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Abstract

A subwavelength metallic particle supports localized surface plasmons for some negative permittivity values, which
are eigenvalues of the self-adjoint quasi-static plasmonic eigenvalue problem (PEP). This work investigates the exis-
tence of complex plasmonic resonances for a 2D particle whose boundary is smooth except for one straight corner.
These resonances are defined using the multivalued nature of some solutions of the corner dispersion relations and
they are shown to be eigenvalues of a PEP that is complex-scaled at the corner, the finite element discretization of
which yields a linear generalized eigenvalue problem. Numerical results show that the complex scaling deforms the
essential spectrum (associated with the corner) so as to unveil both embedded plasmonic eigenvalues and complex
plasmonic resonances. The later are analogous to complex scattering resonances with the local behavior at the corner
playing the role of the behavior at infinity. These results corroborate the study of Li and Shipman (J. Integral Equ.
Appl. 31(4), 2019), which proved the existence of embedded plasmonic eigenvalues and discussed the construction
of particles that exhibit complex plasmonic resonances.
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1. Introduction

The broad focus of this paper is the quasi-static plasmonic eigenvalue problem (PEP) for planar domains with
corners. We consider a subwavelength plasmonic particle Ωm (typically made of metal), assumed to be a piecewise-
smooth bounded open set, surrounded by a dielectric medium Ωd B R2\Ωm. If u denotes the electric field potential,
then the strong form of the PEP is: find (u, κ) such that

∆u(x) = 0 (x ∈ Ωm ∪Ωd) , (1)

with the transmission boundary conditions

u|Ωm (x) = u|Ωd (x), ∂nu|Ωm (x) = κ ∂nu|Ωd (x) (x ∈ ∂Ωm) , (2)

where n denotes a unit normal defined on ∂Ωm. In addition, u must satisfy the decay condition at infinity

u(x) =
|x|→∞

O
(
|x|−1

)
, (3)

which excludes the trivial solutions (u = cst, κ) [1, § 2.4].
The spectral parameter κ, known as the contrast, is the ratio of dielectric permittivity across the interface ∂Ωm.

Physically κ depends upon the angular frequency ω, the simplest classical model being that of a free electron gas
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Fig. 1: Particle Ωm and dielectric medium Ωd . The sign-changing interface ∂Ωm is smooth except for a straight corner of angle φ.

known as Drude’s model [2, Eq. (6.18)] [3, Eq. (7.56)]. However this dependency is not considered further herein
since ω does not appear explicitly in the quasi-static approximation (1), which can be obtained as the leading-order
approximation of a frequency-dependent problem (assuming the diameter of Ωm is small compared to the wavelength)
[4, 5]. Solutions of the PEP (1,2,3) are surface waves known as localized surface plasmons (abbreviated as “surface
plasmons” for conciseness), whose energy-concentrating properties are commonly used today in label-free chemical
and biological sensors with applications in areas as diverse as pollution monitoring, medical diagnostic, pharmaceu-
tical development, and toxicology [6] [7, Chap. 11] [8]. Surface plasmons also have high-potential applications in
photonics [9, 10], such as subwavelength or “perfect” lenses [11, § 3] [12, § 4].

The presence of corners in ∂Ωm implies theoretical and numerical difficulties, which have been studied within
different bodies of literature surveyed below.

1.1. Analysis and discretization of the PEP weak formulation

A formal integration by parts of the PEP (1,2,3) yields: find (u, κ) such that, for any test function v,
ˆ

Ωm

∇u(x) · ∇v(x) dx = −κ

ˆ
Ωd

∇u(x) · ∇v(x) dx,

which is a generalized eigenvalue problem. Taking v = u shows that κ ≤ 0, i.e. the permittivity changes sign: the
interface ∂Ωm is said to be sign-changing. This complicates the analysis of well-posedness as well as discretization
since ellipticity is lost (the associated bilinear form is coercive if and only if κ < (−∞, 0] [13, § 3]). A crucial result is
that the topology of the spectrum depends on the interface’s smoothness. If ∂Ωm is smooth then the spectrum consists
of a sequence of distinct eigenvalues κn that accumulates at −1 [1, Thm. 1]. The closer κn is to −1, the more oscillating
and localized (at the surface) the corresponding eigenfunction is, as illustrated in Figure 9.

However, if the interface has a corner of angle φ ∈ (0, π) (as illustrated in Figure 1a), then the spectrum contains
the critical interval [14, 13]

Ic =

(
−

2π − φ
φ

,−1
)
∪

(
−1,−

φ

2π − φ

)
⊂ (−∞, 0),

which can be interpreted as essential spectrum [15, Thm. 3] [16]. Each contrast κ in the critical interval is associated
with a pair of strongly-oscillating local corner solutions, conjugate of each other, depicted in Figure 2. A peculiar
feature of these two local solutions is that they do not have finite energy (i.e. they belong to L2 but not H1 around the
corner). Physical insights can be gained by working in the Euler coordinates (z, θ), deduced from the polar coordinates
centered at the corner by (z = ln r, θ), which send the corner r = 0 to infinity z = −∞: the two local solutions can be
interpreted as waves with opposite group velocities radiating energy either “to” or “from” the corner, each respecting
a different radiation condition at z → −∞ [13]. The “outgoing” wave, which is the one needed to satisfy the limiting
absorption principle, has been called a black-hole wave [13] since it effectively traps energy at the corner.

Numerically, this analysis has been used to design a perfectly matched layer (PML) that selects the desired wave at
the corner. This corner PML has been demonstrated on a finite element (FE) discretization of the plasmonic scattering
problem with κ ∈ Ic in [17], where it is shown to yield a convergent discretization. In the physics literature, FE
discretizations of (1,2) without corner PML have been considered, see e.g. [18].
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1.2. Analysis and discretization of the PEP integral formulation (Neumann-Poincaré operator)

By looking for u as a single-layer potential u = S
[
ϕ
]
, an integral formulation of the PEP (1,2,3) can be obtained

by combining the jump property [19, Thm. 3.28] [20, Chap. 3] with the transmission conditions (2): find (ϕ, λ) such
that [21, Eq. (4)] [22, Thm. 2.1]

K?ϕ = λ ϕ, (4)

where the operator K? is the adjoint of the double-layer potential, also known as the Neumann-Poincaré (NP) opera-
tor, and the link between the spectral parameter λ and the contrast κ is given by

λ =
1
2
×

1 + κ

1 − κ
, κ =

2λ − 1
2λ + 1

.

The integral formulation of the non quasi-static case is derived in [23, Eq. (2.3)].
Numerically, boundary element (BE) methods have been used in the physics literature to solve the PEP, see [24]

for instance. A detailed comparative study of BE methods for particles with corners is available in [25]. Theoretically,
the NP operator has enjoyed a renewed scrutiny stimulated by the interest in plasmonics: see e.g. [26] for an optimal
shape design problem, [4] for a mathematical study of surface plasmons, [5] for an investigation into the validity of
the quasi-static approximation, [27] for a study of the rate of resonance, and [28] for a spectral resolution of the NP
operator on intersecting disks.

Let us now review some results of spectral theory: in agreement with Section 1.1, the spectrum of the NP operator
depends upon the smoothness of the interface. For a Lipschitz boundary, K? is a bounded self-adjoint operator.1 If
the interface is smooth thenK? is compact and its spectrum consists of a sequence of eigenvalues λn that accumulates
at λ = 0 (κ = −1). If the interface has a corner of angle φ ∈ (0, π) then K? loses its compactness: its essential
spectrum is given by [31, Thm. 7] (see also [32, Eq. (7)])

σess

(
K?

)
=

[
φ − π

2π
,
π − φ

2π

]
=

{
λ =

1
2
×

1 + κ

1 − κ

∣∣∣∣∣ κ ∈ Ic

}
⊂

(
−

1
2
,

1
2

)
and its eigenvalues λn can only accumulate at 0 and ± φ−π2π [33, Thm. A].

A numerical investigation into the different components of σ
(
K?) using a rate-of-resonance criterion showed the

presence of embedded eigenvalues for an elliptical particle perturbed by a corner [34]. It is proven in [35, Thm. 8]
that given a symmetric closed C2 interface, there exists a corner perturbation that generates embedded eigenvalues.
Moreover, in [35, § 5.2] it is suggested that this corner perturbation can lead to some eigenvalues crossing the essential
spectrum to become complex resonances: this will be confirmed using complex scaling in Section 5.

1.3. Outline

The objective of this paper is to investigate the existence of so-called complex plasmonic resonances for a 2D
subwavelength particle whose boundary is smooth except for one straight corner. We first propose a definition of
complex plasmonic resonances that relies solely on an analysis of the corner dispersion relations (Definition 17).
Complex plasmonic resonances are not eigenvalues of the PEP (1,2,3), which makes their computation challenging.
However we show that they can be computed as eigenvalues of a modified PEP, obtained using a corner complex
scaling. A FE discretization of this complex-scaled PEP yields a complex-symmetric linear generalized eigenvalue
problem.

In the footsteps of [34, 35], the numerical application focuses on an elliptical particle perturbed by a corner.
Results show that the complex scaling deforms the critical interval Ic so as to unveil both embedded plasmonic eigen-
values and complex plasmonic resonances. The latter are associated with surface plasmons (named herein complex
plasmonic resonance functions) whose behavior at the corner xc is

u(x) =
|x−xc |→0

1
|x − xc|

=(η)
O (1)

(
=(η) > 0

)
,

1When considered as an operator from H−1/2 (∂Ωm) to itself, equipped with the inner product induced by the single-layer potential S: this
technical result is a consequence of Plemelj’s symmetrization principle [29] [30, Thm. 2.5].
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where the exponent η is linked to the contrast κ through the corner dispersion relations. Complex plasmonic reso-
nances are formally analogous to complex scattering resonances, with the local behavior at the corner playing the
role of the behavior at infinity. These results corroborate the study [35], which proved the existence of embedded
plasmonic eigenvalues and discussed the construction of particles that exhibit complex plasmonic resonances.

This paper is organized as follows. Section 2 defines complex plasmonic resonances. To compute them, we rely on
a corner complex scaling that is recalled and analyzed in Section 3. Section 4 validates the proposed FE formulation
and emphasizes the discretization challenges inherent to the sign-changing nature of the interface. Lastly, Section 5
gathers the numerical results. The proofs of some technical or known results are gathered in Appendices A, B, and D.
Appendix C contains further comments on the definition of complex plasmonic resonances proposed herein.
Remark 1 (On the meaning of “complex resonance”). In this paper, the denomination “complex resonance” is used in
the sense of [36, 37]. The complex resonances defined and computed in this work are designated “complex plasmonic
resonances” to distinguish them from “complex scattering resonances”. This terminology will be defined in Sec-
tion 2.2.3, but to avoid confusion let us emphasize now that “complex resonance” and “complex resonance function”
are different concepts from “complex eigenvalue” and “eigenfunction”. In the physical literature, “complex resonance
functions” are sometimes also called “quasi-normal modes”.

2. Basics of corner plasmonics and definition of complex plasmonic resonances

The purpose of this section is to define complex plasmonic resonances. Section 2.1 recalls the “trinity of corner
plasmonics”: the corner dispersion relations (7), the associated sets of exponents (8), and the critical interval (10).
Section 2.2 then defines complex plasmonic resonances in Definition 17. The proposed definition is computational
inasmuch as it relies explicitly on the asymptotic expansion at the corner, which will ease the introduction of the
complex-scaling technique in Section 3.

Assumption. Throughout Sections 2 and 3 the particle Ωm is a bounded open set with a boundary ∂Ωm that is
smooth except at xc, where there is a straight corner of angle φ ∈ (0, 2π)\{π}, see Figure 1a for an example.

Notation. The dielectric medium is Ωd B R2\Ωm. Let

D B {|x − xc| < R} , Θm B
(
−
φ

2
,
φ

2

)
, Θd B

(
−π,−

φ

2

)
∪

(
φ

2
, π

]
. (5)

The radius R > 0 is small enough so that D only includes the straight corner. The polar coordinates (r, θ) with
θ ∈ (−π, π] are centered at xc, see the sketch of Figure 1b. The set Dm B Ωm ∩ D (resp. Dd B Ωd ∩ D) is described
by r < R and θ ∈ Θm (resp. θ ∈ Θd).

2.1. Corner dispersion relations and critical interval
To define complex plasmonic resonances we first “zoom at the corner”, i.e. we carry out a local study near the

corner by considering ∆u(x) = 0 (x ∈ Dm ∪ Dd)

u|Dm (x) = u|Dd (x), ∂nu|Dm (x) = κ ∂nu|Dd (x) (x ∈ ∂Dm ∩ ∂Dd) ,
(6)

where there is no boundary condition on ∂D. The solutions of the local transmission problem (6) are given in Propo-
sition 5, which requires two definitions used throughout the work.

Definition 2 (Corner dispersion relations). Let φ ∈ (0, 2π). The even (resp. odd) corner dispersion relation is

f e(o)φ (η, κ) = 0, (7)

where f e(o)φ : C × C→ C is given by f e(o)φ (η, κ) B [1 + κ] sinh
[
ηπ

] −
(+) [1 − κ] sinh

[
η (π − φ)

]
.

Remark 3. The name “dispersion relation” for (7) is motivated by time-harmonic variants of the PEP, where κ is
explicitly considered as a function of frequency.

Definition 4 (Sets of exponents). Let φ ∈ (0, 2π). For any κ ∈ C, the set of even (resp. odd) exponents H e(o)φ (κ) and
the set of exponents Hφ(κ) are defined as

H e(o)φ (κ) B
{
η ∈ C

∣∣∣∣ f e(o)φ (η, κ) = 0
}
, Hφ(κ) B H eφ(κ) ∪ H oφ(κ). (8)
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Proposition 5 (Local solutions). Let φ ∈ (0, 2π)\{π} and κφ B −
2π−φ
φ

. For any κ ∈ C\{κφ}, the solutions of the local

transmission problem (6) with separated variables can be split into two families
(
ueη

)
η∈H eφ(κ)

and
(
uoη

)
η∈H oφ (κ)\{0}

defined
as

ue(o)η (r, θ) B riη × Φe(o)η (θ)
(
η ∈ H e(o)φ (κ)\{0}

)
, ue0(r, θ) B [1 + c ln(r)] × Φe0(θ),

where the orthoradial functions Φeη and Φoη are given by (A.1) and (A.2), respectively.

Proof. Using weak derivatives, (6) reads

div (σ∇u) =
1
r2 [r∂r (σ(κ, θ)r∂ru) + ∂θ (σ(κ, θ)∂θu)] = 0 (r ∈ (0,R), θ ∈ (−π, π]), (9)

with σ(κ, θ) B 1/κ1Θm (θ) + 1Θd (θ). If we look for a solution with separated variables u(r, θ) = v(r)w(θ) we get

1
v(r)

r∂r (r∂rv(r)) = −η2 = −
1

σ(κ, θ) w(θ)
∂θ (σ(κ, θ)∂θw(θ)) ,

where η ∈ C is a free parameter. Proposition 27 shows that the orthoradial equation is solvable if and only if
f eφ (η, κ) = 0 or f oφ (η, κ) = 0. Since κ , κφ, the odd piecewise-linear function Φo0 cannot solve the orthoradial equation.
The change of variables z = ln(r) enables to write the radial equation as v

′′

(z) = −η2v(z) on (−∞, ln R), which is
readily solvable for any η ∈ C.

The regularity of these local solutions at the corner is driven by the sign of =(η):

• If =(η) < 0, then ue(o)η vanishes at the corner and ue(o)η ∈ H1(D).

• If =(η) > 0 then ue(o)η is singular at the corner and ue(o)η < H1 (D). The modulus of ue(o)η tends to infinity as
r → 0. Moreover, if =(η) > 1 then ue(o)η < L2(D).

• If =(η) = 0, then there are three cases to distinguish:

– If η ∈ R∗ then ue(o)η (r, θ) = eiη ln rΦ
e(o)
η (θ) ∈ L2(D)\H1 (D) is a (bounded) strongly-oscillating function (in

r) that does not have a limit at r = 0.

– If η = 0 and c = 0, then ue0 ∈ H1(D) since ue0(r, θ) = 1.

– If η = 0 and c , 0, then ue0 ∈ L2(D)\H1(D) due to its logarithmic singularity.

Since we will use these local solutions to expand the solution of the PEP (1,2,3) in D, it will prove useful to know the
content of Hφ(κ) for a given contrast κ and corner angle φ: Lemma 6 covers elementary properties while Proposition 7
covers the strongly-oscillating case η ∈ R∗.

Lemma 6 (Elementary properties). Let κ ∈ C and φ ∈ (0, 2π)\{π}. The following properties hold:

(a) H e(o)φ (κ) is countable and has no finite accumulation point.

(b) If η ∈ H e(o)φ (κ), then −η ∈ H e(o)φ (κ) and η ∈ H e(o)φ (κ).

(c) 0 ∈ H e(o)φ (κ) and H eφ(κ) ∩ H oφ(κ) ⊂ iR.

Proof. See Appendix B.1.

The next result shows that the strongly-oscillating case η ∈ R∗ can only occur when κ belongs to the so-called
critical interval Ic: [17, Eq. (10)]

Ic B I oc ∪ I ec , I oc B


(
κφ,−1

)
(0 < φ < π)(

−1, κφ
)

(π < φ < 2π)
, I ec B


(
−1, κ−1

φ

)
(0 < φ < π)(

κ−1
φ ,−1

)
(π < φ < 2π) .

(10)

Proposition 7 (Critical interval). Let φ ∈ (0, 2π)\{π}. We have the equivalences

κ ∈ I e(o)c ⇔ H e(o)φ (κ) ∩ R∗ , ∅⇔ ∃! ηc > 0 : H e(o)φ (κ) ∩ R∗ = {ηc,−ηc} ,

where the scalar ηc is the critical exponent. Moreover, ηc crosses the real axis when κ crosses I e(o)c .
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Fig. 2: Strongly-oscillating local solutions<
(
ue(o)ηc

)
/‖ue(o)ηc ‖∞ given by (12) for a corner angle φ = π/2. The contrast κ solves f e(o)φ (ηc, κ) = 0.

Proof. Let

ψφ(η) B
sinh

[
η (π − φ)

]
sinh

[
ηπ

] , β(x) B
x − 1
x + 1

. (11)

The smooth even map ψφ is strictly monotonous on (0,∞), since ψ
′

φ(η) = 0 is equivalent to a tanh
[
ηπ

]
= tanh

[
aηπ

]
with a = 1 − φ/π. ψφ maps (0,∞) onto ( π−φ

π
, 0) if φ ∈ (π, 2π) and onto (0, π−φ

π
) if φ ∈ (0, π). The claimed equivalences

follow from f eφ (η, κ) = 0 ⇔ κ = β ◦ ψφ(η) and f oφ (η, κ) = 0 ⇔ 1/κ = β ◦ ψφ(η), where β is an increasing map from
(−1, 1) onto (−∞, 0). The last claim follows from the implicit function theorem and is proven in Appendix B.1.

When the contrast is critical, i.e. when κ ∈ I e(o)c , the two strongly-oscillating functions

ue(o)ηc
(r, θ) = riηcΦe(o)ηc

(θ), ue(o)−ηc
(r, θ) = r−iηcΦe(o)ηc

(θ) = ue(o)ηc (r, θ) (r ∈ (0,R), θ ∈ (−π, π]) (12)

solve (6). These functions do not have a limit when r → 0. As κ ∈ Ic tends to κφ or 1/κφ, the (real) critical exponent ηc

tends to 0, while as κ → −1, ηc goes to infinity.

Remark 8. As φ → π (locally flat interface), the closure of the critical interval reduces to {−1}. The closure of the
critical interval can be interpreted as the essential spectrum of a suitably defined operator [15, 31, 16].

The results covered so far apply to any corner angle φ , π and constitute all that is needed to introduce complex
plasmonic resonances in Section 2.2. The remainder of this section focuses on the case φ/π ∈ Q, for which the
knowledge of Hφ is reduced to that of a bounded subset H̆φ that can be obtained by solving a polynomial equation.

Proposition 9. Let κ ∈ C\{−1}. If φ ∈ (0, 2π)\{π} and φ/π = p/q with p and q coprime integers, then the set of exponents
can be split into a κ-independent and a κ-dependent part:

H e(o)φ (κ) =
[
iqZ

]
∪

[
H̆ e(o)φ (κ) + i2qZ

]
, (13)

where H̆ e(o)φ (κ) ⊂
{
η ∈ C | − q < =(η) ≤ q

}
contains at most 2(q − 1) distinct elements and satisfies

H̆ eφ(κ) =

{q
π

ln(x)
∣∣∣∣ P(p,q)

β(κ) (x) = 0
}
, H̆ oφ(κ) =

{q
π

ln(x)
∣∣∣∣ P(p,q)
−β(κ)(x) = 0

}
,

where the polynomial P(p,q)
β(κ) is given by (B.1) and ln denotes the principal branch of the logarithm.

Proof. The proof consists in formulating a polynomial equation in x = e
ηπ
q , see Appendix B.2.

For a right angle φ = π/2, we have (see Example 29 for details)

H̆ eφ(κ) =
{
η+
β(κ),−η

+
β(κ)

}
, H̆ oφ(κ) =

{
η+
−β(κ),−η

+
−β(κ)

}
, (14)

where the exponents, which only depend on κ through β(κ), are given by:

η+
β(κ) B

2
π

ln

−β(κ) +
√
β(κ)2 − 4

2

 , η+
−β(κ) B

2
π

ln

β(κ) +
√
β(κ)2 − 4
2

 , (15)
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] κ = −1 + 0.85 i
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κ = −0.45 ∈ I ec

< (η)
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( η

)
[ φ

=
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]
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< (η)
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Fig. 3: Sets of exponents, computed using Proposition 9. (#): H eφ(κ), (�): H oφ(κ). The stable region {=(η) < 0} is shaded. (Top row) φ = π/2, for

which H̆ e(o)φ (κ) ⊂
{
η ∈ C | − 2 < =(η) ≤ 2

}
. (Bottom row) φ = π/3, for which H̆ e(o)φ (κ) ⊂

{
η ∈ C | − 3 < =(η) ≤ 3

}
.

using the principal branches of both ln and
√
·. In agreement with Proposition 7, we have:

κ ∈ I ec = (−1,−1/3)⇔ β(κ) ∈ (−∞,−2)⇔ η+
β(κ)(κ) > 0, κ ∈ I oc = (−3,−1)⇔ β(κ) ∈ (2,+∞)⇔ η+

−β(κ)(κ) > 0.

The associated strongly-oscillating local solutions are plotted in Figure 2. The case φ = π/3 is similar:

H̆ eφ(κ) =
{
η+,+
β(κ), η

+,−
β(κ),−η

+,+
β(κ),−η

+,−
β(κ)

}
, H̆ oφ(κ) =

{
η+,+
−β(κ), η

+,−
−β(κ),−η

+,+
−β(κ),−η

+,−
−β(κ)

}
,

see Example 30 for details. Using these results Figure 3 plots the exponents for φ = π/2 and φ = π/3, highlighting the
structure (13). It also shows the two real critical exponents ±ηc that are obtained when κ ∈ Ic.

2.2. From multivalued exponents to complex plasmonic resonances

We denote by C+ and C− the open upper and lower half-spaces

C+ B
{
z ∈ C | =(z) > 0

}
, C− B

{
z ∈ C | =(z) < 0

}
.

Let κ0 ∈ C+ and u be a H1(D) solution of the local transmission problem (6) with κ = κ0. From the properties gathered
in Section 2.1, notably the discussion that followed Proposition 5, u admits the pointwise-convergent asymptotic
expansion

u(r, θ) =
r→0

c0 +
∑
ρ∈{e,o}

∑
η∈Ĥ ρ

φ (κ0)
η?<=(η)

cρη uρη (r, θ) + O
(
r−η?

)
(r ∈ (0,R), θ ∈ (−π, π]) (16)

for any η? < 0, where the sets of so-called stable exponents are defined for any κ ∈ C+ as

Ĥ e(o)φ (κ) B
{
η ∈ H e(o)φ (κ)

∣∣∣=(η) < 0
}
, Ĥφ(κ) B Ĥ eφ(κ) ∪ Ĥ oφ(κ)

(
κ ∈ C+) . (17)

A rigorous derivation of (16) could be carried out by inverting the Mellin transform of u using the residue theorem,
see [38, § 3.5] as well as [39, § 1.2] [40, Chap. 2] [41, § 2] [42, Chap. 2].

The purpose of this section is to construct a definition of complex plasmonic resonances by continuing κ 7→ Ĥφ(κ),
well-defined for any κ ∈ C+, to C−. The construction proceeds in three steps. Section 2.2.1 shows that Ĥφ has three
branch points given by κ = κφ, κ = 1/κφ, and κ = −1. Section 2.2.2 introduces three different analytic continuations
to C−, depending on where κ crosses the real axis. This leads in Section 2.2.3 to the definition of distinct families of
contrasts: isolated plasmonic eigenvalues, embedded plasmonic eigenvalues, and complex plasmonic resonances.
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2.2.1. Branch points of the set of stable exponents
Before tackling the general case it is instructive to highlight the multivalued nature of the set of stable exponents

Ĥ e(o)φ when φ = π/2, since for this corner angle the exponents are known in closed form (13,14,15).

Example 10 (Case φ = π/2). The exponent η+
−β(κ) is null only for κ = −3 (β(κ) = 2) and is singular only at κ = −1

(|β(κ)| = ∞). These two values are in fact algebraic and logarithmic branch points, respectively, as revealed by the
asymptotic expansions

η+
−β(κ) =

κ→−3

2
π

√
β(κ) − 2 + O (|β(κ) − 2|) , exp

(
η+
−β(κ)

π

2

)
=

κ→−1
β(κ) −

1
β(κ)

+ O

(
1
|β(κ)|3

)
.

These branch points imply that κ 7→ η+
−β(κ) is a multivalued map, i.e. it admits distinct branches [43, § I.4–I.7]. When

κ circles once around −3, β(κ) loops around 2 and the exponents η+
−β(κ) and −η+

−β(κ) swap places, each crossing the real
axis once. When κ circles once around −1, η+

−β(κ) gets translated by (i2π)× 2
π

= i4 or −i4, depending on the direction of
rotation. Let us now investigate what the multivaluation of the exponent κ 7→ η+

−β(κ) implies for the sets of exponents
defined so far:

• Let κ ∈ C\{−1}. The set H̆ oφ(κ)+ i4Z contains all the possible values for η+
−β(κ) and −η+

−β(κ), so the set-valued map
κ 7→ H̆ oφ(κ) + i4Z is not multivalued (i.e. starting at κ, regardless of the closed path one follows in the κ-plane
one will never obtain two different sets at κ). A fortiori, the map κ 7→ H oφ(κ) is not multivalued (see (13)). This
illustrates that although some elements of κ 7→ H oφ(κ) are multivalued maps, the set-valued map κ 7→ H oφ(κ)
is not multivalued (since it includes all the possible branches of its elements). (Note that not all elements of
κ 7→ H oφ(κ) are multivalued, since (13) implies that some elements of H oφ(κ) do not depend upon κ.)

• Let κ ∈ C+. The set Ĥ oφ(κ) contains either η+
−β(κ) or −η+

−β(κ) but not both, so κ = −3 is an algebraic branch point

of κ 7→ Ĥ oφ(κ). Moreover, Ĥ oφ(κ) does not contain η+
−β(κ) + i4 or −η+

−β(κ) + i4 (since they have positive imaginary

parts), so κ = −1 is a logarithmic branch point of κ 7→ Ĥ oφ(κ). Here, the multivaluation of some elements of
κ 7→ Ĥ oφ(κ) does imply that the set-valued map κ 7→ H oφ(κ) is multivalued (since it does not include all the
possible branches of its elements).

The even case is deduced with the substitution (β(κ),−3, o)→ (−β(κ),−1/3, e).

In the general case no closed form expression is available for the exponents. However the next result shows that
if κ < {κφ, 1/κφ}, then H e(o)φ (κ) consists only of simple zeros of f e(o)φ (·, κ) that depend analytically on κ.

Proposition 11. Let φ ∈ (0, 2π)\{π} and κ0 ∈ U B C\{κφ, 1/κφ}. For any η0 ∈ H e(o)φ (κ0), there are a neighborhood

V ⊂ U of κ0 and a unique analytic map η̃ : V → C such that η̃(κ0) = η0 and η̃(κ) ∈ H e(o)φ (κ) for any κ ∈ V.

Proof. Consequence of the implicit function theorem [44, Prop. 2.14], see Appendix B.1.

Note that the above proposition does apply to κ = −1, as H e(o)φ (−1) = i π
π−φ

Z is well-defined. However, the value

κ = −1 is a singularity in the sense that some elements of H e(o)φ (κ) go to infinity when κ → −1 (e.g. the critical
exponent ηc). Therefore from now on the map κ 7→ H e(o)φ (κ) is always considered defined on the open subset

K B C\
{
κφ,

1
κφ
,−1

}
.

Although the map κ 7→ H e(o)φ (κ) is single-valued we have the following result, which generalizes the observations
made in Example 10.

Proposition 12. Let φ ∈ (0, 2π)\{π}. The map C+ 3 κ 7→ Ĥ e(o)φ (κ) defined by (17) has one algebraic branch point at
κ = 1/κφ (resp. κ = κφ) and one logarithmic branch point at κ = −1.

Proof. Follows from asymptotic expansions of the critical exponent, as in Example 10, see Appendix B.1.

The multivalued nature of the set-valued map κ 7→ Ĥ e(o)φ (κ) is relied upon in the next sections to define complex
plasmonic resonances.
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0−1 1
κφ

κφ <(κ)

=(κ)

I oc I ec

κ0

κ1

(a) 0 < φ < π.

0−1 κφ1
κφ

<(κ)

=(κ)

I ec I oc

κ0

κ1

(b) π < φ < 2π.

Fig. 4: Complex paths satisfying (18), each crossing the real axis at a different location: Γφ crosses outside the closure of the critical interval Ic, Γeφ

crosses through I ec , and Γoφ crosses through I oc . Each path leads to a different continuation of C+ 3 κ 7→ Ĥφ(κ), see Figure 5.

−1 −0.5 0 0.5 1
−4
−2

0
2
4

=
( η

)

Hφ(κ0) and Ĥφ(κ0)

−1 −0.5 0 0.5 1
−4
−2

0
2
4

< (η)

=
( η

)

Hφ(κ1) and Ĥφ ◦ Γφ(1)

−1 −0.5 0 0.5 1

−ηebh

ηebh

< (η)

Hφ(κ1) and Ĥφ ◦ Γeφ(1)

−1 −0.5 0 0.5 1

−ηobh

ηobh

< (η)

Hφ(κ1) and Ĥφ ◦ Γoφ(1)

Fig. 5: Analytic continuation of κ 7→ Ĥφ(κ) along each path of Figure 4, with φ = π/2, κ0 = −1 + 0.85 i ∈ C+, and κ1 = κ0. (#, ): H eφ(κ),

(�,�): H oφ(κ). (Top) ( ,�): Ĥφ(κ0) given by (17). (Bottom left) ( ,�): Ĥφ ◦ Γφ(1) given by (19) (no exponent has crossed R). (Bottom center)

( ,�): Ĥφ ◦ Γeφ(1) given by (21) (the pair ±ηebh has crossed R). (Bottom right) ( ,�): Ĥφ ◦ Γoφ(1) given by (23) (the pair ±ηobh has crossed R).

2.2.2. Analytic continuations of the set of stable exponents
Intuitively, we would like to track the elements of Ĥφ(κ) as κ travels from κ0 ∈ C+ to the lower half-plane C−. To

achieve this, we define a smooth complex path Γ that satisfies

Γ : (0, 1)→ C, Γ(0) = κ0, Γ(1) = κ1, (18)

where κ1 is an arbitrary contrast in C−. Proposition 11 implies that each element of Hφ(κ0) can be considered as
an analytic map defined in some neighborhood of κ0; “tracking” an element of Hφ(κ0) means building the analytic
continuation of this map along Γ. Figure 4 sketches the three paths considered, which differ by where the real axis is
crossed: Γφ crosses the real axis outside the closure of the critical interval Ic, while Γeφ (resp. Γoφ) crosses the real axis
through the even (resp. odd) critical interval I ec (resp. I oc ). The top graph of Figure 5 plots Ĥφ(κ0) for φ = π/2.

Crossing through R\Ic. Let us first consider the behavior of Ĥφ along Γφ. Proposition 7 gives that for any s ∈ [0, 1],
Ĥφ ◦ Γφ(s) never contains a real element. In other words, no element of Ĥφ(κ) crosses the real axis as κ travels along
Γφ. This provides us with a first value for “Ĥφ(κ1)”, namely

Ĥφ ◦ Γφ(1) =
{
η ∈ Hφ(κ1)

∣∣∣=(η) < 0
}
, (19)

which is the one we could have expected at first sight. The bottom left graph of Figure 5 plots Ĥφ ◦ Γφ(1).
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Crossing through I ec . The main difference between Γφ and the even-crossing path Γeφ follows from Proposition 7:
when Γeφ(s) reaches I ec coming from C+, two non-null elements of H eφ ◦ Γeφ(s) become real, namely ±ηc. One of them,
defined as the black-hole exponent ηebh, comes from the stable region C− while the other one comes from the unstable
region C+. By contrast, no elements of Ĥ oφ ◦ Γeφ become real. The link between ηebh and ηc depends upon the corner
angle φ: [17, Tab. 1]

∀κ ∈ I ec , η
e
bh(κ) B +ηc > 0 (0 < φ < π) , ηebh(κ) B −ηc < 0 (π < φ < 2π) . (20)

As Γeφ(s) leaves I ec to enter C−, the black-hole exponent ηebh crosses R towards the unstable region C+ while −ηebh

crosses R towards the stable region C−. Eventually κ1 is reached and we arrive at a second value for “Ĥφ(κ1)”:

Ĥφ ◦ Γeφ(1) =
{
η ∈ Hφ(κ1)

∣∣∣=(η) < 0, η , −ηebh(κ1)
}
∪

{
ηebh(κ1)

}
, (21)

which is shown in the bottom center plot of Figure 5 (compare with the bottom left plot).

Remark 13 (Definition of the black-hole exponent). Let us emphasize the meaning of (20). The critical exponent ηc

is a scalar defined in Proposition 7, where it is arbitrarily taken positive. The black-hole exponent ηebh is defined by
analytic continuation; in particular, the sign of ηebh(κ) when κ ∈ I ec is not arbitrary but dependent upon the corner angle.
The analyticity of κ 7→ ηebh(κ) follows from Proposition 11.

Crossing through I oc . Since Proposition 7 applies to both the odd and even cases, the odd-crossing path leads to a
similar phenomenon. The black-hole exponent belongs to H oφ and has the sign (compare to (20)) [17, Tab. 1]

∀κ ∈ I oc , η
o
bh(κ) B −ηc < 0 (0 < φ < π) , ηobh(κ) B +ηc > 0 (π < φ < 2π) , (22)

which leads to a third value for “Ĥφ(κ1)”:

Ĥφ ◦ Γoφ(1) =
{
η ∈ Hφ(κ1)

∣∣∣=(η) < 0, η , −ηobh(κ1)
}
∪

{
ηobh(κ1)

}
, (23)

plotted in the bottom right graph of Figure 5.

Summary. Starting from a contrast κ0 in the upper half-plane we have obtained three different values for “Ĥφ(κ1)”,
depending on where the real axis has been crossed. To summarize, let us explicitly write down the three corresponding
analytic continuations of Ĥφ. The continuation across R\Ic is given by

Ĥφ(κ) B Ĥ eφ(κ) ∪ Ĥ oφ(κ)
(
κ ∈ C+ ∪

[
R\Ic

]
∪ C−

)
(24)

and the continuations across I ec and I oc are given by

Ĥ |eφ (κ) B Ĥ e |eφ (κ) ∪ Ĥ o |eφ (κ)
(
κ ∈ C+ ∪ I ec ∪ C−

)
, Ĥ |oφ (κ) B Ĥ e |oφ (κ) ∪ Ĥ o |oφ (κ)

(
κ ∈ C+ ∪ I oc ∪ C−

)
, (25)

where

Ĥ e(o) |o(e)φ (κ) B Ĥ e(o)φ (κ) B
{
η ∈ H e(o)φ (κ)

∣∣∣=(η) < 0
} (

κ ∈ C+ ∪

[
R\I e(o)c

]
∪ C−

)
Ĥ e(o) |e(o)φ (κ) B

{
η ∈ H e(o)φ (κ)

∣∣∣=(η) < 0, η , −ηe(o)bh (κ)
}
∪

{
ηe(o)bh (κ)

} (
κ ∈ C+ ∪ I e(o)c ∪ C−

)
.

By construction the sets Ĥφ(κ), Ĥ |eφ (κ), and Ĥ |oφ (κ) are identical for κ ∈ C+ but differ elsewhere. For any κ ∈ C−,

Ĥφ(κ) ⊂ C− while Ĥ |e(o)φ (κ) contains the unstable black-hole exponent ηe(o)bh (κ) ∈ C+, see the bottom row of Figure 5.

2.2.3. Definition of complex plasmonic resonances
Section 2.2.2 has defined three analytic continuations to C− of the set of stable exponents (17), namely Ĥφ(κ)

given by (24) and Ĥ |e(o)φ (κ) given by (25). Each one is used below to either define or characterize a family of contrasts.
To comment the proposed definitions, we will use the following elementary lemma.

Lemma 14. Let κ ∈ C and σ B 1
κ
1Ωm + 1Ωd . Let u , 0 be such that (u, κ) is a solution of the PEP (1,2,3) and

u ∈ H1
loc

(
R2\{xc}

)
. The following properties hold:
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(a)
´
R2\D σ|∇u|2 dx = −

´
∂D σ∂ruu ds.

(b) If u ∈ H1
loc

(
R2

)
then κ ∈ R.

Proof. (a) Integrate by parts div (σ∇u) u = 0 on the annulus {R < r < R∞} and take the limit R∞ → ∞ using (3)
and [19, Prop. 2.75]. (b) Assume u ∈ H1

loc

(
R2

)
. The regularity of u on the disk D enables to integrate by parts

div (σ∇u) u = 0 on D to obtain
´

D σ|∇u|2 dx =
´
∂D σ∂ruu ds. By combining with (a) we deduce that

´
R2 σ|∇u|2 dx = 0.

Taking the imaginary part yields =(κ) = 0.

Let us begin by defining isolated plasmonic eigenvalues.

Definition 15 (Isolated plasmonic eigenvalue). A contrast κ is an isolated plasmonic (IP) eigenvalue if κ ∈ (−∞, 0]\Ic

and there is a non-trivial u ∈ H1
loc

(
R2

)
such that (u, κ) solves the PEP (1,2,3).

The corner asymptotic expansion of the associated eigenfunctions can be written using the continuation Ĥφ: for
any η? < 0,

u(r, θ) =
r→0

c0 +
∑
ρ∈{e,o}

∑
η∈Ĥ ρ

φ (κ)
η?<=(η)

cρη uρη (r, θ) + O
(
r−η?

)
(r ∈ (0,R), θ ∈ (−π, π]), (26)

where all of the local solutions uρη in the right-hand side belong to H1(D), see the discussion after Proposition 5.
Isolated eigenvalues can be computed without any specific treatment of the corner. The case κ ∈ Ic leads to the
definition of embedded plasmonic eigenvalues (the odd variant is obtained by swapping “e” and “o”).

Definition 16 (Embedded plasmonic eigenvalue). An even-critical embedded plasmonic (EP) eigenvalue is a real
contrast κ ∈ I ec for which there is a non-trivial u ∈ H1

loc

(
R2

)
such that (u, κ) solves the PEP (1,2,3).

Let u be an eigenfunction associated with an even-critical EP eigenvalue κ ∈ I ec . The regularity of u implies that
its corner asymptotic expansion must only include local solutions ueη and uoη that belong to H1 (D). For any η? < 0,
the expansion can be written using the continuation Ĥ |eφ as

u(r, θ) =
r→0

c0 +
∑
ρ∈{e,o}

∑
η∈Ĥ ρ |e

φ (κ)
η?<=(η)

cρη uρη (r, θ) + O
(
r−η?

)
(r ∈ (0,R), θ ∈ (−π, π]), (27)

where the singularity coefficient ce
ηebh

is null (to exclude the only local solution not in H1(D) in the right-hand side).
Both IP and EP eigenvalues belong to the spectrum of the PEP, which can be written as a self-adjoint eigenvalue
problem [1, 33]. Complex resonances are intrinsic entities, obtained by continuation across the critical interval,
which do not belong to the spectrum; see the definition below (the odd variant is obtained by swapping “e” and “o”).

Definition 17 (Complex plasmonic resonance). An even-critical complex plasmonic (CP) resonance is a complex
contrast κ ∈ C− for which there is a non-trivial u such that (u, κ) solves the PEP (1,2,3), u ∈ H1

loc

(
R2\{xc}

)
, and u

admits the corner asymptotic expansion: for any η? < 0,

u(r, θ) =
r→0

c0 +
∑
ρ∈{e,o}

∑
η∈Ĥ ρ |e

φ (κ)
η?<=(η)

cρη uρη (r, θ) + O
(
r−η?

)
(r ∈ (0,R), θ ∈ (−π, π]). (28)

If κ is an even-critical CP resonance then from Lemma 14(b) the associated CP resonance function u cannot belong
to H1

loc
(
R2) , so that in (28) the singularity coefficient ce

ηebh
must be non-null. The expansion (28) implies

u(r, θ) =
r→0

c0 + ceηebh
ueηebh

(r, θ) + O
(
|riη|

)
,with ηebh ∈ C

+ and η ∈ C−, (29)

where the singular behavior of ue
ηebh

is described in the discussion following Proposition 5. A comparison of (27) and
(28) makes clear that even-crossing EP eigenfunctions and CP resonance functions share the same corner asymptotic
expansion, the only difference being that the singularity coefficient ce

ηebh
is null for the former and non-null for the

latter. The next lemma shows that substituting “κ ∈ C−” with “κ ∈ I ec ” in Definition 17 yields exactly Definition 16
(the same result holds for the odd variant).
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Lemma 18. Let κ ∈ C and u , 0 be such that (u, κ) solves the PEP (1,2,3), u ∈ H1
loc

(
R2\{xc}

)
, and u satisfies (28) for

any η? < 0. If κ ∈ I ec , then κ is an EP eigenvalue.

Proof. We show that we must have u ∈ H1
loc

(
R2

)
and ce

ηebh
= 0 in (28). By injecting (28) in the right-hand side of

Lemma 14(a), we can conclude using [17, Eq. (28)] that the right-hand side does not depend upon the disc radius R.
Taking the limit R→ 0, we conclude that u ∈ H1

loc

(
R2

)
. Hence the singularity coefficient satisfies ce

ηebh
= 0.

Remark 19. Section 2.2 starts by picking κ0 in C+; Lemma 6(b) implies that the alternative choice κ0 ∈ C− would
lead to conjugate exponent sets and is thus equivalent. Indeed, the set of stable exponents Ĥ e(o)φ (κ) would be defined

as H e(o)φ (κ)∩C− for κ ∈ C−, which is conjugate of (17) since H e(o)φ (κ)∩C− = H e(o)φ (κ) ∩ C−. The continuations would
then be carried out from C− to C+, leading to a conjugate black-hole exponent.

Remark 20. The logarithmic singularity in r associated with η = 0 (see Proposition 5) is absent from (28). This
can be justified by noting that 0 ∈ H eφ(κ) for any κ ∈ C. Therefore, this singularity cannot arise during the analytic
continuation of a solution u ∈ H1

loc
(
R2) of the PEP (1,2,3) with κ = κ0 ∈ C+: if this singularity was present at one

contrast value then it would be present at all contrast values, contradicting the fact that u ∈ H1
loc

(
R2).

So far, we have not discussed the existence of EP eigenvalues and CP resonances. [35, Thm. 8] shows that
given a symmetric particle Ωm with a C2 boundary there exists a corner perturbation that generates EP eigenvalues.
The existence of CP resonances will be investigated numerically in Section 5. In contrast with IP eigenvalues, the
computation of both EP eigenvalues and CP resonances requires a particular treatment of the corner. In this work, we
will use a corner complex scaling, first introduced in [17] to solve the plasmonic scattering problem with κ ∈ Ic. The
applicability of this technique to our present endeavor is the subject of the next section.

3. Definition and analysis of corner complex scaling

This section focuses on the computational technique that will be used to compute CP resonances, namely the
corner complex scaling first introduced in [17]. Section 3.1 formulates the complex-scaled PEP in Definition 21.
Section 3.2 shows that the eigenvalues of the complex-scaled PEP that lie inside the so-called uncovered region are
CP resonances or EP eigenvalues. The dependence upon the scaling parameter of the uncovered region is studied, in
preparation for the numerical investigations carried out in Sections 4 and 5.

3.1. Definition of corner complex scaling

By definition a CP resonance κ < R is associated with a CP resonance function that solves the PEP (1,2,3) but
does not belong to H1

loc

(
R2

)
, due to its singular behavior at the corner (29). Mathematically, the PEP can be written

as a self-adjoint eigenvalue problem [1, 33] so its spectrum must be real-valued. Numerically, a standard Lagrange
FE discretization of the PEP yields a Hermitian generalized eigenvalue problem. The general principle of complex
scaling is to define a non self-adjoint complex-scaled PEP that relies on a scaling parameter α ∈ C, which we denote
PEPα, such that some eigenvalues of the PEPα turn out to be CP resonances of the original PEP.

The origin of complex scaling is typically traced back to [45] and [46], where it is used to compute scattering
resonances of the Hamiltonian operator [47, Chap. 16]. In these works, the complex-scaling method can be understood
as consisting in surrounding the scatterer by an absorbing layer that does not induce spurious reflections: as such, it
is similar to the PML method, first proposed on physical grounds in [48] for electromagnetic waves in the time
domain. The link between the PML and complex-scaling methods has been highlighted early, see [49] and [50] where
“coordinate stretching” and “coordinate mapping” methods are discussed in the context of the PML method. For an
analysis of the computation of scattering resonances using a PML, see [51] and [52, § 2.7]. Applications in fluid
mechanics and acoustics can be found in e.g. [53] and [54]. In the remainder of this paper we will rely on a variant
of complex scaling where the scaling is applied not at infinity, as in the works quoted above, but at the corner of the
particle Ωm. This scaling has been introduced in [17], where it is used to solve the plasmonic scattering problem with
a critical contrast (i.e. κ ∈ Ic).

Since CP resonance functions are singular solely at the corner, the PEP and the PEPα need only differ in a
neighborhood of the corner. Let us consider the neighborhood D depicted in Figure 1b, where (1,2) reduces to (9).
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The intuition behind the definition of the complex-scaled eigenproblem is as follows. Let κ be a CP resonance. By
definition, it is associated with a CP resonance function that does not belong to H1

loc

(
R2

)
since from (29)

u(r, θ) ∼
r→0

c0 + cρηΦ
ρ
η (θ) riη

for some η ∈ C+ and ρ ∈ {e, o}. We would like κ to be associated with an eigenfunction of the PEPα that satisfies

uα(r, θ) =
r→0

c0 + O
(
ri ηα

)
,

where α is a scaling parameter chosen so that uα ∈ H1
loc

(
R2

)
, i.e. = (η/α) < 0. This can be achieved through the

substitution “r∂r → αr∂r” in (9), which leads to the following definition of the PEPα, where ∆α denotes the radially-
scaled Laplacian:

∆αu(r, θ) B
1
r2αr∂r (αr∂ru) (r, θ) +

1
r2 ∂θ (∂θu) (r, θ). (30)

Definition 21 (Complex-scaled PEP). Let α ∈ C\{0} and Dα B {|x − xc| < Rα} with Rα ≤ R, as depicted in Figure 6.
The complex-scaled PEP, denoted PEPα, is: find (uα, κ) such that

∆uα(x) = 0
(
x ∈ (Ωm ∪Ωd)\Dα

)
, ∆αuα(x) = 0

(
x ∈ (Ωm ∪Ωd) ∩ Dα

)
,

with the transmission conditions

uα|Ωm (x) = uα|Ωd (x), ∂nuα|Ωm (x) = κ ∂nuα|Ωd (x) (x ∈ ∂Ωm)

uα|Dα
(x) = uα|Ω\Dα

(x), α ∂nuα|Dα
(x) = ∂nuα|Ω\Dα

(x) (x ∈ ∂Dα) ,

and the decay condition at infinity uα(x) =
|x|→∞

O
(
|x|−1

)
.

Ωm

Ωd

φ

(a) Overview with corner neighborhood highlighted.

θ =
φ
2

xc

Dα

r = R

Rα

(b) Corner neighborhoods D and Dα.

Fig. 6: Particle Ωm with a complex-scaling region Dα ⊂ D around the corner.

Since the scaling does not affect the orthoradial part of the Laplacian, the PEP and the PEPα share the same corner
dispersion relations (7). This implies that Proposition 5 also holds for the PEPα provided that “riη” is substituted by
“riη/α”. We introduce the critical curves

I e(o),αc B
{
κ ∈ C

∣∣∣∃η ∈ H e(o)φ (κ)\{0} :
η

α
∈ R

}
, Iαc B I e,αc ∪ I o,αc , (31)

which when α ∈ R∗ coincide with the critical intervals I e(o)c and Ic respectively. An isolated eigenvalue κ < Iαc of the
PEPα is associated with an eigenfunction that admits the local expansion

uα(r, θ) =
r→0

c0 +
∑

η∈Ĥ e,αφ (κ)
η?<=( η

α )

ceη ri ηα Φeη(θ) +
∑

η∈Ĥ o,αφ (κ)
η?<=( η

α )

coη ri ηα Φoη(θ) + O
(
r−η?

)
(r ∈ (0,Rα), θ ∈ (−π, π]) (32)

for any η? < 0, where

Ĥ e(o),αφ (κ) B
{
η ∈ H e(o)φ (κ)

∣∣∣= (η/α) < 0
}
, Ĥα

φ (κ) B Ĥ e,αφ (κ) ∪ Ĥ o,αφ (κ)

are the sets of stable exponents that we associate with the PEPα, which reduce to Ĥ e(o)φ (κ) and Ĥφ(κ) when α > 0. The
next section explains how the PEPα can be used to compute CP resonances.
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Fig. 7: Even uncovered region U e,αφ for φ = 0.9π and two values of arg(α) in [0, π/2]. ( ): even critical curve I e,αc , ( ): I o,αc .

3.2. Computation of complex plasmonic resonances
Assume κ < R is an isolated eigenvalue of the PEPα. For κ to be an even-critical (resp. odd-critical) CP resonance,

the scaling parameter α must be chosen so that

Ĥα
φ (κ) = Ĥ |e(o)φ (κ), (33)

i.e. the set of exponents that are stable after a rotation of angle − arg(α) in the η-plane is exactly Ĥ |e(o)φ (κ). The
condition (33) can be read as a constraint on α given κ. However in practice α is an input parameter so it is also useful
to consider it as a constraint on κ given α: it effectively delimits a region of the complex plane given by

K e(o),αφ B
{
κ ∈ C |Stability condition (33) holds

}
,

which is where computable CP resonances lie. The link between isolated eigenvalues of the PEPα and CP resonances
is given in the next proposition (the odd variant is obtained by replacing “e” by “o”).

Proposition 22. Let α ∈ C\R. Let (uα, κ) be a solution of the PEPα such that κ belongs to the even uncovered region

U e,αφ B K e,αφ ∩ C−. (34)

If =(κ) < 0 (resp. =(κ) = 0) then κ is an even-critical CP resonance (resp. EP eigenvalue) and the function defined by

u(x) B uα(x)
(
x ∈ (Ωm ∪Ωd)\Dα

)
, u(r, θ) B uα(rα, θ)

(
r ∈ (0,Rα) , θ ∈ (−π, π]

)
is its associated CP resonance function (resp. eigenfunction).

Proof. Since κ is an isolated eigenvalue of the PEPα, uα admits the expansion (32) at the corner. The substitution
r → rα in (32) yields the expansion of u at the corner (this is not a change of variable but an analytic continuation of
uα(·, θ) from (0,Rα) ⊂ R to (0,Rα)α ⊂ C, which we do not further justify here). u solves the PEP (1,2,3) and satisfies

u(r, θ) =
r→0

c0 +
∑

η∈Ĥ e,αφ (κ)
η?<=(η)

ceη riηΦeη(θ) +
∑

η∈Ĥ o,αφ (κ)
η?<=(η)

coη riηΦoη(θ) + O
(
r−η?

)
(r ∈ (0,R), θ ∈ (−π, π])

for any η? < 0. Since κ ∈ K e,αφ , we can use the stability condition (33) to conclude that κ is either an even-critical EP
eigenvalue or a CP resonance.

If α ∈ R∗, U e(o),αφ is empty since K e(o),αφ = C+. From the above result, the usefulness of the PEPα relies on the
ability to choose a non-real α so that the uncovered region includes the part of the complex plane where CP resonances
are sought.

Let us now discuss how to compute the uncovered region, which is of practical importance to help choose the
scaling parameter α. A straightforward method is to sample the complex plane (in κ) and evaluate (33). However this
is costly since it requires the accurate computation of the exponents set Hφ(κ), which can be challenging depending
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on the value of φ. A more accurate alternative is to compute the boundaries of the uncovered region, which reduces
to computing the critical curves (31). Indeed, we have the identities

U e(o),αφ B
{
κ ∈ C−

∣∣∣ Ĥα
φ (κ) = Ĥ |e(o)φ (κ)

}
=

{
κ ∈ C−

∣∣∣ Ĥα
φ (κ) ⊃ Ĥ |e(o)φ (κ)

}
=

{
κ ∈ C−

∣∣∣∀η ∈ Ĥ |e(o)φ (κ), = (η/α) < 0
}
,

so that the boundary satisfies

∂U e(o),αφ =
{
κ ∈ C−

∣∣∣∃η ∈ Ĥ |e(o)φ (κ), = (η/α) = 0
}
⊂

{
κ ∈ C−

∣∣∣∃η ∈ Hφ(κ)\{0}, = (η/α) = 0
}
⊂ Iαc ∩ C−.

The interest of this inclusion is that plotting the critical curves is straightforward since they admit the parametric
representations

I e(o),αc =
{
κ ∈ C

∣∣∣∃η̃ > 0 : f e(o)φ (αη̃, κ) = 0
}

=

{
ψφ (αη̃) −(+)1
ψφ (αη̃) +

(−)1

∣∣∣∣∣∣ η̃ ∈ (0,∞)
}
,

where ψφ is given by (11). These parametric representations show that both intervals are even with respect to α and
only depend upon arg(α), so that from now on we always assume

|α| = 1, arg(α) ∈
[
−
π

2
,
π

2

]
.

Figure 7 plots the even uncovered region for φ = 0.9π and two scaling parameter values. (The cases φ ∈ (0, π)
and φ ∈ (π, 2π) are similar, with even and odd switching roles.) When α , 1, the two critical curves spiral around
the branch point κ = −1, which reflects its logarithmic nature. The plots also highlight the impact of arg(α) on the
uncovered region. The closer arg(α) is to π/2, the further away from −1 the even uncovered region is, due to the odd
critical curve I o,αc . This shows that there is a trade-off between the area of the uncovered region and how close it
gets to −1. Since plasmonic eigenvalues accumulate at −1, practical computations will typically favor small values of
arg(α).

Remark 23. As already stated in Remark 19, starting from κ0 ∈ C− would conjugate everything. In particular, the
uncovered region would be included in C+.

Ωm

Ωd
∂Ω

(a) Cartesian coordinates (x, y).

Ωm

Ωd

µ = 0
µ = µm

µ = µd

θ = πθ = −π

(b) Elliptic coordinates (µ, θ) defined by (D.2).

Fig. 8: Elliptical particle in a bounded dielectric domain Ωd . The boundaries ∂Ωm and ∂Ω are non-circular confocal ellipses.
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Fig. 9: Eigenvalues (D.1) and eigenfunctions u/‖u‖∞ of the PEP (36) for an elliptical particle (see Figure 8a). The sign-changing interface ∂Ωm
has semi-axes am = 2.5 and bm = 1, and the outer boundary ∂Ω is a confocal ellipse such that ad = 3.
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4. Validation of the finite element discretization

The purpose of this section is to validate the FE discretization of the PEPα that will be used in Section 5 to
compute CP resonances. The validation is carried out on two subproblems. Section 4.1 considers an elliptical particle
to validate the computation of IP eigenvalues. It highlights that spectral accuracy is strongly controlled by a local
mesh symmetry with respect to the sign-changing interface. Section 4.2 considers a corner geometry to validate the
discretization of the critical interval, with and without complex scaling.

4.1. Discretization of isolated plasmonic eigenvalues

To validate the discretization of IP eigenvalues, we take

Ωm B
{
(x, y) ∈ R2

∣∣∣ (x/am)2 + (y/bm)2 < 1
}
, Ω B

{
(x, y) ∈ R2

∣∣∣ (x/ad)2 + (y/bd)2 < 1
}
, Ωd B Ω\Ωm, (35)

with am = 2.5, bm = 1, ad = 3, and bd =

√
a2

d − c2 with c =
√

a2
m − b2

m, see Figure 8a. For simplicity we impose
a Dirichlet boundary condition on ∂Ω, which excludes the trivial solutions (u = cst, κ). The weak formulation of the
PEP is then: find (u, κ) ∈ H1

0(Ω) × C such that for all v ∈ H1
0(Ω),

a(x,y)
Ωm

(u, v) = −κ a(x,y)
Ωd

(u, v), where a(x,y)
X (u, v) B

ˆ
X
∇u(x) · ∇v(x) dx. (36)

Since ∂Ωm is smooth, the point spectrum is made of a sequence of isolated eigenvalues κn that accumulate at κ = −1
[1, Thm. 1] [33, Thm. A]. Since ∂Ωm and ∂Ω are non-circular confocal ellipses, Laplace’s equation (1) is separable
in elliptic coordinates and the eigenvalues κe(o)n are given by (D.1); the corresponding eigenfunctions are even (resp.
odd) with respect to the major axis, see Figure 9. The closer κe(o)n is to −1, the more oscillating the eigenfunction.

Remark 24. The distinction between κen and κon is only made in preparation for Section 5.

The PEP (36) can be readily discretized using Lagrange finite elements [55]: after eliminating the DoF on ∂Ω,
this leads to the Nh-dimensional generalized eigenvalue problem

A(x,y)
Ωm

U = −κ A(x,y)
Ωd

U, (37)

where A(x,y)
Ωm

and A(x,y)
Ωd

are both real symmetric and positive (but not definite) matrices. In this work, we use the weak
form PDE interface of COMSOL 5.4: the FE matrices are obtained using a mix of P2 and Q2 isoparametric Lagrange
elements [56], while the generalized eigenvalue problem is solved using the implicitly restarted Arnoldi method with
shift-and-invert from ARPACK [57] with a tolerance of 10−6. To compute a spectrum that spans a large region of C,
the eigenproblem is solved several times for various values of the shift κ0 (which is always taken non-null, since A(x,y)

Ωm
is singular).

A
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−1

0
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x

y

B

−3 −2 −1 0 1 2 3
x

−1 −0.98 −0.96 −0.94 −0.92 −0.9 −0.88 −0.86

0

0
FEM – Mesh B, Nh = 1437

FEM – Mesh A, Nh = 1389

κ

Fig. 10: Solution of the PEP (36). (Left) Mesh A: 616 elements, unstructured. (Center) Mesh B: 574 elements, structured region around ∂Ωm built
using two ellipses defined though (38) and highlighted in red. (Right) (×): computed, (#): exact even κen, (�): exact odd κon .
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Fig. 11: Eigenfunctions u/‖u‖∞ computed using the mesh A shown in Figure 10. (Left) Correct eigenfunction (surface plasmon), oscillating over
the whole interface. (Right) Spurious eigenfunction (spurious plasmon), localized at only a few nodes of the interface.

Meshing strategy
Let us first consider a triangular mesh symmetric with respect to the x-axis, as depicted in the left graph of

Figure 10. The computed spectrum shown in the right plot exhibits significant pollution, with the largest spurious
eigenvalue at κsp ' −0.895. Figure 11 plots one of the spurious plasmons: in contrast with surface plasmons, which
oscillate over the whole interface ∂Ωm, spurious plasmons are localized at only a few nodes of the interface. This
spectral pollution is not caused by a resolution problem, as the mesh used in this example is fine enough to resolve
plasmons much closer to −1 than κsp. In practice, this means that refining the mesh is not an effective strategy to deal
with these spurious plasmons, i.e. it does not systematically move the spurious eigenvalues closer to −1. Typically,
mesh refinement even spreads spurious eigenvalues and increases κsp.

An effective strategy to reduce this spectral pollution is to employ a mesh with a structured quad layer at the sign-
changing interface ∂Ωm, as depicted in the center graph of Figure 10. The mesh is constructed using two additional
confocal ellipses highlighted in red. Crucially, these two ellipses must be chosen so that the structured layer is
(approximately) symmetric in elliptic coordinates: first, the semi-axis ao of the outer ellipse is chosen in (am, ad);
then, the inner ellipse is obtained from

ai = c cosh
[
2µm − µo

]
= c cosh

[
2 acosh

(am

c

)
− acosh

(ao

c

)]
, (38)

where c is the focal distance of ∂Ωm. The use of isoparametric elements enables to better approximate the inner and
outer ellipses, thus improving the symmetry of the structured layer. In addition, the orthoradial element distribution
along ∂Ωm is refined in the high-curvature region using an ad hoc geometric distribution.

The right plot of Figure 10 shows that spurious eigenvalues have been moved significantly closer to −1, although
the number of DoF is similar. Using triangles instead of quads in the structured layer would significantly worsen the
results (as this would degrade the quality of the symmetry in elliptic coordinates): the best results are obtained with
either mixed quad/tri meshes (as used in this work) or full quad meshes.

This meshing strategy is inspired by the works [58, 59], where the interest of mesh symmetry to discretize sign-
changing problems is highlighted and investigated. Based on this result, from now on, all the meshes considered will
be structured and (at least approximately) symmetric at the sign-changing interface.
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π
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0

0
FEM – Mesh A, Nh = 1179

FEM – Mesh B, Nh = 1406

κ

Fig. 12: Solution of the PEP (36) in elliptic coordinates. (Left) Mesh A: 459 elements, symmetric structured layer at the sign-changing interface.
(Center) Mesh B: 504 elements, identical to Mesh A except that the symmetry of the structured layer has been broken by sub-dividing one side.
(Right) (×): computed, (#): exact even κen, (�): exact odd κon .
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Fig. 13: Eigenfunctions u/‖u‖∞ using mesh B from Figure 12 (µm = 0.5, µd = 1.25). (Left) Surface plasmon. (Right) Spurious plasmon.
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Fig. 14: Corner geometry used to validate the discretization of the critical interval.

Justification of the meshing strategy
The meshing strategy proposed above relies on (38) to define the structured layer, which can be justified using the

following numerical experiment. Consider the elliptic coordinate system (D.2) associated with ∂Ωm (see Figure 8b):
the weak formulation is (36) with dx = dµ dθ, ∇u =

[
∂µu, ∂θu

]
, and periodic boundary conditions. The computed

spectra plotted in Figure 12 show that even a small deviation from symmetry with respect to {µ = µm} in the structured
layer induces spectral pollution. Figure 13 compares a surface and a spurious plasmon to highlight that the pattern
already observed in Cartesian coordinates can be reproduced in elliptic coordinates.

Remark 25. The eigenproblem (37) is sparse and Nh-dimensional. Using static condensation, it can be rewritten as a
dense and Ni-dimensional eigenproblem, where Ni is the number of DoF on ∂Ωm. Based on our numerical experiments
(not shown here), static condensation yields no accuracy gain and in particular suffers from the same pollution issue.
By contrast, even a crude BE discretization does not suffer from this pollution effect. Intuitively, this confirms that
the pollution seen with FE comes from the discretization of the normal direction.

4.2. Discretization of the critical interval

To validate the discretization of Ic and Iαc we consider the corner geometry (see Figure 14a):

Ωm B
{
(x, y) ∈ R2

∣∣∣ |x + iy| < R, | arg(x + iy)| < φ/2
}
, Ω B

{
(x, y) ∈ R2

∣∣∣ |x + iy| < R
}
, Ωd B Ω\Ωm.

Corner without complex scaling
Let us first consider the corner without complex scaling, for which the spectrum of the PEP (36) reduces to the

critical interval (10). A natural approach is to mesh in Cartesian coordinates; for a right-angle corner, this can lead
to considering a mesh like the one depicted in the left plot of Figure 15, where there is a structured layer around the
sign-changing interface. However, the right graph shows that even with a fairly small element size, the critical interval
is not satisfactorily resolved.

A first alternative is to mesh in polar coordinates: find (u, κ) ∈ H1
p × C such that for all v ∈ H1

p,

ˆ
Θm

ˆ R

RTR

∇u · ∇v rdrdθ = −κ

ˆ
Θd

ˆ R

RTR

∇u · ∇v rdrdθ, (39)
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Fig. 15: Comparison between the Cartesian (36) and Euler (40) formulations of the PEP for the corner geometry depicted in Figure 14a with φ = π/2
and R = 1. (Left) Example of Cartesian mesh. (Center) Example of Euler mesh. (Right) (×): computed, ( ): exact even I ec , ( ): exact odd I oc .
The two Euler meshes have the same element size.

where
H1

p B
{
u ∈ H1 ((RTR,R) × (−π, π))

∣∣∣ u(R, ·) = 0, u(·,+π) = u(·,−π)
}
,

the truncation radius RTR ∈ (0,R) enables to avoid a singular integrand (in r), and Θm and Θd are given by (5).
In practice this formulation also suffers from a poor resolution of the critical interval as it prevents from choosing
RTR � R, which is necessary to capture the asymptotic behavior at r → 0. This issue is fixed by the second and
preferred alternative that consists in using the so-called Euler coordinates (z, θ) with z = ln r [17], for which (39)
writes: find (u, κ) ∈ H1

e × C such that for all v ∈ H1
e ,

a(z,θ)
S m

(u, v) = −κ a(z,θ)
S d

(u, v), where a(z,θ)
X (u, v) B

ˆ
X

[
∂zu ∂θu

]
·
[
∂zv ∂θv

]
dzdθ (40)

and

S B (ln RTR, ln R) × (−π, π) , S m B (ln RTR, ln R) × Θm, S d B S \S m, H1
e B

u ∈ H1(S )

∣∣∣∣∣∣ u(ln R, ·) = 0
u(·,+π) = u(·,−π)

 .
Since Ic is associated with functions that behave as z 7→ eiηcz towards z = −∞, ηc can be interpreted as a wavenum-

ber. This observation leads to the following two remarks:

• The smaller the truncation radius RTR, the smaller the minimum well-resolved η. In practice, if a well-refined
mesh gives a poor resolution of Ic near the endpoints κ±1

φ , then RTR should be reduced (this follows from the
fact that ηc → 0 when κ → κ±1

φ ).

• The smaller the mesh element size, the larger the maximum well-resolved ηc. In practice, the mesh is chosen
coarse enough to avoid an overly dense cluster of eigenvalues at κ = −1. Indeed, a uniform mesh refinement
leads to a non-uniform refinement of Ic, clustered at κ = −1 (since |ηc| → ∞ when κ → −1).

The center and right plots of Figure 15 illustrate the mesh and the resolution gain that can be achieved compared to
the Cartesian mesh. Figure 16 plots an eigenfunction associated with the discretized critical interval, which highlights
one additional advantage of discretizing in Euler coordinates: it will make it easier to identify eigenvalues associated
with the critical interval.

Corner with complex scaling
Let us now consider the corner with a complex-scaling region of radius Rα depicted in Figure 14b. Following

Section 3.1, the PEPα is naturally formulated in polar coordinates: find (u, κ) ∈ H1
p × C such that for all v ∈ H1

p,

ˆ
Θm

[ˆ R

Rα
∇u · ∇v rdr + α

ˆ Rα

RTR

∂ru∂rv rdr +
1
α

ˆ Rα

RTR

∂θu∂θv
dr
r

]
dθ =

− κ

ˆ
Θd

[ˆ R

Rα
∇u · ∇v rdr + α

ˆ Rα

RTR

∂ru∂rv rdr +
1
α

ˆ Rα

RTR

∂θu∂θv
dr
r

]
dθ,
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Fig. 16: Eigenfunction <(u)/‖u‖∞ computed using (40) for the corner geometry depicted in Figure 14b with φ = π/2, R = 1, RTR = 10−10

(ln RTR ' −23.02), and Nh = 8424.

which writes in Euler coordinates: find (u, κ) ∈ H1
e × C such that for all v ∈ H1

e ,

a(z,θ)
S m\S α

(u, v) + α a(z)
S m∩S α

(u, v) +
1
α

a(θ)
S m∩S α

(u, v) = −κ

[
a(z,θ)

S d\S α
(u, v) + α a(z)

S d∩S α
(u, v) +

1
α

a(θ)
S d∩S α

(u, v)
]
, (41)

where S α B (ln RTR, ln Rα) × (−π, π) and

a(z)
X (u, v) B

ˆ
X
∂zu∂zv dzdθ, a(θ)

X (u, v) B
ˆ

X
∂θu∂θv dzdθ.

Discretizing as in Section 4.1 yields the Nh-dimensional linear eigenproblem[
A(z,θ)

S m\S α
+ α A(z)

S m∩S α
+

1
α

A(θ)
S m∩S α

]
U = −κ

[
A(z,θ)

S d\S α
+ α A(z)

S d∩S α
+

1
α

A(θ)
S d∩S α

]
U, (42)

where all the involved matrices are real, symmetric, and positive (but not definite): when α < R the problem is thus
complex-symmetric but not Hermitian.

Figure 17 plots the spectra computed for φ = 0.9π and two scaling parameters. It shows that a satisfactory
resolution of the critical curves (31) can be achieved. The corresponding eigenfunctions behave as ei ηα z for some
η/α ∈ R, so they are similar to the one shown in Figure 16. The next and last section relies on this formulation to
compute CP resonances.
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Fig. 17: Comparison between the critical curves (31) and the spectra computed using (42) for the corner geometry depicted in Figure 14b with
φ = 0.9π, R = 1, RTR = 10−20, and Nh = 9888. ( ): even critical curve I e,αc , ( ): I o,αc . (Left) α = ei π10 . (Center, Right) α = ei π4 .
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Fig. 18: Mesh topology for a particle Ωm whose piecewise-smooth boundary ∂Ωm (green) is an ellipse perturbed by a corner of angle φ ∈ (0, π).
(Left) Corner domain S , structured mesh. (Center, Right) Domain Ω truncated around xc, mesh with structured layer defined by (38).

5. Complex plasmonic resonances of elliptical particles perturbed by a corner

This section gathers numerical results that illustrate the existence of CP resonances for elliptical particles perturbed
by a corner. Section 5.1 describes the particle and its discretization, which mixes Cartesian and Euler coordinates.
Section 5.2 discusses the numerical results and shows the agreement with the mechanism described in [35, § 5.2].

5.1. Corner perturbation and weak formulation
We consider an open set Ωm whose piecewise-smooth boundary is an ellipse of semi-axes (am, bm) perturbed by

a corner of angle φ ∈ (0, π) that is symmetric with respect to the major axis, see Figure 1a. The boundary ∂Ωm is
uniquely defined by (am, bm, φ) since we deduce the remaining geometrical parameters, namely xc B (xc, 0) and the
top junction point xm B (xm, ym), by imposing a C1 junction (see the right graph of Figure 18):(

xm

am

)2

+

(
ym

bm

)2

= 1, xm = −am

tan
(
φ
2

)
√

tan
(
φ
2

)2
+

(
bm
am

)2
, xc = xm −

ym

tan
(
φ
2

) .
The smaller π − φ, the smaller the perturbation radius R B |xc − xm|. The sets Ω and Ωd are defined as in (35).
Following the results of Section 4, we formulate the discrete problem on the truncated set Ω\DTR where DTR B
{|x − xc| < RTR} with RTR ∈ (0,R]. The mesh is split into two parts, see Figure 18: the subset D\DTR is meshed in
Euler coordinates while the subset Ω\D is meshed in Cartesian coordinates with a structured layer at the sign-changing
interface ∂Ωm defined using (38).

The weak formulation is: find ((uα, ŭα), κ) ∈ H1
c,e × C such that for all (v, v̆) ∈ H1

c,e,

a(x,y)
Ωm\D

(uα, v) + a(z,θ)
S m\S α

(ŭα, v̆) + α a(z)
S m∩S α

(ŭα, v̆) +
1
α

a(θ)
S m∩S α

(ŭα, v̆) =

− κ

[
a(x,y)

Ωd\D
(uα, v) + a(z,θ)

S d\S α
(ŭα, v̆) + α a(z)

S d∩S α
(ŭα, v̆) +

1
α

a(θ)
S d∩S α

(ŭα, v̆)
]
,

(43)

with

H1
c,e B

(u, ŭ) ∈ H1(Ω\D) × H1(S )

∣∣∣∣∣∣ u|∂Ω = 0, ŭ(z,+π) = ŭ(z,−π) (z ∈ (ln RTR, ln R))

u(xc + R cos θ,R sin θ) = ŭ(ln R, θ) (θ ∈ (−π, π])

 .
This formulation enforces a Neumann boundary condition at the truncation z = ln RTR. As in Section 4, we employ
a mix of P2 and Q2 isoparametric Lagrange elements to obtain, after eliminating the DoF on ∂Ω, a Nh-dimensional
linear generalized eigenvalue problem.

Remark 26 (On the choice of a bounded Ωd). The definitions and results of Sections 2 and 3 carry over to the case
where Ωd is bounded, since they rely on a local analysis in a neighborhood of the corner. Using a Dirichlet boundary
condition on ∂Ω will enable us to keep the discussion focused on the corner discretization; using instead a Dirichlet-
to-Neumann operator would add a κ-independent term to (43), which if discretized adequately would not change the
conclusions (the formula for κe(o)n (D.1) still applies to the unbounded case).
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5.2. Numerical results

Throughout this section the parameters of the unperturbed ellipse are

am = 2.5, bm = 1, c B
√

a2
m − b2

m.

We will consider two geometrical cases (A and B) that differ by both the angle φ of the corner perturbation and the
semi-axes (ad, bd) of the outer ellipse ∂Ω. Note that the semi-major axis ad limits the perturbation radius R through
the constraint |xc| + R < ad (see right plot of Figure 18), so that for a given ad not all corner angles φ are achievable.
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Fig. 19: PEP (43) for the case A parameters (44) and α = 1. (Left) (×): computed, (#): κen, (�): κon , ( ): I ec . (Center, Right) Computed
eigenfunctions u/‖u‖∞ associated with a contrast inside I ec . The corner domain S has been mapped to ease the visualization.

Case A: computation of complex plasmonic resonances
Key to the construction of CP resonances is the local symmetry at the corner, which here (by design) coincides

with the symmetry with respect to the major axis. The purpose of this first numerical experiment is to highlight the
different behaviors of even and odd eigenfunctions when the corner perturbation is applied. To this end, we choose
the geometrical parameters as follows:

φ = 0.75π, ad = |xc| + 1.5R, bd =

√
a2

d − c2. (44)

The corresponding outer ellipse ∂Ω satisfies µd ∈ (µm, 2µm) so that all the exact unperturbed eigenvalues κen and κon
belong to (−1, 0], see (D.1). As a result, we will focus our interest in the region {<(κ) > −1}.

Let us first consider the PEP (43) without complex scaling, i.e. α = 1. If RTR = R, the particle Ωm is an ellipse
truncated by a disc of radius RTR centered on xc; if RTR < R, the particle is an ellipse perturbed by a truncated corner.
In the limit RTR → 0 the truncated corner tends to a corner. Figure 19 highlights the different behaviors of odd and
even eigenfunctions as RTR is reduced. The left graph shows the eigenvalues computed for various RTR. Overall, odd
eigenvalues are significantly less perturbed than their even counterparts. As RTR is reduced, even eigenvalues in I ec
gets significantly perturbed, their density increasing so as to progressively form I ec . By contrast, even eigenvalues
outside Ic remain isolated regardless of the value of RTR.

The center and right graphs of Figure 19 plot two eigenfunctions obtained for a relatively large truncation radius
RTR = 10−2 · R, which ensures that the corresponding eigenvalues are clearly isolated in the computed spectrum. This
illustrates that while odd eigenfunctions undergo very little perturbation when RTR is reduced, even eigenfunctions
concentrate at the corner in an increasingly singular fashion.

Intuitively, using a suitable α , 1 will dissipate energy at the corner and tame the singularity. Figure 20 plots the
spectra computed for various values of arg(α). The radius RTR = 10−50 is chosen to ensure a well-resolved critical
curve, but such a small value is not necessary to obtain CP resonances in this case. A first observation is that the
eigenvalues κon that belong to I ec have stayed real and have been perturbed into even-critical EP eigenvalues. This
can be justified by noting that the corresponding eigenfunctions are odd and therefore their local expansions (28)
cannot include the even black-hole wave uηebh

. The bottom row of Figure 21 plots the complex-scaled eigenfunction
ŭα associated with the contrast κ ' κo3 , which satisfies ŭα(z, θ) →

z→−∞
0.

By contrast, the eigenvalues κen that belong to I ec have not stayed real and have been perturbed into even-critical
CP resonances: four of them can be seen in Figure 20, which have arisen from κe4, κe5, κe6, and κe7. The local expansions
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(28) of the associated CP resonance functions include a non-null contribution from the even black-hole wave, so
they blow up like (29). The complex-scaled resonance functions behave as ŭα(z, θ) →

z→−∞
c0 since the exponentially

growing term is dissipated in the complex-scaling region S α; this is illustrated in the top row of Figure 21 for κ = κ2.
The behavior of CP resonance functions is as follows: the larger |=(κ)|, the larger |=(η)|, so the stronger the corner
singularity; the smaller |κ + 1|, the larger |<(η)|, so the stronger the oscillation as r → 0.

The convergence of the computed CP resonances is plotted in the left graph of Figure 22, where the exact values
are approximated as those obtained on a fine mesh and the x-axis is normalized with the value Nh = 26345 used in
Figures 20 and 21. The closer a CP resonance is to −1, the larger its approximation error. The achieved asymptotic
convergence rate can be estimated as O

(
N−3/2

h

)
. The center and right plots of Figure 22 illustrate the sensitivity to

arg(α) for Nh = 26345. These plots emphasize that each CP resonance can only be computed for arg(α) ∈ (θmin, θmax),
where θmin (resp. θmax) is the value at which the CP resonance enters (resp. leaves) the uncovered region. For example,
θmin ∈ (π/10, π/6) for κ1 and θmax ∈ (π/4, π/3) for κ2 and κ3.

Case B: dependence on perturbation radius
The purpose of this second numerical experiment is to illustrate the path taken by CP resonances as the pertur-

bation radius R is varied (equivalently: as the corner angle φ is varied). Compared to case A we do not change am

and bm but we enlarge ∂Ω so that it can contain the largest corner perturbation considered. Specifically, the chosen
geometrical parameters are

φ

π
∈ [0.63, 0.86], ad = [|xc| + 1.5R]|φ=0.63π ' 3.0409, bd =

√
a2

d − c2. (45)

Since ad is larger than in case A, the exact unperturbed eigenvalues κe(o)n are different; in particular, the unperturbed
eigenvalues κon are closer to −1. However, we are still in a case where all κen and κon belong to (−1, 0].
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The results are shown in Figure 23, where α = eiπ/5 has been used. As the perturbation radius is increased, the
even critical interval I ec also increases. Once the eigenvalue κe3 is reached by I ec , it gets perturbed into the even-critical
CP resonance κ1, which strays away from the real axis as R is further increased. This behavior differs from that of the
eigenvalue κe2, which is not reached by I ec and is thus always perturbed into a real eigenvalue.

The observations made in this section, namely that odd eigenvalues κon in I ec are perturbed into even-critical EP
eigenvalues while even eigenvalues κen in I ec are perturbed into even-critical CP resonances, are in agreement with the
mechanism described in [35, § 5.2].

6. Conclusion and outlook

This paper has investigated the existence of complex plasmonic resonances for a 2D subwavelength particle whose
boundary is smooth except for one straight corner.

Section 2 has proposed a definition of complex plasmonic resonances (Definition 17) analogous to that of complex
scattering resonances, with the local behavior at the corner playing the role of the behavior at infinity; in particular,
complex scattering resonance functions blow up at infinity while complex plasmonic resonance functions blow up
at the corner. The construction of the definition has crucially relied on the multivalued nature of the set of stable
exponents (Proposition 12).

Section 3 has shown that isolated eigenvalues of the complex-scaled PEP (Definition 21) that lie inside the so-
called uncovered region are embedded plasmonic eigenvalues or complex plasmonic resonances (Proposition 22).
The employed complex scaling has been introduced in [17] and can be described as applying a radial scaling in a
neighborhood of the corner, see (30). Figure 17 has illustrated how this complex scaling deforms the critical interval,
unveiling part of another Riemann sheet where complex plasmonic resonances may be computed.

A standard FE discretization of the complex-scaled PEP has led us to a (complex-symmetric) linear generalized
eigenvalue problem (43), which is the key computational feature of this technique. However, as has been emphasized
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in Section 4, the main drawback is the stringent constraint on mesh symmetry at the sign-changing interface.
The numerical results of Section 5 have illustrated the existence of both embedded plasmonic eigenvalues and

complex plasmonic resonances for elliptical particles perturbed by a corner. Surface plasmons associated with em-
bedded plasmonic eigenvalues are as regular as surface plasmons associated with isolated plasmonic eigenvalues,
while surface plasmons associated with complex plasmonic resonances blow up at the corner like (29). The computed
spectra are in agreement with the results presented in [34, Fig. 6], obtained with a rate-of-resonance criterion applied
in conjunction with a BE method, which highlighted the presence of embedded plasmonic eigenvalues. In addition,
the results also corroborate the mechanism proposed by [35, § 5.2]: even (odd) eigenvalues of the unperturbed ellipse
become complex plasmonic resonances if covered by the even (odd) critical interval, while they become embedded
plasmonic eigenvalues if covered by the odd (even) critical interval.

Let us mention ideas for future work. Firstly, it would be interesting to drop the quasi-static approximation and
compute complex plasmonic resonances using the Helmholtz equation with Drude’s model, which yields a nonlinear
PEP. Secondly, the computational interest of using a κ-dependent scaling parameter in (43) could be studied, similarly
to what has been done in [60] for scattering problems. Thirdly, the 3D extension of the employed complex scaling
could be considered: a meaningful starting point would be the rotationally symmetric domains with conical point
considered in [61, 62]. Lastly, the design of an alternative method to compute complex plasmonic resonances would
enable an interesting comparison with the FE results presented here. A BE method might be a natural candidate, due
to the widespread use of such methods to discretize the PEP [24, 25]; however this is an open problem.
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A. Corner dispersion relations

This section recalls the derivation of the two corner dispersion relations (7), see also [13, 17]. For any η ∈ C, we
define the orthoradial functions

Φeη(θ) B +
cosh

[
ηθ

]
cosh

[
η φ2

] 1Θm (θ) +
cosh

[
η(π − |θ|)

]
cosh

[
η(π − φ

2 )
] 1Θd (θ), (A.1)

Φoη(θ) B +
sinh

[
ηθ

]
sinh

[
η φ2

] 1Θm (θ) + sign(θ)
sinh

[
η(π − |θ|)

]
sinh

[
η
(
π − φ

2

)] 1Θd (θ), (A.2)

where Θm and Θd are given by (5), and 1X is the characteristic function of X. Note that Φe0(θ) = 1, while Φo0 is an odd
piecewise-linear function.

Proposition 27 (Periodic transmission problem). Let φ ∈ (0, 2π) \{π}, κ ∈ C, and σ(θ) B 1/κ1Θm (θ) + 1Θd (θ), where
Θm and Θd are given by (5). The 2π-periodic transmission problem

∂θ [σ(θ) ∂θu(θ)] = η2σ(θ) u(θ) (θ ∈ (−π, π))

admits a solution if and only if f eφ (η, κ) × f oφ (η, κ) = 0.

• If η , 0 and f e(o)φ (η, κ) = 0, then u(θ) = C Φ
e(o)
η (θ).

• If η = 0 then f eφ (η, κ) = f oφ (η, κ) = 0 and we have

u(θ) = C Φe0(θ) if κ , κφ, u(θ) = C1 Φe0(θ) + C2 Φo0(θ) if κ = κφ.

Proof. The strong form of the transmission problem is

u
′′

(θ) = η2 u(θ) (θ ∈ (−π,−φ/2) ∪ (−φ/2, φ/2) ∪ (φ/2, π)) ,

with boundary conditions

u(π) = u(−π) (A) u
′

(π) = u
′

(−π) (B)
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u|Θd (φ/2) = u|Θm (φ/2) (C) u|Θd (−φ/2) = u|Θm (−φ/2) (D)

κ u
′

|Θd
(φ/2) = u

′

|Θm
(φ/2) (E) κ u

′

|Θd
(−φ/2) = u

′

|Θm
(−φ/2) . (F)

(Case η = 0) Since a fundamental system of solutions is θ 7→ (1, θ), we seek u as a piecewise-linear function

u(θ) =


A1 + B1θ (θ ∈ (−φ/2, φ/2))
A2 + B2 (θ − π) (θ ∈ (φ/2, π))
A3 + B3 (θ + π) (θ ∈ (−π,−φ/2)) .

The periodicity conditions (A,B) give A2 = A3 and B2 = B3. The transmission conditions (E,F) give only one
additional constraint B1 = κB2, so that there remain three DoF A2, B2, and A1. The continuity conditions (C,D) give
A1 = A2 and [φ/2 − π − κφ/2] B2 = 0.

(Case η , 0) A fundamental system of solution is θ 7→ (cosh(ηθ), sinh (ηθ)), so we seek u as

u(θ) = ue(θ) + uo(θ) =


A1 cosh(ηθ) + B1 sinh(ηθ) (θ ∈ (−φ/2, φ/2))
A2 cosh(η(θ − π)) + B2 sinh(η(θ − π)) (θ ∈ (φ/2, π))
A3 cosh(η(θ + π)) + B3 sinh(η(θ + π)) (θ ∈ (−π,−φ/2)) .

The boundary conditions yield A2 = A3, B2 = B3, and the linear system
cosh

(
η φ2

)
− cosh

[
η
(
π − φ

2

)]
0 0

sinh
(
η φ2

)
κ sinh

[
η
(
π − φ

2

)]
0 0

0 0 sinh
(
η φ2

)
sinh

[
η
(
π − φ

2

)]
0 0 cosh

(
η φ2

)
−κ cosh

[
η
(
π − φ

2

)]



A1
A2
B1
B2

 = 0.

This gives the even

κ cosh
(
η
φ

2

)
sinh

[
η
(
π −

φ

2

)]
+ sinh

(
η
φ

2

)
cosh

[
η
(
π −

φ

2

)]
= 0 (A.3)

and odd
κ sinh

(
η
φ

2

)
cosh

[
η
(
π −

φ

2

)]
+ cosh

(
η
φ

2

)
sinh

[
η
(
π −

φ

2

)]
= 0 (A.4)

dispersion relations. To obtain (7) we use the identity

2(a1b1 + a2b2) = (a1 + a2)(b1 + b2) + (a1 − a2)(b1 − b2)

combined with the formula for sinh(a + b) [13, § 4.1].

B. Solutions of corner dispersion relations

This section gathers the proofs for some of the results claimed in Sections 2.1 and 2.2.1.

B.1. General properties
Lemma 28 (κ-invariant exponents). Let φ , π. The set of even (odd) κ-invariant exponents satisfies{

η ∈ C
∣∣∣∀κ ∈ C, η ∈ H e(o)φ (κ)

}
=

iqZ when φ= p
qπ with p and q coprime integers

{0} otherwise.

Proof. The set of η satisfying both sinh
[
ηπ

]
= 0 and sinh

[
η (π − φ)

]
= 0 is given by i ×

[(
π
π−φ

Z
)
∩ Z

]
.

Proof of Lemma 6. (a) For any κ ∈ C, the map η 7→ f e(o)φ (η, κ) is entire so its zeros are isolated and have no accumu-
lation point in C [63, Thm. 10.18]. (b) Follows directly from the expression of f e(o)φ . (c) By definition of f e(o)φ , we
have 0 ∈ H e(o)φ (κ). If η ∈ H eφ(κ) ∩ H oφ(κ), then [1 + κ] sinh

[
ηπ

]
= 0 and [1 − κ] sinh

[
η (π − φ)

]
= 0. If κ = 1, then

ηπ = ikπ with k ∈ Z. If κ = −1, then η(π − φ) = ikπ with k ∈ Z. If κ ∈ C\{−1, 1}, then η solves both sinh
[
ηπ

]
= 0 and

sinh
[
η (π − φ)

]
= 0, so that the intersection H eφ(κ) ∩ H oφ(κ) is exactly the set of κ-invariant exponents that is described

in Lemma 28.
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Proof of Prop. 7 continued. It remains to prove that ηc, which is isolated from Lemma 6(a), crosses the real axis when
κ crosses I e(o)c . Let (ηc, κc) ∈ (0,∞) × I e(o)c . Proposition 11, which is a consequence of the implicit function theorem,
gives the existence of a neighborhood V of κc in C\{κφ, 1/κφ} such that there is a unique analytic map η : V → C that
satisfies η (κc) = ηc and f (η(κ), κ) = 0 for all κ ∈ V . Since η (κ) = η(κ), η(κ) must cross the real axis when κ crosses
the critical interval I e(o)c in V .

Proof of Prop. 11. Let (η0, κ0) ∈ C × U such that f e(o)φ (η0, κ0) = 0. The claim follows from the implicit function
theorem [44, Prop. 2.14]: since f e(o)φ is analytic on C × U, it is enough to show that ∂η f e(o)φ (η0, κ0) , 0. We have

∂η f e(o)φ (η0, κ0) = [1 + κ0] π cosh
[
η0π

] −
(+) [1 − κ0] (π − φ) cosh

[
η0 (π − φ)

]
.

Let us first cover the case κ0 ∈ {−1, 1}. If κ0 = −1 (resp. κ0 = 1) then sinh
[
η0 (π − φ)

]
= 0 (resp. sinh

[
η0π

]
= 0) so

that ∂η f e(o)φ (η0, κ0) , 0. Now assume that κ0 < {−1, 1}; we show that ∂η f e(o)φ (η0, κ0) = 0 ⇔ κ0 ∈
{
κφ, 1/κφ

}
. The system

f e(o)φ (η0, κ0) = 0, ∂η f e(o)φ (η0, κ0) = 0 reads [1 + κ0] sinh
[
η0π

]
= +

(−) [1 − κ0] sinh
[
η0 (π − φ)

]
[1 + κ0] cosh

[
η0π

]
= +

(−) [1 − κ0] (1 − φ/π) cosh
[
η0 (π − φ)

]
,

which is equivalent to

[1 + κ0] = +
(−) [1 − κ0]ψφ (η0) , tanh

[
η0π (1 − φ/π)

]
= (1 − φ/π) tanh

[
η0π

]
.

Since the only solution of the rightmost equation is η0 = 0, the first one is [1 + κ0] = +
(−) [1 − κ0] π−φ

π
.

Proof of Prop. 12. The proof consists in showing that the set H e(o)φ (κ) contains a pair of multivalued elements, namely
(ηc,−ηc) where ηc is the critical exponent introduced in Proposition 7. Let us first consider the odd dispersion relation.

(1) Odd dispersion relation. Let κ ∈ I oc . The (positive) critical exponent satisfies

1
ψφ (ηc(κ))

= β(κ).

The critical exponent is a map ηc : I oc → (0,∞) and Proposition 11 provides us with an analytic map η̃c : V → C
such that η̃c(κ) = ηc, where V is a neighborhood of κ in C\{κφ, 1/κφ}. (a) The asymptotic expansion

1
ψφ (η)

=
η→0

π

π − φ

[
1 +

1
6
η2

(
π2 − (π − φ)2

)
+ O

(
|η|4

)]
yields [

η̃c(κ)
]2

=
κ→κφ

6(1 − φ/π)

π2
[
1 − (1 − φ/π)2

] (
β(κ) − β

(
κφ

))
+ O

(
|β(κ) − β(κφ)|2

)
.

By using the exact same reasoning as in Example 10, we deduce that κ 7→ Ĥ oφ(κ) has an algebraic branch point at
κ = κφ. (b) The asymptotic expansions

1
ψφ (η)

φ∈(0,π)
=

<(η)→+∞
eηφ

[
1 + O

(
e−2<(η)(π−φ)

)]
,

1
ψφ (η)

φ∈(π,2π)
=

<(η)→+∞
−eη(2π−φ)

[
1 + O

(
e−2<(η)(φ−π)

)]
give

exp
[
η̃c(κ)φ

] φ∈(0,π)
=

κ→−1
β(κ)

1 + O

 1

|β(κ)|2
π−φ
φ

 , exp
[
η̃c(κ)(2π − φ)

] φ∈(π,2π)
=

κ→−1
−β(κ)

1 + O

 1

|β(κ)|2
φ−π
2π−φ

 ,
from which we deduce that κ 7→ Ĥ oφ(κ) has a logarithmic branch point at κ = −1 (using again the same reasoning as
in Example 10).

(2) Even dispersion relation. Identical to the odd case by replacing “β” by “−β”. The asymptotic expansions
imply that κ 7→ Ĥ eφ(κ) has an algebraic branch point at κ = 1/κφ and a logarithmic branch point at κ = −1.
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B.2. Closed form expression

For any couple of integers (p, q) such that q ≥ 2 and p/q ∈ (0, 1) ∪ (1, 2), we define the following polynomial of
degree 2(q − 1):

P(p,q)
β (x) B

q−1∑
k=0

x2k + β sign(q − p)xq−|q−p|
|q−p|−1∑

k=0

x2k, (B.1)

whose roots are stable by inversion.

Proof of Prop. 9. Since κ , −1, the sets H eφ(κ) and H oφ(κ) are given by

H e(o)φ (κ) =
{
η ∈ C | sinh(ηπ) = −

(+) β(κ) sinh
[
η(π − φ)

]}
,

where β(κ) is given by (11). We carry out the proof only for H eφ; the proof for H oφ is deduced with the substitution

β→ −β. Let x = exp
(
ηπ
q

)
. The statement η ∈ H eφ(κ) is equivalent to the polynomial equation

x2q − 1 = −β(κ)
[
x2q−p − xp

]
.

– If φ ∈ (0, π), then 0 < p < q and we factor by xp to get x2q − 1 = −β(κ)xp
[
x2(q−p) − 1

]
.

– If φ ∈ (π, 2π), then q < p < 2q and we factor by x2q−p to get x2q − 1 = +β(κ)x2q−p
[
x2(p−q) − 1

]
.

In these two cases the claim is obtained using the identity x2n − 1 = (x2 − 1)
∑n−1

k=0 x2k on both sides and noting that
x2 = 1 has solutions η ∈ iqZ. From Lemma 28, the set iqZ is exactly the set of of κ-invariant exponents.

Example 29 (φ = π/2). P(1,2)
β (x) = x2 + 1 + βx has roots given by x±β =

−β±
√
β2−4

2 , hence H̆ eφ(κ) =
{
η+
β(κ), η

−
β(κ)

}
and

H̆ oφ(κ) =
{
η+
−β(κ), η

−
−β(κ)

}
where η±β B

2
π

ln
(
x±β

)
, which is consistent with [13, § 4.1]. Since x+

β x−β = 1, we have η−β = −η+
β .

Example 30 (φ = π/3). P(1,3)
β (x) = x4 + x2 + 1 + β(x3 + x). Since the roots of P(1,3)

β are stable by inversion, we seek

(ξ1, ξ2) ∈ C∗ × C∗ such that P(1,3)
β (x) = (x − ξ1) (x − 1/ξ1) (x − ξ2) (x − 1/ξ2) , which is equivalent to

1
ξ2

+ ξ2 +
1
ξ1

+ ξ1 = −β,

(
1
ξ2

+ ξ2

)
×

(
1
ξ1

+ ξ1

)
= −1.

This yields the expression of the four roots of P(1,3)
β :

{
x±,iβ

}
i∈{+,−}

=

{
1
2

(
Ai ±

√
A2

i − 4
)}

i∈{+,−}
, where A± B

−β ±
√
β2 + 4

2
, (B.2)

so that H̆ eφ(κ) =
{
η±,iβ(κ)

}
i∈{+,−}

and H̆ oφ(κ) =
{
η±,i
−β(κ)

}
i∈{+,−}

, where η±,iβ B
3
π

ln
(
x±,iβ

)
. Note that since x+,±

β x−,±β = 1, we have

η−,±β = −η+,±
β .

C. Comments on the proposed definition of complex plasmonic resonances

This appendix discusses the proposed definition of CP resonances (Definition 17). Let us first recall that the
resolvent of a differential operator A is an operator-valued analytic function (C\σ) 3 λ 7→ R(λ) (typically λ = ω or
λ = ω2), which is singular at the spectrum σ ⊂ C. IfA has a non-empty and non-countable continuous spectrum σc,
then R may be multivalued, i.e. it may admit at least one analytic extension R̃ across σc that differs from R, so that σc

is effectively a branch cut of R. This commonly occurs in scattering problems.
In this paper, the denomination “resonance” is used in the sense encountered in scattering; in particular, “reso-

nance” is not synonymous with “eigenvalue”. The operator-theoretic definition of resonances is as follows [36, 37]
[64] [65]: for a problem with a multivalued resolvent operator, eigenvalues are poles of the principal branch, while
complex resonances are poles of the other branche(s). For example, a single degree-of-freedom oscillator has eigen-
values (complex if damped) but no complex resonances, since the resolvent operator is not multivalued. By contrast,
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in scattering, the resolvent operator that gives the outgoing solution is multivalued since the spatial domain is un-
bounded: there can be both eigenvalues and complex resonances. An eigenvalue is associated with a finite-energy
eigenfunction, while a complex resonance (also “complex scattering resonance” or “complex scattering pole”) is
associated with a complex resonance function (also “quasi-normal mode”), whose energy is infinite.

This operator-theoretic approach could be followed to define CP resonances. The “outgoing resolvent operator”
Rout would be defined using an inverse Mellin transform around the corner [38]. The map κ 7→ Rout(κ), naturally
defined in C+ would have branch points κφ, κ−1

φ , and −1. As such, it would admit at least three different meromorphic
continuations to C−: R0 (continuation across R\Ic), Re (continuation across I ec ), and Ro (continuation across I oc ).
Even-critical CP resonances would then be poles of Re in C−.

The approach we have followed in this paper is to define CP resonances through their local expansions at r = 0,
which only requires the knowledge of the corner dispersion relations (7). This approach is commonly followed in the
scattering literature, where complex scattering resonance functions are introduced as solutions of the time-harmonic
eigenproblem that are exponentially growing at infinity [53] [51] [60]. This approach suggests that to compute
complex resonances this exponential growth must be dealt with, which is the purpose of complex scaling.

D. Point spectrum of elliptical particles

Proposition 31. Let Ωm, Ω, and Ωd be given by (35) with Ωm ⊂ Ω. If ∂Ωm and ∂Ω are not circles, then the eigenvalues
of the PEP (1,2) with a Dirichlet boundary condition on ∂Ω are given by

κe0 = 0, κen = − tanh
[
nµm

]
tanh

[
n(µd − µm)

]
, κon = −

tanh
[
n(µd − µm)

]
tanh

[
nµm

] (n ∈ N∗) , (D.1)

where rm ∈ (0, 1) (resp. rd ∈ (0, 1)) is the aspect ratio of ∂Ωm (resp. ∂Ω) and µ = arctanh r. Eigenfunctions associated
with κen (resp. κon) are even (resp. odd) with respect to the major axis.

For any n ∈ N, κen ∈ (−1, 0] while for any n ∈ N∗, κon ∈ (−1, 0) when µd < 2µm and κon < −1 when µd > 2µm. In the
limit µd → ∞ we recover the eigenvalues of the NP operator on ∂Ωm [66, Eq. (4.13)].

Proof. Without loss of generality, we assume that Ωm is such that am > bm so that its focal distance is c =
√

a2
m − b2

m.
Let (µ, θ) be the elliptic coordinates associated with the focal points of ∂Ωm (see Figure 8b):

x = c cosh µ cos θ, y = c sinh µ sin θ (µ > 0, θ ∈ (−π, π)) . (D.2)

Note that {µ = 0, θ ∈ (−π, π)} corresponds to the segment (−c,+c) × {0}. In elliptic coordinates, the PEP reads

1
c2

1
sinh2 µ + sin2 θ

[
∂2
µu(µ, θ) + ∂2

θu(µ, θ)
]

= 0 (µ ∈ (0, µm) ∪ (µm, µd)) ,

with boundary conditions

u(µ,−π) = u(µ, π) (A) ∂θu(µ,−π) = ∂θu(µ, π) (B)
u|Ωd (µm, ·) = u|Ωm (µm, ·) (C) κ ∂µu|Ωd (µm, ·) = ∂µu|Ωm (µm, ·) (D)
u (µd, ·) = 0. (E)

Injecting u(µ, θ) = ϕ(µ)Φ(θ) into the PEP leads to

ϕ
′′

(µ) = n2ϕ(µ), Φ(θ) = C1 cos(nθ) + D1 sin(nθ) (n ∈ Z),

where the constraint n ∈ Z follows from the periodicity conditions (A,B). If n = 0 and κ , 0, then u = 0. If n = 0 and
κ = 0, then u(µ, θ) ∝ 1Ωm +

µ−µd
µm−µd

1Ωd . If n , 0, we seek ϕ as

ϕ(µ) =

A2 cosh (n(µ − µd)) + B2 sinh (n(µ − µd)) (µ ∈ (µm, µd))
A1 cosh (nµ) + B1 sinh (nµ) (µ ∈ (0, µm)) .
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(Even modes, D1 = 0) Conditions (C,D,E) and ϕ
′

(0) = 0 yield A2 = B1 = 0 and[
cosh (nµm) − sinh (n(µm − µd))

n sinh (nµm) −nκ cosh (n(µm − µd))

] [
A1
B2

]
= 0, ϕen(µ) = B2

sinh (n(µ − µd)) (µ ∈ (µm, µd))
sinh(n(µm−µd))

cosh(nµm) cosh (nµ) (µ ∈ (0, µm)) .

(Odd modes, C1 = 0) Conditions (C,D,E) and ϕ(0) = 0 yield A1 = A2 = 0 and[
sinh (nµm) − sinh (n(µm − µd))

n cosh(nµm) −nκ cosh (n(µm − µd))

] [
B1
B2

]
= 0, ϕon(µ) = B2

sinh (n(µ − µd)) (µ ∈ (µm, µd))
sinh(n(µm−µd))

sinh(nµm) sinh (nµ) (µ ∈ (0, µm)) .
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