even and Z n = ∅ or n is odd and Z n has four connected components, each one is a quotient of C n+1 by a free affine action of the additive group (C, +), hence isomorphic to C n .

3.1.

Connections on E 1 . Our main building block in the description of Con ν st is the space defined by

Con ν = {(E, ∇) ∈ Con ν | E = E 1 } .
Note that every underlying quasi-parabolic bundle lies in Bun = Bun ∅ , see Proposition 2.1 and Definition 2.2. The same proposition shows that Bun ≃ (P 1 ) n . We will see that Con ν has a similar description.

Let ∆ ⊂ P 1 × P 1 be the diagonal and let S := (P 1 × P 1 )\∆ be its complement. Then we define a map Par:

Con ν S n (E 1 , ∇) (p + 1 (∇), p - 1 (∇); • • • ; p + n (∇), p - n (∇))
.

This map is in fact an isomorphism.

Theorem 3.3. The map Par: Con ν → S n is an isomorphism.

Proof. We may factor the map Par into two parts:

Con ν ResD ---→ n j=1 A ∈ End(E 1 ) tj | A has eigenvalues ν + j , ν - j π -→ S n
where Res D is the residue map and π sends an endomorphism to the ordered pair of eigenspaces, + then -. Both maps are indeed morphisms and we will see that they are both isomorphisms. First we deal with π. Given an endomorphism A of (E 1 ) tj with eigenvalues ν + j = ν - j we can associate the respective eigenspaces (p + , p -). Conversely, fix a local frame for E 1 around t j giving coordinates (E 1 ) tj ≃ C 2 . Then to ((z : w), (u : v)) ∈ S we can associate the matrix

A = 1 zv -uw z u w v ν + j 0 0 ν - j v
-u -w z defining an element of End(E 1 ) tj . Thus π is bijective.

Next we deal with Res D . If ∇ 1 , ∇ 2 ∈ Con ν have the same residues at t j , for j = 1, . . . , n, then

∇ 1 -∇ 2 ∈ H 0 (End(E 1 ) ⊗ Ω C ). Since E 1 is simple and Ω C = O C we have ∇ 1 -∇ 2 = id E ⊗ η for some holomorphic 1-form η.
On the other hand, the definition of Con ν imposes that ∇ 1 and ∇ 2 have the same trace. Thus η = 0 and ∇ 1 = ∇ 2 , proving that Res D is injective.

It remains to prove that Res D is surjective. Fix A j ∈ End(E 1 ) tj for j = 1, . . . n such that A j has eigenvalues ν + j , ν - j . Since E 1 is simple and Lemma 3.2] guarantees the existence of a connection ∇ 0 with residue A j at t j . Moreover, tr(∇ 0 )ζ = θ ∈ H 0 (Ω C ) a global holomorphic 1-form. Hence ∇ = ∇ 0 -1 2 id E1 θ has the prescribed residues and tr(∇) = ζ so that ∇ ∈ Con ν .

deg(E 1 ) + n j=1 tr(A j ) = 1 + n j=1 ν + j + ν - j = 0, [4,
We will give an alternative proof of this theorem using explicit computations of Fuchsian systems, see Remark 4.3.

Corollary 3.4. Con ν is an affine variety.

Proof. Since the diagonal ∆ ⊂ P 1 × P 1 supports an ample divisor, its complement, S, is affine. Therefore Con ν ≃ S n is also affine.

In the next subsection we will see that S n is a local model for Con ν st .

3.2. Description of Con ν st . From the definition, Con ν st is the space of (isomorphism classes of) connections (E, ∇) for which there exist I ⊂ {1, . . . , n}, with |I| even, and ǫ ∈ {-, +} n such that (E, p ǫ (∇)) ∈ Bun I , i.e. (E, p ǫ (∇)) is µ-stable for any µ ∈ C I . For each I and ǫ we define

Con ν I,ǫ := (E, ∇) ∈ Con ν | (E, p ǫ (∇)) ∈ Bun I , hence we get a decomposition Con ν st = I,ǫ Con ν I,ǫ . (3.1)
Note that Con ν ∅,ǫ = Con ν for any ǫ. Next we will see that, for generic ν, each Con ν I,ǫ is isomorphic to S n . More precisely, we will prove that Con ν I,ǫ is isomorphic to Con λ , for some eigenvalue λ to be determined. Consider π ǫ : Con ν I,ǫ -→ Bun I the forgetful morphism.

Proposition 3.5. The map elm I induces a fiber-preserving isomorphism Φ ǫ I :

Con ν I,ǫ Con λ Bun I Bun π ǫ Φ ǫ I π ǫ elm I for λ = (λ + 1 , λ - 1 , • • • , λ + n , λ - n ) defined as follows. If k ∈ I then λ + k = ν + k and λ - k = ν - k , and if k ∈ I then λ ǫ k k = ν -ǫ k k + 1 2 , and λ -ǫ k k = ν ǫ k k - 1 2 ,
where {ǫ k , -ǫ k } = {+, -}.

Proof. Given (E, ∇) ∈ Con ν I,ǫ we will perform an elementary transformation centered in p ǫ (∇). Recall that elm I sends (E, p ǫ (∇)) to E ′ ⊗ L, p ′ where E ′ is obtained from the exact sequence

0 -→ E ′ α -→ E -→ i∈I (E ti /p ǫi i (∇)) -→ 0,
and L is a square root O C i∈I t i . The pullback connection α * (∇) has the following property, which can be verified in local coordinates. For k ∈ I, the eigenvalue at t k are the same {ν + k , ν - k }. For k ∈ I, the eigenvalues are (ν

-ǫ k k + 1, ν ǫ k k ) and ker(α t k ) corresponds to ν -ǫ k k + 1. Now let ξ : L → L ⊗ Ω 1
C (D) be the rank one connection defined as follows. Let {U i } be a trivializing cover for E, E ′ and L and let {G ij }, {G ′ ij } and {h ij } be the respective cocycles. Assume further that det G ij = h 2 ij det G ′ ij for every pair (i, j). Then

ξ| Ui = d - 1 2 tr α -1 i dα i ,
where α i is the local expression for α. Note that tr(α * (∇) ⊗ ξ) = tr(∇) and

Res t k ξ = -1 2 , k ∈ I; 0, k ∈ I.
The map Φ ǫ I is then defined as

Φ ǫ I (E, ∇) = (E ′ ⊗ L, α * (∇) ⊗ ξ).
Since it can be reversed by the same process, we have the isomorphism. Moreover, the diagram in the statement commutes from the construction of Φ ǫ I . To give an isomorphism Con ν I,ǫ ≃ S n we just need to require that λ satisfies the hypothesis of Theorem 3.3, i.e. λ + k = λ - k and in Remark 3.1.

Corollary 3.6. If, for every k = 1, . . . , n, ν + kν - k / ∈ {0, 1, -1} then, for every I ⊂ {1, . . . , n}, with |I| even, and every ǫ ∈ {+, -} n ,

Con ν I,ǫ ≃ S n . Proof. For k ∈ I we have λ + k -λ -= ν + k -ν - k and for k ∈ I we have λ + k -λ -= ν - k -ν + k ± 1.
The result follows from Proposition 3.5 and Theorem 3.3 once we have

ν + k -ν - k / ∈ {0, 1, -1}.
Hereafter we will also assume that ν + kν - k / ∈ {0, 1, -1} for every k = 1, . . . , n. We will also denote by π ǫ the projection π ǫ : S n → (P 1 ) n that makes the following diagram commute

Con ν I,ǫ S n Bun I (P 1 ) n π ǫ π ǫ
and we define Γ I,ǫ = π -1 ǫ (Γ I ), where Γ I is the hypersurface from Definition 2.9.

Proposition 3.7. Let I, J ⊂ {1, . . . , n} with even cardinalities and fix ǫ ∈ {+, -} n . Then

Con ν I,ǫ \ Con ν J,ǫ ≃ Con ν J,ǫ \ Con ν I,ǫ ≃ Γ I∆J,ǫ
where I∆J = (I ∪ J) \ (I ∩ J) is their symmetric difference.

Proof. Note that |I∆J| is even and elm I • elm J = elm I∆J ; hence Φ ǫ I gives an isomorphism

Con ν I,ǫ \ Con ν J,ǫ ≃ Con λ \ Con λ I∆J,ǫ .
An element of Con λ \ Con λ I∆J,ǫ is a connection whose underlying quasi-parabolic bundle (E 1 , p ǫ (∇)) is stable for the weights µ ∈ C but its image under elm I∆J is unstable or, equivalently, it is µ-stable but ϕ I∆J (µ)-unstable. Therefore, using Theorem 3. 

+ k -ν - k / ∈ {0, 1, -1} for k ∈ {1, • • • , n}. Then Con ν
st is obtained by gluing a finite number of copies of S n via birational maps They fit in the following diagram.

Ψ δ,ǫ J,I : S n S n . depending on ǫ, δ ∈ {+, -} n and I, J ⊂ {1, • • • , n}. Moreover, if ǫ = δ, then Ψ δ,ǫ J,
S n Con λ Con ν I,ǫ Con ν I,ǫ ∩ Con ν J,δ Con ν J,δ Con ρ S n (P 1 ) n Bun Bun I Bun J Bun (P 1 ) n π ǫ Ψ δ,ǫ J,I Par π ǫ π ǫ Φ ǫ I ⊂ ⊂ Φ δ J π δ π δ Par π δ
If δ = ǫ then we can complete the diagram. By abuse of notation, we may write

Bun IJ = Bun I ∩ Bun J
the space parabolic bundles in Bun I that are also µ-stable for µ ∈ C J and vice-versa. Thus we get a birational map Bun I Bun J extending the identity on Bun IJ . Hence we get

S n S n (P 1 ) n (P 1 ) n π ǫ Ψ ǫ,ǫ J,I π ǫ 3.3.
Connections with unstable parabolic bundles. Now we describe the space Z n of (isomorphism classes of) connections such that every underlying parabolic bundle is not semistable.

We will show that it falls in two cases:

(1) If n is even then Z n = ∅;

(2) If n is odd then Z n has four connected components, each isomorphic to C n . Note that in the last case dim Z n = n. Let us make our first reduction. Lemma 3.9. If n is even then Z n is empty and if n is odd then

(3.2) Z n = {(E, ∇) ∈ Con ν | E = L ⊕ L -1 (w ∞ ) with L 2 = O C (D + w ∞ )}.
Proof. Suppose that Z n = ∅ and let (E, ∇) ∈ Z n . We will show that

E = L ⊕ L -1 (w ∞ ) with L 2 = O C (D + w ∞ ).
In particular, n must be odd. We know that (E, p ǫ (∇)) is indecomposable for any ǫ, see Remark 3.2. Then we may apply Lemma 2.4. We cannot have E = E 1 since it would imply (E 1 , ∇) ∈ Con ν ; hence E = L⊕L -1 (w ∞ ). In this case, we may take ǫ such that p ǫ k k (∇) ⊂ L t k for every k = 1, . . . , n. Note that, by Lemma 2.6, the case 2 deg L ≤ n is not possible. Therefore Lemma 2.4 implies that

L 2 = O C (D + w ∞ ).
Conversely, any connection on

L ⊕ L -1 (w ∞ ), with L 2 = O C (D + w ∞ ), represents a point in Z n , see Remark 2.5.
Next we will describe the connections in Z n . In order to do so, we compute the logarithmic Atiyah class φ A E ∈ End(E) ∨ whose vanishing establishes the existence of a connection with prescribed residues, see [START_REF] Biswas | Criterion for logarithmic connections with prescribed residues[END_REF]. Let T ∈ End(E) then φ A E is defined by

φ A E (T ) = φ 0 E (T ) + n j=1 tr (A j T (t j )) t 1 t 2 t 3 t n L -1 (w ∞ ) L p + 2 p + 3 p + n p - 2 p - 3 p - n p - 1 p + 1 • • • • • • Figure 2. Possible configuration of directions for (E, ∇) ∈ Z n .
where A j is the residue endomorphism over t j and φ 0 E is the classical Atiyah class, see [START_REF] Atiyah | Complex analytic connections in fibre bundles[END_REF]. In our case,

A j = u j a j v j b j ν + j 0 0 ν - j b j -a j -v j u j
where u j b j -a j v j = 1. Here we may take local coordinates around each t j such that L and L -1 (w ∞ ) correspond to (1 : 0) and (0 : 1), respectively.

Note that any direction p ǫ k k (∇) lies outside L, otherwise there would exist a choice of parabolic directions p ǫ (∇) such that (E, p ǫ (∇)) is decomposable and this would force a relation on eigenvalues ν. Indeed, we can find an embedding of L -1 (w ∞ ) passing through n -1 directions away from L. Then we suppose, without loss of generality, that our directions are as in the Figure 2. In particular (u j , v j ) = (0, 1) and a j = -1 for j ≥ 2, and u 1 v 1 = 0. Up to applying a diagonal automorphism of E we suppose that u 1 = v 1 = 1, i.e. p + 1 (∇) = (1 : 1). Note that End(E) is generated (as a vector space) by the identity, nilpotent endomorphisms and the projection to L. For the identity, φ A E (1 E ) gives the Fuchs relation that we already know is valid. Let β ∈ H 0 (C, L 2 (-w ∞ )) and define

P (β) := φ A E 0 β 0 0 = b 1 β(t 1 )(ν + 1 -ν - 1 ) + j≥2 b j β(t j )(ν + j -ν - j ).
For j ≥ 2 let β j ∈ H 0 (C, L 2 (-w ∞ )) with the following property: β j (t k ) = 0 if k = 1, j and β j (t j ) = 1. These sections are unique. In particular, β j (t 1 ) = 0 and we have

P (β j ) = b 1 β j (t 1 )(ν + 1 -ν - 1 ) + b j (ν + j -ν - j )
Note that the image of evaluation map

H 0 (C, L 2 (-w ∞ )) → C n , β → (β(t 1 ), . . . , β(t n ))
, has dimension (n -1); hence the images of the β j define basis. Therefore P (β) = 0 for every

β ∈ H 0 (C, L 2 (-w ∞ )) if and only if P (β j ) = 0 for j ≥ 2, i.e. the ν - j direction is (-1 : b j ) = ν + j -ν - j : b 1 β j (t 1 )(ν + 1 -ν - 1 )
For the projection to L we have

φ A E 1 0 0 0 = deg L + n j=1 u j b j ν + j -a j v j ν - j = b 1 (ν + 1 -ν - 1 ) + n + 1 2 + n j=1 ν - j = 0.
This implies that the directions over t 1 are p + 1 (∇) = (1 : 1) and

p - 1 (∇) = (b 1 -1 : b 1 ) =   n + 1 2 + ν + 1 + n j≥2 ν - j : n + 1 2 + n j=1 ν - j  
Therefore the residues are completely independent of the isomorphism class of (E, ∇), i.e. the residues of every connection in Z n are, up to Aut(E), in the above configuration. Also note that any two connections with these residues differ by an element of Hom(E, E ⊗ Ω C ) with vanishing trace. From this discussion we can prove the following result.

Theorem 3.10. Let n be an odd integer. Then Z n has four connected components, each of them being isomorphic to C n .

Proof. First note that there exist precisely four possibilities for the underlying vector bundle of a connection in Z n . Indeed, Lemma 3.9 shows that any such vector bundle is

E = L⊕L -1 (w ∞ ) where L is such that L 2 = O C (D + w ∞ ).
Twisting by 2-torsion line bundles yields four non-isomorphic possibilities for L. Hence four non-isomorphic possibilities for E. Therefore Z n has four connected components.

Fix one such E and denote Z E n the corresponding component of Z n . Up to the action of Aut(E), we can fix a configuration of directions as in Figure 2 so that we may only consider connections on E that have this configuration. Note that since L 2 = O C (D + w ∞ ) the stabilizer of such configuration in Aut(E) is a copy of the additive group (C, +) generated by

1 β 0 1
where β ∈ H 0 (L 2 (-w ∞ )) \ {0} vanishes on D. On the other hand, if we fix a connection ∇ 0 on E, for any other connection ∇, the difference ∇ -∇ 0 ∈ Hom(E, E ⊗ Ω C ) is a holomorphic Higgs field. Since ∇ and ∇ 0 must have the same trace, this Higgs field is traceless. Thus we have an isomorphism

Z E n Higgs 0 (E)/(C, +) [∇] [∇ -∇ 0 ]
where Higgs 0 (E) is the space of traceless Higgs fields. Note that Higgs 0 (E) ≃ C n+1 . We now explicitly describe the action of (C, +) on Higgs 0 (E). Locally, we can write

∇ 0 = d + a 0 b 0 c 0 d 0 and ϕ = a 1 b 1 0 -a 1 .
Then the action of t ∈ C is given by

t • ϕ = 1 -tβ 0 1 0 tdβ 0 0 + a 0 + a 1 b 0 + b 1 c 0 d 0 -a 1 1 tβ 0 1 - a 0 b 0 c 0 d 0 = = 1 -2tβ 0 1 a 1 b 1 0 -a 1 + -tc 0 β t[(a 0 -d 0 )β + dβ] -t 2 c 0 β 2 0 tc 0 β .
In particular, the action is given by affine transformations. Also note that c 0 = 0 would force an integer relation ν ǫ1 1 + • • • + ν ǫn n ∈ Z which is not possible; hence the action is free. This concludes the proof since the quotient of an affine free action of (C, +) on C n+1 must be isomorphic to C n , see [START_REF] Püttmann | Free affine actions of unipotent groups on C n[END_REF]Corollary 7].

In addition, notice that given (E, ∇) representing a point in Z n (as in (3.2)) we may perform an elementary transformation centered at all parabolic directions to get (E ′ , ∇ ′ ). The subbundle

L ֒→ E = L ⊕ L -1 (w ∞ ) becomes U = L(-D) ⊗ M ֒→ E ′ where M 2 = O C (D -w ∞ ). From L 2 = O C (D + w ∞ )
we have that U 2 = O C and we have an extension

(3.3) 0 -→ U -→ E ′ -→ U -→ 0.
Since L does not pass through any parabolic direction on E, its transformed U passes through every parabolic direction on E ′ . Thus E ′ is indecomposable, otherwise we would have a decomposable quasi-parabolic bundle contradicting Remark 3.2. Therefore U is one of the 4 torsion line bundles and E ′ is the corresponding unique indecomposable extension. We conclude that any connection representing a point in Z n can be obtained from a connection over an indecomposable vector bundle E ′ as in (3.3), by performing an elementary transformation centered in n parabolic directions which lie in the unique maximal subbundle. Note that there exist n directions to choose and dim Higgs 0 (E ′ ) = 1 giving dimension n + 1 for the space of connections on E ′ . Taking the quotient by the action of the automorphism group of the corresponding vector bundle, we get dimension n.

The classical Painlevé case.

Here it is worth to compare the case n = 1 with the Painlevé case, i.e. those logarithmic connections over the 4-punctured Riemann sphere. We assume that D = w ∞ and let (ν, -ν -1), ν ∈ C\ Z, denote the eigenvalues. The moduli space Con ν parametrizes (E, ∇), where ∇ is a logarithmic connection over C with a single logarithmic pole over the point w ∞ , i.e. it is a Lamé connection. The whole moduli space writes

Con ν = Con ν ⊔ Z 1
where Con ν ≃ S is formed by (E, ∇) with E = E 1 . It follows from Theorem 3.10 that Z 1 is a union of four irreducible curves isomorphic to C:

(3.4) Z i 1 = {(E, ∇) ∈ Con ν | E = L ⊕ L -1 (w ∞ ) with L = O C (w i )} for i ∈ {0, 1, λ, ∞}
, where w i are Weierstrass points.

We let Con θ (P 1 , T ), T = 0 + 1 + λ + ∞, denote the moduli space of logarithmic connections over the 4-punctured Riemann sphere (P 1 , T ), with eigenvalue

θ = ± 1 4 , ± 1 4 , ± 1 4 , θ ± ; θ + = ν 2 - 1 4 , θ -= -θ + -1.
The determinant line bundle and the trace connection on it are fixed, i.e. we fix a rank one connection ζ on O P 1 (1) with residue -1 at ∞ and for any (E, ∇) ∈ Con θ (P 1 , T ) we have

(det E, tr∇) = (O P 1 (1), ζ).
The eigenvalue θ is chosen so that we can construct a map

F : Con θ (P 1 , T ) -→ Con ν
which turns out to be an isomorphism (see [START_REF] Loray | Isomonodromic deformations of Lamé connections, the Painlevé VI equation and Okamoto symmetry[END_REF]), and which we now describe. Given (E, ∇) ∈ Con θ (P 1 , T )

we first take its pullback (π * E, π * ∇) via the 2-cover π : C → P 1 , the underlying vector bundle has determinant det(π * E) = O C (2w ∞ ). After π * the eigenvalues are multiplied by 2 and by performing an elementary transformation elem 0,1,λ over w 0 , w 1 and w λ , centered on directions corresponding to eigenvalues 1/2, we get

(E ′ , ∇ ′ ) = elm 0,1,λ (π * E, π * ∇)
with det E ′ = O C (-w ∞ ), recall that w 0 + w 1 + w λ ∼ 3w ∞ . The transformed connection ∇ ′ has apparent singularities over w 0 , w 1 and w λ , thus they disappear after twist by a suitable rank one connection ζ 0 on O C (w ∞ ). More precisely, we may fix ζ 0 with residues

- 1 2 , - 1 2 
, -1 2 and 1 2 over w 0 , w 1 , w λ and w ∞ to get

F (E, ∇) := (E ′ , ∇ ′ ) ⊗ (O C (w ∞ ), ζ 0 ) ∈ Con ν .
We now describe the preimage of Z 1 via F . For any (E, ∇) ∈ Con θ (P 1 , T ) the underlying vector bundle is always E = O P 1 ⊕ O P 1 (1), see [START_REF] Loray | Isomonodromic deformations of Lamé connections, the Painlevé VI equation and Okamoto symmetry[END_REF]. For each i ∈ {0, 1, λ} we let p + i (∇) denote the parabolic direction with respect to the eigenvalue 1/4 and p + ∞ (∇) to be the θ + direction. Then define (E, p + (∇)) the corresponding quasiparabolic bundle. Since ν ∈ Z, we have that (E, p + (∇)) is indecomposable and, in particular, there exist at most one direction lying in O P 1 (1). Indeed, given two parabolic directions outside O P 1 (1), we can choose an embedding of O P 1 → E passing through them.

Then define

A i = {(E, ∇) ∈ Con θ (P 1 , T ) | p + i (∇) ∈ O P 1 (1) 
} and let A ∞ be the locus of (E, ∇) ∈ Con θ (P 1 , T ) such that there is an embedding of O P 1 passing through the three directions p + 0 (∇), p + 1 (∇), p + λ (∇).

Claim 1. We claim that F sends A i to Z i 1 . Let us assume i = 0, other cases are similar. Pulling back (E, ∇) ∈ A 0 to the elliptic curve we get

(π * E, π * ∇) = (O C ⊕ O C (2w ∞ ), π * ∇)
with one parabolic direction p + 0 (π * ∇) lying in O C (2w ∞ ). We may assume that O C pass through p + 1 (∇) and p + λ (∇), thus after elementary transformation elem 0,1,λ we get

(E ′ , ∇ ′ ) = (O C (-w 0 ) ⊕ O C (2w ∞ -w 1 -w λ ), ∇ ′ )
and twisting by (O C (w ∞ ), ζ 0 ) we obtain

F (E, ∇) = ( E, ∇ ′ ⊗ ζ 0 )
where E ≃ L ⊕ L -1 (w ∞ ), with L = O C (w 0 ). Consequently, F (E, ∇) ∈ Z 0 1 . This proves the claim.

Fuchsian systems with n + 3 poles

Given (E 1 , ∇) ∈ Con ν , we can associate a sl 2 -connection on the trivial bundle O C ⊕ O C by performing an elementary transformation for a particular choice of directions over the 2-torsion points w 0 , w 1 and w λ . We begin the section establishing this correspondence. The process creates new singularities which are apparent, i.e. they become regular points after one elementary transformation.

We have that t ∈ C is an apparent singular point for ∇ if the residual part Res t ∇ has { 1 2 , -1 2 } as eigenvalues and the 1 2 -eigenspace of Res t ∇ is also invariant by the constant part of the connection matrix.

Recall that D ′ = w 0 + w 1 + w λ + D is also reduced, see Remark 1.1. Let (ν 1 , . . . , ν n ) ∈ (C * ) n and fix an eigenvalue σ by setting 

σ = 1 2 , - 1 2 , 1 2 , - 1 2 , 1 2 , - 1 2 , ν 1 2 , - ν 1 2 , . . . , ν n 2 , - ν n 2 .
We denote by Syst σ (C, D ′ ) the moduli space of Fuchsian systems (i.e. logarithmic sl 2 -connections on the trivial bundle O C ⊕ O C ) having pole divisor D ′ , eigenvalue σ and such that:

• the three singular points w 0 , w 1 and w λ are apparent;

• over w 0 , w 1 and w λ the corresponding 1 2 -eigenspaces are (1 : 0), (1 : 1) and (0 : 1) respectively.

O C (w 0 -w ∞ ) O C (w 1 -w ∞ ) O C (w λ -w ∞ ) w 0 w 1 w λ O C Figure 3. Sections of P(E 1 ) Proposition 4.1.
There is isomorphism of moduli spaces

Con ν ∼ -→ Syst σ (C, D ′ )
where ν j = ν + jν - j for j = 1, . . . , n. 3 and we apply elementary transformation on these directions so that they become three disjoint copies of O C (-w ∞ ). Hence the elementary transformed of (E 1 , ∇) is (E, ∇ ′ ) where

Proof. Let (E 1 , ∇) ∈ Con ν . The subbundles O C (w 0 -w ∞ ), O C (w 1 -w ∞ ), O C (w λ -w ∞ ) ⊂ E 1 inter- sect as in Figure
E = O C (-w ∞ ) ⊕ O C (-w ∞ )
and the eigenvalues of ∇ ′ are the same as ∇ at the t k , k = 1, . . . , n, and the eigenvalues at w 0 , w 1 and w λ are equal to (1, 0). Consider the connection (O C (w ∞ ), ξ) such that

Res w0 ξ = Res w1 ξ = Res w λ ξ = - 1 2 and Res t k ξ = - ν + k + ν - k 2 .
It exists since

n k=1 ν + k + ν - k = -1 by Fuchs relation. Therefore (E 1 , ∇) -→ (O C ⊕ O C , ∇ ′ ⊗ ξ) ∈ Syst σ (C, D ′ ) is our desired isomorphism.
Consider the space Bun 0 of parabolic bundles (E, p) over (C, D ′ ) such that E is the trivial bundle, the parabolic directions over w 0 , w 1 and w λ are (1 : 0), (1 : 1) and (0 : 1), respectively, and we let the parabolic directions over D = t 1 + • • • + t n vary. We have a natural identification Bun 0 = (P 1 ) n where each copy of P 1 parametrizes parabolic directions over t j .

The elementary transformation used in the proof yields an alternative proof for the isomorphism Bun ≃ (P 1 ) n in Proposition 2.1. Indeed, (E 1 , p) corresponds to (O C ⊕ O C , p ′ ) and, up to automorphism, we can fix the directions over w 0 , w 1 and w λ so that it defines an element of Bun 0 ; in particular, this gives us the identification Bun ≃ Bun 0 . (4.2) 4.1. The affine bundle of Fuchsian systems. The moduli space Syst σ (C, D ′ ) is an affine bundle of rank n over Bun 0 . We will describe its trivializations over the Zariski open sets

U 0 = n j=1 (z j : w j ) ∈ P 1 | w j = 1
and

U ∞ = n j=1 (z j : w j ) ∈ P 1 | z j = 1 ,
and then give the affine transition map.

In order to make explicit computations, we will consider that C is given by the affine equation y 2 = x(x -1)(xλ), with λ ∈ C \ {0, 1}, and w ∞ ∈ C will be the point at infinity. In particular, the torsion points are w 0 = (0, 0), w 1 = (1, 0) and w λ = (λ, 0). To begin with, let us fix a basis of meromorphic one-forms with at most simple poles on D ′ . Consider the holomorphic one-form ω = dx 2y = dy 3x 2 -2(1+λ)x+λ and define

φ 0 = (1 -λ)x y ω, φ 1 = -λ(x -1) y ω and θ j = x j (x j x -λ) x j y -y j x ω,
where t j = (x j , y j ). These n+3 one-forms give us the desired basis, and their residues (and constant term at w i ) are given as follows in terms of local coordinate y:

• at w 0 , we have x = O(y 2 ), and:

ω = dy λ + O(y), φ 0 = O(y), φ 1 = dy y + O(y), θ j = - dy y - y j λx j dy + O(y);
• at w 1 , we have x = 1 + O(y 2 ), and:

ω = dy 1 -λ + O(y), φ 0 = dy y + O(y), φ 1 = O(y), θ j = x j (x j -λ) y j dy + O(y);
• at w λ , we have x = λ + O(y 2 ), and:

ω = dy λ(λ -1) + O(y), φ 0 = - dy y + O(y), φ 1 = - dy y + O(y), θ j = - x j (x j -1) y j dy + O(y);
• at t j , the 1-forms are holomorphic except for θ j which has a simple pole with Res tj θ j = 1.

Therefore, any Fuchsian system ∇ ∈ Syst σ (C, D ′ ) can be written as

∇ = d + a 0 b 0 c 0 -a 0 φ 0 + a 1 b 1 c 1 -a 1 φ 1 + a 2 b 2 c 2 -a 2 ω + n j=1 α j β j γ j -α j θ j ,
and, as we impose apparent singularities at w 0 , w 1 and w λ , we get

a 0 = - n j=1 α j , b 0 = 1 2 + n j=1 α j , c 0 = 1 2 - n j=1 α j , a 1 = 1 2 + n j=1 α j , b 1 = - 1 2 - n j=1 α j , c 1 = n j=1 γ j , a 2 = n j=1 y j 2 2α j + β j -γ j x j -1 + γ j x j - β j x j -λ , b 2 = n j=1 y j (x j -λ) β j , c 2 = n j=1 y j x j γ j .
In particular, ∇ is completely determined by the residues Res tj (∇) = α j β j γ j -α j .

Proposition 4.2. If ν j = 0 for j = 1, . . . , n then the map Par : Syst σ (C, D ′ ) → S n that associates to ∇ the eigenspaces of Res tj (∇), j = 1, . . . , n, is an isomorphism.

Proof. We know that ∇ is determined by Res tj (∇), j = 1, . . . , n. On the other hand,

α j β j γ j -α j = 1 zv -wu z u w v •   ν j 2 0 0 - ν j 2   • v -u -w z
where (z : w) and (u : v) are the eigenspaces associated to It can be written as

∇ 0 = d + a 0 b 0 c 0 -a 0 φ 0 + a 1 b 1 0 -a 1 φ 1 + a 2 b 2 0 -a 2 ω + n j=1 ν j 2 -1 2z j 0 1 θ j .
with

a 0 = n j=1 ν j 2 b 0 = 1 2 - n j=1 ν j 2 c 0 = 1 2 + n j=1 ν j 2 a 1 = 1 2 - n j=1 ν j 2 b 1 = - 1 2 + n j=1 ν j 2 a 2 = n j=1 ν j y j 2 z j -1 x j -1 - z j x j -λ b 2 = n j=1 ν j y j z j (x j -λ)
Now if ∇ is any connection which has z as positive eigenspaces then the difference Θ = ∇ -∇ 0 is a Higgs field which is nilpotent with respect to z. This means that Θ is a strongly parabolic Higgs field over (O C ⊕ O C , z). We shall fix a basis {Θ 0 1 , • • • , Θ 0 n } for the space of strongly parabolic Higgs fields such that

Res tj Θ 0 j = z j -z 2 j 1 -z j
and Res ti Θ 0 j = 0 for i = j. So, we define

Θ 0 j = -z j z j -z j z j φ 0 + z j -z j 1 -z j φ 1 + A j • ω + z j -z 2 j 1 -z j θ j
where

A j =   yj 2 -(zj -1) 2 xj -1 + 1 xj + z 2 j xj-λ - yjz 2 j xj -λ yj xj - yj 2 -(zj -1) 2 xj -1 + 1 xj + z 2 j xj -λ   .
This matrix A j has been chosen to assure apparent singularities over w 0 , w 1 and w λ . Any sl 2 -connection (E, ∇) ∈ Syst σ (C, D ′ ) having (z j : 1) as parabolic direction (over t j ) corresponding to νj 2 can be written as ∇ = ∇ 0 + r j Θ 0 j for suitable r j ∈ C. It has (z j r jν j : r j ) as the complementary direction corresponding to - 

∇ ∞ = d + a 0 b 0 c 0 -a 0 φ 0 + a 1 b 1 c 1 -a 1 φ 1 + a 2 0 c 2 -a 2 ω + n j=1 ν j 2 1 0 2w j -1 θ j with a 0 = - n j=1 ν j 2 b 0 = 1 2 + n j=1 ν j 2 c 0 = 1 2 - n j=1 ν j 2 a 1 = 1 2 + n j=1 ν j 2 b 1 = - 1 2 - n j=1 ν j 2 c 1 = n j=1 ν j w j a 2 = n j=1 ν j y j 2 (1 -w j ) x j -1 + w j x j c 2 = n j=1 y j x j ν j w j
And the strongly parabolic Higgs fields are defined by

Θ ∞ j = -w j w j -w j w j φ 0 + w j -w j w 2 j -w j φ 1 + B j • ω + w j -1 w 2 j -w j θ j
where

B j =   yj 2 -(1-wj ) 2 xj -1 + w 2 j xj + 1 xj -λ -yj (xj -λ) yj w 2 j xj - yj 2 -(1-wj ) 2 xj-1 + w 2 j xj + 1 xj -λ   .
Given a Fuchsian system ∇ ∈ Syst σ (C, D ′ ) with (1 : w j ) as parabolic direction (over t j ) corresponding to νj 2 , we can write

∇ = ∇ ∞ + s j Θ ∞ j
for suitable s j ∈ C. The complementary direction corresponding to -νj 2 is (s j : w j s j + ν j ).

Transition matrix.

From the trivializations on U 0 and U ∞ we may compute a transition affine transformation for the affine bundle Syst σ (C, D ′ ). Since U 0 ∪ U ∞ covers the basis Bun 0 ≃ (P 1 ) n minus a subvariety of codimension two, then the bundle structure of Syst σ (C, D ′ ) is determined by this affine transformation.

In order to make this affine transformation explicit we note that

Θ ∞ j = w 2 j Θ 0 j 1 w j , and 
∇ 0 1 w = d + a 0 b 0 c 0 -a 0 φ 0 + a 1 b 1 0 -a 1 φ 1 + a 2 b 2 0 -a 2 ω + n j=1 ν j 2 -1 2 wj 0 1 θ j .
with

a 0 = n j=1 ν j 2 b 0 = 1 2 - n j=1 ν j 2 c 0 = 1 2 + n j=1 ν j 2 a 1 = 1 2 - n j=1 ν j 2 b 1 = - 1 2 + n j=1 ν j 2 a 2 = n j=1 y j ν j 2w j 1 -w j x j -1 - 1 x j -λ b 2 = n j=1 y j j -λ) ν j w j Hence (4.3) ∇ ∞ = ∇ 0 1 w 1 , . . . , 1 w n + n j=1 ν j w j Θ 0 j 1 w j .
Over the intersection U 0 ∩ U ∞ we have

(s 1 , . . . , s n ) → ∇ ∞ (w 1 , . . . , w n ) + n j=1 s j Θ ∞ j (w j ) = = ∇ 0 1 w 1 , . . . , 1 w n + n j=1 ν j w j + s j w 2 j Θ 0 j 1 w j = = ∇ 0 (z 1 , . . . , z n ) + n j=1 ν j w j + s j w 2 j Θ 0 j (z j ) = = ∇ 0 (z 1 , . . . , z n ) + n j=1 r j Θ 0 j (z j )
which gives us the transition affine transformation (4.4)

   r 1 . . . r n    =    w 2 1 . . . 0 . . . . . . . . . 0 . . . w 2 n    •    s 1 . . . s n    +    ν 1 w 1 . . . ν n w n    .
Note that if we choose new trivializations such that r ′ j = ρj νj r j and s ′ j = ρj νj s j , this transition map becomes

   r ′ 1 . . . r ′ n    =    w 2 1 . . . 0 . . . . . . . . . 0 . . . w 2 n    •    s ′ 1 . . . s ′ n    +    ρ 1 w 1 . . . ρ n w n    .
Hence the affine bundles Con ν π+ --→ Bun are all isomorphic, not depending on ν; this agrees with Theorem 3.3. The transition map (4.4) can also be written as

(4.5)      λ r 1 . . . r n      =      1 0 . . . 0 ν 1 w 1 w 2 1 . . . 0 . . . . . . . . . . . . ν n w n 0 . . . w 2 n      •      λ s 1 . . . s n     
and can be thought, owing to (4.2), as the transition matrix of a vector bundle E over Bun that parameterizes logarithmic λ-connections: triples (E 1 , λ, ∇) where ∇ :

E 1 → E 1 ⊗ Ω C (D) and λ ∈ C such that ∇(f s) = λs ⊗ df + f ∇(s),
see [START_REF] Simpson | The Hodge filtration on nonabelian cohomology[END_REF]Section 4]. If λ = 0 then 1 λ ∇ is an usual logarithmic connection and if λ = 0 then ∇ is a Higgs field. We note that the complement of U 0 ∪ U ∞ is a subvariety of codimension two, hence the transition matrix given in (4.5) determines E.

The projectivization of E provides a compactification Con ν for the moduli space Con ν ; in the boundary we get the projectivized moduli space of Higgs fields PHiggs ≃ Con ν \ Con ν .

The inclusion PHiggs ֒→ P(E) comes from the natural extension

(4.6) 0 -→ T * Bun-→E-→O Bun -→ 0
where the first map is the inclusion of Higgs fields and the last is the projection (E 1 , λ, ∇) → λ.

We saw that E does not depend on ν. However, this extension, hence the inclusion PHiggs ֒→ P(E), is determined by the exponents ν.

Theorem 4.4. The moduli space Con ν has compactification Con ν = P(E), where the boundary divisor is isomorphic to PHiggs, the projectivization of the space of Higgs fields on E 1 . Moreover, the inclusion PHiggs ֒→ P(E) is determined, up to automorphisms of P(E), by (ν 1 , . . . , ν n ).

Proof. The inclusion φ : PHiggs ֒→ P(E) comes from the projectivization of (4.6). We will show that the isomorphism class of this extension is determined by (ν 1 , . . . , ν n ). This is equivalent to determining φ, up to composing with an automorphism of P(E) as a P n -bundle over Bun. The proof will follow by computing the extension class e ν ∈ H 1 (Bun, T * Bun), see [3, p. 185]. Over U 0 , the map O Bun → E ν , given by h → h∇ 0 , defines a splitting; the same is true for

∇ ∞ over U ∞ . Therefore e ν is represented, on U 0 ∩ U ∞ , by ∇ ∞ -∇ 0 = n j=1 ν j w j Θ 0 j 1 w j ,
see the equation in display (4.3). Any cohomologous cocycle must be

n j=1 ν j w j Θ 0 j 1 w j + n j=1 b j (w 1 , . . . w n )Θ ∞ j (w j ) - n j=1 a j 1 w 1 , . . . , 1 w n Θ 0 j 1 w j = = n i=1 ν j w j + b j (w 1 , . . . w n )w 2 j -a j 1 w 1 , . . . , 1 w n Θ 0 j 1 w j
for some holomorphic functions a i and b i . In particular, the linear terms ν j w j are left unchanged, whence the extension is completely determined by (ν 1 , . . . , ν n ).

Returning to the affine bundle Con ν π+ --→ Bun, we have seen that it does not distinguish ν. However, if we consider Con ν with the inherited symplectic structure from Con ν , the picture is different; this will be the topic of the next section. The trivializations in (4.4) will be important to bring the symplectic form to the Darboux normal form.

Symplectic structure

It follows from the work of Iwasaki [START_REF] Iwasaki | Moduli and deformation for Fuchsian projective connections on a Riemann surface[END_REF] that moduli spaces of logarithmic connections on curves carry a natural symplectic structure. In fact, there exists a 2-form defined on a larger moduli space where the poles are allowed to move on C inducing a Poisson structure whose kernel defines the isomonodromic deformations, therefore a Hamiltonian system. Moreover, through the Riemann-Hilbert correspondence, Iwasaki proved in [START_REF] Iwasaki | Fuchsian moduli on a Riemann surface-its Poisson structure and Poincaré-Lefschetz duality[END_REF] that this 2-form coincides with the symplectic structure on moduli spaces of representations that originated through the works of Atiyah-Bott and Goldman. In fact, Iwasaki considers moduli spaces of Sturm-Liouville operators rather than connections. In order to define the symplectic structure globally on our moduli space, the approach of Arinkin-Lysenko in [START_REF] Arinkin | Isomorphisms between moduli spaces of SL(2)-bundles with connections on P 1 \ {x 1[END_REF] and Iwasaki in [START_REF] Iwasaki | Fuchsian moduli on a Riemann surface-its Poisson structure and Poincaré-Lefschetz duality[END_REF] is more convenient for us. We briefly recall how the tangent space and the symplectic structure are constructed there. Later we will give an explicit formula for the 2-form on an open set of our moduli space.

First we recall the following result from [12, Section 15].

Lemma 5.1. Assume that the connection (E, ∇) has a simple pole at t ∈ C with eigenvalues {ν + , ν -}, and let z : (C, t) → (C, 0) be a local coordinate. Then there exists a local trivialization of the vector bundle Φ : E| (C,t) → (C, 0) × C 2 such that Φ * ∇ is one of the following models:

(5.1)

d + ν + 0 0 ν - dx x ,
or, in the resonant case {ν

+ , ν -} = {ν, ν + n}, n ∈ Z ≥0 (5.2) d + ν x n 0 ν + n dx x .
Moreover, in the resonant case ν +ν -∈ Z, the model (5.2) is generic among the two, i.e. occurs for an open set of the deformations of (E, ∇).

Next we want to describe the tangent space of Con ν at a (generic) connection (E, ∇) ∈ Con ν . Consider a first order deformation (E ǫ , ∇ ǫ ) of (E, ∇); we briefly recall the definition to set up notation. Denote R = C[ǫ], with ǫ 2 = 0, the ring of dual numbers. Then E ǫ is a vector bundle over C × Spec(R), flat over Spec(R), such that the restriction induced by R ։ R/(ǫ) = C gives E ǫ ⊗ R C = E. Moreover there exist a covering {U i } of C and isomorphisms

(5.3) Φ i : E ǫ | Ui×Spec(R) ∼ -→ E| Ui ⊗ C R, such that Φ i ⊗ 1 : E ǫ | Ui×Spec(R) ⊗ R C = E| Ui → E| Ui is the identity. On the other hand, ∇ ǫ is a relative connection, i.e. an R-linear map ∇ ǫ : E ǫ → E ǫ ⊗ C Ω C (D) satisfying the relative Leibniz rule, such that its restriction to E ǫ ⊗ R C = E is ∇. Up to refining {U i }, the isomorphisms Φ i plus trivializations of E amount to writing (5.4) ∇ ǫ | Ui×Spec(R) = d + A 0 i + ǫA 1 i
where

∇| Ui = d + A 0 i and A 1 i ∈ Hom(E| Ui , E ⊗ Ω C (D)| Ui ).
We are specially interested in deformations that preserve the and residual eigenvalues, which impose conditions on A 1 i . We can refine {U i } further so that the restriction of ∇ is either trivial or can be normalized like in Lemma 5.1. Since the local models (5.1) with ν +ν -∈ Z, and (5.2) are stable under small deformations with fixed eigenvalues, we deduce that there exist bundle automorphisms

Ψ i : E| Ui ⊗ C R ∼ -→ E| Ui ⊗ C R such that ∇ ǫ | Ui×Spec(R) = Ψ * i (∇ ⊗ 1)
. Therefore we may assume that the maps Φ i of (5.3) are such that A 1 i = 0 in (5.4).

Over U i ∩U j the comparison Φ ij = Φ i • Φ -1
j defines an automorphism of E| Ui∩Uj ⊗ C R preserving the connection ∇| Ui∩Uj ⊗ 1. By construction Φ ij = id + ǫφ ij and we get

(∇ ⊗ 1)(Φ ij (s 0 + ǫs 1 )) = (∇ ⊗ 1)(s 0 + ǫ(s 1 + φ ij (s 0 ))) = ∇(s 0 ) + ǫ[∇(s 1 ) + ∇(φ ij (s 0 ))] = Φ ij ((∇ ⊗ 1)(s 0 + ǫs 1 )) = Φ ij (∇(s 0 ) + ǫ∇(s 1 )) = ∇(s 0 ) + ǫ[∇(s 1 ) + φ ij (∇(s 0 ))].
Hence ∇(φ ij (s 0 )) = φ ij (∇(s 0 )), i.e., φ ij preserves ∇| Ui∩Uj .

Since we are assuming that the trace connection is fixed, det(Φ i ) comes from a global isomorphism ρ : det(E ǫ ) ∼ -→ det(E)⊗ C R. Hence we have that 1 = det Φ ij = 1+ǫ trφ ij . Then trφ ij = 0 and we get an element {φ ij } of H 1 (sl(E, ∇)), the sheaf of trace-free endomorphisms preserving ∇. Therefore

T (E,∇) Con ν ≃ H 1 (sl(E, ∇)).
Observe that sl(E, ∇) is a subsheaf of sl(E, p) the sheaf of endomorphisms of the quasi-parabolic bundle (E, p) with trace zero. Also note that ∇ induces a natural (logarithmic) connection on the vector bundle sl(E), namely ∇ 1 : φ → ∇ • φφ • ∇. We then construct a complex of sheaves of abelian groups

0 -→ sl(E, ∇) -→ sl(E, p) ∇ 1 -→ sl(E, p) ⊗ Ω 1 C (D) nil -→ 0 (5.5)
where the rightmost member corresponds to parabolic Higgs fields with nilpotent residues. The two sheaves on the right correspond to F 0 and F 1 in [START_REF] Inaba | Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI[END_REF][START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF][START_REF] Inaba | Moduli of regular singular parabolic connections with given spectral type on smooth projective curves[END_REF][START_REF] Komyo | Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections[END_REF]. Note that ∇ 1 is not O C -linear and sl(E, ∇) is not an O C -module. Next we show that for a generic connection the deformation complex (5.5) is indeed exact. Lemma 5.2. For a generic connection (E, ∇) in the moduli space, the sequence in display (5.5) is exact.

Proof. First note that the kernel of ∇ 1 is precisely sl(E, ∇) and the leftmost map is the inclusion. Thus we only need to show that ∇ 1 is surjective, for a generic ∇. It will follow from a direct computation with local models.

Outside the polar locus, (E, ∇) is locally trivial and the map ∇ 1 may be written as a b c -a -→ da db dc -da so that local surjectivity of ∇ 1 at a regular point follows from local integration of holomorphic 1-forms. On the other hand, at a non resonant pole, i.e. ν +ν -∈ Z, the connection (E, ∇) is locally like (5.1) and the map ∇ 1 may be written as

a b c -a -→ da db + (ν + -ν -)b dx x dc + (ν --ν + )c dx x -da
where c(0) = 0 (parabolic condition); for the local surjectivity, we just have to check that a matrix of 1-forms α β γ -α is in the image if and only if α and γ are holomorphic (parabolic and nilpotent condition), and β has a simple pole, which is straightforward. Finally, consider a resonant pole of the form (5.2).

Then the map ∇ 1 may be written as

a b c -a -→ da + cx n dx x db -(nb + 2ax n ) dx x dc + nc dx x -da -cx n dx x .
To prove the surjectivity in that case, we have to successively integrate

   dc + nc dx x = γ da + cx n dx x = α db -(nb + 2ax n ) dx x = β
In the first equation, c(x) can be derived such that c(0) = 0 (parabolicity); therefore we can integrate the second one and find a(x) up to a constant; finally, for a good choice of a(0), the last equation admits a solution b(x).

Hereafter we will assume that (E, p) is µ-stable for some weight µ and we will denote by B the corresponding moduli space of parabolic bundles.

Note that (E, p) is simple, i.e. H 0 (sl(E, p)) = 0, then we get H 1 (sl(E, p) ⊗ Ω 1 C (D) nil ) = 0 by Serre duality. The long exact sequence of cohomology of (5.5) gives

(5.6) 0 -→ H 0 (sl(E, p) ⊗ Ω 1 C (D) nil ) -→ H 1 (sl(E, ∇)) → H 1 (sl(E, p)) -→ 0
In the middle we get the tangent space to the moduli space of connections at (E, ∇). On the lefthand side, we get the space of Higgs fields, which does not depend on ∇. And on the right-hand side we have H 1 (sl(E, p)) that is the tangent space to B at (E, p). In particular, the image of {φ ij } in H 1 (sl(E, p)), where we omit the connection and just keep track of the parabolic data, corresponds to the underlying first order deformation of the parabolic bundle.

We can check that the map H 0 (sl(E, p) ⊗ Ω 1 C (D) nil ) ֒→ H 1 (sl(E, ∇)) of (5.6) is the derivative of the natural action ∇ → ∇ + θ for a global parabolic Higgs field on the affine space of parabolic connections on (E, p). Indeed, if we write ∇ ǫ = ∇ + ǫθ and Φ i = id + ǫφ i , then we get

(∇ + ǫθ)| Ui = (Φ i ) * ∇ = (id -ǫφ i ) • ∇ • (id + ǫφ i ) = = ∇ + ǫ(∇ • φ i -φ i • ∇) = ∇ + ǫ∇ 1 (φ i )
The first order deformation is therefore encoded in {φ jφ i }, which, by construction, has zero image in H 1 (sl(E, p)). But the image of θ in H 1 (sl(E, ∇)) given by (5.6) gives exactly the same formula: we first integrate ∇ 1 φ i = θ| Ui and then associate {φ jφ i }.

One can define a bilinear map on T (E,∇) Con ν as follows:

(5.7)

H 1 (sl(E, ∇)) × H 1 (sl(E, ∇)) H 2 (C) ≃ C; ({φ ij }, {ψ ij }) {u ijk = tr(φ ij ψ jk )}. ω Con
One can choose the covering {U i } such that (E, ∇) is trivial over U i ∩ U j . Observe that φ ij ψ jk defines a section of gl(E, ∇) for which trace and determinant are constant; indeed, in a trivialization of (E, ∇) on U i ∩U j ∩U k , the section φ ij ψ jk is constant. This is why u ijk is a section of the constant sheaf C. One can show that this bilinear form is non degenerate, and defines a closed 2-form ω Con on Con ν which is symplectic:

dω Con ≡ 0 and ω n Con = ω Con ∧ • • • ∧ ω Con n times = 0,
i.e. ω n Con defines a holomorphic volume form, a trivialization of the canonical bundle. We refer to [START_REF] Iwasaki | Moduli and deformation for Fuchsian projective connections on a Riemann surface[END_REF] for details and proofs.

Remark 5.3. For the non generic resonant case

d + ν 0 0 ν + n dx x , n ∈ Z ≥0
the sequence (5.5) is not exact anymore: ∇ 1 is not surjective. This is why the description of the symplectic structure is more complicated in [START_REF] Arinkin | Isomorphisms between moduli spaces of SL(2)-bundles with connections on P 1 \ {x 1[END_REF][START_REF] Inaba | Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI[END_REF][START_REF] Inaba | Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence[END_REF][START_REF] Inaba | Moduli of regular singular parabolic connections with given spectral type on smooth projective curves[END_REF][START_REF] Komyo | Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections[END_REF]. They use hypercohomology to overcome this difficulty. In our case, we want to understand the symplectic structure at a generic point of the moduli space, so it is not necessary to consider this kind of models.

In order to describe the symplectic structure ω Con , we will make a reduction step. We will see that, locally, we can split T (E,∇) Con ν as a direct sum of two distinguished subspaces: one concerning Higgs fields and the other being the tangent space to a Lagrangian submanifold. This will allow us to compare ω Con with the natural symplectic form for Higgs fields.

Consider Higgs(E, p) = H 0 (sl(E, p) ⊗ Ω 1 C (D) nil ) the space of Higgs fields for E with nilpotent residues preserving p. We define a pairing (5.8) Higgs(E, p) × H 1 (sl(E, p))

H 1 (Ω 1 C ) ≃ C (Θ, {φ ij }) {tr(Θ • φ ij )} η
One proves, see [START_REF] Iwasaki | Moduli and deformation for Fuchsian projective connections on a Riemann surface[END_REF], that η is a perfect pairing via identifying H 1 (sl(E, p)) ∨ ≃ T * (E,p) B and Higgs(E, p). In other words, pairing η corresponds to the Liouville form on T * B.

Consider the following diagram (5.9)

H 1 (sl(E, ∇)) × H 1 (sl(E, ∇)) H 2 (C)
Higgs(E, p) × H 1 (sl(E, ∇))

Higgs(E, p) × H 1 (sl(E, p)) H 1 (Ω 1 ) ω Con η ∼ δ
where we have used the maps from (5.6) and δ is the connecting morphism coming from the long exact sequence associated to

0 -→ C -→ O C d -→ Ω 1 C -→ 0.
Then we reconcile ω Con and the pairing η.

Lemma 5.4. The diagram (5.9) is commutative.

Proof. Let (θ, {ψ ij }) be an element of Higgs(E, p) × H 1 (sl(E, ∇)). As θ is a parabolic Higgs field, one can locally write θ| Ui = ∇ 1 (ϕ i ) and the upper map yields ({ϕ j -

ϕ i }, {ψ ij }) ∈ H 1 (sl(E, ∇)) 2 , which is sent to {tr((ϕ j -ϕ i ) • ψ jk )} ∈ H 2 (C).
On the other hand, by first going down, the pairing η from (5.8) gives {tr(θ • ψ ij )} ∈ H 1 (Ω 1 ). To compute the image by δ, we first remark that we have

tr(θ • ψ ij ) = tr(∇ 1 (ϕ i ) • ψ ij ) = = tr(∇ 1 (ϕ i • ψ ij )) -tr(ϕ i • ∇ 1 (ψ ij )) = = tr(∇ 1 (ϕ i • ψ ij )) = = d(tr(ϕ i • ψ ij ))
Here, we have used that ∇ 1 (ψ ij ) = 0 and the properties ∇

1 (F • G) = ∇ 1 (F ) • G + F • ∇ 1 (G)
and tr(∇ 1 (F )) = d(tr(F )), which can be deduced from a local computation in matrix form. Therefore, we have

δ({tr(θ • ψ ij )}) = {tr(ϕ i • ψ ij ) + tr(ϕ j • ψ jk ) -tr(ϕ i • ψ ik )} = = {tr(ϕ i • (ψ ij -ψ ik )) + tr(ϕ j • ψ jk )} = = {tr((ϕ j -ϕ i ) • ψ jk )}
and get the same result.

Given a choice of directions ǫ ∈ {+.-} n , let C denote the open subset of Con ν composed by the connections (E, ∇) such that (E, p ǫ (∇)) belongs to B. Recall that a subvariety is called Lagrangian the restriction of symplectic form vanishes identically.

Assume now that we are given a local section ∇ 0 : B → C on an open subset B ⊂ B. Then we can define an isomorphism to the moduli space of parabolic Higgs bundles Ψ ∇0 : C| B -→ Higgs| B by setting (E, ∇) → (E, ∇ -∇ 0 (E, p)); the inverse being given by (E, ϕ) → (E, ∇ 0 (E, p) + ϕ). Recall that (5.8) identifies Higgs fields and the cotangent space to B. This yields an identification between the moduli space of parabolic Higgs bundles and the cotangent bundle T * B which, itself, carries the Liouville symplectic structure that we will call ω Higgs .

Recall that Ψ ∇0 is a symplectomorphism if Ψ * ∇0 ω Higgs = ω Con . On the other hand, we say that the section ∇ 0 is Lagrangian if so is its image.

Proposition 5.5. The isomorphism Ψ ∇0 is a symplectomorphism if and only if the section ∇ 0 : B -→ C is Lagrangian.

Before proving this proposition, let us recall some basic property of the Liouville form ω Liouville on T * M for an arbitrary manifold M . If (p 1 , . . . , p n ) are coordinates on M , and if we denote by (q 1 , . . . , q n ) the coordinates on the fibers such that dp i corresponds to the section q i ≡ 1 and q j ≡ 0 for j = i, then ω Liouville = n i=1 dp i ∧ dq i . Given a section α : M -→ T * M , we can define an affine bundle transformation by

ψ α : T * M -→ T * M ; (p, q) -→ (p, q + α(p)),
where T * M is viewed as an affine bundle.

Lemma 5.6. Let M , α and ψ α as above. Then the following are equivalent:

• ψ α is a symplectomorphism,

• α(M ) is Lagrangian (as a submanifold),

• dα = 0 (i.e. closed as a 1-form).

Proof of Proposition 5.5. We want to prove that Ψ ∇0 is a symplectomorphism; then we only need to show that Ψ * ∇0 ω Higgs = ω Con at an arbitrary point (E, ϕ) ∈ Higgs. As the vector bundle Higgs identifies by (5.8) to T * B, we can use Lemma 5.6 to compose with an affine transformation sending ϕ to the zero Higgs field. Now, the tangent space decomposes as T (E,0) Higgs = Higgs(E, p) ⊕ T (E,p) B and the symplectic form ω Higgs may be written as

ω Higgs (u 1 + v 1 , u 2 + v 2 ) = η(u 1 , v 2 ) -η(u 2 , v 1 )
where η is the pairing given by (5.8). Now, the tangent space at (E, ∇) decomposes as

T (E,∇) C = Higgs(E, p) ⊕ T (E,∇) ∇ 0 (B) = Higgs(E, p) ⊕ D∇ 0 (T (E,p) B)
and note that the differential of Ψ -1 ∇0 is the block diagonal DΨ -1 ∇0 = id ⊕ D∇ 0 . Now ω Con may be written as

ω Con (u 1 + D∇ 0 v 1 , u 2 + D∇ 0 v 2 ) = ω Con (u 1 , D∇ 0 v 2 ) -ω Con (u 2 , D∇ 0 v 1 ) + + ω Con (u 1 , u 2 ) + ω Con (D∇ 0 v 1 , D∇ 0 v 2 ) = η(u 1 , D∇ 0 v 2 ) -η(u 2 , D∇ 0 v 1 ) + ω Con (D∇ 0 v 1 , D∇ 0 v 2 ) = Ψ * ∇0 ω Higgs (u 1 + v 1 , u 2 + v 2 ) + ω Con (D∇ 0 v 1 , D∇ 0 v 2 )
Indeed, it follows from the diagram (5.9). To prove the vanishing of ω Con (u 1 , u 2 ), note that by (5.6) the image of Higgs(E, p) in H 1 (sl(E, p)) is zero. Hence by taking the lower path in (5.9) the pairing η yields 0 ∈ H 1 (Ω 1 ).

Therefore Ψ * ∇0 ω Higgs = ω Con if and only if ω Con (D∇ 0 v 1 , D∇ 0 v 2 ) = 0, i.e. ∇ 0 (B) is Lagrangian.

In our situation, we can compute this symplectic structure explicitly on a Zariski open set. Indeed, let C → B be given by the choice of directions ǫ = (ǫ 1 , . . . , ǫ n ) ∈ {-, +} n and let δ = -ǫ be the opposite choice. One can verify that a fiber of (E, ∇) → (E, p δ (∇)) is a rational section of (E, ∇) → (E, p ǫ (∇)). The reduction is symplectic if the chosen section is Lagrangian, wherever it is defined. This is ensured if the projection is Lagrangian, which is covered by the following result.

Lemma 5.7. The forgetful map C -→ B; (E, ∇) → (E, p ǫ (∇)) is Lagrangian, i.e. its fibers are Lagrangian subvarieties.

Proof. The differential of the forgetful map at (E, ∇) determines the dual to the map Higgs(E, p) -→ H 1 (sl(E, ∇)) from (5.6). Then we want to prove that the pairing ω Con of (5.7) is zero on a pair ({φ ij }, {ψ ij }) where each entry is in the image of Higgs(E, p). We showed that this is true in the proof of the last proposition.

We now apply this construction to exhibit the symplectic form on Con ν via explicit computations with Fuchsian systems. 5.1. Computation of the symplectic structure. We have seen that choosing a Lagrangian section ∇ 0 of π ǫ : Con ν → Bun allows us to reduce the computation of the symplectic structure of Con ν to that of Higgs moduli space (see Proposition 5.5). We can apply this to the setting of Fuchsian systems. The section ∇ 0 constructed in section 4.1.1 corresponds, via the isomorphism of Proposition 4.1, to the fiber of π -ǫ over the point (∞, . . . , ∞) ∈ Bun ≃ (P 1 ) n ; it is therefore Lagrangian. Let us compute the symplectic structure on the moduli space of Higgs bundles. For this, we consider the chart:

C 2n -→ Higgs(C, D); (z 1 , . . . , z n , r 1 , . . . , r n ) -→ (E 1 , Θ)
where Θ is obtained by applying elementary transformations at w 0 , w 1 , w λ to 

r 1 Θ 0 1 + • • • + r n Θ 0
T (E1,p) U 0 ≃ H 1 (sl(E 1 , p)).
Let us compute first this latter identification.

The deformation (z 1 , . . . , z j + s, . . . , z n ) of the j th component of the parabolic structure can be realized as follows. Cut out the curve C into two open sets U j = C -{t j } and V j a small disk around t j . Then we can paste the restrictions of (O C ⊕ O C , p ′ ) to these open sets by means of the following gauge transformation over the restriction

(O C ⊕ O C , p ′ )| Uj ∩Vj -→ (O C ⊕ O C , p ′ )| Uj ∩Vj ; z w -→ 1 s 0 1 z w .
This clearly shifts the parabolic direction (z j : 1) → (z j + s : 1) without moving other parabolic directions. After derivating, we obtain that the infinitesimal deformation ∂ ∂zj corresponds to the gauge transformation 0 1 0 0 ∈ H 0 (U j ∪ V j , sl(O C ⊕ O C , p ′ )), which can better be viewed as a cocyle with respect to the covering (U j , V j ). We can now compute the Serre Duality: the pairing of the Higgs field Θ 0 i with the above cocycle is defined by

tr Θ 0 k • 0 1 0 0 = -z k φ 0 + φ 1 + y k x k ω + θ k
a holomorphic 1-form on U j ∩ V j . Viewed as a cocycle in H 1 (Ω), one can give a meromorphic resolution by considering it as the difference between the zero 1-form on U j and the meromorphic 1-form -z k φ 0 + φ 1 + y k x k ω + θ k on V j . The residue at t j gives the pairing:

Θ 0 k , 0 1 0 0 = Res tj -z k φ 0 + φ 1 + y k x k ω + θ k = δ k j
where δ k j is the Kronecker symbol. We deduce that Θ 0 j is dual to ∂ ∂zj , and the symplectic structure on Higgs ∋ j r j Θ 0 j is given by ω Higgs = dz 1 ∧ dr 1 + • • • + dz n ∧ dr n . Now, because our section ∇ 0 : U 0 → Con is Lagrangian, we can apply Proposition 5.5 and deduce the symplectic structure on Con ∋ ∇ 0 + j r j Θ 0 j , namely: (5.10)

ω Con = dz 1 ∧ dr 1 + • • • + dz n ∧ dr n .
The same construction shows, mutatis mutandis, that the symplectic form on ∇ ∞ + j s j Θ ∞ j is (5.11)

ω Con = -(dw 1 ∧ ds 1 + • • • + dw n ∧ ds n ).
Next we will see how ω Con encodes the eigenvalue ν. First we consider only maps that preserves the affine bundle structure. Proof. Since π + • Φ = π + , it preserves π -1 + (U 0 ) and π -1 + (U ∞ ). Then we may write the map in coordinates. For Con ν we will consider the two coordinate patches: (π -1 + (U 0 ), (z, r)) and (π -1 + (U ∞ ), (w, s))

where z j = 1 wj and r j = s j w 2 j + ν j w j , see (4.4). For Con ν we consider the corresponding open sets with coordinates (z, r) and (w, s), respectively, where z j = 1 wj and rj = sj w 2 j + νj w j . In both cases, π + is the projection onto the first n coordinates.

Therefore we can express Φ as

Φ| π -1 + (U0) = z 1 , • • • , z n , φ 0 1 (z, r), • • • , φ 0 n (z, r) = (z, r), Φ| π -1 + (U∞) = (w 1 , • • • , w n , φ ∞ 1 (w, s), • • • , φ ∞ n (w, s)) = (w, s),
where φ 0 j (z, r) and φ ∞ j (w, s) are holomorphic functions on C 2n satisfying the compatibility conditions:

(5.12) φ ∞ j (• • • , w k , • • • , s k , • • • )w 2 j + νj w j = φ 0 j • • • , 1 w k , • • • , s k w 2 k + ν k w k , • • • , ∀w ∈ (C * ) n .
The condition that Φ is symplectic, Φ * ω = ω, translates to the coordinate charts via the 2-forms in display (5.10) and (5.11). In particular, φ 0 j and φ ∞ j must satisfy ∂φ 0

j ∂r k = ∂φ ∞ j ∂s k = δ j k ,
where δ j k is the Kronecker symbol. Therefore, there exist holomorphic functions c 0 j (z) and c ∞ j (w) such that φ 0 j (z, r) = r j + c 0 j (z) and φ ∞ j (w, s) = s j + c ∞ j (w). Substituting these expressions in (5.12) yields (5.13)

c 0 j 1 w 1 , • • • , 1 w n = c ∞ j (w)w 2 j + ( νj -ν j )w j , ∀w ∈ (C * ) n .
It follows that c 0 j extends as a holomorphic function on U 0 ∪U ∞ . On the other hand, the complement of U 0 ∪U ∞ in (P 1 ) n has codimension 2, which implies that c 0 j extends to the whole space by Hartogs's Theorem. Thus c 0 j is constant and so is c ∞ j , by the same argument. Thus, the equation (5.13) implies that c 0 j = c ∞ j = 0 and νj = ν j .

We can use the map Par : Con ν → S n given by Theorem 3.3 to push ω Con forward to S n . The opposite parabolic structure of our universal family ∇ = ∇ 0 + j r j Θ 0 j is given by (ζ j : 1) := (z j r jν j : r j ).

Therefore, if we denote by (z j , ζ j ) the coordinates on the j th factor S ≃ P 1 × P 1 \ {z j = ζ j }, then we have ζ j = z j -ν j r j ⇔ r j = ν j z jζ j which yields after substitution:

ω ν = n i=1 ν i dz i ∧ dζ i (z i -ζ i ) 2 .
Using this identification we can prove the following corollary. Proof. Note that the case where φ is the identity is ensured by Theorem 5.8. In particular, the identity on Bun has a unique lifting which is the identity on Con ν . It follows that, a general Φ is determined by the map φ on the base. Indeed, if Φ 1 and Φ 2 lift φ, then Φ 2 • Φ -1 1 lifts the identity, hence Φ 2 = Φ 1 . The proof of the statement will follow from a reduction to this case.

Up to composing with Par, we may prove the result for Φ : (S n , ω ν ) -→ (S n , ω ν ).

Any automorphism φ of (P 1 ) n has the form

φ(z) = ϕ 1 (z σ(1) ), • • • , ϕ n (z σ(n) )
where σ is a permutation of n elements and ϕ i are Möbius transformations. Now define

Ξ(z, ζ) = ϕ 1 (z σ(1) ), • • • , ϕ n (z σ(n) ), ϕ 1 (ζ σ(1) ), • • • , ϕ n (ζ σ(n) ) .
We will show that Ξ is an automorphism of S n such that Ξ * ω ν σ = ω ν , where ν σ j = ν σ(j) . Recall that any Möbius transformation is a composition of basic transformations t → αt, t → t + 1 and t → 1/t. Therefore we can factorize each ϕ j to show that dϕ j (z σ(j) ) ∧ dϕ j (ζ σ(j) ) (ϕ j (z σ(j) )ϕ j (ζ σ(j) )) 2 = dz σ(j) ∧ dζ σ(j) z σ(j)ζ σ(j) 2 for all j ∈ {1, • • • , n}, and this shows that Ξ * (ω ν ) = ω ν σ . Now consider the Φ the unique extension of φ such that Φ * ω ν = ω ν . We have that Φ • Ξ -1 lifts the identity and Φ • Ξ -1 * ω ν = ω ν σ . Thus the result follows from Theorem 5.8.

Apparent map

Given a connection ∇ : which associates (E 1 , ∇) to Z(ϕ ∇ ). Under a generic hypothesis on the eigenvalues we show that App is in fact a morphism. It turns out that this hypothesis is also necessary as we prove in the following lemma. 

E 1 → E 1 ⊗ Ω 1 C ( 

  is zero then the weights lie on the hyperplane H(d, I) := µ 1 -2d + k / ∈I µ k -k∈I µ k = 0 where d = deg L and I ⊂ {1, . . . , n} denotes the set of indices of those parabolic directions p k ⊂ L t k .

  Now let u := deg M + k. The inequality above plus deg M ≤ 0 implies that |I \ (I ∩ A)| = 2k + 2 -|A ∩ I| ≤ u ≤ k ≤ |I|, hence there exists J ⊂ {1, • • • , n} such that |J| = u and I \ (I ∩ A) ⊂ J ⊂ I. Define Z = j∈J t j . Considering the inclusions M ֒→ E 1 and O C (-Z) ֒→ O C we define a map by the composition

  3 and Remark 2.11 we get Par(Con λ \ Con λ I∆J,ǫ ) = Γ I∆J,ǫ . Theorem 3.8. Assume and ν a1 1 +• • •+ν an n / ∈ Z, for any a k ∈ {+, -}, and that ν

  I preserves the fibers of π ǫ . Proof. Since Con ν st = ∪ I,ǫ Con ν I,ǫ , (3.1), we may give local charts Par • Φ ǫ I : Con ν I,ǫ → S n . Note that Con ν I,ǫ ∩ Con ν J,δ is Zariski open. Then the maps Ψ δ,ǫ J,I are defined by extending the transition maps.

νj 2 and - νj 2 ,Remark 4 . 3 .

 243 respectively. Note that S = P 1 × P 1 \ {zvwu = 0}, hence the isomorphism is clear. Note that we can give an alternative proof of Theorem 3.3 using that Proposition 4.1 and Proposition 4.2 combined give an isomorphism by the composition Con ν -→ Syst σ (C, D ′ ) -→ S n . 4.1.1. Trivialization over U 0 . Given z = (z 1 , . . . , z n ) ∈ U 0 we define ∇ 0 as the connection which has (z j : 1) as eigenspaces corresponding to νj 2 and has (1 : 0) as eigenspaces corresponding to -νj 2 .

νj 2 . 4 . 1 . 2 .

 2412 Trivialization over U ∞ . Similarly, we define ∇ ∞ having (1 : w j ) as eigenspaces corresponding to νj 2 and (0 : 1) as eigenspaces corresponding to -νj 2 :

n as defined in section 4 . 1 . 1 .

 411 The image coincides with the restriction Higgs(C, D)| U0 of Higgs fields on parabolic bundles belonging to the chart U 0 ⊂ Bun of section 4.1.1. We want now to compute the isomorphism Higgs(C, D)| U0 ≃ T * U 0 so that the symplectic form can be easily deduced from the Liouville form.Here we follow the ideas of the proof of [11, Proposition 6.1]. Given a parabolic vector bundle (E 1 , p) in U 0 , or equivalently (O C ⊕ O C , p ′ ) defined by (z 1 , . . . , z n ) ∈ C n , Serre Duality (5.8) provides a perfect pairing •, • : Higgs(E, p) × H 1 (sl(E, p)) -→ C which allows us to identify the fiber of Higgs at (E 1 , p) with the dual of the tangent space

Theorem 5 . 8 .

 58 If there exists a bundle symplectic isomorphism(Con ν , ω)Con ν , ν = ν and Φ is the identity.

Corollary 5 . 9 .

 59 If there exists fiber preserving symplectic isomorphism(Con ν , ω)Con ν , a permutation σ of n elements such that νk = ν σ(k) for every k ∈ {1, • • • , n}.

1 ∇

 1 D) we can define an O C -linear map:ϕ ∇ : O C s ֒→ E -→ E 1 ⊗ Ω 1 C (D) -→ (E 1 /O C ) ⊗ Ω 1 C (D)where the last arrow is defined by the quotient map fromE 1 to E 1 /s(O C ) ≃ O C (w ∞ ) (denoted E 1 /O C for short).The zero divisor of ϕ ∇ defines an element of the linear system Z(ϕ ∇ ) ∈ |O C (w ∞ + D)|. Since deg D = n and Ω 1 C ≃ O C , as C has genus one, then |O C (w ∞ + D)| = P H 0 (C, (E 1 /O C ) ⊗ Ω 1 C (D)) ≃ P n . Hence we may define a rational map App : Con ν |O C (w ∞ + D)|

Lemma 6 . 1 .

 61 The rational map App :Con ν |O C (w ∞ + D)| is a morphism if and only if ν ǫ1 1 + • • • + ν ǫn n = 0 for any ǫ k ∈ {+, -}. Proof. The indeterminacy locus of App is composed by the connections ∇ mapped to zero in (E 1 /O C ) ⊗ Ω 1C (D) which means that there exists a meromorphic 1-form ξ with poles at most on D such that ∇(s) = sξ.

  1 2 , -1 2 over w 0 , w 1 and w λ , and

	i.e.	νj 2 , -	νj 2	over t j , j = 1, . . . , n,
	(4.1)			
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In such case we have for each j = 1, . . . , n that s(t j ) ∈ p ǫj j (∇) with ǫ j ∈ {+, -}. And we also have that ∇ restricts to a logarithmic connection on O C whence ν ǫ1

1 + • • • + ν ǫn n = 0. Conversely, suppose that there exist δ j ∈ {+, -}, j = 1, . . . n, such that ν δ1 1 + • • • + ν δn n = 0. On the one hand there exists a meromorphic 1-form ξ with simple poles only on D and prescribed residues

Res tj ξ = ν δj j . On the other hand let ∇ be a logarithmic connection such that s(t j ) ∈ p δj j (∇). It follows that

We may also consider the forgetful map π + : Con ν -→ Bun ≃ (P 1 ) n which sends (E 1 , ∇) to the parabolic vector bundle (E 1 , p + (∇)). We also denote π + the natural extension of this map to Con ν . Combining these two maps we can give a birational model for Con ν as we prove in the following result.

whose indeterminacy locus is contained in Con ν \Con ν . Moreover, given (E, p) ∈ Bun 0 the rank of

Proof. Let s denote the section O C ֒→ E 1 . For any logarithmic connection ∇ on E 1 with poles on D = t 1 + • • • + t n we have that App(∇) is given by the zero divisor of

which is the same as defining

By Lemma 6.1 the condition on the eigenvalues implies that App, hence Bun × App, is regular on Con ν . Therefore the indeterminacy locus must lie only in the boundary divisor. Now fix (E 1 , p = {p 1 , . . . , p n }) ∈ Bun. We will compute the rank of App| π -1 + (E1,p) . Consider H 0 (sl(E 1 ) ⊗ Ω C (t j )) the space of traceless Higgs fields with simple pole on t j . Since its dimension is three, there exists a unique (up to scalar multiplication) strongly parabolic Higgs field Θ p j with respect to p, i.e. Res tj (Θ p j ) is nilpotent with image p j and has no other poles. Let ∇ 0 be a connection in π -1

+ (E 1 , p). Then any other λ-connection ∇ ∈ π -1 + (E 1 , p) can be written in a unique way as

for some (c 0 :

Suppose that Θ p j (s) ∧ s = 0 for each j. Since they have one pole each and at different points these sections are linearly independent. Since H 0 (C, O C (w ∞ + D)) has dimension n + 1 they form a basis together with ∇ 0 (s) ∧ s and the Apparent map restricted to this fiber is an isomorphism. Indeed, if

then, by Lemma 6.1, c 0 = 0 and it follows that

Now suppose that there exists j ∈ {1, . . . , n} such that Θ p j (s) ∧ s = 0. This occurs if and only if Θ p j (s) is holomorphic at t j which in turn means that s(t j ) ∈ p j . Indeed, since H 0 (C, E 1 ⊗ Ω C ) is generated by sω, we know that Θ p j (s) is holomorphic at t j if and only if Θ p j (s) = c sω for some constant c ∈ C. On the other hand, it is clear that Res tj Θ p j (s) ∈ p j is zero if and only if s(t j ) ∈ p j . Henceforth we conclude that, in general, the image of App| π -1 + (p) is the linear space spanned by ∇ 0 (s) ∧ s and Θ p j (s) ∧ s such that s(t j ) ∈ p j . In particular, the (projective) rank is given by rk

Remark 6.3. The Apparent map may be computed, explicitly, via the identification with Fuchsian systems. In this case, the section

given by multiplication with x-λ y , (1-λ)x y , and we can use the local universal connections over U 0 and U ∞ to express App. Following this path, one can give an alternative proof of Theorem 6.2.