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Abstract 
 

In this paper, the Lattice Boltzmann Method (LBM) is used to study the acoustic waves propagation 

inside a differentially heated square enclosure filled with air. The waves are generated by a point 

sound source located at the center of this cavity. The main aim of this simulation is to simulate the 

interaction between the thermal convection and the propagation of these acoustic waves. The results 

have been validated with those obtained in the literature and show that the effect of natural convection 

on the acoustic waves propagation is almost negligible for low Rayleigh numbers (Ra ≤ 10
4
), begins to 

appear when the Rayleigh number begins to become important (Ra ≥ 10
5
) and it becomes considerable 

for large Rayleigh numbers (Ra ≥ 10
6
) where the thermal convection is important.  

Keywords: Acoustic wave, free convection, lattice Boltzmann method. 

1. Introduction  
 

Theoretically, LBM is an old method. However, numerically, this is a relatively new method. It is used 

at the mesoscopic scale to simulate different physical phenomena. It is derived from the kinetic theory 

and its origin returns to Lattice Gas Automata [1-3].  

The LBM is one of the useful tools for simulating wave propagation in complex media [4]. Several 

researchers have used this method to study different waves, such as acoustic wave, elastic waves, 

aeroacoustic wave, shock wave, acoustic streaming and so on. 
 

Beginning with shock wave, Yan et al. [5] proposed a lattice Boltzmann scheme to simulate the 

compressible Euler equations. They showed that the proposed model can be used to study numerically 

the shock wave and contact discontinuity. Xiao [6] proposed a new lattice Boltzmann approach to 

investigate the propagation of the shock wave in elastic solids. 
 

For elastic waves, Frantziskonis [7] used the LBM formulation to study the viscoelastic fluids with  

volumetric and shear viscoelasticity. O’Brien et al. [8] outlined a new 2D and 3D lattice Boltzmann 

solutions to the elastic wave equation in a Poisson solid using a regular LBM lattice.  
 

Regarding aeroacoustic wave, Li et al. [9] selected the circular acoustic pulse propagation, the one-

dimensional acoustic pulse propagation, the propagation of acoustic and entropy pulses in a uniform 

stream to test the one step lattice Boltzmann method aeroacoustics simulation. 
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Marié et al. [10] studied and compared two kinds of schemes for computational aeroacoustics: the 

lattice Boltzmann method and the classical numerical approach based on high order schemes for 

Navier–Stokes-like equations. 
 

For acoustic streaming, Haydock et al. [11] employed the lattice Boltzmann method to simulate the 

acoustic streaming created by the interaction between a sound wave and a boundary. They compared 

the numerical results found with the analytic results for Rayleigh streaming within the appropriate 

limits and showed how deviating from those limits can affect the streaming. They also modeled the 

acoustic flux induced by the attenuation produced by a progressive wave [12]. 
 

Finally, for acoustic wave, Buick et al. [13] used the lattice Boltzmann method based on the BGK 

scheme to study the sound waves propagation in systems where the variation of the density is small in 

relation to the mean density. Salomons et al. [14] employed the lattice Boltzmann tool to simulate the 

propagation of the sound on porous and non-porous soils, in free field, in a windy atmosphere and on 

an acoustic barrier.  Recently, the lattice Boltzmann for simulating wave propagation in viscous media 

was used by Xia et al. [15]. 
 

The interaction of thermal phenomena with the sound waves propagation is another problem in 

acoustics. There are few studies on acoustic-thermal coupling problems. Among these works, we will 

mention that of Vincenti et al. [16], who studied the sound waves propagation in a semi-infinite 

expanse of radiant gases on one side of an infinite and radiating planar wall. They found a particular 

solution for the case of sinusoidal oscillations in both position and temperature of the wall. Park et al. 

[17] studied the propagation of the sound wave inside a radiating gas medium with the solid particles 

in suspension. Tarau et al. [18] numerically studied the propagation of acoustic waves inside regions 

of a gas where the temperature distribution is non-uniform. They determined the temperature gradients  

impact on the sound wave parameters. Nabavi et al. [19] experimentally investigated the effects of 

transverse gradient of temperature on streaming velocity and acoustic fields inside a rectangular 

enclosure which is filled with gas and subjected to acoustic standing wave. Another experimental 

study was carried out by Saint Ellier et al. [20]. It consists in showing the effect of an axial gradient of 

temperature in a cylindrical resonant cavity. Recently, Červenka et al. [21] numerically studied the 

acoustic streaming in a cylindrical resonator filled with air and with a gradient of temperature imposed 

on its walls. They showed that the streaming profile is strongly influenced by the convective heat 

transfer, even when the gradient of the temperature is weak. 

 

The originality of the present work focuses on modelling the coupling of thermal convection with 

acoustic waves generated by a point sound source located at the center of a square cavity 

asymmetrically heated filled with air. The numerical approach uses a D2Q9-MRT scheme for fluid 

velocity variables and for the acoustic phenomenon, and a D2Q5-MRT scheme to determine the 

temperature field. Various physical parameters such as the fluid density, the amplitude of the acoustic 

source, and the Rayleigh number are studied numerically to evaluate their effects on the natural 

convection and the sound waves propagation. Thereby, this methodology constitutes a remarkable 

contribution to the understanding of the interaction between natural convection and acoustic waves. It 

could also be used in the future by researchers who wish to understand the behavior of wave 

propagation in heat‐ flow media. The paper is organized as follows: in the next section the description 

of the LBM is given, in the third section boundary conditions are reported, and then the numerical 

results and analyses concerning the parametrical study are presented in the Section 4. Finally 

conclusions of numerical study are done in Section 5. 
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2. Lattice Boltzmann method  
 

The lattice Boltzmann method based on Multi-Relaxation Time (MRT) is used to simulate the 

coupling between heat transfer and wave propagation. This MRT model is preferred because it 

presents high precision and stability compared to Single Relaxation Time (SRT) model [22]. 

D2Q9-MRT scheme is applied to determine the macroscopic quantities such as the fluid density, the 

velocities and the pressure. D2Q5-MRT scheme is used to solve the temperature field. 

  

1.1  D2Q9-MRT scheme for the acoustic phenomenon 

 
For the acoustic calculations, we have used the D2Q9 model. For this model, there are nine discrete 

velocities    as shown in Fig.1. The temporal evolution of the fluid state is described by the following 

Boltzmann equation [23]:  

                                                                              (1) 

where   ,   ,           are the particle distribution,  the lattice velocities, the time step and the 

collision operator, respectively. 

 

    

                                                                              
                                                                      
                                                                

                         (2)   

 
Fig. 1. D2Q9 lattice. 

The LBM parameter   represents the streaming speed. It is defined as       where     and    are 

respectively the time step and  streaming length. They are taken equal to 1. 

 

For the MRT-LBM, the collision operator can be generalized as in [23,24]: 

 

               
  

]                                                            (3) 

where      is the inverse matrix of the transformation matrix    which maps the vector   

               
  to the vector                   

  by the following linear transformations: 

        and                                                                     (4)           
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s 

  is the diagonal relaxation matrix of fluid flow, it can be written as:  

                                                                             (6) 

In this work, we choose            ,           ,           and                

     [24], where   is the kinematic viscosity of the simulated fluid. 

 

  and     are vectors of moments. For the D2Q9 scheme, the arrangement of the nine components of 

the vector   is given in this order [25]: 

                             
 

                                       (7) 

 

where   is the fluid density,   and   are the moments of the energy and the energy square,    and 

  are linked to components of the energy flux and                   is the impulsion. 

    and     are respectively related to the diagonal and off-diagonal components of the stress tensor. 

The corresponding equilibrium moments   
  

are [24]: 

  
  
   

                             
  
         

    
   

                       
  
       

    
   

  
  
    

    
  
                                                                       (8) 

   
  
    

      
  
     

              
  
    

    
   

      
  
      

 

In contrast to CFD methods, the LB approach does not directly solve the Navier-Stokes equations or 

the energy equation; it is a statistical method that gives the macroscopic quantities such as the 

velocity, density, temperature and the pressure as moments, i.e. averages of the microscopic quantities 

described by the distribution function.  For example, the macroscopic fluid variables   and    

         can be directly calculed from the distributions functions given by the D2D9 model as follows:  

     
  

   ,             
  

       and            
  

                           (9) 

 

For the numerical simulation of the acoustic waves propagation, the sound wave is generated by a 

harmonic function of the fluid density oscillating around the equilibrium density by the following 

linear relationship [14,26]: 
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                                                                       (10) 
 

where   ,  ,          are respectively the equilibrium density (     , the time, the frequency and 

the point source amplitude.  

 

2.1 D2Q5-MRT for the thermal problem 
 

For the simulation of natural convection problem, an external force is added in the discrete Boltzmann 

equation (Eq. (1)) [27]:  

 

                       
                                              (11) 

where    are the weighting factors,    are the velocities,   is the gravitational vector (            ,   is 

the fluid density,   is the temperature and       is the average temperature                    .  

  is the thermal expansion coefficient and     
 is the speed of sound (   

      ).  

As previously mentioned, the temperature field is solved by the D2Q5-MRT. In each node of the LBM 

lattice, there are five discrete velocities    (Eq. (12)), as shown in Fig. 2. 

    
                                                                       

 
                                               

                               (12) 

 

Fig. 2. D2Q5 lattice. 

By the same way, we define other distribution functions, noted   , to model the temperature   as 

follow [28]:   

                                     
  

]                                (13) 

The transformation matrix   is given by: 

  

 

 
 

             
 
 

    
  

           
          
  
  

   
   

     
    

 
 

                                              (14) 

  is the diagonal relaxation matrix of the thermal problem, and it can be written as:  
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                                                                       (15) 

 

In the present simulation, we choose     ,               ) and           [29]. 

For the D2Q9 model, there are three conserved quantities:  ,    and    . However, for the D2Q5 

model, the temperature   is the only conserved quantity and is obtained by: 

 

     
  

                                                               (16) 

 

The equilibrium moments,   
  
 corresponding to the five distribution functions   , are discussed in 

details in [30]: 

  
  
  ,   

  
   ,    

  
   ,   

  
    and   

  
                        (17) 

 

where the constant   is related to the thermal diffusivity   by the following equation: 

 

   
     

  
 
 

  
 

 

 
                                                            (18) 

 

It should be noted that the factor   must be less than one to avoid instability of the D2Q5-LBM 

scheme [31].  

 

3. Boundary conditions 
 

The thermal boundary conditions employed in this work are discussed in details in [25]. For the 

vertical isothermal walls, the anti-bounce-back boundary conditions are applied:      
        

      , where    represents the cold and hot temperatures and   
  is the distribution function in the 

opposite direction of   . The adiabatic conditions are used on the horizontal walls of the cavity 

:      .  

For the distribution functions   , there are different types of boundary conditions in the literature to 

define the solid walls. The best known are bounce-back conditions [14,27]. The unknown distribution 

functions are determined from the known functions. For example, at the east and west boundaries of 

the cavity (see Fig. 3), the components   ,   ,       ,    and    are calculated as follows: at the east 

boundary,      ,      ,       and at the west boundary,      ,       and      . 

 
Fig. 3. Boundary conditions used. 
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4. Results and Discussion 

 
We started by validating our code. For that, we tested the performances of our numerical model by 

comparing the results that we found with those reported in the literature [14,25]: 

 

First test: propagation of the sound wave in an unheated square cavity 
 

First, calculations were performed for the problem studied by Salomons and Lohman [14], who have 

modeled the propagation of sound waves inside a square enclosure. These waves are generated by a 

point source, located at the center of this enclosure (Fig. 4).  

 

Fig. 4. Point acoustic source located at the center of the LBM lattice. 

The grid size used is 2000x2000 and the point source is located at the node (1000,1000). The physical 

parameters used here, in LBM units, are:         ,       ,          and     . The obtained 

results are shown in Fig. 5. Let us note an excellent agreement between these results.   

 
Fig. 5. Sound wave propagating in a square cavity at time 1600: (a) reference results [14]; (b) our 

results.  

We can also validate our results through the analytic solution of the density. This analytic solution is 

given by the real part of the following equation [14,26]: 

            
                                                          (19) 
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where A is a constant and   
   
 is the Hankel function of order zero and second kind.   

   
 depends on 

wave number k and distance r to the acoustic source, it can be expressed as follows [26]: 

  
                                                                    (20) 

where    and    are Bessel functions of the first and second kinds, respectively.  

The factor A is a constant which depends on the amplitude of the point acoustic source. Its 

mathematical expression is discussed in detail in the reference [26]. 

Salomons and Lohman [14] showed that the wave dissipates with distance due to the fluid viscosity. 

This dissipation is represented by a coefficient noted α: 

   
 

 
     

 

 
        

                                                   (21) 

where    is the Bulk viscosity (   
 

 
  ). 

To take into account the dissipation in the analytical solution, the attenuation coefficient α is integrated 

into the wave number   [14]: 

  
  

 
                                                        (22) 

where   is the wavelength. 

The results obtained from the analytical solution are illustrated in Fig. 6. These results were calculated 

using equation (19) containing the Hankel function which is not defined at the source position (r = 0). 

Consequently, this produces a deviation between the analytical and numerical solutions at this point. 

According to the reference [26], this is considered a limitation of the point acoustic source method.  

There also, an excellent agreement is noted between the density fields in Figs. 5 and 6(a) and between 

the density profiles along the x-axis in Fig. 6(b) which presents the exact and the LB solutions in the 

same graph. From this figure, the absolute error can be measured to show the error between the 

analytical and numerical calculations [32]. It can be calculated as the difference between the analytical 

(    ) and numerical (    ) densities: 

                                                              (23) 

 

 
Fig. 6. Analytic solution at time 1600: (a) density field; (b) cross-section at y = 1001 of the density 

profiles of the analytic and numerical solutions along the x-axis. 
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The variation of the absolute error along the x-axis is depicted in Fig. 7. The result is a waveform that 

almost oscillates between 0 and 10
-4

 and attenuates with distance away from the source. These values 

indicate that the error is very small, and consequently the numerical results are very close to those 

obtained with the density analytical solution. Also, the mean absolute error (En) can be calculated as 

being the mean of the absolute error. Its value found from this calculation is 4.325 10
-6

. 

 

Fig. 7. Variation of the absolute error along the x-axis at time 1600. 

Second test: Free convection in a square differentially heated cavity  
 

For the natural convection phenomena, the code was extensively confronted with benchmark problems 

to check its validity. The physical problem studied is an empty square enclosure. Its vertical walls are 

isothermal and held at different temperatures, whereas the top and bottom walls are adiabatic. The 

investigation is performed for a Rayleigh number ranged between 10
3
 and 10

8
 and for a Prandtl 

number fixed at 0.71.  

Table 1 shows comparisons on the average Nusselt number     , the maximum vertical and horizontal 

velocities      and     , respectively, for different Rayleigh numbers. For the temperature and the 

hydrodynamic fields, we show isotherms and streamlines for Ra=10
3
 and Ra=10

8 
in Fig. 8, as 

examples for the laminar and transitional flow regimes, respectively. The present numerical results 

show that the laminar and transitional flow regimes are well predicted by the calculations performed. 

These results are also in good agreement with those published previously. Consequently, we can say 

that our proposed model is efficient, precise and numerically stable at all Rayleigh numbers. Then, it is 

used to study the effect of thermal convection on the propagation of sound waves.  

The average Nusselt number      is calculated at the hot wall by the following equation: 

 

     
 

 
   
 

 
                                                                (24) 

where   is the height of the cavity and    is the local Nusselt number which is given by the following 

equation: 

    
 

     
 
  

  
 
    

                                                         (25) 
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Table 1 

Results comparison. 

    Ra          Kuznik et al. [33]     Dixit et al. [34]    Mezrhab et al. [25]   Jami et al. [30]    Our results 

                    1.117                   1.1272                    1.112                    1.115                  1.123 

                      3.636                   3.6529                    3.667                    3.658                  3.650      

                      3.686                   3.6820                    3.714                    3.712                  3.697    

 

                    2.246                    2.247                     2.241                    2.246                  2.255 

                    16.167                  16.163                   16.202                  16.149                16.191 

                    19.597                  19.569                   19.644                  19.684                19.642 

                   4.518                  4.5226                     4.519                    4.525                  4.538                                                                                  

                    34.962                  35.521                   34.805                  34.557                34.769 

                    68.578                  68.655                   68.630                  68.624                68.755            

 

                   8.792                    8.805                     8.817                    8.825                  8.814                                      

                   64.133                  64.186                   64.793                  64.549                64.319 

                 220.537                219.866                 219.663                 220.915              220.085 

 

 
Ra = 10

3 

 
                                                                            Ra=10

8
         

Fig. 8. Streamlines (left) and isotherms (right) for Rayleigh numbers        and       . 
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Propagation of the sound wave in a differentially heated square enclosure 
 

The main purpose of the present work is to study the effect of the natural convection on the 

propagation of acoustic waves generated by a point acoustic source located at the center of a square 

differentially heated enclosure filled with air (Fig. 9). The top and bottom walls are adiabatic and the 

vertical isothermal walls are maintained at two dimensionless temperatures        and         . 

 
Fig. 9. Geometry of the studied physical problem. 

The acoustic waves and the heat transfer are computed using respectively the D2Q9 and D2Q5 lattice 

Boltzmann models. We remember that in contrast to CFD methods, the LB approach does not directly 

solve the Navier‐ Stokes equations or the energy equation. In fact, it is a statistical method that gives 

the macroscopic quantities such as the velocity, density, temperature, and the pressure as moments, 

that is, averages of the microscopic quantities described by the distribution function (see Equation 9). 

These quantities are used to assess the effects of natural convection on the wave propagation. Then, 

the main equations governing the problem are Equations (1) and (13). 

Figure 10 shows the density distributions for different Rayleigh numbers and for a LBM viscosity 

fixed at 0.02. Let us note that when the heat is exchanged mainly by conduction between the 

isothermal walls (Ra=10
3
), the density keeps the shape obtained without heat exchange (Ra=0). 

Indeed, it presents circular bands whose radius increases while moving away from the source. 

Therefore, we can say that for this thermal regime, there is no effect of natural convection on the 

propagation of sound waves. For Ra =10
4
, the convection is still low compared to conduction and the 

thermal effect on the wave is always weak. The effect of the temperature on the propagation of sound 

wave begins to appear in the extremities of the cavity when the convection became important 

(Ra=10
5
). When Ra reaches 10

6
, the wave propagation begins to be limited in a central region at mid 

height of the cavity without arriving at the horizontal walls. For a Rayleigh number equal to 10
7
, the 

density tends to become horizontally organized and a vertical gradient of density appears in the 

boundary layers near the horizontal walls. In addition, for the LBM period and viscosity used in this 

calculation, we can say that for Ra = 10
6
 and 10

7
, the pressure gradients created by thermal convection 

(Fig. 11) prevent the propagation of the wave towards the horizontal walls. 

The density variation can be also depicted by profiles along the central x and y-axes (Fig. 12). Along 

the x-axis, the density has the shape of a wavy curve and has only one maximum at the acoustic 

source; in contrast, two other maxima are observed at the top and bottom walls along the y-axis.   
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It should be noted that in all calculations, the time 600000 was used to stabilize the thermal convection 

and the interference phenomenon exists because the acoustic source used in this study depends on time 

(Eq. (10)) that is represented by the number of iterations in the LBM code. Thus, if the number of 

iterations is greater than the number of grid nodes in one direction, the interference effect between the 

direct sound waves and the waves reflected by the walls of the cavity will occur (see an example in 

Fig. 13). 

 
                             Ra=0                                                                            Ra=10

3    

 
                             Ra=10

4
                                                                        Ra=10

5    

 

                           Ra=10
6
                                                                          Ra=10

7    

Fig. 10. Propagation of sound wave in a square differentially heated cavity at time 500000 for 

Rayleigh number ranging from 10
3
 to 10

8
 with         and T=40. 
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                                    Ra=10

6
                                                                          Ra= 10

7   

Fig. 11. Contours of the pressure due to the natural convection without acoustic waves for Ra=10
5
 and 

 
Fig. 12. Density profiles for Ra = 10

6
 along the x (a) and y (b) axes at the time 600000. 

 

 
Fig. 13. Propagation of a sound wave in an unheated square cavity without (a) and with interference 

(b) at times 200 and 400, respectively. 
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Figure 14 presents a calculation of the coupling of the velocity field produced by the point source with 

the one created with natural convection for an amplitude equal to 0.01. For a low value of Rayleigh 

number (Ra = 10
3
), the field created by the wave is driven by that created by thermal convection. 

When the Rayleigh number becomes large (Ra = 10
5
), we can see that the velocity field produced by 

the sound source is invisible because the convective contribution is important compared to the 

contribution of the acoustic wave to the velocity field. The acoustic contribution would be clearly 

visible if the wave amplitude is important.  

Figure 15 shows a test case with an amplitude of 0.08. The obtained results show that there is no 

convective contribution to the velocity field for Ra = 10
3
. The configuration found for this Rayleigh 

number retains the shape of that found without convection (Ra = 0). The natural convection training of 

the flow created by the point source is dominated when the Rayleigh number becomes important (Ra = 

10
5
). 

It should be noted that, for the acoustic model used in our simulation, the sound wave amplitude must 

be very low compared to the equilibrium density in order to avoid the effects of non-linear waves [26]. 

0.08 is always low compared to the LBM equilibrium density, which is equal to one. 

 

                      
Ra=0                                              Ra=10

3                                                                       
Ra=10

5 

Fig. 14. Velocity fields found with a LBM amplitude of 0.01. 

 
Ra=0                                              Ra=10

3                                                                       
Ra=10

5 

Fig. 15. Velocity fields obtained with an amplitude of 0.08. 
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5. Conclusions 
 

The results presented in this work are directly related to the fluid density. The variation of this density 

is caused by two different phenomena: the heat transfer and the propagation of sound waves. 

Concerning the heat transfer, the variation of density is due to the variation of temperature and for 

acoustic waves, the density variation depends on the amplitude and frequency of the wave. For the 

conditions considered in this study, we can conclude that, for an amplitude value equal to 0.01, the 

effect of natural convection on the propagation of sound waves is negligible for Ra ≤ 10
4
. The effect 

begins to appear for Ra=10
5
 and becomes more pronounced for Ra ≥ 10

6
. For the amplitude value 

equal to 0.08, this effect becomes visible for Ra ≥ 10
6
. Then, the interaction between the natural 

convection and the wave propagation depends mainly on the Rayleigh number and the amplitude of 

the wave. 

The study represented in this work will be the beginning of another LBM study of the coupling of 

thermal convection with acoustic waves, in particular the combination of the flow generated by 

acoustic waves (acoustic streaming) with that produced by convection [35,36]. The resulting flux 

created can be used to purify photovoltaic silicon [37]. The point source will be replaced by a 

rectangular acoustic source to generate an acoustic beam then the force induced by the sound source 

(acoustic force) will be used to digitally produce the acoustic streaming. Also, the proposed numerical 

model can be used in the case of ultrasonic waves and this can be the subject of future studies. 
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