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The subharmonic acoustic emission of a stable oscillating bubble inside a rigid tube is investigated by direct
numerical simulation. The mechanisms of bubble-tube interaction on the acoustic wave emitted by the bubble
are clarified. When the bubble is small compared to the tube diameter, a critical threshold for the pressure
amplitude appears beyond the point which nonspherical effects become important and bubble breaks. For a finite
tube diameter, the scattered wave by the bubble is shown to generate a plane wave where the intensity of the
subharmonic component becomes maximum for an optimal distance between the bubble and the tube wall. This
effect seems to be directly related to the appearance of local resonance phenomena and a bubble resonance shift
where liquid’s compressibility plays a major role.
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I. INTRODUCTION

The subharmonic component of the acoustic wave scat-
tered by a bubble is an important nonlinear mechanism in
physical, chemical, and biological processes occurring in
complex liquid environments [1,2]. The interest of detecting
the subharmonic component of the signal is that, comparing
to the tissue or other acoustic sources, the subharmonic can be
almost uniquely created by bubbles, while the modification of
the fundamental and superharmonic component of the signal
can be modified by various different mechanisms. Thus, the
use of subharmonics have been traditionally used to simplify
the usually complex filtering procedures for imaging [3] and
to easily classify the bubble cluster response during sonolu-
minescence [4–6].

In classical models used to discuss the appearance of a
subharmonic the bubble is assumed to be spherical, so that the
bubble radius temporal evolution R(t ) can be described using
a Rayleigh-Plesset–like (RP-like) equation [7]:

ρl0 RR̈ + 3

2
ρl0 Ṙ2 = pb − pe − ρl0

∂φint

∂t
, (1)

where ρl0 is the external liquid density which is assumed to be
constant, pb is the pressure inside the bubble, pe is the external
pressure in the liquid phase, and φint (t ) is the interacting
potential.

The limiting case of φint (t ) = 0 (e.g., a spherical bubble
oscillating in an infinite amount of liquid) the subharmonic
emission by a bubble has been widely investigated. For in-
stance initial studies were sought to understand the threshold
of the appearance of subharmonics [8–10], the influence of the
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ambient pressure on subharmonic emission [11–13], and the
optimal driving waveform [14–16].

However, in many natural environments and industrial ap-
plications, the bubble oscillates interacting with other bubbles
or the presence of solid walls that prevents neglecting the
interaction term φint (t ) [17]. This interaction term can signifi-
cantly influence the predictions of the frequency spectrum of
the acoustic wave emitted by bubbles [18–20], revealing the
importance of modeling this term correctly. Jiang et al. [21]
show that the interaction between two bubbles imposes an
extra nonlinear influence on bubble oscillation, which can be
observed by a development of the subharmonic component on
the frequency spectra of the acoustic emission signal. Guédra
et al. [22] has extended Prosperetti analyses to a bubble inside
a bubble cluster to obtain an analytical expression of the
subharmonic threshold accounting for direct bubble-bubble
interactions. The main conclusion is that the presence of sur-
rounding bubbles induce a shift on the subharmonic resonance
frequency and decrease of the pressure threshold required to
observe the appearance of subharmonics.

These studies rely on the correct representation of φint

by a simplified model, which is not always straightforward.
Supposing that (i) the bubble radius is small in compar-
ison with the wavelength of the external driving pressure
and (ii) the averaged distance between the bubbles is small
compared to the wavelength, the interaction term is usually
calculated taking advantage of the incompressible assumption
in the bubble near field [23–26]. This approach is problematic
when the number of bubbles is large because the interaction
term diverges [27,28] and one needs to introduce a cutoff
distance within which bubble-bubble interactions effectively
occur [29]. An alternative physical approach to resolve the
paradox is to account for liquid compressibility [30]. In the
context of bubble screens Leroy et al. [31] propose a solution
for the linearized problem. Alternatively, Miksis and Ting [32]
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propose to obtain φint (t ) from leading order terms related to
liquid compressibility using a multiscale approach still using
a locally incompressible assumption in the near field. Whether
the incompressible or compressible interaction mechanism
prevails in a general configuration is not fully clarified. In
addition, a common problem of all RP-like models is that
in the nonlinear regime the bubble is expected to oscillate
nonspherically due to the presence of the tube.

In this study, we use direct numerical simulations (DNS)
to clarify the capability of simplified models to capture the
acoustic emission of subharmonics by bubble oscillations in
a tube. The bubble oscillation amplitude and the frequency
spectra of the pressure wave emitted by the bubble are
presented as a function of the most relevant dimensionless
parameters: the forcing amplitude, the Weber number, and the
ratio between the bubble radius and the tube diameter.

II. PHYSICAL MODELS

A. Full model

In this section, a brief description of the DNS method
used is given. The reader is referred to Ref. [33] for further
details. The method is implemented in the open source solver
Basilisk [34] and it has yielded excellent agreement with ex-
perimental results. We solve for the Navier-Stokes equations
for a mixture of two immiscible substances where the position
is defined by a Heaviside function H that takes the value of 1
in the reference phase. The interface position is then given by
the solution of an advection equation for H

∂H
∂t

+ u · ∇H = 0. (2)

The model is based on the six equation model that solves
for the continuity and energy equations for the ith phase
(i ∈ g, l corresponding to the gas phase and the liquid phase)
and the averaged momentum equation. In this paper we
restrict ourselves to situations where thermal diffusion and
mass transfer effects are not relevant so that the final system
becomes

∂ρi

∂t
+ ∇ · (ρiui ) = 0, (3)

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ∇ · τ ′
i + σκ∇c, (4)

∂ρiei + 1/2ρiu2
i

∂t
+ ∇ · (ρieiui + 1/2ρiu2

i

)
= −∇ · (ui pi ) + ∇ · (τ ′

i ui ), (5)

where ui is the fluid velocity vector in each phase, τ ′
i is the

viscous stress tensor depending on the dynamic viscosity μi,
e denotes the internal energy, and κ is the curvature of the
interface.

The system of equations solved is closed by adding an
equation of state (EOS) for each phase that establishes
the relation between the various thermodynamic variables
EOSi(pi, Ti, ρi ) = 0 in the Mie-Gruneisen form

ρiei = pi + �i	i

�i − 1
, (6)

where �i and 	i are empirical constants.

B. RP-like models

The model above can be further reduced if we assume that
the bubble is spherical and we consider the liquid as a slightly
compressible substance. For a bubbly freely oscillating, the
radius temporal evolution can be described by the Keller-
Miksis (KM) equation [35]. When tube wall exists, it is
required to introduce an additional interaction term capturing
for the influence of the wall on the pressure effectively felt by
the bubble. The resulting (KM + Int) equation is as follows:

ρl0 RR̈

(
1 − Ṙ

cl0

)
+ ρl0

3Ṙ2

2

(
1 − Ṙ

3cl0

)

=
(

1 + Ṙ

cl0

+ R

cl0

d

dt

)
(pb − pe) − ρl0

∂φint

∂t
, (7)

pb =
(

pl0 + 2σ

R0

)(
R0

R

)3γ

− 2σ

R
− 4μl

R
Ṙ − pl0 , (8)

where cl0 is the speed of sound in the liquid which is assumed
to be constant and pl0 is the static pressure.

In the vecinity of a freely oscillating bubble the pressure
emitted by the bubble at a distance r from the center bubble
prad can be obtained from the Euler equations in the liquid
under the incompressible assumption:

prad(r) = ρl0
1

r

d

dt
(R2Ṙ) + O

(
1

R4

)
. (9)

If the tube wall is relatively close and the pressure gener-
ated by the presence of the walls is estimated using Eq. (9),
then the interaction term is

∂φint

∂t
= C1

D
(2Ṙ2R + R2R̈), (10)

where C1 is a constant to be determined and D is the tube
diameter. Taking C1 = 2π , this model is similar to the one
used by Mettin et al. [23] to model the incompressible mech-
anism of bubble-bubble interactions in bubble screens. In the
following this model, which neglects liquid compressibility
effects in the interaction term, will be used as reference to
discuss the results obtained from DNS.

III. NUMERICAL RESULTS

A. Problem description

In this work we simulate numerically the dynamics of a
single bubble oscillation inside a tube (Fig. 1). We consider
an axisymmetric system with a rigid reflecting boundary at a
distance D/2 from the bubble center and periodic boundaries
along the x direction. A sine pulse with a Gaussian-shaped
envelope is used as the incident wave, so that the pressure
pulse at the bubble location (x = 0) becomes

pe(t )

pl0

= 1 − Pa(sin(ωt ) exp

[
− (t − t0)2

2bt2
0

]
, (11)

where Pa is the amplitude of the incident pulse, t0 = Ncycles
λ

2cl0

(Ncycles is the number of the incident pulse cycles and λ

is the wavelength of the pulse) and b = 1/3. A Ncycles = 6
cycles driving pulse is chosen in order to limit the use of
computational resources.
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FIG. 1. Illustrating bubble dynamics inside a tube.

The problem is rendered dimensionless using the bubble
radius, the liquid density and ambient pressure as the charac-
teristic values of the problem. Thus, it is possible to express
the solution of the dimensionless radius as a function of the
following dimensionless parameters:

R

R0
= f

(
Pa,

ω

ωN
, K, We, Re,

D

R0

)
, (12)

where we characterize the forcing wave by the ratio between
characteristic forcing frequency ω and the natural bubble
resonance frequency ωN = 1

R0

√
3γ

p0

ρl0
+ 2(3γ − 1) σ

ρl0 R0
. The

rest of dimensionless quantities correspond to the Weber num-
ber, We = pl0 R0/σ , the Reynolds number, Re = ρl0U0R0/μl

where U0 = √
pl0/ρl0 , and the ratio of bulk compressibilities

K = ρg0 c2
g0

ρl0 c2
l0

. For the sake of simplicity, we set a constant

Reynolds number for all simulations Re = 50 and we chose
an incident pressure wave with ω

ωN
= 2. Additional calcula-

tions not shown in this manuscript show that changes in the
Reynolds number do not modify the conclusions reached in
this manuscript.

An ideal gas is considered (	g = 0 and �g = γ = 1.4)
while the parameters of the EOS in the liquid are �l = 7.14
and 	l/pl0 = �g

�l K
− 1. The value of K will be K = 6.5 ×

10−4 in most of the simulations included in this manuscript
except specified otherwise. Note that this value is larger than
that of air-water systems (Ka/w = 4 × 10−5) in order to limit
the wavelength of the incident pulse and therefore reduce the
computational time. Under these conditions, the solution only
depends on three dimensionless numbers: We, Pa, and D/R0.

For DNS calculations the domain size Ld in the x direction
is Ld/R0 ≈ 450. An static and nonuniform grid is used where
the minimum grid size is set to �/R0 ≈ 1/36. The solution is
shown not to depend to the grid size for smaller grid sizes.

B. A freely single oscillating bubble

We start considering a case where the bubble is far from
the wall (D/R0 ≈ 900) to avoid any spurious effects from the
reflection in the boundaries (D/2λ > 3). This case is close
to the limit of a single bubble oscillation in an unbounded
domain where the capability of KM models to predict the
appearance of subharmonics has been already verified by
DNS [36].

The bubble response is characterized by an effective bubble
radius, defined as the radius of a spherical bubble with volume

Vbub obtained from DNS at instant t , Re(t ) = ( 3Vbub
4π

)
1/3

. The
pressure wave scattered by the bubble is obtained from DNS
in the axis of symmetry at a distance xs/R0 = 15 from the
bubble center. The Fourier transformation is applied to the
pressure difference between the pressure obtained in the pres-
ence and in absence of a bubble to obtain the emitted pressure
in the frequency domain p̃. From this value we obtain the
energy in the frequency domain (in dB) as E = 20 log10( p̃

p̃max
),

where E0 = 20 log10( p̃max) = 2.5 dB corresponds to the max-
imum energy in the fundamental component obtained among
all simulations in the manuscript. The pressure predicted by
the KM model is obtained using the radiated pressure at a
distance xs from the bubble [Eq. (9)].

Figures 2 and 3 show the interface contour and the time
evolution of the effective bubble radius Re(t ) for Pa = 6 and
We = 7. The difference between the effective radius predicted
by the DNS and KM model increases as time progresses. Note
that, due to the Gaussian-shaped envelope used, the amplitude
of the incident wave increases before the bubble volume
reaches its minimum value (around t = 4.5), and decreases
after that. The bubble shape is visually spherical during the
growth phase, and develops nonspherical modes during the
compression phase due to Rayleigh-Taylor instabilities. Non-
spherical effects gradually influence the bubble oscillation
even in the growth stage due to parametric instabilities [37],
this being the main reason making the results calculated by
the DNS and the KM equation differ.

Figure 4 compares the energy spectrum of the radiated
wave calculated by DNS and predicted from the KM equation.
The fundamental harmonic is relatively well captured by the
KM model, while it tends to overpredict the subharmonic
amplitude. To gain further insight about the influence of
subharmonic we perform a parametric study on the influence
of the incident amplitude Pa and the Weber number (Fig. 5).
Three characteristic regimes are observed: at low forcing
amplitudes (but above the subharmonic appearance threshold)
the subharmonic is visible but its amplitude remains relatively
small irrespective of the forcing amplitude. Then, the ampli-
tude of the subharmonic grows fast and finally saturates for
large forcing amplitudes. These observations are consistent

FIG. 2. Interface contours for Pa = 6 and We = 7 at t = 4, 4.8, 5.4,6.2, 6.8, 7.6 The box length in all images is Lbox
R0

= 4.
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FIG. 3. Comparison of the effective bubble radius Re(t ) between
DNS and KM equation for Pa = 6 and We = 7. The points labeled as
In with n ∈ 1, 2, . . . , 6 correspond to the interface isocontours shown
in Fig. 2.

with experimental observations [38]. The predictions of DNS
and the KM model are close to each other for sufficiently
small amplitudes, KM tending to underpredict the amplitude
of the subharmonic. Indeed the differences between KM and
DNS results increase by increasing the forcing amplitude.
This effect is mainly attributed to the development of non-
spherical modes mentioned above. These perturbations are
eventually responsible of the bubble fragmentation limiting
the maximum amplitude for which a stable subharmonic
emission is observed for a given We number. The amplitude
threshold below which stable oscillations occur, shown with
a dashed line, strongly depends on the Weber number and
it is also expected to be dependent on the number of cycles
used. The Weber number also influences the intensity of
the subharmonic amplitude. This is because the parameter
controlling the strength of the excitation has to be corrected
to account for the pressure excess of the Laplace term [8,9].

FIG. 4. Frequency spectrum of the pressure wave emitted by the
bubble at Pa = 6 and We = 7.

FIG. 5. Energy in the subharmonic component as a function of
the forcing amplitude for various We. Results obtained from DNS
(dots) and the KM equation (lines). The stable regime and the
unstable regime are separated by the black dash-dot line. In the inset
we show the same plot but using a rescaled amplitude in the x axis.

As shown in the inset of Fig. 5 we see that using the corrected
amplitude Pa/(1 + 2/We) all curves collapse irrespective of
the value of We number. Thus, for a system with given physi-
cal properties, the larger the We the stronger the subharmonic
for a constant Pa (e.g., large bubbles are more prompt to
generate subhamonics) but large values of We can promote
the appearance of nonspherical modes that eventually break
the bubble into small fragments.

C. Wall effects

We focus now on the influence of the presence of the tube
wall on the dynamic response of the bubble and subharmonic
emission.

The influence of the interactions can be discussed in terms
of the dimensionless distances D/R0 and kD, where k is
the wave number. Note that for the particular case of ω =
2ωN , both parameters are related through the ratio of bulk
compressibilities as

kD = D

R0

2R0ωN

cl0

≈ 2D

R0

√
3K = k̃D. (13)

Most of of the models accounting for interactions assume that
k̃D � 1 removing the explicit dependence of this parameter
and leaving D/R0 as the relevant parameter influencing the
bubble response. This is indeed the case of the KM + Int
model considered here which assumes the liquid in the near
field as incompressible.

Figure 6 shows the temporal evolution of the bubble radius
for D/R0 ≈ 19, K = 6.5 × 10−4 (k̃D ≈ 1.68), Pa = 4, and
We = 7. We observe that the amplitude of the oscillation is
indeed larger than the results from DNS in an unbounded
domain, indicating the appearance of local resonance estab-
lished between the bubble and the tube wall similar to the one
reported in previous works of bubbles in closed pores [39].

A finer analysis on the optimal value of k̃D is shown in
Fig. 7 where we vary this parameter by changing the distance
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FIG. 6. Comparison of the effective bubble radius evolution for
Pa = 4, We = 7 in a tube (D/R0 = 19) and in a free field. The
predictions of the KM equation with and without interaction term
are included for reference.

D/R0 for a constant value of K = 6.5 × 10−4. The amplitude
of the oscillation displays a maximum for a relatively small
distance, D/R0 ≈ 19, that corresponds to k̃Dopt ≈ 1.68. From
Fig. 7 we can indeed see that the influence of D/R0 on
the amplitude of the bubble oscillation is not well captured
by the KM + Int model, which predicts a decrease on the
amplitude of the oscillations when D/R0 decreases due to
confinement effects. This effect is not surprising as the KM
model with interactions neglects any influence of phase lag on
the results. Figure 8 shows that the optimal distance shifts to
lower values as K increases revealing that the local resonance
conditions found do not correspond to a universal value of
k̃D (k̃Dopt ≈ 2.49 when K ≈ 32.6 × 10−4 and k̃Dopt ≈ 1.68
when K ≈ 6.5 × 10−4). This implies that the mechanism of

FIG. 7. Maximum amplitude of the bubble radius oscillation as a
function of the distance between the bubble and the tube wall (bottom
axis) and k̃D (top axis) obtained by DNS and the KM model in the
stable oscillation regime (no fragmentation). Pa = 4, We = 7, K =
6.5 × 10−4.

FIG. 8. Influence of K on the optimal condition of the maximum
effective bubble radius evolution for Pa = 4, We = 7.

interaction cannot be discussed in terms of resonance effects
associated to kD only. This effect is attributed to a shift in the
resonance frequency in the presence of the wall, ωN,int, which
eventually modifies the amplitude of the bubble oscillation
(see Appendix B). The frequency shift can depend on both,
kD and D/R0. Previously published works pointing out in this
direction include investigations of the amplitude of the linear
bubble oscillation in bubble screens [31]: While a shift for
lower frequencies is expected from in-phase oscillations when
the bubbles are close to each other

ωN,int = ωN√
1 + R0

D [cos(kD)]
, (14)

FIG. 9. Top: Pressure field induced by the bubble, pr = pl − p∞,
in the x-r domain (Pa = 4 We = 7, D/R0 ≈ 19). Bottom: Influence
of the bubble–wall distance on the maximum amplitude of the
reflected pressure wave as a function of the distance to the bubble
center (Pa = 4, We = 7).
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FIG. 10. Influence of the distance between the bubble and the
tube wall in the energy in the fundamental component (top) and
subharmonic (bottom). Pa = 4, We = 7.

a net shift toward higher frequencies can be experimentally
observed when phase and antiphase interaction occur [31],

ωN,int = ωN√
1 − 2

√
π R0

D

. (15)

These result provide some evidences about why the results
shown in Fig. 8 depend on both kD, which certainly modify
the pressure field due to local resonance conditions, and D/R0,
which modifies the bubble resonance frequency. We recall
that these results are not directly applicable to our problem
here as these equations are found for similar but still different
physical problems. In addition, the situation considered in this
manuscript is more involved as nonlinear effects are relevant
although it is important to mention that additional tests show
that optimal conditions also appear in the linear regime.

Once the influence of the wall on the bubble response
has been described, and before investigating the subharmonic
emission, it is also important to characterize the structure of
the pressure wave emitted by the bubble. Figure 9 shows the
pressure field emitted by the bubble at a given instant and

FIG. 11. Maximum Re(t ) (top) and intensity of the subharmonic
(bottom) as a function of D/R0 and We for Pa = 4. For reference the
values of k̃D are shown in the upper axis.

the transition from the spherical source to the plane wave
by sampling the reflected pressure in the symmetry axis at
differences distances xs/R0. We distinguish two clear regions:
the near field region where the pressure corresponds to an
spherical outgoing wave and the pressure decreases with the
inverse of the distance, and the far field where the interference
phenomena caused by wave reflection at the tube wall quickly
lead to the appearance of a planar wave where the amplitude
stays constant as it propagates along the tube. From the results
in Fig. 9(b) we can conclude that by increasing D/R0, (i) the
transition distance from a spherical to a planar wave increases
and (ii) the amplitude of the reflected wave decreases roughly
as R0/D, which is the result of the reflection of bubble
screens to linear pressure pulses [40]. In the following, to
obtain a stable plane wave, the pressure is sampled at distance
|xs|/R0 = 15 in DNS and in order to compare the results with
the predictions of the KM + Int model, we use a simple
semiheuristic model described in Appendix A to relate the
bubble response obtained from KM + Int equation with the
pressure amplitude of the plane wave emitted by the bubble.
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FIG. 12. Interface contours of the bubble at different instants for Pa = 4, We = 7, and D/R0 = 19. The frametimes (from left to right) are
t = 4, 4.8, 5.4, 6.2, 6.8, 7.6 (Both x-axis and r-axis range from −2 to 2).

Figure 10 shows the influence of the nondimensional dis-
tance D/R0 on the energy in the fundamental and subharmonic
component for Pa = 4, We = 7, and K = 6.5 × 10−4. DNS
results show that for the resonance distance found previously
D/R0 ≈ 19, the subharmonic amplitude is also maximum; for
larger distances, the plane wave generated by the bubble is less
intense mainly because for large values of the D/R0 the rela-
tive importance of the bubble on the overall transmission and
reflection decreases. Comparing the results of DNS with the
predictions of the simplified KM + Int models accounting for
bubble-wall interactions, we can see that the fundamental is
indeed well captured both qualitatively and quantitatively for
small-enough distances, when the structure of the plane wave
is well established. At large distances the model presented in
Appendix A used to predict the structure of the plane wave
is not applicable and a procedure similar to the one followed
previously for a free oscillating bubble should be followed.
The predictions of the KM + Int model fails capturing the
amplitude of the subharmonic component as a consequence
of the resonant behavior discussed above. Generally speaking,
the influence of interactions is observed to play a major role
on the correct prediction of the appearance and intensity of
subharmonics compared to the impact on the fundamental
harmonic.

Like in the case of a bubble in a free field discussed in the
previous section, We plays a role on the amplitude of the sub-
harmonic and the maximum effective bubble radius (Fig. 11).
For a constant value of Pa, the amplitude of the amplitude of
the oscillation and the intensity of the subharmonic increases
as Weber increases until the development of nonspherical

FIG. 13. Influence of K on the maximum Intensity of the subhar-
monic. We = 7 for Pa = 4.

modes fragment the bubble. As shown in the inset of Fig. 11
we see that it is possible to rescale the amplitude using an
scaling factor that in dimensionless form becomes 3ωN (see
Appendix B for derivation and dimensional form). Using this
factor it is possible to collapse all curves irrespective of the
value of We number. By comparing the interface isocontours
of Figs. 12 and 2 we see that the presence of the wall clearly
enhances the appearance of nonspherical modes. For We < 10
the optimal distance for which the intensity of the subhar-
monic is maximal (D/R0 ≈ 19) is found to be not dependent
on We. For We > 10 such distance cannot be reached in a
stable configuration and the bubble breaks. We therefore con-
clude that for a fixed forcing amplitude, the optimal conditions
to measure the appearance of subharmonics correspond to
We = 10 and D/R0 ≈ 19. That being said, we note that we
cannot assess where the overall maximum among all values
of Pa is found, as small bubbles (small We) may be stable at
higher amplitudes Pa.

Finally, we recall that the value of K influences the optimal
condition. Thus, we find that the optimal distance reported in
Fig. 13 is shifted to a smaller value than that which would
be obtained for air-water systems. This result also supports
that the optimal condition is a function of both characteristic
distances kD and D/R0.

IV. CONCLUSIONS

A DNS study has been carried out to investigate the sensi-
tivity of bubble acoustic emission to bubble-wall interactions
and nonspherical deformations. Simulations show that when
the bubble is in a free field configuration the predictions of
both DNS and KM models are close to each other for forcing
amplitudes Pa below a threshold beyond which the develop-
ment of nonspherical modes eventually break the bubble.

For a finite tube diameter, the scattered wave by the bubble
reflects back into the tube walls influencing the response
of the bubble itself. Local resonant phenomena has been
shown to play a major role on determining the amplitude of
the bubble oscillation but a shift in the resonance frequency
related to both, kD and D/R0, also influence the amplitude of
the oscillations. We find that an optimal distance D/R0 exists
where the amplitude of the bubble oscillation can be even
larger than that of a bubble in a free field configuration and
where the subharmonic amplitude is maximal. For distances
larger than this optimal distance, the wave scattered by the
tube becomes weaker and the interaction term become less
important, so does the bubble acoustic emission. For smaller
distances the presence of the wall exerts a strong effect that
eventually leads to a decrease on the oscillation amplitude and
a decrease of the subharmonic amplitude. Based on a further
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parameter test, this optimal always appears irrespective of the
values of We, although its value is important to determine
whether the bubble breaks or not. The results also show the
difficulties to reproduce DNS results of the classical model to
account for the interaction between the bubble and the tube
assuming liquid as an incompressible substance.
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APPENDIX A: PLANE-WAVE EMISSION FROM AN
SPHERICAL SOURCE IN THE KELLER-MIKSIS MODEL

In order to predict the amplitude of the scattered plane
wave of a bubble we assume the flow in the liquid to respect
the Bernouilli equation (potential flow assumption)

∂φb

∂t
+ ∂φi

∂t
+ ∂φ∞

∂t
+ pl

ρl0

+ 1

2
u2

l = pl0

ρl0

, (A1)

where φb represents the potential emitted by the bubble, φi is
the interacting potential, and φ∞ is the background potential
that can be expressed as a function of the background excita-
tion pressure as

∂φ∞
∂t

= pl0 − p∞
ρl0

, (A2)

where p∞(Pa, t ) corresponds to the background pressure used
to excite the bubble. Evaluating the Bernouilli equation at the
interface of the bubble we obtain

∂ (φb + φi)

∂t
= p∞ − pl,r=R

ρl
− 1

2
Ṙ2. (A3)

The potential emitted by the bubble and the interacting poten-
tial behave as a wave. Based on the DNS results, we notice that
the amplitude of the emitted wave decays with the distance
until a given transition distance for which the amplitude of
the emitted wave remains constant. If we assume that the
transition distance from the spherical wave to the plane wave
can be written as a function of the tube diameter through the
use of a function f (D/R0), we can build a relation between the
conditions obtained from KM model at the bubble interface
and the intensity of the plane wave as:

pl − p∞ = − 1

f (D/R0)

[
p∞(t ′) − pr=R(t ′)

ρl0

− 1

2
˙R(t ′)2

]
,

(A4)

where t ′ = t − xs/cl . We obtain f (D/R0) by fitting the DNS

FIG. 14. Transition distance from a spherical to a plane wave as
a function of D/R0 obtained by DNS and fitted curve f (D/R0 ).

results shown in Fig. 14, where the transition distance is
chosen as the first sample distance point of which the pressure
attenuation deviates from the spherical attenuation. Following
this procedure, we readily obtain f (D/R0) = 0.005( D

R0
)
2 +

0.8.

APPENDIX B: INFLUENCE OF RESONANT FREQUENCY
SHIFT IN THE OSCILLATION AMPLITUDE

Let us consider the dimensionless linearized Rayleigh-
Plesset equation written as

�R0

R0
= −1

ω2
N − ω2 + 2δbiω

�p∞
ρl0 R2

0

≈ 1

ω2 − ω2
N

�p∞, (B1)

where �R0 is the oscillation amplitude in a free field and δb

is the damping factor. If there is a change of the resonance
frequency by bubble interactions such that ωN,int = FωN ,
then when fixing ω = 2ωN , the ratio between the oscillation
amplitude with interactions �R and the oscillation amplitude
in a free field becomes

�R

�R0
= 3

4 − F 2
, (B2)

meaning that the bubble oscillation is larger for a constant
forcing amplitude when the frequency shifts to larger values
(F > 1) and smaller in the opposite case (F < 1). Besides, by
substituting ω = 2ωN into Eq. (B1), we can obtain the scaling
factor

�R

R0
= Pa

3ρl0ω
2
N R2

0

,

which in the dimensionless form chosen in this manuscript
reads as �R = 3ω2

N�p∞.
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