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ABSTRACT

A common task for recommender systems is to build a pro�le of

the interests of a user from items in their browsing history and

later to recommend items to the user from the same catalog. The

users’ behavior consists of two parts: the sequence of items that

they viewed without intervention (the organic part) and the se-

quences of items recommended to them and their outcome (the

bandit part). In this paper, we propose Bayesian Latent Organic

Bandit model (BLOB), a probabilistic approach to combine the ‘or-

ganic’ and ‘bandit’ signals in order to improve the estimation of

recommendation quality. The bandit signal is valuable as it gives

direct feedback of recommendation performance, but the signal

quality is very uneven, as it is highly concentrated on the rec-

ommendations deemed optimal by the past version of the recom-

mender system. In contrast, the organic signal is typically strong

and covers most items, but is not always relevant to the recommen-

dation task. In order to leverage the organic signal to e�ciently

learn the bandit signal in a Bayesian model we identify three fun-

damental types of distances, namely action-history, action-action

and history-history distances. We implement a scalable approxi-

mation of the full model using variational auto-encoders and the

local re-paramerization trick. We show using extensive simulation

studies that our method out-performs or matches the value of both

state-of-the-art organic-based recommendation algorithms, and of

bandit-based methods (both value and policy-based) both in or-

ganic and bandit-rich environments.

CCS CONCEPTS

• Computing methodologies → Bayesian network models;

Learning from implicit feedback; • Information systems →
Recommender systems.
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1 INTRODUCTION

The recommender systems literature is somewhat bifurcated into

two distinct branches. One branch concerns analysing logs of or-

ganic user sessions where similar items co-occur [1, 13, 20, 23]. A

distinguishing feature of this research is that it focuses on logs of

organic user sessions where users view variable numbers of (usu-

ally) related items in a shopping session.

A second branch of research explicitly (and entirely) focuses on

the logs of the recommender system using the history of success-

ful and unsuccessful recommendations in order to discover a good

recommender system policy. This branch uses o� policy learning

in order to discover new policies with good actions [3, 6, 38]. This

work is distinguished by its use of recommender system logs for

training and its anonymous feature vector (usually called the con-

text).

The purpose of this paper is twofold. Firstly, we pose a simple

yet powerful model that combines these two distinct data sources

in order to e�ciently learn good recommendation policies. Sec-

ondly, we develop a fully probabilistic approach to recommenda-

tion and outline its bene�ts and consequences. The probabilistic

formulation gives insights into user embedding creation and the

alternative frameworks of value and policy learning.

The remainder of the paper is structured as follows: In Section

2 we introduce our probabilistic model of organic and bandit be-

haviour and discuss its properties. In Section 3 we describe the

training of the model. In section 4 we apply our model to the Rec-

oGym simulator [15, 33] and present results. Concluding remarks

are made in Section 5.

https://doi.org/10.1145/3394486.3403121
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2 PROBABILISTIC MODEL OF ORGANIC AND
BANDIT SESSIONS

We develop a simple probabilistic model that allows us to build a

representation of a user from a variable length organic sequence

of items and then predict accurately how probable the user is to

respond positively to each recommendation in the catalog.

Throughout this paper, we will make use of the notation intro-

duced in Table 1. We use u to denote a user or a session, we use

t time to denote sequential time and v to denote which product

they viewed from 1 to P where P is the number of products. User u

will also be given some recommendations (or actions) au,1, ..., au,n
again which can take values from 1 to P and we will observe a re-

ward (or a click) for each of these recommendations cu,1, ..., cu,n .

The organic part of the session are the items the user views without

any encouragement from the recommender system i.e.vu,1, ...vu,Tu ,

the bandit part of the session refers to the recommender system log:

au,1, ..., au,nu ; cu,1, ..., cu,nu . Thus, the size of the organic dataset

is U, the number of users, and the bandit dataset size is
∑

u nu = N .

We drop theu subscript and treat the bandit dataset as recordswith

n ∈ [1, ...,N ].
In our model, the user’s interest is described by aK dimensional

variable ωu which can be interpreted as the user’s interest in K

topics. We then assume the following generative process for the

organic views in each session:

ωu ∼ N(0K , IK ), vu,1, ..,vu,Tu ∼ categorical(so�max(Ψωu +ρ))
The organic embedding matrix Ψ is P ×K and represents informa-

tion about how items correlate in a users session organically (i.e.

without any intervention from the recommender system). The P

dimensional vector ρ is related to the items organic popularity.

Once this session is generated a recommendation or actions is

made to user u denoted au and a reward or click will be observed

cu .

cu |au , β,ω,κ ∼ Bernoulli{sigmoid(βauωu + κau )}

The bandit embedding matrix β is P × K and represents informa-

tion about how to personalise recommendations to a user u with a

latent user representation ωu .

The organic behavior is parameterized by Ψ, ρ and the bandit be-

havior is parameterized β,κ in order to relate the two we use the

following matrix variate prior distribution of β :

β |Ψ ∼ MN(s+(wa )Ψ, s+(wb )ΨΨ
T
, s+(wb )

1

P
Ψ
T
Ψ).

Where MN(·) is the matrix variate normal distribution1 We will

show how each of the three terms in the matrix variate normal

allow us to include in our model one of the three fundamental dif-

ferences of recommendation. The softplus function is de�ned:

s+(w) = log{1 + exp(w)}.

We also put a prior on κ which is P × 1:

κ ∼ N(wc , IPσ
2
κ ).

1The matrix normal distribution can be de�ned by its connection to the multivariate
normal. If β ∼ MN(M , R, S ), where mean matrix M is M × N , and R is M × M
and S is N × N - then: vec(β ) ∼ N(vec(M ), R ⊗ S ). In this way the matrix variate
normal has a more compact and restricted representation of the co-variance than the
matrix variate normal. Here ⊗ denotes the Kronecker product.
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Figure 1: A graphical model of the organic behavior.
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Figure 2: A graphical model of the bandit behavior.

The hyper-parameters wa ,wb ,wc are also given normal priors:

wa ∼ N(µwa0
,σ2wa0

), wb ∼ N(µwb0
,σ2wb0

), wc ∼ N(µwc0
,σ2wc0

).

In this paper we will mostly consider the organic and bandit be-

havior as separate but related processes. A graphical model de�n-

ing the organic portion of the model is given in Figure 1. This

graphical model has a similar structure to the latent Dirichlet Allo-

cation model (LDA) [5], the di�erence being that where we model

v ∼ categorical{so�max(Ψω+ρ)}, LDA usesv ∼ categorical(Ψω)
putting simplex constraints on Ψ andω, similarly correlated topic

models [21] usev ∼ categorical{Ψso�max(ω)} where the simplex

constraint is only on Ψ. This model can also be viewed as a linear

version of the Multi-VAE [23].

We will show that using variational autoencoders with the re-

parameterization trick is an e�ective way to train the organicmodel.

The approach developed in this paper takes the organic model

and estimates Ψ by maximum likelihood and ω by posteior mean

(denoted ω̂) and then treats Ψ and ω̂ as observed in the bandit

model. The graphical model is shown in Figure 2. In this proba-

bilistic model we will develop full Bayesian inference of the β , κ ,

wa ,wb andwc . This is important because the bandit signal is very

uneven. Lots of information is available on past actions that the

previous recommender system favoured and little information or

no information is available on many other actions, meaning that

the posterior is tight in some regions but broad and highly in�u-

enced by the prior in others. We use variational approximations

and the local re-parameterization trick in order to capture this com-

plex structure.



Symbol Dimension Description

u Scalar A given user’s id.

t Scalar sequential time.

P Scalar Total number of products.

K Scalar The size of the embedding.

vu,t Scalar Product id for user u at time t .

ωu K × 1 A given user’s state.

Ψ P × K Organic embedding matrix.

Ψv 1 × K Organic embedding for v .

β P × K Bandit embedding matrix.

βv 1 × K Bandit embedding for v .

ρ P × 1 Item popularity intercept.

κ P × 1 Item recommendability intercept.

Tu Scalar Session length for u .

N Scalar The size of the Bandit dataset.

U Scalar The number of user sessions.

Table 1: Notations and De�nitions

We refer to the organic only component of the model as BLO

(Bayesian Latent Organic) model (we apply maximum likelihood

to Ψ, ρ and integrate ω). The full model is referred to as BLOB

(Bayesian Latent Organic Bandit Model).

2.1 Intuition for the model

The model presented embodies a fundamental implicit assumption

in the traditional recommendation system, the assumption that

auto-completion of a session results in good recommendations be-

ing made. This is one of the three fundamental distances of recom-

mendation, the action-history distance.

2.1.1 The implicit assumption in traditional recommendation: good

recommendations are (usually) similar to the items in the user’s his-

tory. Algorithms in the recommendation literature look at items in

a user’s history and attempt to predict the �nal element in this ses-

sion. The fraction of times that the predicted item is within the top

K items in a held out data set is a key metric called precision@K

that measures a models ability to “auto-complete” a users behavior.

The organic performance is therefore computed:

P(vu,Tu |vu,1, ..,vu,Tu−1).
Metrics such as NDCG, recall@K or log likelihood are computed

on this auto-completion task.

However auto-completion is not the same as recommendation.

In fact to reduce recommendation to auto-completion removes the

opportunity for a recommender system to help a user discover new

things which arguably is the primary objective of recommendation.

That said, organic data is usually plentiful and this implicit assump-

tion that recommendation as auto-completion certainly has some

merit. We can state this assumption as, if:

P(Vu,Tu = va |vu,1, ..,vu,Tu−1) > P(Vu,Tu = vb |vu,1, ..,vu,Tu−1)
Then itemva is probably better than itemvb as a recommendation

i.e the following holds with high probability:

P(c = 1|A = va,vu,1, ..,vu,Tu−1) > P(c = 1|A = vb ,vu,1, ..,vu,Tu−1)

Although this relationship often holds, it need not hold in every

single instance. Maybe the user already knows about itemva , maybe

the recommendation for va is unattractive or maybe the reason

the user never visited item vb is lack of knowledge and it is actu-

ally a very valuable recommendation. We want our recommender

system to make use of the organic relationship, but we also want

to learn from the logs of the recommender system itself which

records if the recommendations that we chose to deliver were suc-

cessful or not. This “bandit feedback” is in some sense the true

arbiter of if a recommendation is good or not, but the bandit signal

is usually highly concentrated around what the previous version

of the recommendation system judged to be a good recommenda-

tion, so it cannot reliably be used over the entire recommendation

space. For example the organic session might contain information

that two products (say) rice and a phone are rarely viewed together

in the same organic session. However it probably will not contain

many events where a phone is recommended to a user with rice

in their history. If the recommender system is to infer that this is

likely a poor recommendation, it must do so through a prior link-

ing the bandit behavior to the organic behavior.

When deployed in a production recommender system themodel

operates in the following way. First a posterior over a user embed-

ding is approximately calculated:

P(ωu |vu,1, ...,vu,Tu ,Ψ, ρ)
A fast variational approximation can be made of ωu ∼

N(µωq , Σωq ) which gives both a mean and a variance (this can

be done using either a variational EM algorithm or a variational

autoencoder).

For our purposes we make the pragmatic compromise that we

can summarise the user history with a posterior mean point esti-

mate ω̂ = µωq , this prevents numerical integration of ωu at rec-

ommendation time. Once this compromise is made it also makes

sense to train the organic and bandit components separately. The

probability of a click is given by:

P(c |ω̂, β,κ ,a) = sigmoid(βaω̂ + κa)
The recommender system will then choose a recommendation

that will optimise this reward (or a combination of reward and

exploration - but the explore-exploit dilemma [22] is beyond the

scope of this paper.

The organic parameters Ψ and ρ are not required in order to

deliver a recommendation. They are used only to put a prior on

the bandit embeddings.

We note parenthetically that due to the fact that once the user

embedding ω̂ is created the model is linear and we can exploit fast

algorithms to quickly �nd the optimal recommendation over large

catalogues [11, 26].

2.1.2 The organic user session. The organic user session model we

propose can be understood in a number of ways. It can be viewed

as a user item matrix factorization where the user has a latent in-

terest in K topics - a discussion of this interpretation is given in

the supplementary material.

It can also be viewed as an i.i.d. categorical process with a (usu-

ally) low-rank multivariate normal prior. The prior causes similar

items to co-occur in a session with high probability. Because of this



assumptions seeing an item will always make it more likely to be

viewed again. If we had a full rank model the user session would

imply the law of large numbers where the next item predictionwill

converge to the empirical frequency. In practice the session history

is short and the embedding size is much lower than the number of

products, but the assumption remains that viewing an item makes

the conditional probability for that same item increase (also and

importantly the conditional probability that similar items will be

viewed also increases).

This is a relatively strong assumption compared to powerful se-

quential models such as recurrent neural networks [13] which can

model complex sequences. The simpler and stronger assumption

made by BLO is reasonable in many settings and greatly simpli�es

learning.

2.1.3 The bandit session and the three distances in recommendation.

The auto-complete assumptions as embodied in the recommenda-

tion research measures the similarity between the recommenda-

tion and the items in history. This is the �rst similarity or distance,

the distance between the history and the action. The mean of the

matrix normal Ψ embodies this assumption.

The second similarity in recommendation is the similarity be-

tween actions. That is if action a1 and a2 are similar then we expect

that the responses to these actions to the same (or similar) users

be correlated. This distance is encoded with the �rst (low rank)

co-variance ΨΨ
T in the matrix normal prior on β .

The third similarity in recommendation is the similarity be-

tween users. If user u1 and u2 are similar then we expect the re-

sponse to the same (or similar) action on these users to be corre-

lated. This distance is encoded with the second co-variance ΨT
Ψ

in the matrix normal prior on β .

The e�ect of the �rst distance is to seed the recommendation us-

ing the organic similarities, the e�ect of the second and third is to

borrow strength allowing the bandit signal to be used more e�ec-

tively. Finally the parameterswa andwb control the strength of the

in�uence of the �rst and second distance. The relative strength of

the �rst distance and the second is an extremely important hyper-

parameter.

2.2 Value vs policy learning

The method proposed here is a value based method as it learns the

value for every action and then can determine a decision rule using

unconstrained optimisation. In this way it di�ers from alternative

methods for learning from bandit feedback that have been recently

proposed [3, 6, 38] which use policy learning.

Bayesian methods are inherently value based and bring the ben-

e�t of being able to synthesis data sources such as organic and

bandit, they also produce uncertainty that is useful for explore-

exploit strategies such as upper con�dence bound and Thompson

sampling [22]. From a purely statistical point of view principles

such as the conditionality and the likelihood principle actually for-

bid the use of the propensity score [2, 12]. Given that training on

bandit feedback is sometimes considered to be synonymous with

using the inverse propensity score (IPS) it is worth reviewing some

advantages of Bayesian value based methods.

It has been shown in [31], that under regularity conditions that

apply in the recommendation case, the Bernstein-von Mises the-

orem applies, and that the Bayesian estimator is e�cient
√
n con-

sistent and necessarily better than the IPS (or Horvitz-Thompson)

estimator2. However note that a real recommender system log will

be of su�cient dimensionality that even with terabytes of logs as-

ymptotic theory is usually not relevant (i.e. priors will have real

impacts).

It is also sometimes argued that the IPS score is necessary to

apply in counterfactual settings due to the domain shift which oc-

curs in causal settings [16]. However this argument does not ap-

ply when the model has enough capacity to accurately predict the

value everywhere [37] and there is no need to constrain capacity to

reduce estimator variance when applying Bayesian methods [28].

It seems that some of the positive aspects of value based methods

have been overlooked due to criticisms that apply only in the non-

Bayesian case.

Policy learning also su�ers from some draw backs. Policy learn-

ing extends the principle of Statistical Learning Theory (SLT) to

the counterfactual setting. The idea of SLT is that a decision rule

is �t to the historical data from a constrained set. If a decision rule

from a restricted set has good performance (low risk) then it is

likely to also have low risk on out of sample data [41]. These anal-

yses are based upon treating empirical risk or counterfactual risk

as a statistic, but these are highly non-su�cient statistics and there

is no ability to order decision rules that have the same empirical

risk even when away from the data they are very di�erent. The

theory is heavily based on having a restricted set of decision rules,

but restricting the set might exclude good decisions. Value based

methods make no such restriction.

Extending SLT to the counterfactual setting requires some addi-

tional ideas because the consequences of decisions the new policy

will make are not available. IPS based methods have been a recent

research focus that extend the empirical risk minimisation to the

counterfactual setting. Technical challenges are being addressed

such as the fact that the variance of the decision rule can vary de-

pending on how much it di�ers from the historical logging policy

[39]. As well as the problem of propensity over�tting i.e. decision

rules can achieve an estimated reward of 0 by avoiding past de-

cisions (0 might be good or bad depending on how the reward is

de�ned) causing decision rules either to cling to the old policy or to

be driven away from it3. It is usually considered a better heuristic

for the new policy to cling to the old one.

One simple method to control variance is to cap large weights

[6] (necessarily associatedwith actions that are di�erent to the log-

ging policy). This method controls the bias-variance trade-o�. An-

other method that more explicitly discourages deviation from the

logging policy is to apply variance penalization [39] here rather

than optimizing the conterfactual risk directly a penalized term is

instead optimized, this penalization naturally goes up if the rec-

ommendations are rare under the logging policy (and hence have

a high IPS weight).

2They additionally show that IPS based methods can have better frequentist proper-
ties than Bayesian estimators when these regulatory conditions break down.
3The self normalized importance sampling variant of IPS is one proposal to remove
this sensitivity to the de�nition of the reward[36]



Many of the standard policy learning settings 4 have the prop-

erty that the learnt policy will only deviate from the preferred de-

cision of the logging policy in the face of considerable evidence.

This is a good heuristic in cases where the logging policy is good,

but can be a problem in other situations.

The potential strength of policy based approaches is due to the

fact they do not use amodel and they focus directly on the decision

rule focusing optimisation and capacity on the parts of the problem

that matters most. Bayesian value based methods cannot do this

because the modelling step is made before and separately to the

decision making step.

3 MODEL TRAINING

3.1 Organic session training: learning the
organic embeddings

The log likelihood of the organic model has the form:

logp(v1, ..,vT ,ωu |Ψ) =
(

T
∑

t

Ψvtωu + ρvt

)

−T log{
P

∑

p

exp(Ψpωu + ρp )} + logp(ωu )

As the posterior on ω is intractable, we use a normal distribution

ωu ∼ N(µqω ,Σqω ) to approximate it, we get a variational lower

bound of the form:

L = E
q(ωu )

[log p(v1, ..,vT ,ωu |Ψ) − logq(ωu )] =
(

T
∑

t

Ψvt µqω + ρvt

)

−T E
q(ωu )

[log{
P

∑

p

exp(Ψpωu + ρp )}]

− KL(q(ωu)|p(ωu)).

Where KL is a closed form KL divergence between the variational

posterior and the prior (a multivariate standard normal distribu-

tion). We see that there is a problematic term associated with the

denominator of the softmax. We use the re-parameterization trick

[18] to overcome this term. It is also possible to use the Bouchard

bound (which also enables an EM algorithm) and the log concave

bound, both bounds can alleviate computational issues associated

with the softmax sum [7], details of these lower bounds and the

EM and simulated EM algorithm are given in the supplementary

material.

3.1.1 Re-parameterization Trick. An e�ective approach to com-

puting expectations with respect to the denominator of the soft-

max is to use the re-parameterization trick [18], which allows us

to take a sample of ω from the variational distribution and com-

pute a noisy derivative of the lower bound. Within each iteration

we proceed by simulating: ϵ (s) ∼ N(0K , IK ), and then computing:

ω(s)
= LΣqω ϵ

(s)
+ µqω . Where LΣqω L

T
Σqω

= Σqω , we can then

4This includes having reward positive and no-reward zero, capping and variance
penalization

optimize the noisy lower bound:

LMC =

(

T
∑

t

Ψvt µqω + ρvt

)

− KL(q(ωu)|p(ωu))

−T log[
P

∑

p

exp{Ψp (LΣqω ϵ
(s)
+ µqω ) + ρp }]

Often Σqω is taken to be diagonal which makes computing LΣqω
simply an element-wise square root.

A naive application of the algorithm discussed so far would have

the number of variational parameters µqω ,Σqω growing with the

number of user sessions. We propose instead to limit the number

of parameters by the use of a variational auto-encoder [18]. This

involves using a �exible function and optimizing it to do the job of

the EM algorithm i.e.

µqω , Σqω = fΞ(v1, ...vT ),
Where any function e.g. a deep net can be used for fΞ(·) such as a

deep or shallow neural network.

3.2 Bandit session training: learning the bandit
embeddings

For every user we compute: ω̂u = f (vu ) (uncertainty over ωu is

ignored and a point estimate taken). The hierarchical model has

the form:

wa ∼ N(µ0wa ,σ
2
0wa

), wb ∼ N(µ0wb ,σ
2
0wb

), wc ∼ N(µ0wc ,σ
2
0wc

)

κ ′ ∼ N(0P ,σ2κ0 IP ), κ = κ ′
+wc

β |Ψ,wa ,wb ∼ MN(s+(wa )Ψ, s+(wb )ΨΨ
T
, s+(wb )

1

P
Ψ
T
Ψ)

cn |an , β,ω,κ ∼ Bernoulli{sigmoid(βanωn + κan )}.
While β is a [P x K] random variable, we can leverage its low rank

covariance matrix to transform the problem to infering a posterior

on a [K x K] random variable. This reduces dramatically the train-

ing time as P, the size of the catalog items is usually very large

compared with K. The low rank alternative parameterization of

this distribution can be set as follows. Let:

ζ ∼ MN(0K,K , IK , IK ).

If we let L = chol( 1P Ψ
T
Ψ) i.e. LLT = 1

P Ψ
T
Ψ. A valid way to

sample from a matrix variate normal gives:

β = s+(wa )Ψ + s+(wb )ΨζLT

As mentioned before, we treat the problem in a Bayesian way

and approximate the posterior over all the parameters. We use

variational inference to transform the problem into an optimiza-

tion problem. We use a univariate normal variational approxi-

mation on wa ,wb ,wc with means µqwa , µqwb
, µqwc and variance

σ2qwa ,σ
2
qwb
,σ2qwc . The variational approximation on κ is a diago-

nal covariance multivariate normal with mean given by µqκ and

covariance given by diag(σ2
qκ ). Similarly we put a univariate nor-

mal variational approximation over each element of ζ parameter-

ized so that ζi, j has mean µqζi, j and variance σ2qζi, j
. This gives us

2(P +K2
+ 3) parameters to estimate. We denoteQ as the Gaussian



variational posterior over all of the parameters, and P the prior and

maximize :

L = E
Q
[cn log sigmoid(λn) + (1 − cn) log{1 − sigmoid(λn)}] (1)

− 1

N
KL(Q |P),

where:

λn = βan ω̂n + κan

= s+(wa )Ψan ω̂n + s
+(wb ){(Lω̂n)T ⊗ Ψan }vec(ζ ) + κan

We use the local re-parameterization trick [17] which uses the

A�ne transform properties of multivariate Gaussian distribution

to allow the re-parameterization trick to be employed on lower di-

mensions. This results in sampling at lower dimensions and more

importantly makes the derivatives of the loss less noisy. To imple-

ment the local re-parameterization trick we draw random samples:

ϵwa ∼ N(0, 1), ϵwb
∼ N(0, 1), ϵlrt ∼ N(0, 1), ϵκ ∼ N(0, 1).

with Rn = (Lω̂n)T ⊗ Ψan , we can get a one dimentional noisy

estimate of λn :

λ̂n =s
+(µqwa + ϵwaσqwa )Ψan ω̂n

+ s+(µqwb + ϵwb
σqwb

)(Rn vec(µqζ ) + ‖RTn ⊙ vec(σqζ )‖2ϵlrt)

+ µqκa + µqwc + ϵκ

√

σ2
qκa
+ σ2qwc .

where ‖ · ‖2 denotes theL2 norm and ⊙ element wisemultiplication.

We can optimize a noisy version of our objective :

L̂n =cn log sigmoid(λ̂n) + (1 − cn ) log{1 − sigmoid(λ̂n)} (2)

− 1

N
KL(Q |P).

We call the solution of this optimization problem BLOB-NQ as

we considered a Normal approximation for the posterior on ζ .

An alternative approach is to use a matrix variate normal dis-

tribution as the variational approximation of ζ with mean ma-

trix µqζ and the two covariance matrices given by: diag(σ2
qζ1

)
and diag(σ2

qζ2
). This reduces the number of variational parame-

ters used for representing the variance of the variational poste-

rior. We thus need to estimate 2(P + 3) + K2
+ 2K which is less

then the previous approximation for K ≥ 2. To apply the local

re-parameterization trick let:

stdn =
√

(σ2
qζ1

· Ψ2
an )(σ

2
qζ2

· (LT ω̂n)2)

ϕ̂n =s
+(µqwa + ϵwaσqwa )Ψan ω̂n

+ s+(µqwb + ϵwb
σqwb

){Ψan µqζ L
T ω̂n + stdnϵlrt}

+ µqκa + µqwc + ϵκ

√

σ2
qκa
+ σ2qwc .

A noisy estimate of the lower bound can then be computed by sub-

stituting ϕ̂n into Equation (2). We call its solution BLOB-MNQ as

we use a Matrix Normal variational posterior.

In both approximations and when the objective is at its maxi-

mum, we can take a point estimate of the bandit embeddings:

β̂ = s+(µqwa )Ψ + s
+(µqwb )Ψµqζ L

T
.

The bandit embedding can be interpreted as a weighted sum of

the organic embedding and the organic embedding multiplied by

a K ×K matrix that can adjust the bandit embeddings based on the

bandit signal.

4 RESULTS

4.1 Organic Evaluation

We demonstrate that our method produces useful user representa-

tions on next item prediction using the RecoGym simulation en-

vironment [33]. RecoGym is a framework for simulating a recom-

mender system and enables the simulation of A/B tests although

here we simply use it to create organic sequences of item views

and test the organic model’s ability to do next item prediction. We

split both the datasets into train and test so that sessions reside en-

tirely in one of the two groups. We �t the model to the training set,

we then evaluate by providing the model v1, ..vTu−1 events and

testing the model’s ability to predict vTu .

The organic model was implemented using the PyTorch auto-

matic di�erentiation package in Python [30] and trained using

Stochastic Gradient Descent (SGD), speci�cally the RMSProp vari-

ant. We set the learning rate to 0.001 and tune the other hyper-

parameters, including L2 regularization, for each dataset based

upon a validation set5.

The various models are evaluated using recall at K (RC@K) and

truncated discounted cumulative gain at K (DCG@K), which are

de�ned below.

Let rk be the kth highest value of p(ωvTu |v1, ..vTu−1). For all
results presented in this paper, we set K to 5.

RC@K =

{

1, if vTu ∈ {r1, ..., rK }.
0, otherwise.

DCG@K =
∑

i

2ri1{vTu ∈{r1, ...,rK }} − 1

log i + 1
.

We compute the average of these quantities over all sessions in the

test set.

We consider two alternative methods for training the model:

• Bouch/AE - A linear variational auto-encoder using the

Bouchard bound (see the supplementary material).

• RT/AE - A deep auto-encoder again using the re-

parameterization trick. The deep auto-encoder consists of

mapping an input of size P to three linear recti�er layers of

K units each.

When we update the posterior over a user’s latent variable rep-

resentation at test time, we assess both using the auto-encoder de-

noted AE and using the 100 iterations of the EM algorithm denoted

EM in the results.

When we compute next item predictions we consider both us-

ing a 100 sample Monte Carlo approximation denoted MC and just

taking the mean as a point estimate denoted mean it uses only µqω
(and correspondingly ignores Σq ).

5Source code: https://github.com/criteo-research/blob). The RecoGym simulator al-
lows reproducible results for all recommendation algorithms and policies.

https://github.com/criteo-research/blob


Train Online Online RC@5 DCG@5

Algorithm Latent Next Item

Pop 0.020 0.016

ItemKNN 0.020 0.024

RNN 0.035 0.033

Bouch/AE AE MC 0.082 0.128

Bouch/AE AE mean 0.082 0.079

Bouch/AE EM MC 0.117 0.128

Bouch/AE EM mean 0.117 0.130

RT/AE AE MC 0.090 0.105

RT/AE AE mean 0.080 0.068

RT/AE EM MC 0.090 0.105

RT/AE EM mean 0.090 0.106

Table 2: Results on the testset of RecoGymdataset with 2000

products. For both metrics, a higher value is better.

To demonstrate the e�ectiveness of our approach, we present

results from the following baseline approaches:

Popularity: Item popularity provides no personalization, but is

nonetheless a strong baselines for certain recommendation tasks.

Item KNN: Item K Nearest Neighbors (KNN) involves comput-

ing the correlation matrix of the sample data adding the identity to

prevent division by zero and then using these correlations as rec-

ommendations based on a user’s most recent historical item. The

limitations of this technique is that it ignores item popularity and

multiple items in the user’s history, but despite these limitations it

is often a strong baseline.

Recurrent Neural Network: For this baseline, we make use

of a recurrent neural network to learn a user representation by

predicting the next item in the session. The model architecture we

employ is similar to that of [13], in that we feed the output from

an embedding layer into a Gated Recurrent Unit (GRU) [9] with 64

hidden units to learn the temporal dynamics of the user’s session.

The output from the GRU is then passed through a �nal softmax

layer which gives the probability of the next item in the sequence.

The network is trained to minimize the categorical cross-entropy

over the training sessions via RMSProp.

For our organic experiment we use the RecoGym simulatorwith

2000 products and σω = 0, i.e. a static user state, we generate a

training set of 100 sessions and a test set of 100 sessions, this results

in 21852 and 19533 events for train and test respectively. The BLO

models were all trained using 15000 epochs using the RMSProp al-

gorithm, the embedding size was set to 10. The RNN was trained

with K=200 for 5000 epochs (it performed slightly worse with a

training run of 25000). The results are shown in Table 2. BLO is

much better than the baselines at standard organic recommender

systems metrics. However if being able to build an adequate model

of organic behaviour is su�cient for building a recommender sys-

tem depends on if the organic behaviour is aligned with bandit

behaviour. This requires using RecoGym for its intended purpose

simulating A/B tests and varying the agreement between the or-

ganic behavior and bandit behavior using the provided �ips pa-

rameter.

4.2 The Complete Model - Organic and Bandit

4.2.1 Experimental Setup. Unfortunately no real world dataset ex-

hibits the required properties (both organic and bandit behavior)

moreover no real world dataset including counterfactual datasets

allow us to evaluate the quality of a recommender systems recom-

mendations reliably. For this reason for the complete dataset we

do our evaluations completely in the RecoGym simulator. A strong

advantage of the simulation environment is that not only can we

compute o�ine organic metrics but we can also simulate A/B tests.

Another advantage of the RecoGym simulator that simulates

both organic and bandit behaviour is that algorithms from the tra-

ditional organic part of recommender systems research and ban-

dit algorithms can be compared side by side. We consider tradi-

tional organic algorithms like ItemKNN [10] along side our or-

ganic Bayesian Latent Organic model (BLO) and sophisticated deep

learning approaches such as the MultiVAE [24]. In the case of ban-

dit algorithms we can test value based logistic regression as well

as the policy based contextual bandit. In order to apply any ban-

dit algorithm we need to perform feature engineering in order to

transform the history consisting of item views into a vector of his-

tory. For the logistic regression we elect to make a P dimensional

feature vector crossed with the action also of size P giving P2 fea-

tures. Similarly the contextual bandit is a linear model that maps

the P dimensional vector of historical counts to a P dimensional

action space.

We are interested to see how the recommender system responds

to di�erent logging policies, we therefore test it using a good log-

ging policy based on the session popularity. That is the probabil-

ity 1 − ϵ is shared proportionally to the items in a users history

we use considerable exploration (ϵ = 0.3). We are interested in

the (common) case where we have plentiful organic data so we set

RecoGym to have 20000 organic sessions. Finally we are interested

in situations where the next item prediction is an optimal recom-

mendation and cases where the organic signal alone is misleading

to recommendation quality. This connection between the organic

and the bandit signal is controlled with the �ips parameter in Rec-

oGym. The �ips parameter permutes the behavior of two actions.

A unique feature of RecoGym is that we are able to simulate

both organic and bandit feedback, this means we are able to com-

pare algorithms that operate on the bandit signal (both policy and

value based) with algorithms that operate on the organic signal.

We consider the following baselines:

Logistic regression (bandit, value): Perhaps the simplest way

to process a bandit signal. We regress the reward on features de-

rived from the users history and the recommended action. In order

to deliver the recommendation we predict the reward for every ac-

tion and select the highest.

Contextual bandit (bandit, policy): The contextual bandit is

a policy based method that maps a context to a recommendation

in one-of-n coding a vector of length P . The algorithm is trained

using counterfactual risk minimization using the IPS score logged

by RecoGym without any clipping or variance penalty.

Session ItemKNN (organic): This organic algorithm operates

by determining for each session if an item was present or absent,

from this dataset a correlation matrix is computed. At recommen-

dation is delivered by computing the average correlations for each



item in history as a single vector and then taking the maximum.

We take the whole session into account rather than the most re-

cent item (unlike most recent ItemKNN used above).

Multi-VAE (organic): A state of the art deep learning recom-

mendation algorithm similar to the organic portion of the model

presented here except the model is non-linear and uses some non-

standard heuristics such as “beta-annealing”.

BLO (organic): The organic portion of the model developed

here. We set the embedding size to be K=20 and use a linear vari-

ational auto-encoder. This is implemented in PyTorch. A learning

rate of 0.0001 is used with 1000 epochs and an embedding size of

K = 20.

BLOB (organic and bandit combined): The complete model

developed here. We use priors: wa ∼ N(−1, 12) wb ∼ N(−6, 12)
wc ∼ N(−4.5, 102) κ ∼ N(wc , 0.01

2I ). We consider both the nor-

mal variational approximation NQ and the matrix normal varia-

tional approximation MNQ. The bandit layer is implemented us-

ing TensorFlow with a learning rate of 0.001 and 800 epochs for

the P=100 and 1200 epochs for the P=1000, with a batch size of

1024 and using the RMSprop training algorithm.

Random: The actions are recommended randomly. A weak

baseline but useful to calibrate performance.

4.2.2 Experimental Results. The �rst experiment considers the

catalog size to be P=100, the number of user sessions to be 1000,

the simulated A/B test is done over 4000 users and the logging

policy being session popularity with epsilon greedy exploration

(epsilon=0.3). This means that the bandit signal will resemble that

found in real systems with a strong signal around some actions

favoured by the previous version of the recommender system (ses-

sion popularity policy - a decent baseline) and a weak signal over

much of the remaining action space. Results are shown in Table 3.

In the Flips=0 scenario RecoGym is con�gured so that next item

prediction based on organic data is a perfect proxy for delivering

good recommendations. As a consequence all the organic based

methods do well including the BLO (organic), both our methods

that combine organic and bandit BLOB-NQ and BLOB-MNQ and

the Multi-VAE baseline, the Session ItemKNN baseline while or-

ganic does not perform well.

When the Flips=50 scenario RecoGym internally permutes 50

actions behavior this means that next item prediction is now a poor

proxy of recommendation performance. We see this as all purely

organic based agents now perform poorly indeed the connection

between organic and bandit is reduced to the point that Session

ItemKNN, the Multi VAE and BLO all perform worse than random.

It is in this case that the value of our BLOB model is demonstrated

as both BLOB NQ and BLOB MNQ perform strongly.

For the purely signal bandit algorithms the value based Log Reg

and the policy based CB perform similarly to each other and with

Flips=0 and Flips=50. They perform a little better than random (ex-

cept for CB Flips=50) demonstrating that there is some usable sig-

nal in the bandit feed back but are far from state of the art espe-

cially in the Flips=0 case where ignoring the organic signal pro-

foundly limits recommendation quality. In the Flips=50 case the

pure bandit approaches outperform the purely organic algorithms

but the combined approach performs signi�cantly better giving a

click through rate of 1.57% for the BLOB NQ compared to 1.21%

for the logistic regression.

Importantly the BLOB NQ and BLOBMNQ outperformor equal

the other methods in the Flips=0 setting and outperform the other

methods in the Flips=50 setting.

Table 3: Simulated A/B test results on the RecoGym simula-

tor using: P=100, U=1000, organic only sessions=20 000.

Agent Type CTR (%) CTR (%)

Flips=0 Flips=50

Log Reg (bandit) 1.37 1.21

CB (bandit) 1.37 1.09

ItemKNN (organic) 1.39 0.92

MultiVAE (organic) 2.43 0.76

BLO (organic) 2.42 0.76

BLOB-NQ (combined) 2.42 1.57

BLOB-MNQ (combined) 2.40 1.56

Random 1.09 1.11

The second experiment considers the same setup but with P =

1000, we also increase the number of epochs on the bandit compo-

nent of the model to 1200. Results are shown in Table 4.

Again we see that the methods that use the organic data either

the purely organic or the combined BLOB methods we propose

perform work well when Flips=0, but when Flips=500 the purely

organic methods fall in performance to little above random yet

the combinedmethods BLOB-MNQ and BLOB-NQ continue to per-

form well beating all other baselines.

The policy based contextual bandit shows a small improvement

over the value based logistic regression in the Flips=0 case al-

though this advantage vanishes when Flips=500, this is may be

due to the fact that the contextual bandit “clings” to the logging

policy and the session popularity logging policy is better in the

case where Flips=0.

Table 4: Simulated A/B test results on the RecoGym simula-

tor using: P=1000, U=1000, organic only sessions=20 000.

Agent Type CTR (%) CTR (%)

Flips=0 Flips=500

Log Reg (bandit) 1.26 1.30

CB (bandit) 1.38 1.29

ItemKNN (organic) 1.39 0.87

MultiVAE (organic) 2.43 1.15

BLO (organic) 2.42 1.13

BLOB-NQ (combined) 2.40 1.51

BLOB-MNQ (combined) 2.39 1.62

Random 1.13 1.12

5 CONCLUSION

We focus on a particular recommendation task, one where a user

pro�le is de�ned by a history of items in a catalog and the recom-

mendation task is to recommend items from the same catalog. Our

model is able to learn both from the organic signal and the bandit



signal jointly beating baselines in a range of settings by exploit-

ing the three fundamental distances of recommendation action-

history, action-action and history-history.

We use computational techniques which allow allow large scale

Bayesian inference suitable for Recommendation with large cata-

logs. The local re-parameterization trick was particularly valuable

in reducing the variance in our optimisation problem.

BLOB is able to performwell both in situations where next item

prediction is a good proxy for recommendations and situations

where it is poor. Meeting the performance of pure organic algo-

rithms in settings where the organic signal is su�cient and ex-

ceeding all baselines organic and bandit (policy) and bandit (value).

This strongly validates the value of Bayesian methods to infer in

the cases of a signal of varying strength and their practical value

thanks to modern developments in Bayesian deep learning.

There are many possible extension to this work, one is to pro-

duce end to end training i.e. training both the organic and bandit

component simultaneously. To apply this approach would require

a more complicated training procedure. We also expect there are

other useful ways to combine organic and bandit signal, perhaps

based on models that avoid the softmax and sigmoid transform

such as LDA for the organic and using the approach out lined in

[25] for the Bandit. Avoiding softmax and sigmoid transforms has

both computational advantages and can increase interpretability.
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6 SUPPLEMENTARY MATERIAL

6.1 Approximating expectations under the log
softmax

The variational lower bound of BLO (and BLOB) contains a log soft-

max term. An alternative to using the re-parameterization trick is

to use The Bouchard bound which removes the need for Monte

Carlo methods. The Bouchard bound introduces a further approxi-

mation and additional variational parameters a, ξ but produces an

analytical bound:

L ≥ LBouch =

(

T
∑

t

Ψvt µqω + ρvt

)

−T [a +
P

∑

p

Ψpµqω + ρp − a − ξp

2
+ log(1 + eξp )

+ λJJ(ξp ){(Ψpµqω + ρp − a)2 + ΨpΣqωΨ
T
p − ξ 2p }]

− K

2
log(2π ) − 1

2
{µTqω µqω + trace(Σqω )} +

1

2
log |2πeΣqω |.

Because the Bouchard bound causes the softmax to decompose

into a sum we can avoid the expensive normalization by subsam-

pling some of the terms in the softmax.

L̂Bouch(v1, ...,vT ,n1, ...nS ,Ξ,Ψ) =
(

T
∑

t

Ψvt µqω + ρvt

)

−T [a + P

S

S
∑

s ′=1

Ψns′µqω + ρns′ − a − ξns′

2
+ log(1 + eξns′ )

+ λJJ(ξns′ ) × {(Ψns′µqω + ρns′ − a)2 + Ψns′ΣqωΨ
T
ns′ − ξ 2ns′ }]

− K

2
log(2π ) − 1

2
{µTqω µqω + trace(Σqω )} +

1

2
log |2πeΣqω |.

where v1, ...,vT are the items associated with the session and

n1, ...nS are S < P negative items randomly sampled, and λJJ(·)
is the Jaakola and Jordan function [14]:

λJJ(ξ ) =
1

2ξ

(

1

1 + e−ξ
− 1

2

)

.

This algorithm is similar to the word2vec algorithm [27] but

without any non-probabilistic heuristics.

6.2 Log concavity bound

The log concave bound [4, 7, 35] also breaks the log softmax into

a sum

log p(v1, ..,vT ,ωu |Ψ) =
(

T
∑

t

Ψvtωu + ρvt

)

−T log{
P

∑

p

exp(Ψpωu + ρp )} −
K

2
log(2π ) − 1

2
ωT
uωu

≥
(

T
∑

t

Ψvtωu + ρvt

)

−Tϕ{
P

∑

p

exp(Ψpωu + ρp )} +T logϕ +T − K

2
log(2π ) − 1

2
ωT
uωu

= Llog



Lloд = Eq(ω)[Llog] − KL(Q, P) =
(

T
∑

t

Ψvt µqω + ρvt

)

−Tϕ{
P

∑

p

exp(Ψpµqω + ρp +
1

2
ΨpΣqωΨ

T
p )} + logϕ + 1

− KL(Q, P).

A fast noisy version of the bound is:

L̂loд(v1, ..,vT ,n1,nSneg ) =
(

T
∑

t

Ψvt µqω + ρvt

)

− KL(Q, P)

−T
P

Sneg
ϕ{

Sneg
∑

s ′
exp(Ψns′µqω + ρns′ +

1

2
Ψns′ΣqωΨ

T
ns′ )} +T logϕ +T

Finally the one vs each bound [40] also breaks the log softmax into

a sum without introducing any variational parameter whatsoever.

We can also use a variational auoto-encoders for a, ξ in the case

of the Bouchard bound and ϕ in the case of the log concave bound

to prevent variational parameters growing with the size of the

dataset. This is similar to the augment and reduce approach [35]

but has no requirement to be in complete data exponential family

form.

The computational impact of turning the log softmax into a sum

computationally is driven by P and GPU size. If P is small com-

pared to the GPU it may be preferable to avoid using any addi-

tional approximations and compute the full softmax using the re-

parameterization trick.

6.3 The EM Algorithm - an alternative to the
VAE

6.3.1 Standard EM algorithm. If the parameters Ψ, ρ are already

known then the posterior over the user embedding ω may be cal-

culated by optimizing the lower bound using the following varia-

tional EM algorithm. The EM algorithm exploits the fact that the

Bouchard bound is quadratic and conjugate to the Gaussian distri-

bution. The algorithm here is the dual of the one presented in [7]

as we assume the embedding Ψ is �xed and ω is updated where

the algorithm they present does the opposite. The EM algorithm

consists of cycling the following update equations:

Σ
−1
qω = Ik + 2T

∑

p

λJJ(ξp )ΨT
p Ψp ,

µqω = Σqω

(

(
T
∑

t

Ψ
T
vt ) −T

[

P
∑

p

{ 1
2
+ 2(ρp − a)λJJ(ξp )}ΨT

p

])

,

a =
−1 + P

2 +
∑

p 2λJJ(ξp )(Ψpµqω + ρp )
2
∑

p λJJ(ξp )
,

ξp = h(Ψp , ρp ,a,Σqω , ρq ) =
√

ΨpΣqωΨ
T
p + (Ψpµqω + ρp − a)2.

6.3.2 Fast online EM algorithm. We further note that the EM algo-

rithm is (with the exception of the a variational parameter) a �xed

point update (of the natural parameters) that decomposes into a

sum. The terms in the sum come from the softmax in the denom-

inator. After substituting a co-ordinate descent update of a with

a gradient descent step update, then the entire �xed point update

becomes a sum:

(Σ−1qω )
new
= Ik + 2

∑

p

λJJ(h(Ψp , ρp ,a,Σqω , ρq ))ΨT
pΨp ,

(Σ−1qω µqω )
new
= (

T
∑

t

Ψ
T
vt )

−T

[

P
∑

p

{ 1
2
+ 2(ρp − a)λJJ{h(Ψp , ρp ,a,Σqω , ρq )}}ΨT

p

]

anew =a +
−1 + P

2

2

+

∑

p

λJJ{h(Ψp , ρp , a,Σqω , ρq)}

× (Ψpµqω + ρp ) − aλJJ{h(Ψp , ρp ,a,Σqω , ρq )}
That is the EM algorithm can be written:

(

(Σ−1qω )
new
, (Σ−1qω µqω )

new
,anew

)

=

P
∑

p

д(Ψp , ρp ,Σ
−1
qω ,Σ

−1
qω µqω ,a).

As noted in [8] when an EM algorithm can be written as a �xed

point update over a sum, then the Robbins Monro algorithm can

be applied. Allowing updates of the form (p is chosen randomly):

(Σ−1qω )
(s)
,(Σ−1

qω µqω )
(s)
,a(s)

= (1 − ∆s )
(

(Σ−1qω )
(s−1)
, (Σ−1qω µqω )

(s−1)
,a(s−1)

)

+ ∆sд(Ψp , ρp , (Σ−1qω )
(s−1)
, (Σ−1qω µqω )

(s−1)
,a(s−1)).

where ∆ is a slowly decaying Robbins Monro sequence ([32]) with

∆1 = 1 (meaning no initial value of (Σ−1qω )
(0)
, (Σ−1qω µqω )

(0)
, a(0)) is

needed. For large P this algorithm is many times faster than the

generic EM algorithm. Note that (unusually) the Robbins Monro

algorithm is applied to the softmax of a large categorical variable

and not to individual records under a conditionally independent

assumption.

There are other variational bounds that may be considered for

this problem most notably the tilted bound [19]. For the tilted

bound the known �xed point algorithms are not guaranteed to be

stable and are not always stable in practice [29, 34] so extra meth-

ods such as line searches would need to be considered.the tilted

bound also does not decompose into a sum. We do not further con-

sider alternative bounds.

The computational cost of this algorithm depends on the num-

ber of products P linearly and the embedding size K cubicly, if P

and K are modest it can take less than a second making it poten-

tially deployable at prediction time. In practicewe found the cost of

large P might be prohibitive due to the sums over all P embeddings,



in these cases a variational auto-encode described in the next sec-

tion, is to be preferred.

6.4 Next Item Prediction

The predictive distribution required to do next item prediction is

also not trivial in this case, i.e. approximating:

p(vu,T+1 |vu,1, ..,vu,T )

=

∫

p(vu,T+1 |ω,Ψ, ρ)p(ω |vu,1, .vu,T )dωu

is not trivial even if p(ω |vu,1, ..vu,Tu ) is approximated with a

Gaussian distribution ωu |v1, ..vT ∼ N(µqω ,Σqω ). We are inter-

ested in computing:

p(vn+1 |v1, ...vn ) ≈ E
q(ω)

[

exp(Ψvω + ρ)
∑

v ′ exp(Ψv ′ω + ρ)

]

.

We considered using a Monte Carlo based approximation, �rst by

drawing S samples:

ω(s) ∼ N(µqω , Σqω ),

p(vn+1 |v1, ...vn ) ≈
1

S

S
∑

s

exp(Ψvω
(s)
+ ρ)

∑

v ′ exp(Ψv ′ω(s)
+ ρ)
,

as well as using a number of fast approximations such as:

p(vn+1 |v1, ...vn ) ≈
exp(Ψvµqω + ρ)

∑

v ′ exp(Ψv ′µqω + ρ) .

while we investigated more complex approximations (such as nor-

malizing the exponential of the lower bound) we did not �nd they

helped in practice.
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