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FLAT PARABOLIC VECTOR BUNDLES ON ELLIPTIC CURVES II
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Abstract. We describe the moduli space of logarithmic rank 2 connections on elliptic curves

with n ≥ 2 poles generalizing a previous work by the first and second named authors.

1. Introduction

In this paper, we investigate the geometry of certain moduli spaces of connections on elliptic
curves C. We consider pairs (E,∇) where E → C is a rank 2 vector bundle and ∇ : E → E⊗Ω1

C(D)
is a logarithmic connection with (reduced) polar divisor D = t1 + · · · + tn. We also prescribe the
following data:

• The eigenvalues (ν+
i , ν

−
i ) of Resti(∇), for each i = 1, . . . , n;

• A trace connection (det(E), tr(∇)).

Once we have fixed this data we can define the moduli space Conν(C,D) of those pairs (E,∇)
up to isomorphism. For a generic choice of ν (compatible with tr(∇)) all connections (E,∇) are
irreducible and the moduli Conν(C,D) can be constructed as a GIT quotient. It follows from [6]
that Conν(C,D) is a smooth irreducible quasi-projective variety of dimension 2n, equipped with a
holomorphic symplectic structure. This genericity condition will be made precise later.

It is natural to consider the forgetful map π : (E,∇) 7→ (E,p) which to a connection associates
an underlying quasi-parabolic bundle. Given a choice of signs εi ∈ {+,−} for each i = 1, . . . , n,
the parabolic data p = (pε11 , . . . , p

εn
n ) consists of the νεii -eigenspace pεii ⊂ E|ti for each pole. In

particular, we have 2n underlying quasi-parabolic structures for each connection, depending on the
choice of ε = (ε1, . . . , εn).

The moduli space Bun(C,D) of those parabolic bundles admitting a connection is n-dimensional
and the map π above turns to be Lagrangian, i.e. its fibers are Lagrangian submanifolds. However,
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Bun(C,D) is not a variety, but a non-separated scheme. Over the open subset of simple bundles
(i.e. without nontrivial automorphisms), the Lagrangian fibration π is an affine An-bundle whose
linear part is the cotangent bundle T ∗Bun(C,D).

Results. We fix C to be the elliptic curve with affine equation y2 = x(x−1)(x−λ), λ ∈ C\{0, 1},
and denote by w∞ ∈ C the point at infinity. Moreover, we only consider vector bundles E whose
determinant is detE = OC(w∞).

In Section 2 we study which quasi-parabolic bundles (E,p) over (C,D) are ν-flat, i.e. admit
a connection ∇ with prescribed trace and exponents, compatible with parabolics. The major
difference from the case n = 2 is that when n is odd there exist ν-flat quasi-parabolic vector
bundles that are not µ-semistable for any choice of weights. It occurs for the item 3 of Lemma 2.3.
Following the study of stability we describe a wall-crossing phenomenon in Lemmas 2.4 and 2.5.

In Section 3 we study the logarithmic connections. We investigate Conν(C,D) via the forgetful
map to an underlying quasi-parabolic structure. We are especially concerned with the µ-stability
of these quasi-parabolic bundles. It turns out that there exists an open subset of Conν(C,D) where
the underlying vector bundle is E1, the unique nontrivial extension

0 −→ OC −→ E1 −→ OC(w∞) −→ 0

We call this open subset Conν . Consider the map

Par: Conν −→ (P1 × P1)× · · · × (P1 × P1)

(E,∇) 7−→
(

(p+
1 , p

−
1 ), . . . , (p+

n , p
−
n )
)

that associates to each connection all its residual eigendirections (i.e. with respect to all eigenvalues
ν+
i , ν

−
i ). When ν+

i 6= ν−i for each i = 1, . . . n, we clearly have p+
i 6= p−i , so that the image of Par is

contained in Sn, where S = P1 × P1 \ diagonal.

Theorem 3.1. Assume νi := ν+
i −ν

−
i 6= 0 for every i ∈ {1, · · · , n}. Then the map Par: Conν → Sn

is an isomorphism.

For n odd, we consider Σn the space of connections such that any underlying quasi-parabolic
bundle falls in item 3 of Lemma 2.3 i.e. are not µ-semistable for any µ. We describe Σn in
Proposition 3.4. We also note that any connection of Σn can be obtained from a connection on
E0 by performing an elementary transformation centered in n parabolic directions which lie in the
unique maximal sub-bundle OC .

Every (E,∇) ∈ Conν(C,D) \ Σn (consider Σn = ∅ if n is even) has a µ-stable underlying
quasi-parabolic structure. Moreover, it can be obtained from a connection on Conν via elementary
transformations.

Theorem 3.5. Assume that νε11 + · · ·+νεnn /∈ Z, for any εi ∈ {+,−}, and that ν+
i −ν

−
i /∈ {0, 1,−1}

for i ∈ {1, · · · , n}. Let Σn be as (3.5) if is n is odd, and let it be the empty set if n is even. Then
the moduli space Conν(C,D) \ Σn can be obtained from Conν ' Sn by gluing a finite number of
copies of Sn such that each gluing map ΨI,ε : Sn 99K Conν is a fiber-preserving isomorphism outside
a degree (d1, . . . , dn) divisor Γ ⊂ (P1)n where dj = 2 if j ∈ I and dj = 0 otherwise.

Sn

""E
EE

EE
EE

E
ΨI,ε //________ Conν ' Sn

xxrrr
rrr

rrr
r

(P1)n
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In Section 4 we study logarithmic Fuchsian systems i.e. logarithmic connections for the trivial
bundle. The case we are interested in is obtained from Conν by a suitable elementary transforma-
tion. We give an explicit description of such systems via some interesting calculations. In particular,
this allows us to study λ-connections to give a compactification Conν of our space Conν . It has

a structure of projective bundle determined by the numbers νi =
ν+
i −ν

−
i

2 . Here X ' (P1)n is the
space of underlying quasi-parabolic structures for Conν , it encodes the + directions. We also show
that the forgetful map extends to the boundary.

Theorem 4.2. We have Conν = P(Eν), where Eν is the extension of OX by T ∗X

0 −→ T ∗X−→Eν−→OX −→ 0

determined by

(ν1, . . . , νn) ∈ H1(X,T ∗X) '
n⊕
j=1

H1(P1
zi , T

∗P1
zi) ' Cn.

Following this approach we conclude the paper by studying the Apparent map. It leads to an
interesting result about the birational geometry of Conν .

Theorem 5.2. If νε11 + · · · + νεnn 6= 0 for any εk ∈ {+,−} then the map Bun×App induces a
birational map

Bun×App: Conν 99K X × |OC(w∞ +D)|

whose indeterminacy locus is contained in Conν\Conν . Moreover, given (E,p = {p1, . . . , pn}) ∈ X
the rank of

(Bun×App)|Bun−1(E,p) : Bun−1(E,p) −→ |OC(w∞ +D)|

coincides with the cardinality of the set {i | pi 6⊂ OC}.

2. Parabolic vector bundles

Let C be an elliptic curve, and {t1, . . . , tn} be a set of distinct points on C and denote by
D = t1 + · · ·+tn the divisor defined by them. A rank two quasi parabolic vector bundle Ep = (E,p),
p = {pi}, on (C,D) consists of a holomorphic vector bundle E of rank two on C and for each
i = 1, . . . , n, a 1-dimensional linear subspace pi ⊂ Eti . We refer to the points ti’s as parabolic
points, and to the subspace pi ⊂ Eti as the parabolic direction of E at ti.

A pair (Ep;µ) of a quasi parabolic vector bundle and an n-tuple µ = (µ1, . . . , µn) of real numbers
in the interval (0, 1) is called parabolic vector bundle of rank two. We often write Ep for a parabolic
vector bundle when the choice of the weight µ is clear.

Let (Ep;µ) be a parabolic vector bundle and let L ⊂ E be a line subbundle then we define

Stabµ(L) := degE − 2 degL+
∑

pk 6=Ltk

µk −
∑

pk=Ltk

µk.

We say that (Ep;µ) is semistable if Stabµ(L) ≥ 0 holds for every L ⊂ E. It is stable if the strict
inequality holds for every line subbundle L ⊂ E. We call Stabµ(L) the parabolic stability of L ⊂ E
with respect to µ.

For computations we can assume C ⊂ P2 is the smooth projective cubic curve defined by

zy2 = x(x− z)(x− λz)(2.1)
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with λ ∈ C, λ 6= 0, 1. We will write w∞ = (0 : 1 : 0) ∈ C for the identity with respect to the group
structure, and

w0 = (0 : 0 : 1), w1 = (1 : 0 : 1), wλ = (λ : 0 : 1)(2.2)

the 2-torsion points.
We denote by Bunµw∞(C,D), or simply Bunµw∞ , the moduli space of semistable parabolic vector

bundles (Ep;µ) on (C,D) with detE = OC(w∞). We note that if E has OC(w∞) as determinant
line bundle then either E ' L⊕L−1(w∞) or E ' E1, where E1 is the unique non trivial extension

0 −→ OC −→ E1 −→ OC(w∞) −→ 0.

If there exists L ⊂ E such that Stabµ(L) is zero then the weights lie on the hyperplane

H(d, I) :=

{
µ
∣∣∣ 1− 2d+

∑
k/∈I

µk −
∑
k∈I

µk = 0

}
where d = degL and I ⊂ {1, . . . , n} denotes the set of indices of those parabolic directions pk ⊂ Ltk .
A connected component of the complement in (0, 1)n of all these hyperplanes H(d, I) is called a

chamber. If µ and µ̃ belong to the same chamber C then Bunµw∞ = Bunµ̃w∞ , see for example [8] or

[3, Lemma 2.7]. Hereafter we denote by (P1)n the product of n copies of P1

(P1)n = P1 × · · · × P1︸ ︷︷ ︸
n times

.

We will need the following result.

Proposition 2.1. The following assertions hold:

(1) The set C := {µ ∈ (0, 1)n |
∑n
k=1 µk < 1} is a chamber.

(2) If µ ∈ C then Bunµw∞ = {(E,p) | E = E1}. Moreover, it is isomorphic to (P1)n.

Proof. For the first statement, assume µ ∈ C. If d ≥ 1 then we see that

1− 2d+
∑
k/∈I

µk −
∑
k∈I

µk ≤ −1 +

n∑
k=1

µk < 0(2.3)

for all subset I ⊂ {1, . . . , n}. If d ≤ 0 then we get

1− 2d+
∑
k/∈I

µk −
∑
k∈I

µk = 1− 2d+ 2
∑
k/∈I

µk −
n∑
k=1

µk > 0(2.4)

for all subset I ⊂ {1, . . . , n}. Hence (2.3) and (2.4) imply that there is no hyperplane H(d, I)
passing through µ. This proves the first part of the statement.

Now we prove (2). Recall that detE = OC(w∞) implies that either E = E1 or E = L⊕L−1(w∞)
with degL ≥ 1. Assume the later by contradiction. Then

Stabµ(L) = 1− 2 degL+
∑

pk 6=Ltk

µk −
∑

pk=Ltk

µk ≤ −2 degL < 0

and E is not semistable which is absurd. Hence E = E1. Each parabolic bundle is then completely
determined by

(p1, . . . , pn) ∈ P (E1|t1)× · · · × P (E1|t1) ' (P1)n

and we get the desired isomorphism. �
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For a weight vector µ = (µ1, . . . , µn) ∈ (0, 1)n and a subset I ⊂ {1, . . . , n} of even cardinality,
we consider the map ϕI : (0, 1)n −→ (0, 1)n defined by

ϕI(µ) := (µ′1, . . . , µ
′
n) ∈ (0, 1)n

where µ′i = µi if i 6∈ I, and µ′i = 1−µi if i ∈ I. Since it preserves the family of hyperplanes H(d, J),
the image of C by ϕI yields a new chamber

CI :=

{
µ ∈ (0, 1)n

∣∣∣ ∑
k/∈I

µk −
∑
k∈I

µk + |I| < 1

}
(2.5)

where |I| is the cardinality of I. When I = ∅ then CI = C.
Each ϕI admits a modular realization as an elementary transformation, which we now describe.

We consider the following exact sequence of sheaves

0 −→ E′
α−→ E

β−→
⊕
i∈I

(Eti/pi) −→ 0

where for each (local) section s of E we define β(s) = (β1(s), . . . , βn(s)) by βj(s) = s(tj) (mod pj)
if s is defined at tj , and βj(s) = 0 otherwise. Then E′ is a vector bundle of rank two such that

detE′ = detE ⊗OC

(
−
∑
i∈I

ti

)
.

In particular, E′ has degree 1− |I|. We can see E′ as a quasi parabolic vector bundle on (C,D) as
follows. If i 6∈ I then αti : E′ti −→ Eti is an isomorphism and

p′i = (αti)
−1(pi) ⊂ E′ti

is the parabolic direction at ti. If i ∈ I, then we define p′i = ker(αti) as the parabolic direction at
ti. This operation corresponds to the birational transformation of ruled surfaces P(E) 99K P(E′)
obtained by blowing-up the points pi ∈ P(Eti) and then blowing-down the strict transforms of the
fibers P(Eti) to the points p′i ∈ P(E′ti), i ∈ I. This is well-defined since the pi lie on different fibers.

Since |I| is even, we can fix a square root L0 of the line bundle OC
(∑

i∈I ti
)

i.e.

L2
0 = OC

(∑
i∈I

ti

)
.

This gives a correspondence

elemI : (E,p) 7→ (E′ ⊗ L0,p
′)

between quasi parabolic vector bundles on (C,D) which have OC(w∞) as determinant line bundle.
The reader can check that if (E,p) is semistable with respect to µ, then elemI (E,p) is semistable

with respect to ϕI(µ). We conclude that the correspondence elemI defines an isomorphism between
moduli spaces

elemI : Bunµw∞ −→ BunϕI(µ)
w∞ .

Remark 2.2. From Proposition 2.1 we conclude that Bunµw∞ is isomorphic to (P1)n for any µ ∈ CI
for any I ⊂ {1, . . . , n} of even cardinality.

A quasi-parabolic vector bundle (E,p) is called decomposable if there exist (E′,p′) and (E′′,p′′)
such that (E,p) ' (E′,p′) ⊕ (E′′,p′′) as quasi-parabolic vector bundles. Otherwise it is called
indecomposable. Note that (E,p) can be indecomposable with E decomposable as a vector bundle.



6 T. FASSARELLA, F. LORAY AND A. MUNIZ

Lemma 2.3. Let (E,p) be rank two indecomposable quasi-parabolic bundle, over (C,D), with
detE = OC(w∞). Then one of the following holds:

(1) E is indecomposable i.e. E = E1;
(2) E = L⊕ L−1(w∞) and 2 ≤ 2 degL ≤ n;
(3) E = L ⊕ L−1(w∞) with L2 = OC(D + w∞), hence 2 degL = n + 1. Moreover, every

parabolic direction lies on L−1(w∞) except for one that lies outside both subbundles.

Proof. When E = E1 we have nothing to prove. So suppose that E = L ⊕ L−1(w∞). Since
L⊕ L−1(w∞) 'M ⊕M−1(w∞) with M = L−1(w∞) we can assume degL = s ≥ 1.

To decompose (E,p) we need to find an embedding of L−1(w∞) in E passing through every
direction that does not lie on L. Note that this is the same as finding an automorphism of E that
sends every direction outside L to (0 : 1). Let pj = (uj : 1) denote the parabolic direction over tj
which is outside L. Recall that

End(E) =

{(
α β
0 δ

)
| α, δ ∈ C, β ∈ H0(C,L2(−w∞))

}
.

If 2s ≥ n+ 2 then h0(L2(−w∞ −D + tj)) = 2s− n ≥ 2 and we are free to choose βj that vanishes
on ti for i 6= j and such that βj(tj) = −uj . Thus, choosing β =

∑n
j=1 βj , α = 1 and δ = 1, the

corresponding automorphism sends any direction pj outside L to (0 : 1).
Now set 2s = n + 1. By the same argument as above, to show that (E,p) is decomposable,

we need to find a section βj of H0(C,L2(−w∞)) that vanishes on ti for i 6= j and such that
βj(tj) = −uj , for each j ∈ {1, . . . , n}. We will show that if L2(−w∞ −D) 6= OC then we can find
βj as required. For this, assume L2(−w∞−D+ tj) ' OC(xj) with xj 6= tj , and take any section αj
of L2(−w∞ −D + tj) with αj(tj) 6= 0. The desired section βj is defined as βj = − uj

αj(tj)
αj . Hence

(E,p) is decomposable when L2(−w∞ −D) 6= OC . In addition, if L2 = OC(D +w∞) then we can
apply the argument above with D − t1 in place of D to find an embedding of L−1(w∞) passing
through n− 1 parabolic directions outside L. In particular, if (E,p) is indecomposable then there
is no parabolic direction on L and this finishes the proof of the lemma. �

Until now we have only considered a rank two E and its line sub-bundles L ⊂ E. But a more
general setting will be suitable for the next results. We will consider general morphisms L −→ E
that do not, necessarily, lead to an embedding of L in E. Recall that being a sub-bundle means
that there exist an injective morphism L ↪→ E whose cokernel is also a line bundle. For a general
morphism φ : L −→ E this does not need to be true. However, we can factor out a divisor Z where
φ vanishes, leading to an injective morphism L(Z) ↪→ E. For details, see [5, Ch. 2, Proposition
5]. On the other hand, given a sub-bundle L ⊂ E we can produce a morphism L(−Z) −→ E that
vanishes on the fibers over the support of Z.

Given a morphism φ : L→ E we say that its image pass through pj ⊂ Etj if φtj (Ltj ) ⊂ pj .

Lemma 2.4. Let I ⊂ {1, . . . , n} have cardinality 2k + 2 with k ≥ 0 and fix µ ∈ CI . Then (E1,p)
is not µ-semistable if and only if there exists a line bundle L of degree degL = −k and a morphism
L→ E1 whose image pass through pj for all j ∈ I.

Proof. Fix µ = (µ1, · · · , µn) ∈ CI . First recall that µ = ϕI(µ
′) for some µ′ ∈ C. Then (E1,p) is

not µ-semistable if there exists a sub-bundle L ⊂ E1 such that

Stabµ(L) = 1− 2 degL+
∑
±µj = 1− 2 degL+ |I| − 2|A|+

∑
±µ′j < 0
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where A ⊂ I is the set of j ∈ I such that pj lie on L. As µ′ ∈ C we have |
∑
±µ′j | < 1 – the actual

signs do not matter. Then we need

1− 2 degL+ |I| − 2|A| ≤ −1.

Let k ≥ 0 be defined by |I| = 2k + 2 and define u = degL + k. Then we rewrite the inequality as
2k + 2 ≤ u+ |A|. From A ⊂ I and degL ≤ 0 we have that 0 ≤ u ≤ k.

Next we will produce a degree −k line bundle and a morphism to E1 such that its image passes
through every direction pεj with j ∈ I. If u = 0 i.e. degL = −k, then A = I and we are done. If
u > 0 or equivalently degL > −k we need to work a little bit.

Fix J ⊂ A such that |J | = 2k+ 2−u and let Z =
∑
j∈I\J tj . Considering the inclusions L ↪→ E1

and OC(−Z) ↪→ OC we define a map by the composition

φ : L⊗OC(−Z) −→ E1(−Z) −→ E1,

with the property that it gives the same directions over D − Z and vanishes over Z. Hence the
image of φ passes through every direction from I.

Conversely, suppose that there exists a degree −k line bundle L and a nontrivial morphism
φ : L −→ E1 passing through every pj , j ∈ I. Let Z be the zero divisor of φ and consider the
reduction φ′ : L(Z) −→ E1. As φ′ is injective, L(Z) is a subbundle of E1. Hence it has nonpositive
degree i.e. degZ ≤ k. On the other hand, we have that pj lie on L(Z) for every j such that
tj 6∈ SuppZ. If A is given as above, we have |A| ≥ 2k + 2− degZred, hence

1− 2 degL(Z) + |I| − 2|A| ≤ −1 + 2(degZred − degZ) ≤ −1

This completes the proof. �

We now see the real advantage of switching to this slightly more general setting. The previous
Lemma describes a wall-crossing phenomenon. And the next Lemma can be used to describe
geometrically the space of quasi-parabolic bundles that become unstable when we cross a wall.

Lemma 2.5. Let n = 2k + 2 for some k ≥ 0. Let V ⊂ X ' (P1)n be the locus of points that
correspond to quasi-parabolic bundles (E1,p) satisfying the following property: there exist a line
bundle L of degree degL = −k and a morphism φ : L −→ E1whose image passes through p. Then
V is a degree (2, . . . , 2) hypersurface.

Proof. Let πj : (P1)n −→ (P1)n−1 be the projection given by forgetting the jth component and let
hj be the class of a fiber of πj . Then we only need to show that V ∩ hj = 2 for every j. Up to
permuting indices we only need to consider j = 2k + 2.

If k = 0 the result follows from [10, Prop. 3.3]. Indeed, each degree 0 line bundle L ∈ Pic0(C)
has a unique map φ : L −→ E1 and the map L 7→ φt1(L) ∈ P1 is generically 2 : 1. Then, for a
generic direction p1, there exist two choices for L ∈ Pic0(C) such that φt1(L) ⊂ p1. Therefore,
(p1, p2) ∈ V if and only if p2 one of the directions defined by these line bundles i.e. V ∩ h2 = 2.

Now we consider k ≥ 1. We will show that we can reduce to the previous case. Fix p1, . . . , p2k

generic directions. By generic we mean that there is no sub-bundle of degree at least 1− k passing
through these directions. Let L ∈ Pic−k(C) be any line bundle. To give a map φ : L −→ E1 passing
through p1, . . . , p2k is equivalent to giving a map L −→ E′, where E′ is obtained by elementary
transformation with respect to p1, . . . , p2k. Indeed, we have

0 −→ E′
α−→ E1

β−→
2k⊕
j=1

(E1)tj/pj −→ 0
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and β ◦ φ = 0 if and only if there exists φ′ : L −→ E′ such that φ = α ◦ φ′. Nonetheless, this is
equivalent to giving a map

φ′ ⊗ 1: L⊗M −→ E′ ⊗M
where M is a line bundle such that M2 = OC(t1 + · · ·+ t2k).

Since p1, . . . , p2k are generic, E′ is indecomposable. In particular, E′ ⊗M = E1. We then apply
the same argument of the case k = 0 to the directions p2k+1 and p2k to show that V ∩h2k+2 = 2. �

3. Logarithmic connections

A logarithmic connection on a rank two vector bundle E over C with polar divisor D = t1+· · ·+tn
is a C-linear map

∇ : E −→ E ⊗ Ω1
C(D)

satisfying the Leibniz rule

∇(f · s) = df ⊗ s+ f · ∇(s)

for any local sections s of E and f of OC . If t ∈ C is a pole for ∇ and U ⊂ C is a small trivializing
neighborhood of t we write ∇|U = d+A where d : OC −→ Ω1

C is the exterior derivative and A is a
2 × 2 matrix whose coefficients are 1-forms with at most simple poles on t. Note that A depends
on the trivialization but its conjugacy class does not. Then the residue endomorphism

Rest(∇) := Rest(A) ∈ End(Et)

is well defined. Let ν+
k and ν−k be the eigenvalues of Restk(∇), called the local exponents of ∇ over

tk. The data

ν = (ν+
1 , ν

−
1 , ..., ν

+
n , ν

−
n ) ∈ C2n

is called the local exponent of ∇. Since the connection ∇ induces a rank one logarithmic connection
tr(∇) : det(E)→ det(E)⊗ Ω1

C(D) with

Restk(tr(∇)) = ν+
k + ν−k

then Residue Theorem yields the Fuchs relation:

degE +

n∑
k=1

(ν+
k + ν−k ) = 0.

In the definition of our moduli space of connections we need the following data:

(1) A 2n-tuple of complex numbers ν = (ν+
1 , ν

−
1 , ..., ν

+
n , ν

−
n ) satisfying the Fuchs relation

1 +

n∑
k=1

(ν+
k + ν−k ) = 0

and the generic condition νε11 + · · · + νεnn /∈ Z for any εk ∈ {+,−}, to avoid reducible
connections;

(2) A fixed trace connection ζ : OC(w∞)→ OC(w∞)⊗ Ω1
C(D) satisfying

Restk(ζ) = ν+
k + ν−k

for all k = 1, ..., n.
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We denote by Conν(C,D) the moduli space of rank two connections ∇ : E −→ E⊗Ω1
C(D) having

local exponent ν, detE = OC(w∞) and tr∇ = ζ. We write (E,∇) for an element of Conν(C,D).
The moduli space Conν(C,D) is a smooth irreducible quasi-projective variety of dimension 2n

provided that ν+
k 6= ν−k for all k ∈ {1, . . . , n}. Algebraic constructions of moduli spaces of connec-

tions goes back to the works of Simpson and, in the logarithmic case, Nitsure in [9]. In our setting,
it is more convenient to refer to the works of Inaba, Iwasaki and Saito [7], and more precisely
Inaba [6]. Indeed, under our generic assumption on ν, each connection ∇ on E defines a unique
parabolic structure, by selecting the eigendirection pk ⊂ E|tk associated to ν+

k at each pole tk;
therefore, Conν(C,D) can equivalently be viewed as the moduli space of parabolic connections as
considered in the work [6] of Inaba. Then it follows from [6, Theorem 2.1, Proposition 5.2] that
it is quasi-projective and irreducible of dimension 2n. Moreover, [6, Theorem 2.2] shows that it
is moreover smooth. In fact, in order to fit with the stability condition [6, Definition 2.2], we set

α
(k)
1 = 1−µk

2 and α
(k)
2 = 1+µk

2 ; our moduli space therefore corresponds to the fiber det−1(L, ζ) of

the determinant map considered at the beginning of [6, Section 5]. When ν+
k = ν−k for some k,

there are connections with scalar residue (apparent singular point) which give rise to a singular
locus in the moduli space; the role of the parabolic structure in [6] is to get a smooth moduli space
even in that case.

Let ∆ ⊂ P1 × P1 be the diagonal and let S := (P1 × P1)\∆ be its complement. We will to show
that, for n even, Conν(C,D) can be written as a union of open subsets which are isomorphic to Sn

– as affine Cn-bundle over (P1)n. When n is odd, apart from these open subsets, we also have an
interesting family of connections that we will call Σn. Now we will describe these open sets.

3.1. Description and glueing of the open charts. Let us assume ν+
k 6= ν−k for all k ∈ {1, . . . , n}.

Given a connection (E,∇) ∈ Conν(C,D), one can associate, over each tk, a pair of “positive” and
“negative” eigendirections of Rest(∇)

p+
k (∇), p−k (∇) ∈ P(Etk)

defined by the eigenvalues ν+
k and ν−k respectively.

Let I ⊂ {1, · · · , n} have even cardinality and denote by

XI = Bunµw∞ , with µ ∈ CI .

See (2.5) for the definition of CI . Proposition 2.1 and Remark 2.2 yield XI ' (P1)n. Given an
n-tuple ε = (ε1, · · · , εn), where each εi ∈ {+,−}, we denote

pε(∇) = {pε11 (∇), · · · , pεnn (∇)}

and by (E,pε(∇)) the quasi-parabolic vector bundle defined by these directions. Then for each
I ⊂ {1, · · · , n} of even cardinality and ε as above, we define

ConνI,ε = {(E,∇) ∈ Conν(C,D) | (E,pε(∇)) ∈ XI}.

We note that if I = ∅ then Conν∅,ε does not depend on ε and Proposition 2.1 yields

X := X∅ = {(E,p) | E ' E1}
Conν := Conν∅,ε = {(E,∇) | E ' E1}

where E1 is the unique non trivial extension

0 −→ OC −→ E1 −→ OC(w∞) −→ 0.
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OC(w∞ − w0)

OC(w∞ − w1)

OC(w∞ − wλ)

w0 w1 wλ
OC

Figure 1. Sections of P(E1)

We want to give an isomorphism between ConνI,ε and Sn. To do this we will start with Conν .

Given (E1,∇) ∈ Conν , introducing the parabolic structures

p−(∇) = {p−1 (∇), · · · , p−n (∇)}
p+(∇) = {p+

1 (∇), · · · , p+
n (∇)}

one has a map

Par :

{
Conν → X ×X

(E1,∇) 7→ ((E1,p
+), (E1,p

−))

We are assuming ν+
k 6= ν−k for k ∈ {1, · · · , n}, therefore p+

k (∇) 6= p−k (∇). This implies that the
image of Par in X ×X avoid the incidence variety

I :=

n⋃
k=1

{p+
k = p−k } ⊂ X ×X.

We can fix a system of coordinates for X × X as follows. Let Li ⊂ E1 denote the unique
embedding of OC(w∞ − wi) for i = 0, 1, λ where w0, w1, wλ ∈ C are the 2-torsion points. They
correspond to sections of P(E1) which have +1 self intersection and intersect each other as in Figure
1.

In particular, for every k ∈ {1, · · · , n} we may define a system of coordinates for (P(E1))tk ' P1

imposing

(P(L0))tk = (0 : 1), (P(L1))tk = (1 : 1) and (P(Lλ))tk = (1 : 0).(3.1)

Let (z1, · · · , zn) ∈ (P1)n correspond to (E1,p
+) and (ζ1, · · · , ζn) ∈ (P1)n to (E1,p

−). With this
system of coordinates we get a map

Par: Conν −→ Sn

where

Sn =
(
(P1
z1 × P1

ζ1) \∆
)
× · · · ×

(
(P1
zn × P1

ζn) \∆
)
.

Theorem 3.1. Assume ν+
k − ν

−
k 6= 0 for every k ∈ {1, · · · , n}. Then the map Par: Conν → Sn is

an isomorphism.

Proof. For the injectivity of Par we must prove that given (E1,∇) ∈ Conν , the 2n eigendirections
{p+

1 (∇), p−1 (∇), · · · , p+
n (∇), p−n (∇)} determine ∇. Let Bun+ : Conν → P1

z1 × · · · × P1
zn be the map
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which sends (E1,∇) to (E1,p
+) and τ : Sn → P1

z1 × · · · × P1
zn the natural projection

Conν

Bun+ ''NN
NNN

NNN
NNN

Par // Sn

τxxqqq
qqq

qqq
qq

P1
z1 × · · · × P1

zn

We first assume that ∇ does not have any positive direction in Lλ. Consider the open set

U0 = {z = ((z1 : 1), · · · , (zn : 1)) | zk ∈ C} .

Given z ∈ U0 let ∇0 be a connection which has z as positive eigendirections and all the negative
eigendirections lie in Lλ, which means that

p−(∇0) = {(1 : 0), · · · , (1 : 0)}.

In Section 4.1.1, we make ∇0 explicit. The residues are

Restk∇0 =

(
ν−k zk(ν+

k − ν
−
k )

0 ν+
k

)
.(3.2)

Now if ∇ has z as positive eigendirection then the difference Θ = ∇−∇0 is a Higgs field which is
nilpotent with respect to z. This means that Θ lies in Higgs(E1, z), which is the moduli space of
parabolic Higgs bundles over (E1, z). We may fix a basis {Θ1, · · · ,Θn} for Higgs(E1, z) such that
Θk is regular over ti for i 6= k and

RestkΘk =

(
zk −z2

k

1 −zk

)
.(3.3)

In Section 4.1.1, we make Θ1, · · · ,Θn explicit. Since ∇ can be written as

∇ = ∇0 +

n∑
i=1

ciΘi ; ci ∈ C ,

from (3.2) and (3.3) one obtains

p−(∇) = {(c1z1 − ν1 : c1), · · · , (cnzn − νn : cn)}.(3.4)

The space of connections over U0 is parametrized by (z, c), c = (c1, · · · , cn), and (3.4) shows that
Par : Conν |U0 → Sn sends ∇z,c to{

p+(∇z,c) = ((z1 : 1), · · · , (zn : 1))
p−(∇z,c) = ((c1z1 − ν1 : c1), · · · , (cnzn − νn : cn))

In particular ∇z,c is determined by its eigendirections. Also, this proves that given ζ =
(ζ1, · · · , ζn) ∈ (P1)n such that ζi 6= (zi : 1) for i ∈ {1, · · · , n}, we can find ∇z,c with
Par(∇z,c) = (z, ζ). We conclude that Par|U0 : Conν |U0 → Sn|U0 is an isomorphism between

affine bundles. If Bun+(∇) /∈ U0, that is, if there is a positive direction p+
k (∇) lying in Lλ one can

fix another system of coordinates by changing Lλ and the same argument above will work. �

Corollary 3.2. The open subset Conν of Conν(C,D) given by connections having E1 as underlying
vector bundle is an affine variety.

Proof. Since the diagonal ∆ ⊂ P1 × P1 supports an ample divisor, its complement, S, is affine.
Therefore Conν ' Sn is also affine. �
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Now we want to explain how elemI induces an isomorphism between ConνI,ε and Conλ, where
λ will be determined.

Proposition 3.3. The map elemI induces a fiber-preserving isomorphism ΦI :

ConνI,ε

��

ΦI

'
// Conλ

��
XI

elemI // X

where λ = (λ+
1 , λ

−
1 , · · · , λ+

n , λ
−
n ) with{

λεkk = νεkk − 1/2

λδkk = νδkk + 1/2 , {δk, εk} = {+,−}

for each k ∈ I and λ±k are left unchanged if k /∈ I.

Proof. Given (E,∇) ∈ ConνI,ε we will perform an elementary transformation centered in pε(∇).

Recall that elemI sends (E,p) to
(
E′ ⊗ L,p′

)
where E′ is obtained by the exact sequence

0 −→ E′
α−→ E −→

⊕
i∈I

(Eti/pi) −→ 0

and L is a square root OC
(∑

i∈I ti
)
. In order to describe ΦI , we fix a rank one connection

ζ : L→ L⊗ Ω1
C(D) which is regular over tk if k /∈ I and

Restkζ = −1

2
; if k ∈ I.

After an elementary transformation over tk centered in pεkk , the local exponent νεkk , which cor-

responds to pεkk , does not change while the other local exponent νδkk increases by 1. Then the new
connection ∇′ on E′ which is defined as α∗(∇) has local exponents

(νδkk + 1, νεkk ) ; if k ∈ I

where {δk, εk} = {+,−} and the other (when k /∈ I) are left unchanged.
The map ΦI is defined as

ΦI(E,∇) = (E′ ⊗ L,∇′ ⊗ ζ).

Since it can be reversed by the same process, this concludes the proof of the isomorphism. �

We will show that the whole moduli space Conν(C,D) may be covered by those open sets ConνI,ε
and a closed set Σn that is nonempty only if n is odd. We will see that this discrepancy comes from
the item (3) in the statement of Lemma 2.3. For now, we define (for n odd)

(3.5) Σn = {(E,∇) ∈ Conν(C,D) | E = L⊕ L−1(w∞) with L2 = OC(D + w∞)}.

Next we will describe the connections in Σn. In order to do so, we compute the logarithmic Atiyah
class φAE ∈ End(E)∨ whose vanishing establishes the existence of a connection with prescribed
residues, see [2]. Let T ∈ End(E) then φAE is defined by

φAE(T ) = φ0
E(T ) +

n∑
j=1

tr (AjT (tj))
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t1 t2 t3 tn

L−1(w∞)

L

p+
2 p+

3 p+
n

p−2

p−3
p−n

p−1
p+

1

· · ·

· · ·

Figure 2. Possible configuration of directions for (E,∇) ∈ Σn.

where Aj is the residue endomorphism over tj and φ0
E is the classical Atiyah class, see [1]. In our

case,

Aj =

(
uj aj
vj bj

)(
ν+
j 0

0 ν−j

)(
bj −aj
−vj uj

)
where ujbj−ajvj = 1. Here we may take local coordinates around each tj such that L and L−1(w∞)
correspond to (1 : 0) and (0 : 1), respectively.

Note that any direction pεkk (∇) lies outside L, otherwise there exists a choice of parabolic direc-
tions pε(∇) such that (E,pε(∇)) is decomposable and this would force a relation on eigenvalues ν.
Indeed, we can find an embedding of L−1(w∞) passing through n−1 directions away from L. Then
we may suppose without loss of generality that our directions are as in the Figure 2. In particular
(uj , vj) = (0, 1) and aj = −1 for j ≥ 2, and u1v1 6= 0. Up to applying a diagonal automorphism of
E we may suppose that u1 = v1 = 1 i.e. p+

1 (∇) = (1 : 1).
Note that End(E) is generated (as a vector space) by the identity, nilpotent endomorphisms and

the projection to L. For the identity, φAE(1E) gives the Fuchs relation that we already know is valid.
Let β ∈ H0(C,L2(−w∞)), then define

P (β) := φAE

((
0 β
0 0

))
= b1β(t1)(ν+

1 − ν
−
1 ) +

∑
j≥2

bjβ(tj)(ν
+
j − ν

−
j ).

For j ≥ 2 let βj ∈ H0(C,L2(−w∞)) with the following property: βj(tk) = 0 if k 6= 1, j and
βj(tj) = 1. These sections are unique. In particular, βj(t1) 6= 0 and we have

P (βj) = b1βj(t1)(ν+
1 − ν

−
1 ) + bj(ν

+
j − ν

−
j )

Note that the image of β 7→ (β(t1), . . . , β(tn)) is a (n − 1)-dimensional vector space, hence the
images of the βj give a basis. Therefore P (β) = 0 for every β ∈ H0(C,L2(−w∞)) if and only if
P (βj) = 0 for j ≥ 2 i.e. the ν−j direction is

(−1 : bj) =
(
ν+
j − ν

−
j : b1βj(t1)(ν+

1 − ν
−
1 )
)

For the projection to L we have

φAE

((
1 0
0 0

))
= degL+

n∑
j=1

ujbjν
+
j − ajvjν

−
j = b1(ν+

1 − ν
−
1 ) +

n+ 1

2
+

n∑
j=1

ν−j = 0.
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This implies that the directions over t1 are p+
1 (∇) = (1 : 1) and

p−1 (∇) = (b1 − 1 : b1) =

n+ 1

2
+

n∑
j≥2

ν−j + ν+
j :

n+ 1

2
+

n∑
j=1

ν−j


Therefore the residues are completely independent of the isomorphism class of (E,∇) i.e. the
residues of every connection in Σn are, up to Aut(E), in the above configuration. Also note that
any two connections with these residues differ by an element of Hom(E,E ⊗ ΩC) with vanishing
trace. From this discussion we can prove the following.

Proposition 3.4. Let n be an odd integer and let ν be local exponents such that νε11 + · · ·+νεnn 6∈ Z
and ν+

j 6= ν−j . Then Σn has four connected components, each isomorphic to Higgs0(E), the space
of traceless holomorphic Higgs fields for the underlying vector bundle. Moreover,

dim Σn = n+ 1.

Proof. First note that there are precisely four possibilities for the underlyintg vector bundle of a
connection in Σn. Indeed, any such vector bundle is E = L ⊕ L−1(w∞) where L is such that
L2 = OC(D+w∞). Twisting by 2-torsion line bundles leads to four nonisomorphic possibilities for
L. Hence four nonisomorphic possibilities for E. Therefore Σn has four connected components.

Fix one such E and denote ΣEn the corresponding component of Σn. Now fix (E,∇0) ∈ ΣEn .
From the discussion above we know that for any other (E,∇) ∈ ΣEn , the difference ∇ − ∇0 is a
holomorphic Higgs field. Since ∇ and ∇0 must have the same trace, this Higgs field is traceless.
Thus we have an isomorphism

ΣEn −→ Higgs0(E)

∇ 7−→ ∇−∇0

To conclude we note that its dimension is 1 + h0(L2(−w∞)) = n+ 1. �

In addition, notice that by performing an elementary transformation centered at n parabolic
directions outside L, then E can be transformed into E0 where E0 corresponds to the unique, up
to isomorphism, nontrivial extension

0→ OC → E0 → OC → 0.

We conclude that any connection of Σn can be obtained from a connection on E0 by performing
an elementary transformation centered in n parabolic directions which lie in the unique maximal
sub-bundle OC . Note that there are n directions to choose and dim Higgs0(E) = 1 giving (naively)
dimension n+ 1.

Proposition 3.5. Assume the generic condition νa11 + · · · + νann /∈ Z for any ak ∈ {+,−} and
ν+
k 6= ν−k for every k ∈ {1, · · · , n}. The moduli space Conν(C,D) can be written as a union

Conν(C,D) =

{
Conν ∪I,ε ConνI,ε , if n is even
Conν ∪I,ε ConνI,ε ∪ Σn , if n is odd

where I runs over all the nonempty subsets of {1, · · · , n} of even cardinality and ε = (ε1, · · · , εn)
with εk ∈ {+,−}.

Proof. Let (E,∇) ∈ Conν(C,D). If E = E1 then (E,∇) ∈ Conν , so we can assume E = L ⊕
L−1(w∞) with degL = s ≥ 1. The generic condition on ν yields (E,pε(∇)) indecomposable for
any choice of ε, see [4, Corollary 2.3]. Then Lemma 2.3 implies that 2s ≤ n+ 1.
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Let us first assume 2s ≤ n. We will show that (E,∇) ∈ ConνI,ε for some I and ε as above. For

this, we choose ε = (ε1, · · · , εn) in such a way that pεkk (∇) 6⊂ Ltk for every k, it can be done because

ν+
k 6= ν−k . Since (E,pε(∇)) is indecomposable there is a parabolic direction which does not lie in
L and there is no embedding of L−1(w∞) containing this direction. Then for sake of simplicity
one can suppose pε11 (∇) 6⊂ Lt1 and pε11 (∇) 6⊂ L−1(w∞)t1 without loss of generality. Now we choose
I = {1, · · · , 2s} and fix µ0 ∈ CI where

CI =

{
µ ∈ (0, 1)n

∣∣∣ n∑
k=2s+1

µk +

2s∑
k=1

(1− µk) < 1

}
.

We see that (E,pε(∇)) is µ0-stable, because E can be transformed into E1 by performing an
elementary transformation centered over parabolic directions pεk(∇) over I. This shows that
(E,pε(∇)) ∈ XI and thus we conclude that (E,∇) ∈ ConνI,ε.

If we now assume 2s = n + 1 then Lemma 2.3 implies that (E,∇) ∈ Σn and this finishes the
proof of the proposition. �

Let Bunε : Conν −→ X ' (P1)n be the forgetful map which sends (E1,∇) to (E1,p
ε(∇)).

Proposition 3.6. Let I ⊂ {1, . . . , n} with even cardinality, and fix ε = (ε1, · · · , εn) with εk ∈
{+,−}. The set Conν \ConνI,ε coincides with the pre-image (Bunε)−1(V ) of a hypersurface V ⊂ X
whose degree is (d1, . . . , dn), where dj = 2 if j ∈ I and dj = 0 otherwise.

Proof. An element of Conν \ ConνI,ε is a connection whose underlying quasi-parabolic bundle

(E1,p
ε(∇)) is stable for the weights µ ∈ C but its image under elemI is unstable or, equiva-

lently, it is µ-stable but ϕI(µ)-unstable. This already shows that the boundary is fibered over some
subset V ⊂ X. We need to describe V .

Note that no information on the directions not indexed by I goes to the formation of V . Then
it will be a product V ' V ′ × (P1)n−|I|. Therefore, we may reduce to the case V = V ′ i.e. |I| = n
and the conclusion follows from Lemmas 2.4 and 2.5. �

Corollary 3.7. Assume that νε11 +· · ·+νεnn /∈ Z, for any εk ∈ {+,−}, and that ν+
k −ν

−
k /∈ {0, 1,−1}

for k ∈ {1, · · · , n}. The complement ConνI,ε \ Conν is isomorphic to a Cn-bundle over V ⊂ (P1)n,

where V is a hypersurface of degree (d1, . . . , dn), with dj = 2 if j ∈ I and dj = 0 otherwise.

Proof. By performing an elementary transformation centered in pε(∇) we switch both open sets,
taking into account the change of eigenvalues

ConνI,ε → Conλ and Conν → ConλI,ε.

The map ConνI,ε → Conλ sends the complement ConνI,ε \ Conν to the complement Conλ \ ConλI,ε
and the conclusion follows from Proposition 3.6. �

We have shown in Theorem 3.1 that Conν ' Sn. In the next result we obtain a big open subset
of Conν(C,D). It coincides with the whole moduli space if n is even, by attaching finite number of
copies of Sn, and such that each gluing map is a fiberwise isomorphism.

Theorem 3.8. Assume that νa11 +· · ·+νann /∈ Z, for any ak ∈ {+,−}, and that ν+
k −ν

−
k /∈ {0, 1,−1}

for k ∈ {1, · · · , n}. Let Σn be as (3.5) if is n is odd, and let it be the empty set if n is even. Then
the moduli space Conν(C,D) \ Σn can be obtained from Conν ' Sn by gluing a finite number of
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copies of Sn such that each gluing map ΨI,ε : Sn 99K Conν is a fiber-preserving isomorphism outside
a degree (d1, . . . , dn) divisor Γ ⊂ (P1)n where dj = 2 if j ∈ I and dj = 0 otherwise.

Sn

""E
EE

EE
EE

E
ΨI,ε //________ Conν ' Sn

xxrrr
rrr

rrr
r

(P1)n

Proof. Proposition 3.5 yields

Conν(C,D) \ Σn = Conν ∪I,ε ConνI,ε.

From Proposition 3.3 we obtain a fiber-preserve isomorphism ΦI,ε : ConνI,ε → Conλ for each I and

ε. The hypothesis ν+
k − ν

−
k /∈ {0, 1,−1} and Theorem 3.1 yield Conλ ' Sn. The remaining part of

the proof follows from Proposition 3.6. �

4. Fuchsian systems with n+ 3 poles

Given (E1,∇) ∈ Conν we can associate a sl2-connection on the trivial bundle OC ⊕ OC by
performing an elementary transformation over the 2-torsion points w0, w1 and wλ. This process
will create new singularities which are apparent.

We say that t ∈ C is an apparent singular point for ∇ if the residual part Rest∇ has { 1
2 ,−

1
2} as

eigenvalues and the 1
2 -eigendirection of Rest∇ is also invariant by the constant part of the connection

matrix.
Suppose that D′ = D + w0 + w1 + wλ is also reduced. Let (ν1, . . . , νn) ∈ Cn and fix a local

exponent

θ =

(
±1

2
,±1

2
,±1

2
,±ν1, . . . ,±νn

)
.(4.1)

We denote by Systθ(C,D′) the moduli space of Fuchsian systems (i.e. logarithmic sl2-connections
on the trivial bundle OC ⊕OC) having D′ as divisor of poles, θ as local exponents and such that:

• the three singular points w0, w1 and wλ are apparent singular points;
• over w0, w1 and wλ the corresponding 1

2 -eigendirections are (1 : 0), (1 : 1) and (0 : 1)
respectively.

Proposition 4.1. There is an isomorphism of moduli spaces

Conν
∼−→ Systθ(C,D′)(4.2)

where νj =
ν+
j − ν

−
j

2
for j = 1, . . . , n.

Proof. Let (E1,∇) ∈ Conν . First note that the intersection configuration as in Figure 1 tells us
that, after the elementary tranformation, OC(w0−w∞),OC(w1−w∞),OC(wλ−w∞) ⊂ E1 become
three disjoint copies of OC(−w∞). Hence the elementary transformed of (E1,∇) is (E,∇′) where
E = OC(−w∞)⊕OC(−w∞) and the local exponents of ∇′ are the same as ∇ at the tk, k = 1, . . . , n,
and the exponents at w0, w1 and wλ are equal to (1, 0). Consider the connection (OC(w∞), ζ) such
that

Resw0ζ = Resw1ζ = Reswλζ = −1

2
and Restkζ = −

ν+
k + ν−k

2
.
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This is possible since
∑n
k=1 ν

+
k + ν−k = −1 by Fuchs’ relation. It follows that

(E1,∇) 7→ (OC ⊕OC ,∇′ ⊗ ζ) ∈ Systθ(C,D′)

is our desired isomorphism. �

4.1. The affine bundle of Fuschian systems. Consider the space X of parabolic bundles (E,p)
over (C,D′) such that E is the trivial bundle, the parabolic directions over w0, w1 and wλ are
(1 : 0), (1 : 1) and (0 : 1), respectively, and we let the parabolic directions over D = t1 + · · · + tn
vary. Then X = (P1)n where each copy of P1 parametrizes parabolic directions over tj .

The moduli space Systθ(C,D′) is an affine bundle of rank n over X. We will describe the
trivializations of this bundle over the Zariski open sets

U0 =

n∏
j=1

{
(zj : wj) ∈ P1 | wj = 1

}
and U∞ =

n∏
j=1

{
(zj : wj) ∈ P1 | zj = 1

}
,

and then give the affine transition map.
To begin with let us fix a basis of meromorphic one-forms with at most simple poles on D′.

Consider the holomorphic one-form ω =
dx

2y
and define

φ0 =
(1− λ)x

y
ω, φ1 =

−λ(x− 1)

y
ω and θj =

xj(xjx− λ)

xjy − yjx
ω,

where tj = (xj , yj). These n+ 3 one-forms give us the desired basis. It follows that each φi has a
zero on wi and a pole on wj , j 6= i, and each θj has poles on w0 and tj . The residues have been
chosen in such a way that

Restjθj = 1, Resw0
θj = −1

Resw1φ0 = 1, Reswλφ0 = −1

Resw0
φ1 = 1, Reswλφ1 = −1

4.1.1. Trivialization over U0. Given z = (z1, . . . , zn) ∈ U0 we define

∇0 : OC ⊕OC → (OC ⊕OC)⊗ Ω1
C(D′)

as the connection which has (zj : 1) as eigendirections corresponding to νj and has (1 : 0) as
eigendirections corresponding to −νj . It can be written as

∇0 = d+

(
a0 b0
c0 −a0

)
φ0 +

(
a1 b1
0 −a1

)
φ1 +

(
a2 b2
0 −a2

)
ω +

n∑
j=1

νj

(
−1 2zj
0 1

)
θj .

with

a0 =

n∑
j=1

νj b0 =
1

2
−

n∑
j=1

νj c0 =
1

2
+

n∑
j=1

νj

a1 =
1

2
−

n∑
j=1

νj b1 = −1

2
+

n∑
j=1

νj

a2 =

n∑
j=1

yj
2

[
2(−νj) + 2νjzj

xj − 1
− 2νjzj
xj − λ

]
b2 =

n∑
j=1

yj
(xj − λ)

2νjzj
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Now if ∇ is any connection which has z as positive eigendirections then the difference Θ = ∇−∇0

is a Higgs field which is nilpotent with respect to z. This means that Θ is a strongly parabolic
Higgs field over (OC ⊕OC , z). We shall fix a basis {Θ0

1, · · · ,Θ0
n} for the space of strongly parabolic

Higgs fields such that

RestjΘ
0
j =

(
zj −z2

j

1 −zj

)
and Θ0

j is regular elsewhere. So, we define

Θ0
j =

(
−zj zj
−zj zj

)
φ0 +

(
zj −zj
1 −zj

)
φ1 +Aj · ω +

(
zj −z2

j

1 −zj

)
θj

where

Aj =

yj
2

[
−(zj−1)2

xj−1 + 1
xj

+
z2j

xj−λ

]
− yjz

2
j

xj−λ
yj
xj

−yj2
[
−(zj−1)2

xj−1 + 1
xj

+
z2j

xj−λ

]
 .

This matrix Aj has been chosen to assure apparent singularities over w0, w1 and wλ.

Any sl2-connection (E,∇) ∈ Systθ(C,D′) having (zj : 1) as parabolic direction (over tj) corre-
sponding to νj can be write as

∇ = ∇0 + rjΘ
0
j

for suitable rj ∈ C. It has (zjrj − 2νj : rj) as the complementary direction corresponding to −νj .

4.1.2. Trivialization over U∞. Similarly, we define ∇∞ having (1 : wj) as eigendirections corre-
sponding to νj and (0 : 1) as eigendirections corresponding to −νj :

∇∞ = d+

(
a0 b0
c0 −a0

)
φ0 +

(
a1 b1
c1 −a1

)
φ1 +

(
a2 0
c2 −a2

)
ω +

n∑
j=1

νj

(
1 0

2wj −1

)
θj

with

a0 = −
n∑
j=1

νj b0 =
1

2
+

n∑
j=1

νj c0 =
1

2
−

n∑
j=1

νj

a1 =
1

2
+

n∑
j=1

νj b1 = −1

2
−

n∑
j=1

νj c1 =

n∑
j=1

νj2wj

a2 =

n∑
j=1

yjνj

[
(1− wj)
xj − 1

+
wj
xj

]
c2 =

n∑
j=1

yj
xj
νj2wj

And the strongly parabolic Higgs fields are defined by

Θ∞j =

(
−wj wj
−wj wj

)
φ0 +

(
wj −wj
w2
j −wj

)
φ1 +Bj · ω +

(
wj −1
w2
j −wj

)
θj

where

Bj =

yj
2

[
−(1−wj)2
xj−1 +

w2
j

xj
+ 1

xj−λ

]
−yj

(xj−λ)

yjw
2
j

xj
−yj2

[
−(1−wj)2
xj−1 +

w2
j

xj
+ 1

xj−λ

]
 .

Given a sl2-connection (E,∇) ∈ Systθ(C,D′) with (1 : wj) as parabolic direction (over tj)
corresponding to νj , we can write

∇ = ∇∞ + sjΘ
∞
j

for suitable sj ∈ C. The complementary direction corresponding to −νj is (sj : wjsj + 2νj).
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4.1.3. Transition matrix. From the trivializations on U0 and U∞ we may compute a transition affine
transformation for the affine bundle Systθ(C,D′). Since U0∪U∞ covers the basis X ' (P1)n minus

a subvariety of codimension two, then the bundle structure of Systθ(C,D′) is determined by this
affine transformation.

In order to make this affine transformation explicit we note that

Θ∞j = w2
jΘ

0
j

(
1

wj

)
,

and

∇0

(
1

w

)
= d+

(
a0 b0
c0 −a0

)
φ0 +

(
a1 b1
0 −a1

)
φ1 +

(
a2 b2
0 −a2

)
ω +

n∑
j=1

νj

(
−1 2

wj

0 1

)
θj .

with

a0 =

n∑
j=1

νj b0 =
1

2
−

n∑
j=1

νj c0 =
1

2
+

n∑
j=1

νj

a1 =
1

2
−

n∑
j=1

νj b1 = −1

2
+

n∑
j=1

νj

a2 =

n∑
j=1

yjνj
wj

[
1− wj
xj − 1

− 1

xj − λ

]
b2 =

n∑
j=1

yj
(xj − λ)

2
νj
wj

Hence

∇∞ = ∇0

(
1

w1
, . . . ,

1

wn

)
+

n∑
j=1

2νjwjΘ
0
j

(
1

wj

)
Over the intersection U0 ∩ U∞ we have

(s1, . . . , sn) 7→ ∇∞(w1, . . . , wn) +

n∑
j=1

sjΘ
∞
j (wj) =

= ∇0

(
1

w1
, . . . ,

1

wn

)
+

n∑
j=1

(
2νjwj + sjw

2
j

)
Θ0
j

(
1

wj

)
=

= ∇0(z1, . . . , zn) +

n∑
j=1

(
2νjwj + sjw

2
j

)
Θ0
j (zj) =

= ∇0(z1, . . . , zn) +

n∑
j=1

rjΘ
0
j (zj)

which gives us the transition affine transformationr1

...
rn

 =

w
2
1 . . . 0
...

. . .
...

0 . . . w2
n

 ·
s1

...
sn

+

2ν1w1

...
2νnwn
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that can also be written as
1
r1

...
rn

 =


1 0 . . . 0

2ν1w1 w2
1 . . . 0

...
...

. . .
...

2νnwn 0 . . . w2
n

 ·


1
s1

...
sn

(4.3)

This last matrix can be seen as the transition matrix of the compactification of the moduli space
Conν obtained by allowing λ-connections: ∇λ = λ · ∇0 + Θ. When λ 6= 0 then ∇λ is equivalent
to ∇0 + λ−1Θ up to homothety, when λ = 0 then ∇λ coincides with the Higgs field Θ. On the
boundary we get the projectivized moduli space of Higgs fields

PHiggsν := Conν\Conν .

Since U0 ∪ U∞ covers X ' (P1)n minus a subvariety of codimension two then the transition
matrix given in (4.3) determines the affine bundle Conν and this yields the following result.

Theorem 4.2. We have Conν = P(Eν), where Eν is the extension of OX by T ∗X

0 −→ T ∗X−→Eν−→OX −→ 0

determined by

(ν1, . . . , νn) ∈ H1(X,T ∗X) '
n⊕
j=1

H1(P1
zj , T

∗P1
zj ) ' Cn.

5. Apparent map

Given a connection ∇ : E1 → E1 ⊗ Ω1
C(D) we can define an OC-linear map:

ϕ∇ : OC
s
↪→ E1

∇−→ E1 ⊗ Ω1
C(D) −→ (E1/OC)⊗ Ω1

C(D)

where the last arrow is defined by the quotient map from E1 to E1/s(OC) ' OC(w∞) (denoted
E1/OC) for short. The zero divisor of ϕ∇ defines an element of the linear system

Z(ϕ∇) ∈ |OC(w∞ +D)|.

Since degD = n and Ω1
C ' OC (C is elliptic) then

|OC(w∞ +D)| = P
(
H0(C, (E1/OC)⊗ Ω1

C(D))
)
' Pn.

Hence we may define a rational map

App: Conν 99K |OC(w∞ +D)|

which associates (E1,∇) to Z(ϕ∇). Under a generic hypothesis on the spectral data we show that
App is in fact a morphism. It turns out that this hypothesis is also necessary as we prove in the
following lemma.

Lemma 5.1. The rational map App: Conν 99K |OC(w∞ + D)| is in fact a morphism if and only
if νε11 + · · ·+ νεnn 6= 0 for any εk ∈ {+,−}.

Proof. The indeterminacy locus of App is composed by the connections ∇ mapped to zero in
(E1/OC) ⊗ Ω1

C(D) which means that there exists a meromorphic 1-form ξ with poles at most on
D such that

∇(s) = sξ.
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In such case we have for each j = 1, . . . , n that s(tj) ∈ p
εj
j (∇) with εj ∈ {+,−}. And we also have

that ∇ restricts to a logarithmic connection on OC whence

νε11 + · · ·+ νεnn = 0.

Conversely, suppose that there exist δj ∈ {+,−}, j = 1, . . . n, such that νδ11 + · · · + νδnn = 0.
On the one hand there exists a meromorphic 1-form ξ with simple poles only on D and prescribed
residues

Restjξ = ν
δj
j .

On the other hand let ∇ be a logarithmic connection such that s(tj) ∈ p
δj
j (∇). It follows that

∇(s) − sξ is a holomorphic section of E1 ⊗ Ω1
C . Since H0(C,E1 ⊗ Ω1

C) is generated by sω (recall
that ω is a holomorphic one-form on C) it follows that

∇(s) = s (ξ + c ω)

for some c ∈ C. Hence ϕ∇ = 0. �

We may also consider the map

Bun: Conν −→ X ' (P1)n

which sends (E1,∇) to the parabolic vector bundle (E1,p
+(∇)). We also denote Bun the natural

extension of this map to Conν . Combining these two maps we can give a birational model for Conν

as we prove in the following result.

Theorem 5.2. If νε11 + · · · + νεnn 6= 0 for any εk ∈ {+,−} then the map Bun×App induces a
birational map

Bun×App: Conν 99K X × |OC(w∞ +D)|
whose indeterminacy locus is contained in Conν\Conν . Moreover, given (E,p = {p1, . . . , pn}) ∈ X
the rank of

(Bun×App)|Bun−1(E,p) : Bun−1(E,p) −→ |OC(w∞ +D)|
coincides with the cardinality of the set {j | pj 6⊂ OC}.

Proof. Let s denote the section OC ↪→ E1. For any logarithmic connection ∇ for E1 with poles on
D = t1 + · · ·+ tn we have that App(∇) is given by the zero divisor of

ϕ∇ = ∇(s) ∧ s ∈ H0(C,det(E1)⊗ ΩC(D))

which is the same as defining

App(∇) = [ϕ∇] ∈ P
(
H0(C, det(E1)⊗ ΩC(D))

)
.

By Lemma 5.1 the condition on the local exponents implies that App, hence Bun×App, is regular
on Conν . Therefore the indeterminacy locus must lie only in the boundary divisor.

Now fix (E1,p = {p1, . . . , pn}) ∈ X. We will compute the rank of App|Bun−1(E1,p). Consider

H0(End0(E1)⊗ΩC(tj)) the space of traceless Higgs fields with simple pole on tj . Since its dimension
is three, there exists a unique (up to scalar multiplication) strongly parabolic Higgs field Θp

j with

respect to p i.e. Restj (Θ
p
j ) is nilpotent with image pj and has no other poles. Let ∇0 be a

connection in Bun−1(E1,p). Then any other λ-connection ∇ ∈ Bun−1(E1,p) can be written in a
unique way as

∇ = c0∇0 +

n∑
j=1

cjΘ
p
j ,
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for some (c0 : · · · : cn) ∈ Pn. Hence

ϕ∇ = c0∇0(s) ∧ s+

n∑
j=1

cjΘ
p
j (s) ∧ s.

Suppose that Θp
j (s) ∧ s 6= 0 for each j. Since they have one pole each and at different points

these sections are linearly independent. Since H0(C,OC(w∞ +D)) has dimension n+ 1 they form
a basis together with ∇0(s) ∧ s and the Apparent map restricted to this fiber is an isomorphism.
Indeed, if

c0∇0(s) ∧ s+

n∑
j=1

cjΘ
p
j (s) ∧ s =

c0∇0(s) +

n∑
j=1

cjΘ
p
j (s)

 ∧ s = 0

then, by Lemma 5.1, c0 = 0 and it follows that c1 = · · · = cn = 0 since the Θp
j (s) ∧ s are linearly

independent.
Now suppose that there exists j ∈ {1, . . . , n} such that Θp

j (s) ∧ s = 0. This occurs if and only

if Θp
j (s) is holomorphic at tj which in turn means that s(tj) ∈ pj . Indeed, since H0(C,E1 ⊗ ΩC)

is generated by sω, we know that Θp
j (s) is holomorphic at tj if and only if Θp

j (s) = c sω for some

constant c ∈ C. On the other hand, it is clear that Restj
(
Θp
j (s)

)
∈ pj is zero if and only if s(tj) ∈ pj .

Henceforth we conclude that, in general, the image of App|Bun−1(p) is the linear space spanned

by ∇0(s) ∧ s and Θp
j (s) ∧ s such that s(tj) 6∈ pj . In particular, the (projective) rank is given by

rk App|Bun−1(E1,p) = #{j | s(tj) 6∈ pj}.

�

5.1. Explicit computation. The Apparent map may be easily computed in an appropriate setting
that we will present here. We note that this explicit description that allowed us to derive the results
in this section. We hope it may provide more insight to the reader.

Under the transformation E1 → OC ⊕ OC – see Proposition 4.1 – the unique (up to scalar
multiplication) section OC ↪→ E1 becomes L−1 ↪→ OC ⊕OC where L = OC(w0 + w1 + wλ − w∞).
This map is defined by

h 7→
(
fh
gh

)
where f, g are rational functions with poles on w0 + w1 + wλ and zero on w∞. The space of such
rational functions has dimension four and imposing that the principal parts of (f, g) are in (1 : 0),
(1 : 1) and (0 : 1) at w0, w1 and wλ, respectively, leaves us with a unique choice, up to scalar
multiplication. We then fix

(f, g) =

(
x− λ
y

,
(1− λ)x

y

)
.

Remark 5.3. In this system of coordinates, zj =
xj−λ
xj(1−λ) is the direction determined by OC ⊂ E1

over tj = (xj , yj) .

Given a Fuchsian system ∇, the Apparent map is induced by the composition

L−1

·

f
g


−−−−→ OC ⊕OC

∇−→ (OC ⊕OC)⊗ Ω1
C(D′)

·
(
g −f

)
−−−−−−−→ L⊗ Ω1

C(D′).
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If we write ∇ = d+

(
α β
γ −α

)
then ϕ∇ =

[
gdf − fdg + 2fgα+ g2β − f2γ

]
which is a global section

of

L⊗2 ⊗ Ω1
C(D′) = OC(3w0 + 3w1 + 3wλ − 2w∞ +D).

One can check, by direct inspection on the principal parts, that the choice of f and g implies that
ϕ∇ has simple poles. Hence we have

App: Systν(C,D)→ |w0 + w1 + wλ − 2w∞ +D|.

Consider the a basis for H0(C,Ω1
C(w0+w1+wλ−2w∞+D)) given by the meromorphic one-forms

η0 = (fg2 − gf2)ω and ηj = fg

(
yj

xj − 1
ω + θj

)
, j = 1, . . . , n.

Note that gdf − fdg = −2η0. We will use our universal family to describe this map.

5.1.1. Computation over U0. Note that for a Fuchsian system ∇ = ∇0 +
∑n
j=1 rjΘ

0
j ,

ϕ∇ = ϕ∇0
+

n∑
j=1

rj

(
Θ0
j ·
(
f
g

))
∧
(
f
g

)
.

By direct computation with the given basis, we have that

ϕ∇0 = −2η0 +
3

2
η0 −

n∑
j=1

νj [η0 + 2ηj ] +

n∑
j=1

2νjzjxj(1− λ)

xj − λ
[η0 + ηj ]

=

−1

2
+

n∑
j=1

νj
2zj(1− λ)xj − xj + λ

xj − λ

 η0 −
n∑
j=1

2νj
xjzj(λ− 1) + xj − λ

xj − λ
ηj

Again by direct computation with the chosen basis we have(
Θ0
j ·
(
f
g

))
∧
(
f
g

)
= zj [η0 + 2ηj ] +

−z2
jxj(1− λ)

xj − λ
[η0 + ηj ] +

xj − λ
xj(λ− 1)

ηj =

=

(
zj(xjzj(λ− 1) + xj − λ)

xj − λ

)
η0 +

(xjzj(λ− 1) + xj − λ)2

(xj − λ)xj(λ− 1)
ηj .

From the computations above we have App(∇) = a0η0 +
∑
j=1 ajηj where

a0 =

−1

2
+

n∑
j=1

νj
2zj(1− λ)xj − xj + λ

xj − λ

+

n∑
j=1

rj

(
zj(xjzj(λ− 1) + xj − λ)

xj − λ

)
,

aj = 2νj
xjzj(λ− 1) + xj − λ

xj − λ
+ rj

(xjzj(λ− 1) + xj − λ)2

(xj − λ)xj(λ− 1)
, j = 1, . . . , n.

It may be better written in matrix form:
a0

a1

...
an

 =


−1
2 +

∑n
j=1 νj

2zj(1−λ)xj−xj+λ
xj−λ

z1(x1z1(λ−1)+x1−λ)
x1−λ . . . zn(xnzn(λ−1)+xn−λ)

xn−λ

−2ν1
x1z1(λ−1)+x1−λ

x1−λ
(x1z1(λ−1)+x1−λ)2

(x1−λ)x1(λ−1) . . . 0
...

...
. . .

...

−2νn
xnzn(λ−1)+xn−λ

xn−λ 0 . . . (xnzn(λ−1)+xn−λ)2

(xn−λ)xn(λ−1)

 ·


1
r1

...
rn

 .
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Recall that the determinant of such a bordered matrix is given by

det


a u1 . . . un
v1 X1 . . . 0
...

...
. . .

...
vn 0 . . . Xn

 =

 n∏
j=1

Xj

a− n∑
j=1

ujvj
Xj


Then the determinant of the matrix of the apparent map is

det(App)(z1, . . . , zn) = −

1

2
+

n∑
j=1

νj

 n∏
j=1

(xjzj(λ− 1) + xj − λ)2

(xj − λ)xj(λ− 1)
.

Therefore the degeneracy locus is supported on the union of the n hyperplanes
{
zj =

xj−λ
xj(1−λ)

}
if

1
2 +

∑n
j=1 νj 6= 0. The condition zj =

xj−λ
xj(1−λ) is equivalent to say that p+

j (∇) ⊂ OC , see Remark

5.3. Note that the rank of App drops by k over a point z in the intersection of k hyperplanes. If

zj =
xj−λ
xj(1−λ) for all j then for all ∇,

App(∇) =

−1

2
+

n∑
j=1

νj

 η0.

Then either − 1
2 +

∑n
j=1 νj = 0 and the map is not defined or − 1

2 +
∑n
j=1 νj 6= 0 and the image is

a single point.
If 1

2 +
∑n
j=1 νj = 0 then the matrix of the apparent map becomes

∑n
j=1 2νj

zj(1−λ)xj
xj−λ

z1(x1z1(λ−1)+x1−λ)
x1−λ . . . zn(xnzn(λ−1)+xn−λ)

xn−λ

−2ν1
x1z1(λ−1)+x1−λ

x1−λ
(x1z1(λ−1)+x1−λ)2

(x1−λ)x1(λ−1) . . . 0
...

...
. . .

...

−2νn
xnzn(λ−1)+xn−λ

xn−λ 0 . . . (xnzn(λ−1)+xn−λ)2

(xn−λ)xn(λ−1)


and it follows that

App(∇0) =

n∑
j=1

−2νj(λ− 1)xj
xjzj(λ− 1) + xj − λ

App
(
Θ0
j

)
whence the image of the Apparent map is spanned by the functions App

(
Θ0
j

)
.

Remark 5.4. In Theorem 5.2 we made the hypothesis that νε11 + · · ·+νεnn 6= 0 for any εk ∈ {+,−}.
Now recall that νj =

ν+
j −ν

−
j

2 hence, by Fuchs relation, we have 1
2 +

∑n
j=1 νj = −

∑n
j=1 ν

−
j and

− 1
2 +

∑n
j=1 νj =

∑n
j=1 ν

+
j . Thus hypothesis avoids the vanishing of these numbers.

5.1.2. Explicit calculation over U∞. In the same fashion one can compute

ϕ∇∞ =

−1

2
+

n∑
j=1

νj

 η0 +

n∑
j=1

2νj

(
xj(1− λ)− wj(xj − λ)

xj(1− λ)

)
ηj

and (
Θ∞j ·

(
f
g

))
∧
(
f
g

)
= −xj(1− λ)− wj(xj − λ)

xj − λ
η0 −

(xj(1− λ)− wj(xj − λ))2

(1− λ)xj(xj − λ)
ηj .



FLAT PARABOLIC VECTOR BUNDLES ON ELLIPTIC CURVES II 25

Therefore, for ∇ = ∇∞ +
∑n
j=1 sjΘ

∞
j we have

App(∇) = b0η0 +
∑
j=1

bjηj

with

b0 =

−1

2
+

n∑
j=1

νj

− n∑
j=1

sj
xj(1− λ)− wj(xj − λ)

xj − λ

bj = 2νj

(
xj(1− λ)− wj(xj − λ)

xj(1− λ)

)
− sj

(xj(1− λ)− wj(xj − λ))2

(1− λ)xj(xj − λ)
, j = 1, . . . , n.

In matrix form we have
b0
b1
...
bn

 =


−1
2 +

∑n
j=1 νj −x1(1−λ)−w1(x1−λ)

x1−λ . . . −xn(1−λ)−wn(xn−λ)
xn−λ

2ν1
x1(1−λ)−w1(x1−λ)

x1(1−λ) − (x1(1−λ)−w1(x1−λ))2

(1−λ)x1(x1−λ) . . . 0
...

...
. . .

...

2νn
xn(1−λ)−wn(xn−λ)

xn(1−λ) 0 . . . − (xn(1−λ)−wn(xn−λ))2

(1−λ)xn(xn−λ)

 ·


1
s1

...
sn


Using the change of coordinates given by zj = 1

wj
and the transition matrix 4.3 one readily sees

that aj = bj , j = 1, . . . , n for any ∇ ∈ U0 ∩ U∞.
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