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We consider thermal machines powered by locally equilibrium reservoirs that share classical or quantum
correlations. The reservoirs are modeled by the so-called collisional model or repeated interactions model. In
our framework, two reservoir particles, initially prepared in a thermal state, are correlated through a unitary
transformation and afterward interact locally with the two quantum subsystems which form the working fluid.
For a particular class of unitaries, we show how the transformation applied to the reservoir particles affects the
amount of heat transferred and the work produced. We then compute the distribution of heat and work when the
unitary is chosen randomly, proving that the total swap transformation is the optimal one. Finally, we analyze
the performance of the machines in terms of classical and quantum correlations established among the
microscopic constituents of the machine.
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I. INTRODUCTION

The interest in thermal machines powered by quantum
working media has recently surged thanks to the technolog-
ical advancement in the realization and control of individual
quanta [1–6]. This tremendous progress has led to the first
realizations of quantum engines and thermal devices [7–13].

The theoretical modeling of such devices usually involves
the system in contact with equilibrium uncorrelated baths
at different temperatures. However, some papers have gen-
eralized this picture to nonequilibrium reservoirs [14–21],
including the case of the Otto engine in contact with squeezed
reservoirs [22–25], which can lead to efficiencies and perfor-
mances beyond the Otto and Carnot limit. This conclusion,
obviously, does not take into account the cost of maintaining
a nonequilibrium reservoir which is then considered as a
free resource but shows how to best employ these resources
(see also Ref. [26]). Other works have considered thermal
devices coupled to spatially separated reservoirs which share
correlations, classical or quantum [27–33].

Here we propose a general framework based on collisional
models [19,23,34–58] which allows us to analyze, in a con-
sistent thermodynamic sense as recently proven in Ref. [59],
the effect of classical and quantum correlations between reser-
voirs in the functioning of quantum thermal machines.

Our setup, depicted in Fig. 1, consists of a working medium
made of two quantum systems S1 and S2. Each of these is in
contact with a reservoir modeled by the repeated interaction of
flying auxiliary particles. These particles are first prepared in
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a thermal state at T1 and T2, respectively, and then undergo
a unitary operation U , which correlates them before their
collision with the systems S1 and S2. We study the steady state
of the system after many collisions with the flying particles.

Such a microscopic model has the advantage that all
thermodynamic contributions, e.g., energy, heat, work and
entropy, are accountable and that it is consistent with the laws
of thermodynamics [42,43,59]. From the point of view of open
quantum systems, our model leads to a nontrivial evolution of
a quantum system in contact with correlated reservoirs. As we
will show, under the assumption of continuous evolution in
the limit of collisions lasting an infinitesimal amount of time,
the system’s evolution can be cast in the form of a Marko-
vian Lindblad master equation with collective jump operators
acting nontrivially on both systems (see also Ref. [60]).

In this paper, we showcase the functioning of our model
assuming the system and environment’s particles to be qubits.
However our framework is general and could be equally
applied to higher-dimensional systems including infinite-
dimensional ones, for instance, quantum harmonic oscillators.

After introducing the setup in more detail in Sec. II and dis-
cussing its thermodynamics in Sec. III, we assume in Sec. IV
the unitary operation U to be a partial swap. We will show how
the amount of swapping between the flying qubits controls
the amount and direction of the heat flow among the system’s
qubits. We then consider in Sec. V the most general two-qubit
unitary operations and study the distribution of work produced
and heat exchanged by the system when the unitaries are
chosen randomly. We find that the extremal points of the
distribution correspond to eight noncorrelating unitaries with
the optimal one corresponding to the complete two-qubit
swap. In this context, we analyze the quantum and classical
correlations established among the quantum constituents of
our setup. We find that, while correlations among the flying
qubits are not necessary for the machine to work, quantum
and classical correlations among the system’s particle must be
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FIG. 1. Setup of our scheme: thermal particles emerging from
the cold and hot baths and prepared in the states ρ̃th (n1) and ρ̃th (n1),
respectively, are made to collide to each other under a unitary
operation U . The emerging correlated particles in the global state
ρ ′

B collide with the system’s particles S1 and S2.

nonzero for the optimal performance. Finally, in Sec. VI, we
summarize and conclude.

II. SETUP AND PRELIMINARIES ON REPEATED
INTERACTIONS

We assume the system to be composed of two coupled
qubits described by the XXZ Hamiltonian:

HS = J (σx1σx2 + σy1σy2 + �σz1σz2) + B1σz1 + B2σz2, (1)

where J, �, and Bi are the interaction strength, anisotropy
and local magnetic field, respectively. Here and throughout
the paper, we assume h̄ = kB = J = 1 expressing all physical
quantities in these units. The operators σxi, σyi, σzi are the
Pauli matrices for the qubit i. Notice that the total magneti-
zation Sz = σz1 + σz2 is a conserved quantity as it commutes
with the system Hamiltonian.

We assume the system to be affected by a reservoir mod-
eled by the so-called repeated interactions [19,23,34–58]. In
this model, represented in Fig. 1, each qubit of the system
interacts with a stream of uncoupled environment qubits (or
flying qubits). The interaction between the system qubit and
a flying qubit only lasts for a short time τ during which the
interaction Hamiltonian is constant and given by

HSB =
∑
i=1,2

√
γ (2ni + 1)

2τ
(σxiσ̃xi + σyiσ̃yi ), (2)

where the operators σ̃xi, σ̃yi, and σ̃zi are the Pauli matrices
for a flying qubit interacting with the system qubit i = 1, 2.
The coefficient γ determines the strength of the interaction
while ni = (e2Biβi − 1)−1 models the thermal occupation of
the flying qubit and is related to the inverse temperature βi =
1/Ti of each bath. Additionally each flying qubit is subject to

the local Hamiltonian:

HBi = Biσ̃zi, i = 1, 2, (3)

and we define HB = HB1 + HB2.
Usually, in the literature, the state of the environment

qubits for different reservoirs has been assumed to be un-
correlated. In this paper, we challenge this assumption and
introduce some correlations, not necessarily quantum ones,
between the flying qubits. These are initially uncorrelated
and prepared in a thermal state corresponding to a thermal
occupation ni:

ρB = ρ̃th(n1) ⊗ ρ̃th(n2), (4)

where

ρ̃th(ni ) = 1
2 [1 − (1 + 2ni )

−1σ̃zi] (5)

and 1 is the identity operator.
We then correlate the flying qubits with a unitary transfor-

mation U so that their state becomes

ρ ′
B = UρBU †. (6)

After this initial preparation, each flying qubit collides with a
system’s qubit (see Fig. 1). The collision, lasting for a time τ ,
is described by the unitary operator:

Ucollision = e−iHtotτ , (7)

where Htot = HS + HB + HSB is the total Hamiltonian.
If we call ρS (t ) the state of the system at time t , then its

state at time t + τ after the collision becomes

ρS (t + τ ) = TrB[Ucollision ρS (t ) ⊗ ρ ′
BU †

collision]. (8)

In the following, we will always consider the steady state that
the system approaches after many collisions which is defined
by the relation:

ρ
steady
S (t + τ ) = ρ

steady
S (t ), (9)

and for simplicity, we will drop its time dependence and write
simply ρ

steady
S .

III. THERMODYNAMICS

We now discuss the different thermodynamics contribu-
tions arising in our setup after the system has reached its
steady state. As the state of the system does not change
anymore, the internal energy variation is zero:

�E = Tr[HS (ρ ′
SB − ρSB)] = 0, (10)

where ρSB = ρ
steady
S ⊗ ρ ′

B and ρ ′
SB = Ucollision ρSB U †

collision.
To define heat and work we distinguish two scenarios,

called partial and complete scenarios, which we explain in
more details in the following.

A. Partial scenario

In the partial scenario, we assume that we are provided
with the flying qubits in the state ρ ′

B and that we are not
paying for the work of the unitary U . In this scenario, we
are provided with a nonequilibrium reservoir and thus the
Clausius formulation of the second law of thermodynamics
may not apply. This is still an interesting scenario to study
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for two reasons: first, it continues the investigation of the
functioning of thermodynamic machines in the presence of
nonthermal environments [14–20,22–24]; second, it gives us
an opportunity to study the open quantum system dynamics in
the presence of correlated reservoirs as developed in Sec. IV.

Under these assumptions the work is potentially produced
or injected during the system-environment collision [59]. This
is given by

Wpartial = Tr[(HS + HB)(ρ ′
SB − ρSB)]. (11)

Similarly the heat exchanged by the system with the flying
qubits is equal to the energy balance of the latter ones:

Q(i)
partial = −Tr[HBi(ρ

′
SB − ρSB)], i = 1, 2. (12)

At steady state, the first law for the two-qubit system reads

�E = Qpartial + Wpartial = 0, (13)

where Qpartial = Q(1)
partial + Q(2)

partial. Notice that throughout this
paper we employ the convention that positive work or heat
corresponds to energy injected into the system contributing to
the increase of the system energy.

An entropic formulation of the second law can be derived
in terms of the non-negativity of the entropy production (see,
for example, Refs. [61–63] and Chapter 28 by R. Uzdin in
Ref. [1]):

�partial = I (ρ ′
SB) + D(ρ ′′

B||ρ ′
B) � 0. (14)

In the expression of �, we have used the mutual information
between two quantum objects O1 and O2 defined as

IO1O2 = S(ρO1) + S(ρO2) − S(ρO1O2), (15)

where S(ρ) = −Trρ ln ρ is the von Neumann entropy and
ρi, i = O1, O2, O1O2 are the density matrices of the corre-
sponding objects. We have also used the relative entropy:
D(ρ||σ ) = Trρ ln ρ − Trρ ln σ and we have defined the state
of the environment after the collision: ρ ′′

B = TrSρ
′
SB. The non-

negativity of �partial is ensured by the non-negativity of the
mutual information and the relative entropy.

B. Complete scenario

In the complete scenario, we account for the extra work
needed to implement the correlating unitary U :

WU = Tr[HB(ρ ′
B − ρB)], (16)

so that the total work in the complete scenario is the sum of
the two contributions:

Wcomplete = Wpartial + WU . (17)

Equally, the heat exchanged is the energy balance of the
environment during the whole process: from their preparation
into the product thermal state ρB to their final state after the
two unitaries U and Ucollision:

Q(i)
complete = −Tr

[
HBi

(
ρ ′

SB − ρ
steady
S ⊗ ρB

)]
, i = 1, 2, (18)

and Qcomplete = Q(1)
complete + Q(2)

complete which in general differs
from Qpartial.

A modified first law holds also in this scenario:

�E = Qcomplete + Wcomplete = 0. (19)
It is possible to define the entropy production also in the

complete scenario:

�complete = I (ρ ′
SB) + D(ρ ′′

B||ρB) � 0. (20)

Moreover in this case, since ρB is the tensor product of
equilibrium states for each reservoir, see Eq. (4), we can
connect the change in entropy in the system �S with the
entropy production and the heat flow:

�S = �complete +
2∑

i=1

βiQ
(i)
complete (21)

from which we can write the Clausius inequality:

�S −
2∑

i=1

βiQ
(i)
complete = �complete � 0, (22)

where at steady state �S = 0.

IV. RESERVOIRS IN A PARTIALLY SWAPPED LOCALLY
THERMAL STATE

Here, we consider the special case in which the unitary U
correlating the flying qubits is a partial swap operation:

Sφ = exp

{
−i

φ

2
(σ̃x1σ̃y2 − σ̃y1σ̃x2)

}
, (23)

which is a total swap for φ = π/2. This leads to the following
expression for the bath density matrix after the action of the
partial swap Sφ :

ρ ′
B = 1

(1 + 2n1)(1 + 2n2)
(24)

×

⎛
⎜⎜⎜⎝

n1n2 0 0 0

0 1
2 (n1 + n2 + 2n1n2 + (n1 − n2) cos 2φ) (n2 − n1) sin φ cos φ 0

0 (n2 − n1) sin φ cos φ 1
2 (n1 + n2 + 2n1n2 − (n1 − n2) cos 2φ) 0

0 0 0 (1 + n1)(1 + n2)

⎞
⎟⎟⎟⎠, (25)

where the basis of eigenstates of σz1 and σz2 has been used to
write the matrix representation of ρ ′

B.
The action of the partial swap is to partially exchange

populations between the auxiliary qubits. Indeed, the two
flying qubits are still locally in a thermal state although at a
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(a)

(b)

FIG. 2. (a) Effective populations of the two flying qubits as a
function of φ for n1 = 1 and n2 = 3. (b) Mutual information between
the two flying qubits as a function of n1 and n2 for φ = 0.2π . The
solid line corresponds to zero entanglement and divides separable
and entangled states.

different temperature compared to their state before the partial
swap:

ρ̃ ′
i = Tr ī ρ ′

B = ρ̃th(Ni ) (26)

where i = 1, 2 and Tr ī represents the partial trace with respect
to the qubit other than i. The effective population after the
application of Sφ is

Ni = 1

2

n1 + n2 + 4n1n2 + (−1)i(n2 − n1) cos 2φ

1 + n1 + n2 − (−1)i(n2 − n1) cos 2φ
. (27)

The effective populations Ni of the two flying qubits are shown
in Fig. 2 where it is evident that for φ = π/2 the populations
are completely swapped.

The partial swap creates classical and quantum correla-
tions, measured for instance by the mutual information IA1A2

of ρ ′
B among the two auxiliary qubits. The mutual information

is always nonzero as shown in Fig. 2 except for the special
values of φ = mπ/2, m ∈ Z, regardless of the values n1 and
n2. This happens because, as it is evident from Eq. (24), ρ ′

B is
not a product state. Notice how, in Fig. 2, unbalancing the two
populations n1 and n2 leads to larger correlations.

The work for implementing the partial swap is given by

WU = −2(B1 − B2)(n1 − n2) sin2 φ

(1 + 2n1)(1 + 2n2)
. (28)

Similarly to what is found in Refs. [59,64], the work vanishes
for B1 = B2 or n1 = n2 and is maximum for the total swap
φ = π/2.

We set the parameters in such a way that for φ = 0 the two-
qubit system acts as an engine (W < 0, Q(1) < 0, Q(2) > 0 for
both scenarios). It is possible to find the analytical expression
of the steady state, the work and heats exchanged per cycle.
While their expressions are quite long and hard to read, it is
possible to show that all their ratios are proportional to ratios
of the local magnetic fields, B1 and B2. As a consequence,
and similarly to other models [30,59,64], the efficiency η =
|W |/Q(2), if the setup works as an engine, or the coefficient
of performance (COP) ηCOP = Q(1)/W , if the setup works as
a refrigerator, correspond to the Otto values. For example, in
the former case, the efficiency is given by (B2 < B1)

η = 1 − B2

B1
(29)

and in the latter case, the COP is given by (B1 < B2)

ηCOP = B1

B2 − B1
. (30)

In the partial scenario, φ can be used to control the
functioning of the thermodynamic machine making it switch
from an engine to a refrigerator. In the interval 0 � φ � π/2,
the machine behaves as an engine for 0 � φ < π/4 and as
a refrigerator for π/4 < φ � π/2. For values of φ outside
the interval [0, π/2], the situation just described repeats pe-
riodically. The switching points are found for N1 = N2 which
occurs for cos 2φ = 0, i.e., φ = (2m + 1)π/4, m ∈ Z. These
switching points correspond to effective Carnot points where
work and heat exchanged are zero (see also Ref. [59] where
the condition n1 = n2 corresponds to the Carnot point).

Numerical results for the partial scenario are plotted in
Fig. 3 which shows the periodic change of the machine

(a)

(b)

FIG. 3. Thermodynamic quantities: work and heat exchanged per
collision for the steady state of the system in contact with the flying
qubits prepared with the partial swap Eq. (23). (Top) Partial scenario.
(Bottom) Complete scenario. Parameters: � = 1, γ = 1, B1 = 0.1,
B2 = 0.3, n1 = 0.1, n2 = 2, and τ = 0.1.
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operating as an engine and as a refrigerator. Interestingly,
the largest absolute values of the thermodynamic quantities
are obtained for the values φ = mπ/2, m ∈ Z at which the
partial swap operation Sφ corresponds to the identity (even m)
and the total swap (odd m).

Thus the partial swap operation can be employed as a
valve to control the direction of the heat flowing between
the system’s qubits without altering the equilibrium reservoirs
that prepare the flying qubits. These can be particularly useful
in physical implementations in which one does not have full
control of the environment.

Let us now move to the complete scenario. In this case,
since we are taking into account all work contributions in-
cluding those coming from the action of the swap operation,
both first and second laws, the latter expressed in terms of heat
exchanged, are fulfilled. The corresponding results plotted in

Fig. 3 show that the work and heats exchanged do not change
sign and the machine always behaves as an engine. The action
of the partial swap is to amplify the work production and the
heats exchanged, while keeping the same performance, reach-
ing a maximum for φ = mπ/2, m = ±1, 3, 5, . . . at which
the swap is total.

This shows that given the two flying qubits, initially in
equilibrium states with fixed temperatures, the maximum
work that can be extracted is achieved by completely swap-
ping their states before making them to collide with the
system’s qubit. As we will see in Sec. V, this is the maximum
value that can be obtained for any unitary operation between
the flying qubits.

We end up this section by considering the continuous limit
of τ → 0. Up to first order in φ, one obtains the following
Lindblad master equation:

ρ̇S = −i[HS, ρS] + γ
∑
i=1,2

(1 + ni )Lσ−i (ρS ) + niLσ+i (ρS )

+ γφ(n2 − n1)[M(σ+1, σ−2, ρS ) +M(σ−2, σ+1, ρS ) + H.c.]√
(1 + 2n1)(1 + 2n2)

, (31)

where La(ρ) = 2aρa† − a†aρ − ρa†a is the usual Lindblad
operator and M(a, b, ρ) = 2aρb − baρ − ρba is a modified
Lindblad-like operator. In Eq. (31), we have also defined the
jump operators σ±i = 1

2 (σxi ± iσyi ).
The presence of quantum correlations in the initial state of

the bath is the reason for the appearance in the master equation
of the collective termM proportional to φ which corresponds
to environment-induced processes of emission of an excitation
from one qubit and absorption from the other.

In this continuous limit, it is possible to define work power
and heat currents both in the partial and complete scenario.
However, in the complete scenario, one should assume that
the work necessary for the swap operation given in Eq. (28)
scales to zero as τ → 0. This is indeed the case up to first
order in φ consistently with our master equation.

V. RESERVOIRS PREPARED BY RANDOM UNITARIES

Here we generalize the approach developed in the previous
section by considering thermal flying qubits which are sub-
ject, before the collision with the system qubits, to a unitary
transformation UR. The unitary transformation is always the
same for all collisions for a given setup and allows the system
to reach a steady state, which we then analyze. We repeat the
same procedure for an ensemble of 6 × 106 random unitaries
UR chosen with uniform distribution according to the Haar
measure [65].

For a generic UR, the creation of finite quantum coherences
and correlations between the environment qubit may lead to
difficulties in the derivation of a consistent master equation in
the continuous limit τ → 0, see Ref. [50]. In this section, we
will therefore restrict our analysis to a small but finite τ . Under
this assumption, the repeated interactions remain a discrete
map for the system which, after many applications reaches a
steady state, which we analyze.

We consider a setup which, for UR = 1, corresponding to
the situation in which no unitary is applied to the flying qubits
before their collision with the system, operates as an engine.
Analogous results can be obtained for the refrigerator regime.

In the partial case, as in Sec. IV, work and heat fluxes are
proportional to each other with the prefactor being a ratio
of the local magnetic fields, B1 and B2, related to the Otto
efficiency. For this reason we only show the analysis of the
work probability distribution shown in Fig. 4. Its probability
density function (PDF) is approximately Gaussian with a very
small average statistically compatible with zero.

− −

FIG. 4. Histogram of the partial work Wpartial with the vertical
axis measuring the corresponding probability density function (PDF)
for 6 × 106 random unitaries. The solid line is the best fit normal
distribution with average 9.6 × 10−7 and standard deviation 1.1 ×
10−3. The vertical dashed lines signpost the minimum and maximum
possible values of Wpartial obtained with noncorrelating unitaries (see
text). Parameters as in Fig. 3 except for the local magnetic fields
which are B1 = 0.1 and B2 = 0.15.
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The maximum and minimum values of the partial work
Wpartial are obtained with unitaries that do not create cor-
relations, classical or quantum, among the auxiliary qubits.
As we will see in more detail in the complete scenario, this
type of unitary operations do not create any mutual infor-
mation between the flying qubits but simply rearrange the
populations of the four basis states. In the partial scenario,
we find that the minimum negative value of the work (largest
value of produced work) is obtained with the unitary that
inverts the populations of the qubit prepared in the hottest
temperature and leaves unchanged the qubit prepared in the
coldest temperature: UR = σx2 (corresponding to operation III
defined later). In contrast, the maximum positive value of the
work (largest value of the work injected), is obtained with
the unitary that inverts the populations of the qubit prepared
in the coldest temperature and leaves unchanged the qubit
prepared in the hottest temperature: UR = σx1 (corresponding
to operation VI defined later).

Let us now pass to the complete scenario in which the work
produced or extracted is not necessarily proportional to the
two heat fluxes. The results show that, by applying different
unitary operations, the different modes (accelerator, heater
or heat engine) can be achieved with different efficiencies.
We plot in Fig. 5 the joint histogram of the complete work
and the heat input from the hot environment. The distribution
is confined by a nonregular octagon whose eight vertexes
correspond to unitary operations that do not create quantum
or classical correlations between the environment qubits. Let
{p1, p2, p3, p4} be the vector of the populations of the density
matrix ρB of the flying qubits after their preparation equi-
librium states but before undergoing the unitary U . These
eight unitary operations only affect the populations of the
flying qubits according to where Sπ/2 is the transformation

Label Populations Unitary

I {p1, p2, p3, p4} 1112

II {p1, p3, p2, p4} Sπ/2

III {p2, p1, p4, p3} 11σx2

IV {p2, p4, p1, p3} Sπ/211σx2

V {p3, p1, p4, p2} Sπ/2σx112

VI {p3, p4, p1, p2} σx112

VII {p4, p2, p3, p1} Sπ/2σx1σx2

VIII {p4, p3, p2, p1} σx1σx2

that completely swap the state of the two qubits, see Eq. (23)
for φ = π/2.

Notice the symmetry between the unitary operations and
the position of the corresponding vertex of the octagon. In
Fig. 5, two vertexes are opposite on the octagon if their trans-
formations can be obtained one from the other by applying
the total swap operation. Moreover, one of the sides of the
octagon, delimited by the vertexes I and II, corresponds to the
Otto efficiency given in Eq. (29), so that points above the line
corresponds to engines operating at a lower efficiency or, for
Wcomplete � 0 operating as an accelerator, if Q(2)

complete > 0 or

a heater if Q(2)
complete < 0. In the complete scenario, there are

no unitaries that lead to refrigeration, similarly to what we
discussed in Sec. IV for the partial swap.

(a)

(b)

FIG. 5. (a) Joint histogram of the complete work Wcomplete versus
heat Q(2)

complete. The dashed gray line represents the Otto efficiency.
The blue dots, connected by thin solid lines, are obtained for noncor-
relating unitaries marked by the corresponding number. These spe-
cial points form an extremal octagon within which all other machines
obtained for random unitaries must be located. The color code iden-
tifies the number of values in each bin of the histogram. Parameters:
� = 1, γ = 1, B1 = 0.1, B2 = 0.15, n1 = 0.1, n2 = 2, and τ =
0.1. (b) Extremal octagons obtained for the same parameters of
the top panel but different values of B2 = 0.15, 0.3, 0.6, and 0.9,
corresponding to vertexes denoted by circles, squares, triangles, and
diamonds, respectively.

The optimal point II yielding the larger amount of work
produced (minimum negative value) corresponds to the com-
plete swap operation. This can be related to an engine pro-
posed by Campisi, Pekola and Fazio also based on a complete
swap transformation but applied to the qubits of the working
fluid [64].

In Fig. 5, we also show how the shape and size of the
extremal octagon change when B2 is varied while all other
parameters are kept fixed. Notice that, as we increase B2,
the region corresponding to the engine increases, leading to
a higher probability of achieving this operation mode. This
can be understood as follows. First, Q(2)

complete ∝ B2, thus if we
rescaled the horizontal axis of the lower diagram in Fig. 5,
all the vertexes would have the same horizontal coordinates.
Second, for Wcomplete = Wpartial + WU the situation is more
involved. While the partial work always fulfils Wpartial ∝ B2 −
B1, the work WU needed to implement the noncorrelating
unitaries is a linear function of B2 and B1 which depends on
the actual transformation. Therefore there exists no rescaling
of the vertical axis that would bring the vertexes of different
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(a) (b) (c) (d)

FIG. 6. Histograms of the mutual information and quantum discord versus the total work Wcomplete. From left to right: (a) IS1S2, (b) IA1A2,
(c) IAS , and (d) DS1S2 (see definition in the main text). The blue dots are obtained for noncorrelating unitaries specified by their label I–VIII.

octagons to the same vertical coordinate. Furthermore, the
vertex IV, corresponding to an accelerator for B2 = 0.15, turns
into an engine for the larger values of B2 we analysed.

To get more insight into the relationship between the
functioning of the whole system as an engine and the quantum
features of the working medium quantum steady state, we
looked at two measures of correlation between two parts of
the engine. The first is the mutual information defined in
Eq. (15). The mutual information quantifies both classical and
quantum correlations. If one subtracts the maximum amount
of classical correlations that can be obtained by local measure-
ments, the quantum discord, a genuine measure of quantum
correlations, is obtained [66,67]. This can be defined as:

DO1O2 = IO1O2 − JO1O2, (32)

where the classical information JO1O is the maximum in-
formation that can be extracted on O2 if we perform local
measurements on O1:

JO1O2 = S(ρO2) − min
{�i}

N∑
i=1

qiS(ρ̃i ). (33)

In Eq. (33), we have defined the probabilities qi =
Tr[�iρO1O2�i] of the outcome i and the post-measurement
states ρ̃i = TrO1[�iρO1O2�i] of the object O2. The minimiza-
tion is done over all possible sets of measurements {�i} on
O1, not necessarily orthogonal projectors.

The results are shown in Fig. 6. We start with the distri-
bution of the mutual information IS1S2 between the system
qubits in the steady state. This shows that, although the
optimal point II corresponds to uncorrelated flying qubits, the
system qubits are nevertheless correlated as a result of their
direct interaction and of reaching a nonequilibrium steady
state due to the multiple collisions with the environment. A
similar distribution is also obtained for the quantum discord
DS1S2 , which shows that the system qubits are also genuinely
quantum correlated.

We have also considered the mutual information IA1A2

between the flying qubits after the unitary but before the
collision with the system. This shows that the preparation
unitaries applied before the correlations do indeed create a
lot of correlations, quantum or classical, but these do not
necessarily lead to large values of work produced or injected.
The extremal operation II in fact corresponds to zero mutual
information between the flying qubits, which are thus in a
product state. Similar conclusions, although quantitatively dif-
ferent, are reached when analyzing concurrence and discord
between the two flying qubits.

Finally, we have analysed the mutual information IAS be-
tween the flying qubits and the system after the collision. As
before, the state of the system is steady. Thus, although it
does not change during the collision, it sustains correlations
to be created between system and each pair of environmental
qubits. These correlations are necessary for allowing ex-
change of heat between the two reservoirs through the system.
The distribution of IAS plotted in Fig. 6, shows that to achieve
large amounts of work, and consequently heat exchange, it is
sufficient a small value of IAS . In particular the noncorrelating
operations IVIII, that leave the flying qubits in a product
state, correspond to the smallest values of IAS . Finally, in
all these figures of merit, the noncorrelating operations IVIII
do not necessarily correspond to extremal points since these
functions, mutual information and discord, are not linear
functions of the state in contrast to the average work and
heat.

VI. CONCLUSIONS

In this paper, we have proposed a general framework to
model quantum thermal machines in contact with correlated
reservoirs using repeated interactions. Different conclusions
are found depending on whether we assume the partial or the
complete scenario, the latter one being always consistent with
the laws of thermodynamics.

033315-7



GABRIELE DE CHIARA AND MAURO ANTEZZA PHYSICAL REVIEW RESEARCH 2, 033315 (2020)

We have shown how, in the partial scenario, the amount
of partial swapping among the flying qubits, allows one to
control the operating mode of the thermal machine switching
it from an engine to a refrigerator.

In the case of random unitaries, we found a complex
geometrical structure in the distribution of heat and work
bounded by a nonregular octagon whose vertexes correspond
to noncorrelating unitaries. We analysed the discord and
mutual information between the flying qubits, the system
qubits and between system and environment. We found that
correlations in the system steady state and between system
and environment are necessary to achieve the optimal perfor-
mance.

Our work leads the way to future studies of open quantum
systems with correlated environments consistently with ther-
modynamics.

All the numerical data presented in this work can be found
in Ref. [68].
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