
HAL Id: hal-02923038
https://hal.science/hal-02923038

Submitted on 26 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BCTMark: a framework for benchmarking blockchain
technologies

Dimitri Saingre, Thomas Ledoux, Jean-Marc Menaud

To cite this version:
Dimitri Saingre, Thomas Ledoux, Jean-Marc Menaud. BCTMark: a framework for benchmarking
blockchain technologies. AICCSA 2020 - 17th IEEE/ACS International Conference on Computer
Systems and Applications, Nov 2020, Antalya, Turkey. pp.1-8, �10.1109/AICCSA50499.2020.9316536�.
�hal-02923038�

https://hal.science/hal-02923038
https://hal.archives-ouvertes.fr

BCTMark: a framework for benchmarking
blockchain technologies

Dimitri Saingre
IMT Atlantique - Inria - LS2N

Nantes, France

dimitri.saingre@imt-atlantique.fr

Thomas Ledoux
IMT Atlantique - Inria - LS2N

Nantes, France

thomas.ledoux@imt-atlantique.fr

Jean-Marc Menaud
IMT Atlantique - Inria - LS2N

Nantes, France

jean-marc.menaud@imt-atlantique.fr

Abstract—Over the last years, research activities on blockchain
technologies have fairly increased. Firstly introduced with Bit-
coin, some projects have since emerged to create or improve
blockchain features like privacy while others propose to overcome
technical limitations such as scalability and energy consumption.
New proposals are often evaluated with ad hoc tools and
experimental environments. Reproducibility and comparison of
these new contributions with the state of the art of the blockchain
technologies are therefore complicated. To the best of our knowl-
edge, only a few tools partially address the design of a generic
benchmarking of blockchain technologies (e.g., load generation).
In this paper, we introduce BCTMark, a generic framework for
benchmarking blockchain technologies on an emulated network
in a reproducible way. To illustrate the portability of experiments
using BCTMark, we have conducted some experiments on two
different testbeds: a cluster of Dell PowerEdge R630 servers
(Grid’5000) and one of Raspberry Pi 3+. Experiments have
been conducted on three different blockchain systems (Ethereum
Clique/Ethash and Hyperledger Fabric) to measure their CPU
consumption and energy footprint for different numbers of
clients.

Index Terms—Blockchain, Performance, Evaluation, Bench-
marks, Reproducibility.

I. INTRODUCTION

Since their introduction in 2008 with Bitcoin [1], blockchain

technologies have been widely developed. First used for

crypto-currencies, blockchains are now being implemented in

many cases: sharing of computing resources [2], decentralized

social networks [3], government services [4], storage solu-

tions [5], [6], energy trading [7], [8], . . .

Despite the potential of blockchain technologies in many ar-

eas, technical limitations slow their development as a possible

alternative to centralized services. For example, several issues

dealing with their scalability [9], [10] or energy cost [11], [12]

have been identified.

Several improvement proposals have been recently made

to face those issues. We can cite the examples of the repa-

rameterization1 proposals in the Bitcoin community (see BIP2

100 to 107), new consensus systems such as [13], [14] or the

introduction of off-chain transactions systems like [15].

Those proposals have been mostly evaluated through de-

bates (e.g., in the case of the BIPs) or have used ad hoc

evaluations that are often not reproducible (i.e., cannot be

1Evolution of parameters like block size and emission rate
2Bitcoin Improvement Proposal

run on systems other than the one they have been designed

for). We argue that, to properly compare the performances of

several blockchain systems and quantify the contribution of

new proposals regarding performance issues or functionality

(e.g., fault tolerance), the blockchain community needs proper

tooling for reproducible experiments.
This paper presents a framework enabling reproducible

research on the performances (latency, throughput, energy

consumption, . . .) of blockchain technologies. BCTMark

(BlockChain Technologies Benchmarking) is intended to be

a framework which can be used to deploy, compare, and

evaluate (through various scenarios) any blockchain on a large

number of different infrastructures. This framework provides

an abstraction of the underlying physical infrastructure and

can, therefore, be used to deploy easily on any platform that

supports the SSH protocol. To demonstrate this flexibility, we

have deployed experiments on both a public research cluster

(Grid’5000 [16]) with ”classical servers” (Dell PowerEdge

R630 servers) and a private ”low-power” Raspberry-Pi cluster.
The author of [17] defines several criteria to define a ”good”

benchmark. We argue that BCTMark has features that cover

each criteria defined in [17]:

• Repeatable: BCTMark can manage the whole lifecycle

of experiments (resources reservation, deployment, load

generation, metrics collection,. . .) and can be used to

deploy the same experiment on different infrastructures.

Experiments results are consistent across different run

(see subsection IV-C).

• Observable: BCTMark embeds several components to

observe both performances and impact of the system

under test (CPU consumption, disk and memory usage,

. . .)

• Portable: BCTMark can be used to compare different

blockchain systems or different versions of the same

blockchains. Users can write a driver to use this solution

to compare their new system to existing ones.

• Easily presented: BCTMark embeds a Grafana dash-

board [18] that can be used to present the results. Metrics

are also stored in a time-series database.

• Realistic: Network capacities (bandwidth, latency, packet

loss, . . .) can be described in the deployment topology to

emulate real-world deployment.

• Runnable: BCTMark can manage the whole lifecycle

of the experiment (from the resources reservations on a

given testbed to the metrics collection of the system under

test). It makes them easier to run: the same configuration

deployment can be shared with other scientists, even

on different testbeds. The deployment topology itself

(number of peers, network partition and capacities, . . .)

can be easily described in YAML, a language commonly

used for configuration.

To the best of our knowledge, only a few tools address

the issue of blockchains benchmarking (see section V). These

existing frameworks, while promising, do not manage aspects

necessary for rigorous benchmarking like environment de-

ployment (improving reproducibility), collection of resources

usage (e.g., CPU and memory consumption) and network

emulation (crucial as, for blockchains, network issues have

an impact on the diffusion of new blocks).

To sum up, our contribution results in the design and

the development of a framework that can be used to cre-

ate experiments on performance and functionality evaluation

of blockchains systems. Thanks to the design and features

provided by BCTMark, these experiments can be repeated

in different environments (and therefore can be shared with

the scientific community for peer evaluation) and can be

run in a realistic environment thanks to network emulation

functionalities.

The rest of the paper is organized as follows. After a brief

reminder of general concepts on the blockchain, we detail the

architecture of BCTMark as well as its operation (from a user

point of view). Then, we document some first experiences to

illustrate the system’s capabilities. Finally, after a discussion

on related work, we detail the next steps in the development

of BCTMark before concluding.

II. BACKGROUND ON BLOCKCHAIN TECHNOLOGIES

A. Overview

A blockchain can be seen as a distributed data structure that

allows facts (called transactions) to be recorded as blocks3.

Each block has a link to the previous one (making a ”chain of

block,” or blockchain). This data structure is distributed among

all participants in a peer-to-peer network. This network is

maintained by some peers called miners (Bitcoin) or validators

(Ethereum). Those are in charge of transaction validations.

Validating transactions involves a securing process that can

be seen as a leader election. The mechanism involved depends

on the blockchain system. Probably, the most famous one

is called proof-of-work (PoW). It involves a ”cryptographic

puzzle”. Every block here contains a value called a nonce. To

validate a block, a miner has to find a value for the nonce,

such as the hash value of the whole block is under a certain

threshold (called the difficulty). This threshold value varies

so that, even as the hardware becomes more powerful, the

throughput of the entire network remains at about one block

per 10 minutes.

3A batch of transactions

Block N

Prev. block Nonce

Transactions root

.

TransactionTransaction

Block N + 1

Prev. block Nonce

Transactions root

Fig. 1. A schematic view of a classical blockchain ”data-structure”

Although the proof-of-work has been widely used with

Bitcoin, it has been quite criticized for its high energy con-

sumption [12]. Alternatives such as proof-of-stake (PoS) [13]

or proof-of-elapsed-time [19] have emerged. Instead of basing

its security on computational power, proof-of-stake systems

rely on the distribution of wealth. In these systems, the

probability of validating a block is proportional to the number

of coins one owns (in some cases, coins can have a certain

weight to avoid having a network led by the richest).

B. Smart contracts: computations on the chain

Some blockchains, like Ethereum [20], has a concept of

smart contracts. Smart contracts are scripts written in a

high-level programming language that can be deployed and

executed through network transactions.

Once written, those smart contracts can be deployed on the

network through a transaction containing their compiled code.

On Ethereum, transactions without any recipient are used for

smart-contract deployment. Once deployed, the smart contract

gets an address like any ”normal” accounts4. The contract

can then be called by sending a transaction to its address

containing a compiled version of a function called with desired

parameters (if any).

Smart contracts offer many computational possibilities and

are the backbone of any blockchain-based decentralized appli-

cations. As those contracts need to be deterministic (as every

peer running the contract needs to produce the same result),

they cannot have any side-effects outside the blockchain (e.g.,

they cannot call any Web services). As today, one of the per-

formance limitations of the peer engines executing transactions

(and so smart contracts) is that they execute all the transactions

sequentially (and therefore missing the capabilities of multi-

core processors). Nonetheless, work (such as [21]) is ongoing

in this area.

C. Public vs. Private Blockchains

Blockchain technologies can be divided into two categories:

public and private blockchains. Public blockchains, such as

Bitcoin and Ethereum (with its Ethash [22] engine), have no

identified users. One can join or leave the network at any time

without the need for any authorization. Security protocols of

4The significant difference between an account controlled by a contract and
one by a human is the presence of its code

those public blockchains need to be enforced to face potential

Byzantine faults. Proof-of-work is an example of a consensus

system for public blockchains.

Private blockchains have different security models. They

aim to identify participants, especially for the block validators.

These are designated in the protocol so that no one else

can validate the block. These blockchain systems, such as

Ethereum (with its Clique engine) and Hyperledger Sawtooth

(with its Proof of Elapsed Time system, based on the Intel

SGX enclave), have different consensus engines. These engines

have better performances (due to the different security models

considered) but offer a lower degree of decentralization.

We have illustrated in this section the variety of technologies

behind the term blockchain. According to Google Scholar, the

number of publications concerning the term blockchain was 9

510 in 2017, 25 700 in 2018, 33 000 in 2019 and 35 000 in

2020 (at the moment where this paper was written). This trend

tends to illustrate a gain of interest on blockchain technologies.

However, to the best of our knowledge, only a few tools

exist to evaluate this growing number of publications. To

address this lack, we introduce BCTMark, a framework for

benchmarking blockchain technologies.

III. BCTMARK

This section presents BCTMark, our solution for bench-

marking blockchain technologies. We first introduce how

BCTMark can be used to run existing experiments and how

developers/scientists can integrate new blockchain systems to

be tested. Then, we detail its architecture and underlying

components.

A. Usage

From a user’s point of view, the workflow of an ex-

periment performed with BCTMark proceeds as described in

Figure 2.

Claim resources Prepare Benchmark / Replay Backup Destroy

Fig. 2. The experiment workflow of BCTMark

The first step is to claim resources on which to deploy the

experiment. BCTMark is intended to be portable to manage

repeatable experiments. Experiments can be deployed on any

infrastructure that supports SSH connections. Some research

testbeds (like Grid’5000) require users to book resources

before using them. This reservation phase can be addressed by

BCTMark. As shown in Listing 1, the deployment topology

can be described in a YAML file. This provided example can

be used to deploy on a local device 1) an Ethereum network

with one bootnode and two peers, 2) one benchmark worker

(used to generate loads), 3) a ”dashboard” server that hosts

both the monitoring stack and the load generator master (that

coordinate workers, see subsection III-B for details on load

generation). In this case, the claim phase will only start the

required virtual machines.

Once the infrastructure resources claimed, BCTMark can

prepare the experiment by deploying the required components

(i.e., download and install dependencies, copy configuration

files...). For each role (see Listing 1), there is corresponding

component to be deployed. The monitoring stack (dashboard

role) and the benchmarking workers (bench worker role) are

common to many experiments. Users can define their roles to

deploy their blockchain network. In the example in Listing 1,

we need two roles to deploy an Ethereum network: bootnodes5

and peers.

After deployment, users can run the benchmark themselves.

BCTMark provides two possibilities to do this: an ad hoc

load generation and a one based on previous traces (for more

details on the implementation choices, readers may refer to

subsection III-B). Once the benchmark has ran, the results

can be backed-up, and the environment destroyed/cleaned for

another experiment.

deployment:

vagrant:

backend: virtualbox

box: generic/debian10

resources:

machines:

- roles: ["dashboard"]

flavour: tiny

number: 1

- roles: ["ethgethclique:bootnode"]

flavour: tiny

number: 1

- roles: ["ethgethclique:peer"]

flavour: tiny

number: 2

- roles: ["bench_worker"]

flavour: tiny

number: 1

Listing 1. Configuration example for local deployment with Vagrant

From a developer’s point of view, all the following

necessary actions must be implemented to integrate a new

blockchain to be tested:

• Deployment: write a new Ansible playbook (cf.

subsection III-B) that specify how to deploy, backup and

delete the system;

• Metric collection: write a Telegraf plugin (cf.

subsection III-B) to gather system-specific metrics

(e.g., block emission rate) if not already available

through HTTP web services (BCTMark can collect

metrics exposed at given HTTP endpoint);

• Adhoc Load generation: write functions that correspond

to an interaction one can have with the system (e.g., how

to send a transaction, how to call a smart contract, . . .);

5Bootnodes are peers that have an address known by everyone in the
network. New peers can connect to those bootnodes to get the address of
other peers in the network

• Reproducible Load generation: implement functions to

backup transactions (and serialize those) and functions

to replay a given serialized transaction.

A developer/researcher would benefit from the design

of BCTMark as a framework to easily integrate its new

blockchain technology to be tested. Indeed, BCTMark already

provides:

• Deployment: portability of deployment on several

testbeds that support SSH;

• Network emulation: latency, bandwidth limits, . . . ;

• Metric collection: collection of metrics related to the

infrastructure (e.g., CPU usage);

• Load generation: distribution of the load to generate

among workers.

Only specific interactions with the blockchain to be tested need

to be implemented.

B. Architecture

To avoid reinventing the wheel, BCTMark is based on

the state-of-the-art industry-proven tools. Altogether they em-

power researchers, allowing them to provision computing

resources, deploy blockchain peers, generate load (based on

an history to reproduce or according to a given scenario),

and collect metrics relating to peers’ performance and energy

consumption. The architecture of BCTMark is illustrated in

Figure 3.

Deployment. BCTMark can deploy the entire experiment

stack: system under test, monitoring system, and load gener-

ators.

Deployment does not require any agent installation on

the machines. They are managed through SSH. A playbook

defines the configuration to be deployed, which takes the form

of configuration files in YAML format. Those configuration

files make it possible to specify the desired deployment in a

relatively explicit, documented, and repeatable way. BCTMark

also provides an abstraction layer of the underlying infrastruc-

ture. The deployment topology can be described in a relatively

high-level point of view, portable on different testbeds. That

makes experiments portable on various infrastructures such as

Vagrant (local deployment), Grid’5000 and Chameleon.

To manage deployment, BCTMark uses EnosLib [23] (an

open-source library to build experimental frameworks) and

Ansible [24] (a software that allows to manage deployment

of configuration on a cluster). These two components enable

self-describing, reproducible deployments.

Metrics management. Metrics about the server (CPU,

memory consumption, HDD usage, . . .) and blockchains

(number of blocks produced, hashrate, . . .) are collected,

stored and displayed by Telegraf [25], InfluxDB [26] and

Grafana [18] in time-series, respectively.

Telegraf natively allows the collection of server metrics

through many plugins written in Go. New ones can be devel-

oped to manage the collection of data on deployed blockchain

peers. Current experiments on Ethereum deployment use the

HTTP plugin from Telegraf to collect metrics through the

Ethereum HTTP API.

Network Emulation. One strength of BCTMark is its

ability to describe simply the desired network to emulate.

Users can describe in the YAML deployment configuration

file several groups of peers and emulate any desired network

condition between them. The current characteristics of the

network that can be emulated are the percentage of packet loss,

network delay, and network rate (i.e., bandwidth). A use case

of this feature could be to study the effect of a sudden network

partitioning or merge on a blockchain system. Under the hood,

BCTMark uses EnosLib that applies the desired network rules

using the Linux command TC.

Load generation. BCTMark supports two ways to generate

workloads6: an ad hoc load generation (based on Python

scripts) and a load generation based on an history. The first

one uses Locust [27], a load generator written in Python. The

user needs to specify, through Python methods, any interaction

a user can have with the system under test (e.g., sending a

transaction to someone or deploying/calling a smart contract).

Locust will then use those methods to generate random loads.

The second way to generate load is based on a provided his-

tory. BCTMark can extract the history of a peer in the system

and serialize it in a YAML file containing all the transactions.

To reproduce the history, it can split the transactions between

different workers, create the number of accounts needed to

replay it, and let the workers re-run the transactions. This way,

we can aim to replay transactions issued from the mainnet of

a targeted blockchain system.

Energy consumption. BCTMark does not embed any en-

ergy monitoring tools. However, as it enables the deployment

of experiments on any kind of testbeds, it can be used to deploy

systems on clusters where the energy consumption is moni-

tored. We have already tried this by deploying experiments on

the SeDuCe [28] cluster (see subsection IV-A). It is part of

the Grid’5000 testbed and is monitored with both energy and

thermal sensors.

IV. EXPERIMENTS

In this section, we illustrate BCTMark’s capabilities through

three experiments. The first one demonstrates its capacity to

deploy experiments on different testbeds, the second one its

capacity to compare two blockchain systems and the third one,

its usage for smart-contract performance evaluation. Those

experiments use two different testbeds (both having power

measuring capacities):

1) A Raspberry-pi 3+ cluster. Each node has a quadcore

Cortex-A53 ARMv7 CPU and 1GB of RAM.

2) Grid’5000 [16] Ecotype: A Dell PowerEdge R630 clus-

ter. Each node has two Intel Xeon E5-2630L v4 (Broad-

well, 1.80GHz, 10 cores/CPU) CPU and 128 GiB of

RAM. Grid’5000 is a large scale public research testbed

containing several clusters. Ecotype is one of those

clusters, located in Nantes (France).

We evaluated three blockchain systems:

6By workload, we mean transactions to be processed by the system under
test

BCTMark
Command line interface

Dashboard
- In�uxDB

- Grafana

Server with:

Peer

Metrics

e.g: CPU usage

Deployment
Con�guration �les in

 YAML / python

Uses

Resources

reservation &

system deployment

Metrics consultation

Ansible

EnosLib

Load (transactions)

Workers

User

Cluster

Server with:
Servers

- Blockchain Peer

- Telegraf

Fig. 3. BCTMark architecture

1) Ethereum Ethash, an implementation of the Proof of

Work (PoW) system of Ethereum. It is the default

implementation of Ethereum, used in the context of a

public blockchain. In this system, every peer can actively

participate to block mining.

2) Ethereum Clique, an implementation of the Proof of

Authority (PoA) system of Ethereum. PoA is used in

the context of a private blockchain. In this system, pre-

selected and identified peers can validate blocks one at

a time. It does not involve any mining.

3) Hyperledger Fabric. It is also intended for private

blockchain. Peers submit transactions to special peers

called orderers. Orderers are in charge of the order-

ing process of transactions. Hyperledger Fabric uses a

voting-based consensus protocol.

A. Deployment of blockchains on two different testbeds

This experiment illustrates the capabilities of BCTMark to

deploy blockchains on different testbeds. We have deployed

Ethereum Clique on both Raspberry Pi and Ecotype cluster

under three scenarios. The IDLE scenario does not include

any load generation. Peer just generate and share empty

blocks. The two other scenarios include a load generation

of 5 and 50 transactions per second. Load is generated by

separated workers and spread randomly across peers. For

both experiments, we deployed 12 peers and 6 load generator

workers.

Results are presented in Figure 4. The bar plotted on

the graph corresponds to the average power usage of every

machines in the cluster. The error bar illustrates the standard

deviation of power usage.

Those two platforms have different power draw. Power

usage on the Dell servers goes from 130.4 to 131.54 watts

(0.7% increase) whereas power usage on the Raspberry Pi

platform goes from 3.4 to 5.2 watts (44% increase). This result

was expected as Raspberry Pi are much more limited than

classical ”high performances” Dell servers. This experiment

however illustrates that non-mining chains can be installed on

IDLE 5 tx/s 50 tx/s
0

20

40

60

80

100

120

140

M
ea

n
Po
we

r U
sa
ge

 (W
at
ts
)

Ethereum - Comparison of Power usage for different loads
Dell servers
RPI servers

Fig. 4. Comparison of Power Usage for different loads

low-power platforms like Raspberry Pi. This can be useful

in the context of the development of blockchains in IoT

/ Edge computing. In the context of research on energy

consumption, low-power platforms can be useful to illustrate

subtle differences in the consumption.

We can, however, note that this conclusion may not be the

same for mining systems such as Ethereum Ethash. Indeed, we

could not install Ethash on our Raspberry Pi platform due to

shortage in memory. The algorithm used by Ethereum Ethash

for mining is memory intensive and therefore not suited for

low-power platforms with not enough RAM. A solution for

this issue could be to set-up both high-performance nodes

dedicated to mining and low-power nodes that would only

broadcast transactions to the miner’s network.

B. Comparison of CPU usage of three blockchain systems

This experiment aims to illustrate the capabilities of BCT-

Mark to deploy different blockchain systems. We deployed

Hyperledger Fabric, Ethereum Ethash, and Ethereum Clique

on the Ecotype cluster under four scenarios: IDLE (no-load

generation) and load generation of 5, 50, and 200 transactions

per second. The deployed network is composed of a network of

39 peers and three load generator workers. Figure 5 illustrates

this experiment. The bar corresponds to the average CPU

usage across all machines, whereas the error bar goes from

the 10th quartile to the 90th quartile.

We can first notice that the CPU consumption of the Ethash

system exceeds the CPU usage of the two others. Moreover,

in this deployment, peers only mine blocks using one thread.

It could be possible to dedicate more resources for mining,

increasing the CPU consumption furthermore. The other two

systems have non-mining consensus systems, decreasing the

amount of computation needed to secure the network.

The CPU usage of non-mining systems are also more stable

than the Ethash system. Figure 6 illustrates the evolution of the

CPU usage for Ethash peers during the ”200 transactions per

second” scenario7. The spike at the beginning of the experi-

ment, reaching almost 100% CPU, is due to the construction of

the data structure needed by peers to start mining. We can also

see that, after this spike, the CPU usage increases over time.

This increase may be due to the evolution of the difficulty in

mining resulting from the mining competition between peers.

On the other hand, in the first three scenarios, the CPU

consumption of the two private blockchains is roughly the

same. However, at 200 transactions per second, the CPU

consumption of the Ethereum Clique network increases from

0.3% to 2.9%. This increase suggests that Hyperledger Fabric

could have better performances in the context of a private

blockchain. These results about private blockchains are con-

sistent with those shown in the Blockbench paper [29].

IDLE 5 tx/s 50 tx/s 200 tx/s
0

5

10

15

20

25

30

M
ea

n
CP

U
Us

ag
e

(%
)

Comparison of CPU Usage for different loads

Ethereum Ethash
Ethereum Clique
Hyperledger Fabric

Fig. 5. Comparison of CPU Usage for different loads

C. Experiments Reproducibility

One of the goals behind BCTMark was to enforce repro-

ducibility on blockchain experiments. Reproducibility means

that running experiments several times (in similar conditions)

should give coherent results. The goal of this section is

to illustrate how experiments made with BCTMark can be

reproduced.

7CPU usage values seem to differ from ones in Figure 5 but this visual
effect is due to 1) high variance in data and 2) high density in data points
that hides lowest values. We can notice the high variance on Figure 5.

0 100000 200000 300000 400000 500000
0

20

40

60

80

100
Ethereum EThash - 200 Txs - CPU Usage (%)

Fig. 6. Evolution of Ethash CPU usage for 200 Txs

Deployment Min Max Mean Std
Ethereum Clique IDLE 0.113 0.117 0.115 0.002
Ethereum Clique 5 Txs 0.138 0.155 0.145 0.007
Ethereum Clique 50 Txs 0.463 0.526 0.494 0.028
Ethereum Clique 200 Txs 1.682 3.686 2.185 0.843
Ethereum Ethash IDLE 8.751 9.574 9.158 0.304
Ethereum Ethash 5 Txs 9.137 10.169 9.542 0.410
Ethereum Ethash 50 Txs 9.192 11.012 9.945 0.821
Ethereum Ethash 200 Txs 8.934 10.621 9.584 0.630

TABLE I
REPRODUCIBILITY ACROSS SIX RUNS

We reproduced the experiments done in subsection IV-B on

Ethereum Clique and Ethash to have data on both public and

private blockchain systems (readers can refer to this section

to read about the infrastructure used and the deployment

topology). Each of the four scenarios has been run six times.

For every run, we have recorded the average CPU usage

across all machines. The data presented in Table I illustrate the

differences in the results we obtained. For instance, the min

column illustrates the min CPU average across the six runs.

Experiments should show consistent results to be considered

reproducible.

These results show that we obtained few differences be-

tween the six runs. The standard deviation (column ’Std’)

remains low across all scenarios. This small difference in

results leads us to believe that experiments with BCTMark

should produce consistent results. Having exactly the same

deployment topology with the same configuration is, in our

opinion, the main factor explaining these consistent results.

BCTMark allows researchers to share experiments that can be

run in the same way by other peers in their community.

D. Performance analysis of Smart contracts

The experiment, presented in Figure 7, is intended to il-

lustrate the capabilities of BCTMark for performance anal-

ysis of software developed for blockchains. As explained in

subsection II-B, blockchains like Ethereum enable developers

to write applications through smart contracts. On Ethereum,

each call to a smart contract requires a ”fee” related to its cost

in gas. Gas is a unit related to the computational cost of each

instruction in a contract. The more computation there is in a

contract, the more expensive for end-users it will be. Moreover,

in each mined block, there can be a limit to the sum of each

transaction’s cost in gas. As a result, there is an incentive for

smart contract developers to control their contract’s cost in

gas.
To illustrate how implementation design and details can

impact the cost of a smart contract, we implemented three clas-

sical sorting algorithms: Quicksort, Bubblesort, and Mergesort.

We then have deployed those contracts on a four nodes

Ethereum network and generated calls to those contracts. We

have measured the cost in gas for each call. For each algorithm,

we have generated calls to its sorting function with a random

array of integers.

20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

1e6
Mean Gas Used - Quicksort
Mean Gas Used - Bubblesort
Mean Gas Used - Mergesort

Fig. 7. Cost in gas of three smart contracts depending on provided input

Figure 7 illustrates the evolution of gas consumption de-

pending on the size of the input array. We can see that the

evolution of gas requirements are coherent with the complexity

of those three algorithms. Quicksort and Mergesort have the

same average complexity of O(nlog(n)), whereas Bubble-

sort has an average complexity of O(n2). This statement

is reassuring as it tends to show that the EVM8 has been

correctly implemented. This simple example demonstrates that

BCTMark can be used to study smart contracts’ costs and

that its implementation has an impact on smart contracts

possibilities. For the same iso-functionality (here, sorting),

the cost of calling the contract will differ depending on the

underlying algorithm. For information, at the time this article

was written, the Mergesort algorithm would have cost around

$0.55 to sort 100 items (cost of ∼101659 gas). In contrast, the

Bubblesort algorithm would have cost around $11.77 (cost of

∼2168761 gas)9.

V. RELATED WORK

To the best of our knowledge, only Blockbench [29] and

Hyperledger Caliper [30] aim to study the performances of

8Ethereum Virtual Machine, the VM running smart contracts
9Calculated on https://ethgasstation.info with average gas price

blockchains systems. Blockbench is an academic tool that

aims to analyze private blockchains. Hyperledger Caliper

is a tool maintained by the Hyperledger Foundation. Main

differences in term of functionalities between those two tools

and BCTMark are presented in Table II10.

Blockbench uses two workloads, YCSB [31] and Small-

bank [32], to quantify the transaction rate, latency, scalabil-

ity and failure resistance of three blockchain technologies

(two implementations of Ethereum [33][34] and one of Hy-

perledger [35]). Deployment of blockchains to be tested is

managed through bash scripts that do not offer abstractions

over the targeted testbed. On the contrary, playbooks written

in Ansible and deployed with BCTMark can be used to

deploy an arbitrary number of peers on any testbed that

supports SSH connections. BCTMark also provides the same

abstraction over network, enabling scientists to express easily

network constraints and topology. While Blockbench collects

metrics about performances (latency and throughput), BCT-

Mark can also collect both system metrics like CPU, memory

or disk usage (important to consider the overall footprint of

blockchain technologies) and functional metrics (e.g., number

of connected peers). Finally, Blockbench only targets private

blockchain whereas BCTMark also target public blockchains

(as demonstrated in the experiments).

Hyperledger Caliper is well integrated with Hyperledger

products and offers a complete lifecycle similar to the one we

introduced in subsection III-A. Hyperledger Caliper can mon-

itor blockchain performances but also server metrics through

Prometheus [36]. Unfortunately, it does not seems to include

any network emulation, crucial for studies on the impact of

network failure or latency on a blockchain. Moreover, Hyper-

ledger Caliper does not seem to include any functionality for

resources reservation on scientific testbeds like Grid’5000.

VI. FUTURE WORK

The goal of this paper is to illustrate BCTMark’s capacities.

To do so, we implemented experiments on two different

testbeds and three different blockchains. The next step in the

development of BCTMark would be the integration of new

blockchain systems or layer-two blockchain solutions (e.g.,

the Lightning network [15]). We would also like to define

and implement benchmarking scenarios that are specific to

blockchains (like performance under network partition).

VII. CONCLUSION

In this paper, we introduce BCTMark, a framework for

benchmarking blockchains. Existing tools, while promising,

do not include important aspects of reproducible experiments

on blockchain systems like network emulation or reproducible

deployment. BCTMark aims to empower developers and re-

searchers to create reproducible experiments on blockchain

performances. For this purpose, BCTMark provide abstrac-

tions over testbeds and network. To facilitate the develop-

ment of benchmarks, BCTMark includes functionalities like

10SUT = System Under Test

https://ethgasstation.info

Blockbench Hyperledger Caliper BCTMark

Targeted systems Private blockchains
Mainly Hyperledger
systems

Every blockchain

Deployment

management
No Yes Yes

Network emulation
abstraction

No No Yes

Portability to new
testbeds

N/A
(do not manage
deployment)

Yes
(But no management
of ressources reservation)

Yes
(as long as testbed
has SSH)

Metrics collection Yes (SUT performances) Yes (SUT + Testbed) Yes (SUT + Testbed)
TABLE II

COMPARISON OF FUNCTIONALITIES WITH THE STATE OF THE ART

load generation and metrics collection. To illustrate BCT-

Mark’s functionalities, we have run three experiments on three

blockchains (Ethereum Ethash vs Clique and Hyperledger

Fabric) and two testbeds (one Grid’5000 cluster and one

Raspberry Pi cluster). BCTMark’s code is open-source and

accessible here: https://gitlab.inria.fr/dsaingre/bctmark.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out us-

ing the Grid’5000 testbed, supported by a scientific inter-

est group hosted by Inria and including CNRS, RENATER

and several Universities as well as other organizations (see

https://www.grid5000.fr).

This paper has been financed by the HYDDA FSN project.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Journal

for General Philosophy of Science, vol. 39, no. 1, pp. 53–67, 2008.
[2] J. Zawistowski, P. Janiuk, A. Regulski, A. Skrzypczak, A. Leverington,

P. Bylica, M. Franciszkiewicz, P. Peregud, A. Banasiak,
M. Stasiewicz, R. Zagórowicz, and W. Davis, “The Golem Project,”
https://golem.network/crowdfunding/Golemwhitepaper.pdf, 2016,
whitepaper.

[3] Steem, “Steem - An incentivized, blockchain-based, public content
platform,” https://steem.com/steem-whitepaper.pdf, 2016, whitepaper.

[4] “E-Estonia,” https://e-estonia.com/.
[5] P. Labs, “Filecoin: A Decentralized Storage Network,”

https://filecoin.io/filecoin.pdf, 2017, whitepaper.
[6] I. Storj Labs, “Storj: A Decentralized cloud storage network framework,”

https://storj.io/storjv3.pdf, 2018, whitepaper.
[7] M. Mylrea and S. N. G. Gourisetti, “Blockchain for smart grid resilience:

Exchanging distributed energy at speed, scale and security,” in 2017

Resilience Week (RWS). IEEE, 2017, pp. 18–23.
[8] E. Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, and

C. Weinhardt, “Designing microgrid energy markets: A case study: The
brooklyn microgrid,” Applied Energy, vol. 210, pp. 870–880, 2018.

[9] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng:
A scalable blockchain protocol,” in 13th {USENIX} Symposium on

Networked Systems Design and Implementation ({NSDI} 16), 2016, pp.
45–59.

[10] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Symposium on Self-

Stabilizing Systems. Springer, 2015, pp. 3–18.
[11] H. Vranken, “Sustainability of bitcoin and blockchains,” Current opinion

in environmental sustainability, vol. 28, pp. 1–9, 2017.
[12] K. J. O’Dwyer and D. Malone. (2014) Bitcoin mining and its energy

footprint.
[13] F. Saleh, “Blockchain without waste: Proof-of-stake,” Available at SSRN

3183935, 2019.
[14] T. Rocket, “Snowflake to avalanche: A novel metastable consensus

protocol family for cryptocurrencies,” 2018.
[15] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain

instant payments,” 2016.

[16] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing

and Services Science, ser. Communications in Computer and Information
Science, I. I. Ivanov, M. van Sinderen, F. Leymann, and T. Shan, Eds.
Springer International Publishing, 2013, vol. 367, pp. 3–20.

[17] B. Smaalders, “Performance anti-patterns,” ACM Queue, vol. 4, no. 1,
pp. 44–50, 2006.

[18] “Grafana - the open observable platform,” https://grafana.com/, accessed:
2019-12-6.

[19] “PoET 1.0 Specification,” https://sawtooth.hyperledger.org/docs.
[20] E. Foundation, “A Next-Generation Smart Con-

tract and Decentralized Application Platform,”
https://github.com/ethereum/wiki/wiki/White-Paper, 2013, whitepaper.

[21] V. Saraph and M. Herlihy, “An empirical study of speculative concur-
rency in ethereum smart contracts,” arXiv preprint arXiv:1901.01376,
2019.

[22] “Ethereum Wiki - Ethash,” https://github.com/ethereum/wiki/wiki/Ethash.
[23] Enoslib, “Enoslib : A framework to build experimental frameworks on

various platforms,” https://github.com/BeyondTheClouds/enoslib, github
repository.

[24] Ansible, “Ansible is Simple IT Automation,” https://www.ansible.com/.
[25] “Telegraf - the plugin-driven server agent for collecting and reporting

metrics.” https://github.com/influxdata/influxdb, accessed: 2019-12-6.
[26] “Influxdb - scalable datastore for metrics, events, and real-time analyt-

ics,” https://github.com/influxdata/telegraf, accessed: 2019-12-6.
[27] “Locust - a modern load testing framework,” https://locust.io/, accessed:

2019-12-6.
[28] J. Pastor and J. M. Menaud, “Seduce: a testbed for research on thermal

and power management in datacenters,” in 2018 26th International

Conference on Software, Telecommunications and Computer Networks

(SoftCOM). IEEE, 2018, pp. 1–6.
[29] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L.

Tan, “Blockbench: A framework for analyzing private blockchains,” in
Proceedings of the 2017 ACM International Conference on Management

of Data. ACM, 2017, pp. 1085–1100.
[30] “Hyperledger caliper,” https://www.hyperledger.org/projects/caliper, ac-

cessed: 2019-12-6.
[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings of the

1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–154.
[32] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable isolation for

snapshot databases,” ACM Transactions on Database Systems (TODS),
vol. 34, no. 4, p. 20, 2009.

[33] “Go-ethereum - official go implementation of the ethereum protocol,”
https://github.com/ethereum/go-ethereum, accessed: 2019-12-6.

[34] “Parity - fast and feature-rich multi-network ethereum client.”
https://github.com/paritytech/parity-ethereum, accessed: 2019-12-6.

[35] “Hyperledger fabric,” https://github.com/hyperledger/fabric, accessed:
2019-12-6.

[36] “Prometheus - from metrics to insight,” https://prometheus.io/, accessed:
2019-12-6.

https://gitlab.inria.fr/dsaingre/bctmark
https://golem.network/crowdfunding/Golemwhitepaper.pdf
https://steem.com/steem-whitepaper.pdf
https://e-estonia.com/
https://filecoin.io/filecoin.pdf
https://storj.io/storjv3.pdf
https://grafana.com/
https://sawtooth.hyperledger.org/docs
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/Ethash
https://github.com/BeyondTheClouds/enoslib
https://www.ansible.com/
https://github.com/influxdata/influxdb
https://github.com/influxdata/telegraf
https://locust.io/
https://www.hyperledger.org/projects/caliper
https://github.com/ethereum/go-ethereum
https://github.com/paritytech/parity-ethereum
https://github.com/hyperledger/fabric
https://prometheus.io/

	Introduction
	Background on blockchain technologies
	Overview
	Smart contracts: computations on the chain
	Public vs. Private Blockchains

	BCTMark
	Usage
	Architecture

	Experiments
	Deployment of blockchains on two different testbeds
	Comparison of CPU usage of three blockchain systems
	Experiments Reproducibility
	Performance analysis of Smart contracts

	Related work
	Future work
	Conclusion
	References

