# Reverse engineering cash: Coin designs mark out high value differentials and coin sizes track values logarithmically 

Barbara Pavlek, James Winters, Morin Olivier

## - To cite this version:

Barbara Pavlek, James Winters, Morin Olivier. Reverse engineering cash: Coin designs mark out high value differentials and coin sizes track values logarithmically. Cognition, 2020, 198, pp. 104182. 10.1016/j.cognition.2020.104182 . hal-02923692

## HAL Id: hal-02923692

## https://hal.science/hal-02923692

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
(cc) $\$$

# Reverse engineering cash: Coin designs mark out high value differentials and coin sizes track values logarithmically 

Barbara Pavlek ${ }^{1}$ (pavlek @shh.mpg.de)
James Winters ${ }^{1}$ (winters@shh.mpg.de)
Olivier Morin ${ }^{1,2^{*}}$ (morin@shh.mpg.de)
${ }^{1}$ Max Planck Institute for the Science of Human History,
10, Kahlaische Strasse, 07745 Jena, Germany.
+49 (0)3641 686-990
${ }^{2}$ Institut Jean Nicod, ENS, EHESS, PSL University, CNRS, Paris France.

* Corresponding author.

Word count: 3240 words

# Reverse engineering cash: Coin designs mark out high value differentials and coin sizes track values logarithmically 


#### Abstract

Coins are physical representations of monetary values. Like mental or verbal representations of quantities, coins encode sums of money in formats shaped, in part, by cognitive and communicative needs. Studying the coins circulating today, we consider how their design, colour, and size reflect their value. We show that coin designs solve a trade-off between informativeness-the pressure to highlight distinct denominations-and simplicity—the pressure to limit the number of designs that coin users must memorise. Coinage worldwide is more likely to display distinctive graphic designs and distinct colours on pairs of coins with large differences in value, thus minimising the aggregate cost of mistaking one coin for another. Coin size differentials, in contrast, do not seem to indicate greater value differentials, although absolute coin sizes do reflect monetary values. Log-transformed values predict design and colour distinctiveness in coin pairs, as well as absolute coin sizes, better than raw values, consistent with research suggesting that monetary quantities may recruit the "numerosity system" for magnitude representations, thought to track quantities logarithmically. These results show that coins obey similar informational constraints as linguistic and mental representations.


Keywords: money, value, design, magnitudes, numerosity, currency.

When evaluating sums of money, we are subject to biases such as the money illusion (where one hundred cents appear greater than one dollar; Shafir, Diamond, and Tversky 1997). Perceived physical magnitudes (e.g., sizes) interfere with our perception of monetary quantities (Goldman, Ganor-Stern, and Tzelgov 2012). Crumpled bills appear less valuable than bills in mint condition (Di Muro and Noseworthy 2013). Bills are seen as more valuable than coins, keeping values equal (Dolansky 2014; Tessari et al. 2011). We are less likely to part with a 50 euro bill than to let go of five 10 euro bills (Mishra, Mishra, and Nayakankuppam 2006; Raghubir and Srivastava 2009).

These studies, together with the rich literature on the perception of coins and their value (following Bruner and Goodman 1947), show how the appearance of cash money can influence economic behaviours. Yet, little research has investigated whether coin properties reflect these biases. The relationship between cultural artefacts and cognitive biases can be studied experimentally, but it can also be observed by analysing cultural data directly (Kelly and Keil 1985; Sperber and Hirschfeld 2004). Testing hypotheses on real-world corpora is a fruitful method in linguistics (Piantadosi, Tily, and Gibson 2011; Kemp and Regier 2012) and elsewhere. Studying the shape of letters in the world's writing systems, for instance, reveals formal constraints derivable from the structure of visual cognition (Changizi and Shimojo 2005; Morin 2018). The invention of written letters took into account readers' visual biases; likewise, coins should be sensitive to the way coin users represent physical and monetary magnitudes. Testing this point is of practical interest, to promote ergonomic currencies and avoid costly design errors. On a theoretical level, it links the study of numerical cognition with research on everyday economic behaviour.

This study, covering the most recent coin series in circulation for the world's currencies, shows how the appearance of coins reflects their value. Modern coins indicate their nominal value in writing, but also through their size, their colour, and the images minted on them. We focused on the differences between "adjacent pairs" of coins, i.e., any two coins of neighbouring values belonging to the same currency (e.g., two cents-five cents, one euro-two euros). We considered differences between these coins' colours, sizes, and "designs" (the
images on both sides of a coin, excluding inscriptions and value marks). We hypothesised that two coins are more likely to be distinct to the extent that they differ in value.

The task of encoding monetary values with images (i.e., designs) raises a problem that verbal labelling also faces: a trade-off between simplicity and informativeness (Regier, Kemp, and Kay 2015). Minting all denominations with one identical image would result in designs that carry no information about denominations (informativeness deficit). Conversely, minting each denomination with a different design may put excessive pressure on the users' memory and attention (simplicity deficit). Even frequent words are exposed to a simplification pressure keeping word inventories low. Such trade-offs are typically solved by taking into account the users' communicative needs (Gibson et al. 2017; Kemp and Regier 2012). For currencies, similar pressures likely obtain, given the difficulties experienced by infrequent (Vranka et al. 2019) and even frequent coin users (Gallup \& Eurobarometer, 2006; Kantar Public \& Eurobarometer, 2018) in telling coins apart.

On this basis, we hypothesised that coin designs should be distributed over the different denominations of a given currency in a cost-sensitive fashion, taking into account the value differentials between denominations, which are identical to the cost of mistaking one denomination for another. Considering, within each currency, all pairs of coins of adjacent value, the chances that the designs minted on both coins differ should increase along with the pair's value differential (e.g., one cent for the one cents-two cents pair, three for the two cents-five cents pair, etc.). (Prediction 1.1.) We also expected the differences in colour between the coins in such a pair to reflect the value differentials in a similar way as proposed for coin designs. (Prediction 1.2.) (The "colour" of a coin's metal alloy is reminiscent of precious metals-copper, silver, gold-historically used in coin production, and now associated with coin values.)

The relation between coin sizes and coin values raises a different issue. Monetary value and diameter size are continuous quantities: they can be mapped onto each other by making coin sizes co-vary with their face value (e.g. one cent for a one-cent coin). Accordingly, we expected that size differentials in pairs of coins of adjacent value ("adjacent pairs") would correlate with value differentials (Prediction 2).

What exact shape should this value-size correlation assume? Two independent research traditions, psychophysics and the theory of marginal utility, can be read as implying that monetary values are represented on a logarithmic scale. Marginal utility theory and its precursors (starting with Bernoulli, 1738/1954) assume a logarithmic mapping between a sum of money and the utility derived therefrom. Prospect theory incorporates this view in the way that it models loss aversion (Kahneman and Tversky 2012). Psychophysics, building upon the work of Weber and Fechner, has shown that the representation of prices tends to follow Weber's law (Cheng and Monroe 2013; Dehaene and Marques 2002). As a consequence, the same price differential is less likely to be noticed in a high price range, compared to a low price range. As far as we know, this claim concerning the perception of prices has not been generalised to other types of monetary quantities, such as the value of coins. We predicted that log-transformed values would predict size differentials better than non-transformed values, since, in our view, coin designs should track monetary quantities as represented by the numerosity system (Feigenson, Dehaene, and Spelke 2004). By the same logic, logtransformed values should also provide a better predictor of whether two coins share the same design or colour (Prediction 3.). We aimed to test these predictions on all coins in circulation today.

## Methods \& Results

Our predictions, methods, and models were preregistered on the Open Science Framework ${ }^{1}$. All preregistered analyses and their associated results are reported there ${ }^{2}$. The analyses described here occasionally include data inclusion criteria and model specifications that differ from the preregistered ones. These changes do not affect the results of the preregistered analysis (AIC differentials, direction and significance of fixed effects estimates, etc.). Since there is, to our knowledge, no pre-existing literature on the particular effects that we predicted, no power analysis was carried out, but we made sure that our sample was exhaustive in the sense that it included all currencies in use today, as listed by the International Organisation for Standardisation (ISO).

[^0]We assembled a corpus of 182 currencies, comprising 1132 coins ( 950 adjacent pairs). Information concerning designs, colours, and diameter sizes was gathered from the respective central banks' websites and the Standard Catalogue of World Coins (Cuhaj 2015), supplemented by two online sources (Wikipedia and Numista catalogue). We took into account only the most recent coin denominations currently in circulation, disregarding infrequent older variants as well as commemorative coins. For each pair, we asked two independent coders to determine, based on written descriptions, whether the two coins had the same design (0) or not (1) ${ }^{3}$. They agreed upon 943 pairs and disagreed upon seven (Cohen's kappa $=.98$ ), which we discarded from all analyses bearing upon design differences. All nominal values were standardised as multiples of the value of the smallest coined denomination in each currency, or "Smallest Coins". The Smallest Coin for euros is one cent, so two euros are worth two hundred Smallest Coins, whilst the Smallest Coin for the Vietnamese dong is two hundred dongs, thus five thousand dongs = twenty-five Smallest Coins. Value differentials between pairs of coins of adjacent value were similarly standardised (e.g. the differential between one euro cent and two euro cents is one Smallest Coin; that between one euro and two euros is one hundred Smallest Coins). ${ }^{4}$

To test prediction 1.1, we focused on the currencies that produced at least one adjacent pair of coins with identical designs, and one pair with different designs. We excluded the currencies that systematically bear a different design on every denomination ( $\mathrm{n}=99$ ), along with those that carry the same design on all denominations ( $\mathrm{n}=19$ ). Excluding these currencies does not change the results given below. We built three mixed effects logistic models to predict, for all adjacent pairs of coins ( $n=386$ ) in each currency $(\mathrm{n}=64)$, whether the two coins' designs were the same (0) or different (1). For instance, the two-cents and five-cents German euro coins share the same design: an oak leaf on the German side, a globe and twelve stars on the common side. The five-cents coin and the ten-cents coin bear distinct designs (the ten-cents coin features the Brandenburg Gate and a map of Europe). The first, "null" model included a

[^1]random intercept for each pair's currency. A second model, which included the value differential between coins (in Smallest Coins) as a fixed effect, proved more informative than the null model $\left(\Delta_{\text {AIC }}=7.60\right)$. A third model was built, identical to the previous one except for the fact that value differentials were log-transformed. It proved more informative than both previous models ( $\Delta_{\text {AIC }}=17.09$ compared to the null) and included a positive estimate for value differentials ( $\beta=0.31, \mathrm{SE}=0.07, \mathrm{z}=4.16, \mathrm{p}<0.0001$ ). Designs are more likely to differ between adjacent coins to the extent that these two coins are far apart in value (like one euro - two euros vs. one cent - two cents), verifying prediction 1.1. (Fig. 1). Following prediction 3, log-transformed value differentials are a better predictor of this phenomenon than raw value differentials.

The same effect applied to coin colours: the more two adjacent coins differed in (logtransformed) value, the more likely they were to differ in colours (prediction 1.2.). Logtransformed values predicted this better than raw values (prediction 3). This prediction was tested on 950 adjacent pairs of coins. The first, "null" model included a random intercept for each pair's currency. A second model, which included the value differential between coins (in Smallest Coins) as a fixed effect, did not prove more informative ( $\Delta_{\text {AIC }}=1.13$ in favour of the null model). However, a third model, identical to the previous one except for the fact that value differentials were log-transformed, proved more informative than the null model ( $\Delta_{\text {AIC }}$ $=39.30)$ and included a positive estimate for value differentials $(\beta=0.28, \mathrm{SE}=0.05, \mathrm{z}=$ 5.98, p < 0.0001).


Fig. 1. In pairs of coins with higher value differentials, coins are marked with distinct designs. Each line stands for one currency (total $n=64$ ), and shows the average value differential between adjacent pairs of coins (e.g. one euro-two euros), depending on whether or not the two coins share the same design (left) or have different designs (right). The majority of currencies verify our prediction (in blue): pairs bearing distinct designs tend to show higher value differentials. Value differentials are given in Smallest Coins, i.e., as multiples of the value of the smallest coined denomination within each currency.

To test prediction 2, we treated all twenty-three national series of the euro as one single currency, and similarly "collapsed" the two variants of the French Pacific franc. These families of currencies showed no internal variation in coin sizes, while exhibiting clear internal variation for designs. Collapsing them does not change the results given below. We built two linear mixed effects models to predict the size differential between coins (diameter size differential, in millimetres) for all adjacent pairs of coins ( $\mathrm{n}=790$ ) in each currency ( $\mathrm{n}=$ 159). The first, "null" model included a fixed effect controlling for whether or not the two coins were of a different colour, a random intercept for each pair's currency, and a random
slope reflecting the effect of the colour difference for each currency. This "colour difference" predictor always made the model more informative and had a strongly negative effect. In other words, in pairs straddling a colour divide (e.g., "copper" five euro cents - "golden" ten euro cents), the size differential between two denominations is on average less important, compared to pairs where both coins have the same colour. The null model was compared with a second model, which included an additional fixed effect for the value differential between the coins in a pair (in Smallest Coins, log-transformed). That second model did not prove more informative ( $\Delta_{\text {AIC }}=1.48$, in favour of the null model). We found a clearly positive intercept ( $\beta=2.35, \mathrm{SE}=0.18, \mathrm{t}=13.12, \mathrm{p}<0.0001$ ), indicating that the higher-value coin of the pair is on average larger than the lower-value coin. These results remained unchanged if we excluded four outlier pairs presenting excessive size or value differentials, or if we considered only the pairs of coins that do not differ in colour. Prediction 2 is thus refuted: size differentials do not increase with value differentials.

Just because value differentials fail to predict size differentials does not mean that absolute coin sizes do not reflect absolute coin values. The preceding result strongly suggests that they do, since higher-value coins in a pair are larger. In an unregistered follow up, we tested an additional prediction: absolute coin sizes reflect absolute coin values. In keeping with the logic of prediction 3, coin sizes should track log-transformed coin values better than raw coin values. We thus considered the absolute size and value of individual coins (as opposed to the size differentials between the coins in an adjacent pair). We again collapsed the Eurozone and Pacific franc currencies to one data point each (resulting n: 949 individual coins from 159 currencies) and compared three linear mixed effects models. The first, "null" model predicted each individual coin's size with two random intercepts, one for currency, and one for colour. This model was outperformed by a model including each coin's value (in Smallest Coins) as a fixed effect $\left(\Delta_{\text {AIC }}=14.54\right)$. That model was, in turn, outperformed by a third model using logtransformed values $\left(\Delta_{\text {AIC }}=553.87\right)$. Like the previous one, this model included a strong and significant estimate for the effect of coin value ( $\beta=1.58, \mathrm{SE}=0.04, \mathrm{t}=34.61, \mathrm{p}<0.0001$ ). Removing 16 outlier coins with abnormally high values did not change this pattern of results: coin sizes reflect coin values on a logarithmic scale (Fig. 2).


Fig. 2. The size of coins reflects their value on a logarithmic scale. Each data point is one set of coins sharing the same value (with number of coins indicated by dot colour). (Total n: 933 coins from 159 currencies, excluding 16 outlier coins.)

Discussion

Our tests of predictions 1.1. and 1.2. confirm that coin designs and colours are distributed in an economically efficient way, minimising the cumulative cost of confusing coins. Prediction 2 was not supported: high value coins tend to be bigger than low-value coins, but not necessarily in proportion to the value differential between them. Our third prediction, that logtransformed differences in value matter more for coin structure than the raw differentials, was verified for coin designs but could not be tested for size differentials. We found support for a related but post hoc prediction: individual coin sizes track coin values on a logarithmic scale.

Psychology does not generally praise the ergonomics of coin designs (Horner and Comstock 2005), mostly because of Nickerson and Adams' widely cited study (1979), whose subjects were surprisingly mediocre at recollecting in detail the features of the 1972 one-cent
("penny") USD coin. In the same study, however, participants remembered with near-perfect accuracy the features that made the penny design distinctive from other USD coin designs (i.e., Lincoln and his memorial). The features they failed to remember were the ones that the penny shares with other coins (e.g., the word "Liberty"), or those that could be changed without making pennies any less distinctive (e.g., which side Lincoln faced). Distinctive design features play a crucial role in identifying coins, superior to other features such as size, thickness, or indentation (Horner and Comstock 2005). The sparse encoding of coin designs that Nickerson and Adams evidenced should thus be understood from an efficiency point of view: people only burden their memories with useful design features. As our data suggest, coins assist the users in solving this trade-off, only requiring them to memorise distinctive designs

The fact that coin designs are more informative for high value differentials confirms that human communication creates categories that satisfy an informativeness-simplicity trade-off while respecting functional constraints. This hypothesis had so far only been tested on data from natural languages (Gibson et al. 2017; Kemp and Regier 2012; Regier, Kemp, and Kay 2015), or experimentally generated ones (Carr et al. 2018). Our findings are also coherent with those of a previous study (Pavlek, Winters, and Morin 2019) on Ancient Greek coins, showing that the designs of high-value coins carry more information concerning their denomination, compared to the designs of low-value coins. Both ancient and modern coinage displays a non-linear denomination structure, with larger value differentials in the higherdenominations range. Differences in value between adjacent coins or bills increase in a roughly exponential manner (Bouhdaoui, Bounie, and Van Hove 2011; Wynne 1997). Larger value differentials between high value coins are worth signalling with distinctive designs, since these coins are more costly to confuse.

Our results also suggest, in three different ways, that log-transformed coin values predict the structure of coin properties (size, colour and design distinctiveness) better than raw values, in line with work showing that people represent prices on a logarithmic number line (Cheng and Monroe 2013; Dehaene and Marques 2002; Marques and Dehaene 2004, but see Fitousi 2010). Such logarithmic representation is a signature of the "numerosity system", a specialised mental faculty dealing with estimates of approximate magnitudes (Feigenson, Dehaene, and Spelke 2004). Such a system appears well equipped to process the economic utility derived from money (as distinct from the face value of coins), since it is assumed to
follow a logarithmic relationship. Should this system be recruited in processing coin values, this would make sense of interferences between perceived physical magnitudes and perceived monetary values: prices that seem more expensive when printed in a bigger font (Coulter and Coulter 2005), coins whose estimated size changes depending on their value (Furnham and Spencer-Bowdage 2003). Overall, the present findings show coin designers to be intuitive psychologists, making imperfect but clear use of sound cognitive and ergonomic principles (Norman 2013).

Open practices statement: The main hypotheses and predictions tested here were preregistered, along with the methods, statistical tests, and inclusion criteria. The preregistration can be accessed at https://osf.io/ekcdb/. Post-hoc analyses are explicitly signalled as such. A second preregistration, addressing reviewers comments, can be accessed at https://osf.io/tkj8y. The complete dataset and the code associated with this paper are accessible at this address:
http://osf.io/2vuba/?view_only=c843d9c30fe24721a1202ccc65fcd7d2.

Supplementary Materials: The supplementary materials file, currency_supplementary_material.pdf, can be accessed on the OSF repository: http://osf.io/2vuba/?view_only=c843d9c30fe24721a1202ccc65fcd7d2

Acknowledgements: The authors thank Julia Bespamyatnykh, Moritz Dörfler, and Noro Schlorke for their help in collecting and coding the data, as well as Thomas Müller and Piers Kelly for their valuable input. This work has received funding from the "Frontiers in Cognition" EUR grant, ANR-17-EURE-0017 EUR.

## References

Bernoulli, Daniel. 1954. "Exposition of a New Theory on the Measurement of Risk (Translated from: ‘Specimen Theoriae Novae de Mensura Sortis', 1738)." Translated by Louise Sommer. Econometrica 22 (1): 23-36. https://doi.org/10.2307/1909829.
Bouhdaoui, Y., D. Bounie, and L. Van Hove. 2011. "Central Banks and Their Banknote Series: The Efficiency-Cost Trade-Off." Economic Modelling 28 (4): 1482-88. https://doi.org/10.1016/j.econmod.2011.02.029.

Bruner, Jerome S., and Cecile C. Goodman. 1947. "Value and Need as Organizing Factors in Perception." The Journal of Abnormal and Social Psychology 42 (1): 33-44. https://doi.org/10.1037/h0058484.
Carr, Jon, Kenny Smith, Jennifer Culbertson, and Simon Kirby. 2018. "Simplicity and Informativeness in Semantic Category Systems," July. https://doi.org/10.31234/osf.io/jkfyx.
Changizi, Mark, and S. Shimojo. 2005. "Character Complexity and Redundancy in Writing Systems over Human History." Proceedings of the Royal Society B: Biological Sciences 272 (1560): 267-75. https://doi.org/10.1098/rspb.2004.2942.
Cheng, Lillian L., and Kent B. Monroe. 2013. "An Appraisal of Behavioral Price Research (Part 1): Price as a Physical Stimulus." AMS Review 3 (3): 103-29. https://doi.org/10.1007/s13162-013-0041-1.
Coulter, Keith S., and Robin A. Coulter. 2005. "Size Does Matter: The Effects of Magnitude Representation Congruency on Price Perceptions and Purchase Likelihood." Journal of Consumer Psychology 15 (1): 64-76. https://doi.org/10.1207/s15327663jcp1501_9.
Cuhaj, George S. 2015. Standard Catalog of World Coins 2001-Date. 10th ed. Krause Publications.
Dehaene, Stanislas, and J. Frederico Marques. 2002. "Cognitive Euroscience: Scalar Variability in Price Estimation and the Cognitive Consequences of Switching to the Euro." The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology 55 (3): 705-31. https://doi.org/10.1080/02724980244000044.
Di Muro, Fabrizio, and Theodore J. Noseworthy. 2013. "Money Isn’t Everything, but It Helps If It Doesn't Look Used: How the Physical Appearance of Money Influences Spending." Journal of Consumer Research 39 (6): 1330-42. https://doi.org/10.1086/668406.
Dolansky, Eric. 2014. "The subjective valuation of coins and bills." Canadian Journal of Administrative Sciences / Revue Canadienne des Sciences de l'Administration 31 (2): 78-89. https://doi.org/10.1002/cjas.1280.
Feigenson, Lisa, Stanislas Dehaene, and Elizabeth Spelke. 2004. "Core Systems of Number." Trends in Cognitive Sciences 8 (7): 307-14. https://doi.org/10.1016/j.tics.2004.05.002.
Fitousi, Daniel. 2010. "Dissociating between Cardinal and Ordinal and between the Value and Size Magnitudes of Coins." Psychonomic Bulletin \& Review 17 (6): 889-94. https://doi.org/10.3758/PBR.17.6.889.
Furnham, Adrian, and Sarah Spencer-Bowdage. 2003. "Inflation and the Estimated Size of Withdrawn Notes and Coins." The Journal of Socio-Economics 32 (3): 351-54. https://doi.org/10.1016/S1053-5357(03)00044-1.
Gibson, Edward, Richard Futrell, Julian Jara-Ettinger, Kyle Mahowald, Leon Bergen, Sivalogeswaran Ratnasingam, Mitchell Gibson, Steven T. Piantadosi, and Bevil R. Conway. 2017. "Color Naming across Languages Reflects Color Use." Proceedings of the National Academy of Sciences 114 (40): 10785-90. https://doi.org/10.1073/pnas. 1619666114.
Goldman, Ronit, Dana Ganor-Stern, and Joseph Tzelgov. 2012. "'On the Money" Monetary and Numerical Judgments of Currency." Acta Psychologica 141 (2): 22230. https://doi.org/10.1016/j.actpsy.2012.07.005.

Horner, John M., and Stephen P. Comstock. 2005. "What Are the Important Visual Features for Coin Discrimination?" Applied Cognitive Psychology 19 (9): 1211-18. https://doi.org/10.1002/acp.1161.
Kahneman, Daniel, and Amos Tversky. 2012. "Prospect Theory: An Analysis of Decision Under Risk." In Handbook of the Fundamentals of Financial Decision Making, Volume 4:99-127. World Scientific Handbook in Financial Economics Series, Volume 4. World Scientific. https://doi.org/10.1142/9789814417358_0006.
Kantar Public, and Eurobarometer, European Commission. 2018. "The Euro Area - Briefing Note."
http://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/ResultDoc/download /DocumentKy/84504.
Kelly, Michael H., and Frank C. Keil. 1985. "The More Things Change....: Metamorphoses and Conceptual Structure." Cognitive Science 9 (4): 403-16. https://doi.org/10.1207/s15516709cog0904_2.
Kemp, Charles, and Terry Regier. 2012. "Kinship Categories across Languages Reflect General Communicative Principles." Science (New York, N.Y.) 336 (6084): 1049-54. https://doi.org/10.1126/science. 1218811.
Marques, J. Frederico, and Stanislas Dehaene. 2004. "Developing Intuition for Prices in Euros: Rescaling or Relearning Prices?" Journal of Experimental Psychology: Applied 10 (3): 148-55. https://doi.org/10.1037/1076-898X.10.3.148.
Mishra, Himanshu, Arul Mishra, and Dhananjay Nayakankuppam. 2006. "Money: A Bias for the Whole." Journal of Consumer Research 32 (4): 541-49. https://doi.org/10.1086/500484.
Morin, Olivier. 2018. "Spontaneous Emergence of Legibility in Writing Systems: The Case of Orientation Anisotropy." Cognitive Science 42 (2): 664-77. https://doi.org/10.1111/cogs.12550.
Nickerson, Raymond S., and Marilyn Jager Adams. 1979. "Long-Term Memory for a Common Object." Cognitive Psychology 11 (3): 287-307. https://doi.org/10.1016/0010-0285(79)90013-6.
Norman, Donald A. 2013. The Design of Everyday Things. Revised and Expanded edition. New York, New York: Basic Books.
Pavlek, Barbara, James Winters, and Olivier Morin. 2019. "Ancient Coin Designs Encoded Increasing Amounts of Economic Information over Centuries." Journal of Anthropological Archaeology 56 (December): 101103. https://doi.org/10.1016/j.jaa.2019.101103.
Piantadosi, Steven T., Harry Tily, and Edward Gibson. 2011. "Word Lengths Are Optimized for Efficient Communication." Proceedings of the National Academy of Sciences 108 (9): 3526-29. https://doi.org/10.1073/pnas. 1012551108.
Raghubir, Priya, and Joydeep Srivastava. 2009. "The Denomination Effect." Journal of Consumer Research 36 (4): 701-13.
Regier, Terry, Charles Kemp, and Paul Kay. 2015. "Word Meanings across Languages Support Efficient Communication." In The Handbook of Language Emergence, 237-63. John Wiley \& Sons, Ltd. https://doi.org/10.1002/9781118346136.ch11.
Shafir, Eldar, Peter Diamond, and Amos Tversky. 1997. "Money Illusion." The Quarterly Journal of Economics 112 (2): 341-74. https://doi.org/10.1162/003355397555208.
Sperber, Dan, and Lawrence A. Hirschfeld. 2004. "The Cognitive Foundations of Cultural Stability and Diversity." Trends in Cognitive Sciences 8 (1): 40-46. https://doi.org/10.1016/j.tics.2003.11.002.

Tessari, Tommaso, Enrico Rubaltelli, Silvia Tomelleri, Carlotta Zorzi, Davide Pietroni, Chiara Levorato, and Rino Rumiati. 2011. " $€ 1 \neq € 1$ : Coins Versus Banknotes and People’s Spending Behavior." European Psychologist 16 (3): 238-46. https://doi.org/10.1027/1016-9040/a000078.
The Gallup Organization, and Eurobarometer, European Commission. 2006. "The Eurozone, 5 Years after the Introduction of the Euro Coins and Banknotes." Eurobarometer, European Commission. https://ec.europa.eu/commfrontoffice/publicopinion/flash/fl193_sum.pdf. Vranka, Marek, Nikola Frollová, Marek Pour, Julie Novakova, and Petr Houdek. 2019. "Cheating Customers in Grocery Stores: A Field Study on Dishonesty." Journal of Behavioral and Experimental Economics 83 (December): 101484. https://doi.org/10.1016/j.socec.2019.101484.
Wynne, Mark A. 1997. "More on Optimal Denominations for Coins and Currency." Economics Letters 55 (2): 221-25. https://doi.org/10.1016/S0165-1765(97)00080-3.


[^0]:    ${ }^{1}$ http://osf.io/ekcdb/
    ${ }^{2}$ https://osf.io/2vuba/?view_only=c843d9c30fe24721a1202ccc65fcd7d2

[^1]:    ${ }^{3}$ Our test of prediction 1.1. was repeated using a different measure of design similarity in adjacent pairs. Two independent coders judged whether the two designs were the same (0) or different (1) by comparing pictures of coins, not written descriptions (Cohen's kappa $=.90$ ). The results replicate the pattern of significant results reported in this paper (see sup. mat, sections 4.1. and 4.2.1).
    ${ }^{4}$ The analyses presented below were also all replicated using a different measure of coin value (US dollar equivalents: sup. mat. section 3.2.), with no change to the pattern of significant results reported here (see sup. mat. section 4.2.).

