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Abstract

We use a spatial epidemic model with demographic and geographic heterogeneity
to study the regional dynamics of COVID-19 across 133 regions in England.

Our model emphasises the role of variability of regional outcomes and hetero-
geneity across age groups and geographic locations, and provides a framework for
assessing the impact of policies targeted towards sub-populations or regions. We
define a concept of efficiency for comparative analysis of epidemic control policies
and show targeted mitigation policies based on local monitoring to be more efficient
than country-level or non-targeted measures. In particular, our results emphasise the
importance of shielding vulnerable sub-populations and show that targeted policies
based on local monitoring can considerably lower fatality forecasts and, in many cases,
prevent the emergence of second waves which may occur under centralised policies.

Keywords: COVID-19; SARS-n-COV; metapopulation epidemic models; network model;
compartmental models; SEIAR model ; nowcasting.

1



Contents
1 Overview 3

1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Modeling framework 6
2.1 State variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 A metapopulation SEIAR model . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Stochastic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Policies for epidemic control . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Data sources and parameter estimation 11
3.1 Data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Modeling of inter-regional mobility . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Epidemiological dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Estimation of infection rate α . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Inter-regional mobility and social contact during confinement . . . . . . . . 16
3.6 Goodness-of-fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Observable quantities and uncertainty 20
4.1 Observable quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Reliability of reported cases as indicator . . . . . . . . . . . . . . . . . . . 22

5 Counterfactual scenario: no intervention 24
5.1 Magnitude and heterogeneity of outcomes . . . . . . . . . . . . . . . . . . 25
5.2 Impact of demographic and spatial heterogeneity . . . . . . . . . . . . . . 27
5.3 Variability of outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Comparative analysis of epidemic control policies 33
6.1 Confinement followed by social distancing . . . . . . . . . . . . . . . . . . 33
6.2 Targeted policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Pubs and schools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.2 Shielding of senior citizens . . . . . . . . . . . . . . . . . . . . . . . 40

7 Adaptive mitigation policies 42
7.1 Centralised policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Decentralised policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Adaptive versus pre-planned policies . . . . . . . . . . . . . . . . . . . . . 50

A Demographic regions 58

B Baseline parameters for social contact rates 62

2



1 Overview
The novel coronavirus pandemic of 2019-2020 has led to disruption on a global scale, leading
to more than 800,000 deaths worldwide at the time of writing, and prompted the imple-
mentation of government policies involving a variety of ‘non-pharmaceutical interventions’
[20] including school closures, workplace restrictions, restrictions on social gatherings, so-
cial distancing and, in some cases, general lockdowns for extended periods. This has led
to a range of different public health policies across the world, and the efficiency of specific
policy choices has been subject to much debate.

While the nature of these restrictions has been justified by the severe threat to public
health posed by the virus, their design and implementation necessarily involves a trade-off,
often implicit in the decision-making process, between health outcomes and the socio-
economic impact of such social restrictions.

An important feature of the COVID-19 pandemic has been the heterogeneity of epi-
demic dynamics and the resulting mortality across different regions, age classes and pop-
ulation categories. The importance of these heterogeneities suggests that homogeneous
models –often invoked in discussions on reproduction number and herd immunity– may
provide misleading insights, and points to the need for more granular modeling to take
into account geographic, demographic and social factors which may influence epidemic
dynamics.

We propose a flexible modelling framework which can serve as a decision aid to policy
makers and public health experts by quantifying this trade-off between health outcomes and
social cost. Using a structured population model for epidemic dynamics which accounts
for geographic and demographic heterogeneity, we formulate this trade-off as a control
problem for a partially observed distributed system and provide a quantitative framework
for comparative analysis of various mitigation policies. We illustrate the usefulness of the
framework by applying it to the study of COVID-19 dynamics across regions in England
and showing how it may be used to reconstruct the latent progression of the epidemic and
perform a comparative analysis of various mitigation policies through scenario projections.

Several recent studies have used homogeneous compartmental models [3, 36, 17, 29, 42,
48, 45, 49] or age-stratified versions of such models [1, 15, 16, 34, 44, 52] to analyse the dy-
namics and impact of the COVID-19 epidemic in various countries. Our framework, while
compatible with such homogeneous models at aggregate level, accounts for demographic
and spatial heterogeneity in a more detailed manner, leading to regional outcomes which
may substantially deviate from such models, as discussed in Section 5.2. Similar, though
somewhat less detailed, heterogeneous models have been recently used to study COVID-19
outbreaks by Birge et al. [10] for New York City and Roques et al. [47] for France.

We first present below an overview of the main features of our approach and the key
findings, before going into more detail on the methodology and results.

1.1 Methodology

We formulate a stochastic compartmental (SEIAR) epidemic model with spatial and de-
mographic heterogeneity (age stratification) for modeling the dynamics of the COVID-19
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epidemic and apply this model to the study of COVID-19 dynamics across regions in Eng-
land.

The model takes into account

• Epidemiological features estimated by previous studies on COVID-19;

• The lack of direct observability of the total number of infectious cases and the presence
of a non-negligible fraction of asymptomatic cases;

• The demographic structure of UK regions (age distribution, density);

• Social contact rates across age groups derived from survey data;

• Data on inter-regional mobility; and

• The presence of other random factors, not determined by the above.

We first demonstrate that this model is capable of accurately reproducing the early re-
gional dynamics of the disease, both pre-lockdown and a month into lockdown, using a
detailed calibration procedure that accounts for demographic heterogeneity across regions,
low testing rates, and existence of asymptomatic carriers. The calibration reveals interest-
ing regional patterns in social contact rates before and during lockdown.

Underlying any public health policy is a trade-off between a health outcome –which
may relate to mortality or hospitalisations– and the socio-economic impact of measures
taken to mitigate the magnitude of the impact on public health. We present an explicit
formulation of this trade-off and use it to perform a comparative analysis of various ‘social
distancing’ policies, based on two criteria:

• The benefit, in terms of reduction in projected mortality; and

• The cost, in terms of restrictions on social contacts.

The goal of our analysis is to make explicit the policy outcomes for decision-makers, without
resorting to (questionable) concepts such as the ‘economic value of human life’ used in some
actuarial and economic models [1, 42, 49].

In our comparative analysis, we consider a broad range of policies and pay particular
attention to population-wide versus targeted mitigation policies, feedback control based on
the number of observed cases and the benefits of broader testing. We introduce a concept
of efficient policy, and show how this concept allows to identify decision parameters which
lead to the most efficient outcomes for each type of mitigation policy. The granular nature
of our model, together with validation based on epidemiological data, provide a more
detailed picture of the relative merits of various public health policies.

1.2 Summary of findings

Our first set of results concerns the reconstruction of the progression of the pandemic in
England, in particular its latent spread through asymptomatic carriers.
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• Using a baseline epidemic model consistent with epidemiological data and obser-
vations on fatalities and cases reported in England up to June 2020, we estimate
the current number of infected individuals in England on August 1, 2020 to be more
than 1 million, including 233,000 (or 22%) symptomatic and 858,000 (or 78%) asymp-
tomatic carriers. We also estimate more than 17.8 million persons in England (31.7%
of the population) to been exposed to COVID-19 and recovered by August 1, 2020.
These estimates are much higher than numbers discussed in media reports, often
based on the number of reported cases, suggesting that England is closer to ‘herd
immunity’ than previously thought.

• Based on a comparison of fatality counts and reported cases, we infer that less than
5% of cases in England had been detected prior to June 2020. This low reporting
probability has important consequences: in particular, it implies that one may observe
a streak of many consecutive days without any new reported cases whilst the epidemic
is in fact silently progressing.

• We observe significant differences in epidemic dynamics across regions in England,
with higher rates of contagion in northern regions compared to southern regions, both
before and during the lockdown period.

• We estimate that, in absence of social distancing and confinement measures, the num-
ber of fatalities in England may have exceeded 216,000 by August 1, 2020, indicating
that the lockdown has saved more than 174,000 lives.

• Comparison with a homogeneous model with compartments defined at national level
reveals large differences in regional forecasts of case numbers and fatalities, pointing
to the importance of demographic and geographic heterogeneity for modeling the
impact of COVID-19.

Once the model has been calibrated to replicate the regional progression of COVID-19 in
England for the period March 1–May 31, 2020, we use it for scenario projections under
various mitigation policies. Comparative analysis of mitigation policies reveals that mea-
sures targeted towards subpopulations –vulnerable age groups or regions with outbreaks–
are more efficient than measures applied at the population as a whole. More specifically:

• Shielding of elderly populations is by far the most effective measure for reducing the
number of fatalities.

• By contrast, school closures and workplace restrictions are seen to be less effective
than social distancing measures outside of school and work environments.

• Adaptive policies (‘feedback control’) which trigger measures when the number of
daily observed cases exceed a threshold, are shown to be more effective than pre-
planned policies, leading to a substantial improvement in health outcomes. As such
policies are based on monitoring of new cases, broader testing significantly improves
their outcome.
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• Decentralised policies based on regional monitoring of daily reported cases are found
to more efficient than centralised policies based on national indicators, resulting on
average in an overall reduction of 20,000 in fatalities and, in many cases, the preven-
tion of a ‘second wave’ which may occur under centralised policies.

• Comparative analysis of policies (Table 8) shows a wide range of health outcomes,
ranging from 53,000 to 165,000 fatalities. The most effective policy in terms of
reducing fatalities involves triggering of regional confinement measures decentralised
based on monitoring of new cases, together with shielding of elderly populations.

1.3 Outline

The modeling framework is described in Section 2. Data sources and parameter estimations
are detailed in Section 3. Section 4 highlights the implications of partial observability of
state variables and the associated model uncertainty. Section 5 discusses the counterfactual
scenario of no intervention, which serves as a benchmark to evaluate the impact of social
distancing policies.

The outcomes of various epidemic control policies are then discussed in Sections 6 and 7.
Pre-planned policies are discussed in Sections 6.1 and 6.2, while Section 7 discusses adaptive
(‘feedback’) control policies, in which measures are triggered when the daily number of new
reported cases exceeds a threshold.

2 Modeling framework
We now describe the framework used to model the dynamics of the epidemic. To take
into account the role of geographic and demographic heterogeneity, we use a stochastic
compartmental (SEIAR) model with age stratification, mobility across sites, social contact
across age stratification, and the impact of asymptomatic infected individuals. For general
concepts on deterministic and stochastic compartmental models we refer to Anderson and
May [5], Andersson and Britton [6], Brauer and Castillo-Chavez [11], Britton et al. [12],
Grassly and Fraser [23], Lloyd and Jansen [35].

2.1 State variables

We consider a regional meta-population model with K regions labeled r = 1, . . . , K. Each
region r has a population N(r) which is further subdivided into 4 age classes, labeled
a ∈ {1, 2, 3, 4} representing respectively children (below 20 years), adults (19–60) and two
senior groups (60–70 years and above 70 years). We denote N(r, a) the population in region
r in age category a, with N(r, 1) +N(r, 2) +N(r, 3) +N(r, 4) = N(r).

Individuals in each region and age group are categorized into six compartments:

• Susceptible (S) individuals who have not yet been exposed to the virus;

• Exposed (E) individuals who have contracted the virus but are not yet infectious.
Exposed individuals may then become infectious after a certain incubation period;
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• Infectious (I) individuals who manifest symptoms;

• Asymptomatic (A) infectious individuals;

• Recovered (R) individuals. In line with current experimental and clinical observations
on COVID-19, we shall assume that individuals who have recovered have temporary
immunity, at least for the horizon of the scenarios considered, and cannot be re-
infected [8]; and

• Deceased (D) individuals.

The progression of the disease in the population is monitored by keeping track of the
respective number

St(r, a), Et(r, a), It(r, a), At(r, a), Rt(r, a), Dt(r, a)

of individuals in each compartment. As the model focuses on the dynamics of the epidemic
over a short period (1000 days), we neglect demographic changes over this period and
assume that the population size N(r, a) in each location and age group is approximately
constant, that is

St(r, a) + Et(r, a) + It(r, a) + At(r, a) +Rt(r, a) +Dt(r, a) = N(r, a)

is constant.

2.2 A metapopulation SEIAR model

S E I D

A R

λt p β E

(1− f)γI

fγI

(1− p) β E

γA

Figure 1: Epidemic dynamics.
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When each subpopulation (r, a) is large and homogeneous, the dynamics of state variables
may be described through the following system of equations, represented in Figure 1:

Ṡt(r, a) = −λt(r, a)St(r, a),

Ėt(r, a) = λt(r, a)St(r, a)− βEt(r, a),

İt(r, a) = paβEt(r, a)− γIt(r, a),

Ȧt(r, a) = (1− pa)βEt(r, a)− γAt(r, a),

Ḋt(r, a) = γfaIt(r, a),

Ṙt(r, a) = γ(1− fa)It(r, a) + γAt(r, a)

N(r, a) = St(r, a) + At(r, a) + Et(r, a) + It(r, a) +Rt(r, a) +Dt(r, a).

(2.1)

where

• 0 < α < 1 is the infection rate per contact, that is the probability of infection
conditional on contact;

• β is the incubation rate, and 1/β is the average incubation period;

• γ is the rate at which infectious individuals recover;

• 0 < pa < 1 is the probability for an infected individual in age group a to develop
symptoms;

• fa is the infection fatality rate for age group a, representing the probability that an
infected individual in age group a dies from the disease; and

• The force of infection λt(r, a), which measures the rate of exposure at location r for
age group a, is given by

λt(r, a) = α
∑
a′ 6=2

σra,a′(t)
κIt(r, a

′) + At(r, a
′)

N(r, a′)

+ α
∑
r′

σra,2(t)×Mr,r′(t)
κIt(r

′, 2) + At(r
′, 2)

N(r′, 2)
.

(2.2)

The force of infection in each subpopulation depends on the rate of contact with
(infected) individuals in other subpopulations, leading to interactions across subpopula-
tions which differentiate this model from a homogeneous model. These interactions occur
through:

• Contacts across age groups: the term σra,a′(t) represents the average number of persons
from age class a′ encountered per day by a person from age class a in region r on
a day t. For infectious individuals with symptoms, we assume a lower contact rate
κσ < σ due to (partial) self-isolation; and

• Inter-regional mobility: Mr,r′(t) represents the proportion of individuals from region
r′ among the population of adults at a location r on a given day t.
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2.3 Stochastic dynamics

The deterministic model described in Section 2.2 ignores the variability of outcomes [25],
as random factors are not taken into account in the model. To take into account the
variability of outcomes and assess their respective probabilities, we model the variables
(S(t), E(t), I(t), A(t)) as a continuous-time Markov point process [4, 6] defined through its
transition rates conditional on the history Ht up to date t:

P(∆St(r, a) = −1|Ht) = −λt(r, a)St(r, a)∆t+ o(∆t)

P(∆Et(r, a) = 1|Ht) = λt(r, a)St(r, a)∆t+ o(∆t)

P(∆Et(r, a) = −1|Ht) = βEt(r, a)∆t+ o(∆t)

P(∆It(r, a) = 1|Ht) = paβEt(r, a)∆t+ o(∆t)

P(∆It(r, a) = −1|Ht) = γIt(r, a)∆t+ o(∆t)

P(∆At(r, a) = +1|Ht) = (1− pa)βEt(r, a)∆t+ o(∆t)

P(∆At(r, a) = −1|Ht) = γAt(r, a)∆t+ o(∆t)

P(∆Dt(r, a) = 1|Ht) = faγIt(r, a)∆t+ o(∆t)

(2.3)

The stochastic dynamics in (2.3) are consistent with the deterministic dynamics of (2.1)
for large populations, in the sense that the population fractions represented by each com-
partment converge to those represented by the solution of (2.1) as minrN(r) increases.
However, even when the overall population is large, the stochastic dynamics (2.3) can sub-
stantially deviate from the deterministic model (2.1), especially in small subpopulations
and in the early phases of the epidemic when the number of infected individuals in each
region may be small.

In the sequel we use the stochastic model (2.3) for the state variables and occasionally
compare the outcomes with (2.1) to assess the variability of outcomes and the role of
randomness (see Section 5.3).

2.4 Policies for epidemic control

Social distancing policies (and lockdowns) affect epidemic dynamics by influencing (lower-
ing) the social contact rates σrij and the inter-regional mobility Mr,r′ . To discuss targeted
policies which may influence differently social contact rates at different locations, we de-
compose the baseline social contact matrix σr as

σr(0) = σr,H + σr,W + σr,S + σr,O, (2.4)

where the components correspond respectively to contacts at home (σr,H), at work (σW ),
school (σS) and other locations (σO). Social distancing policies are then parameterised in
terms of their impact on various components of the social contact matrix:

σrij(t) = ur,Hij (t)σr,Hij + ur,Sij (t)σr,Sij + ur,Wij (t)σr,Wij + ur,Oij (t)σr,Oij ≤ σrij(0), (2.5)

where 0 ≤ ur,Xij (t) ≤ 1 are modulating factors which measure the impact of the policy on
social contacts between age groups i and j at a location X in region r. In absence of social
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distancing or confinement measures, we have ur,Xij (t) = 1; the value of ur,Xij (t) reflects the
fraction of social contacts when between age groups i and j at location X in region r when
the policy is applied.

This parameterisation allows us to consider policies targeted towards sub-population
or specific regions. For example, school closure in region r during time period [t1, t2]
corresponds to setting ur,Sij (t) = 0 for t ∈ [t1, t2], while 0 < ur,Sij < 1 corresponds to social
distancing in schools, with lower values of ur,Sij corresponding to stricter enforcement of
measures.

Regarding the inter-regional mobility matrix M , following the interpretation discussed
in Section 3.2, we modulate its value according to the fraction ur,W2,2 of the population who
continue to commute, that is

Mr,r′(t) = ur,W2,2 (t)Mr,r′ + (1− ur,W2,2 (t))I.

Here Mr,r′ is the fraction of population in region r whose habitual residence is in region r′

before lockdown. The modulating factors ur,Xij may be chosen in advance or expressed as
a function of the state of the system. We distinguish:

• Pre-planned (also called ‘open-loop’) policies, in which target values of modulating
factors ur,Xij (t) are decided in advance; and

• Adaptive policies (also called ‘closed loop’ or feedback control), in which actions are
decided and updated as a function of observed quantities such as number of daily
reported cases or number of daily fatalities.

Comparative analysis of mitigation policies To perform comparative analysis across
different policies, we need to evaluate policy outcomes across two dimensions: health out-
come and socio-economic impact.

We quantify the health outcome of each policy by the total number of fatalities during
a reference period, taken to be tmax = 1000 days after the reference date of March 1, 2020.
The length of this reference period is chosen such that it takes into account an eventual
‘second wave’ of fatalities. We denote this outcome by Dtmax(u), which represent the total
fatalities at date tmax associated with policy u.

To quantify the socio-economic impact of a policy, we use as metric the reduction in
social contact resulting from the policy over the horizon [0, tmax], that is

J(u) =
tmax∑
t=1

K∑
r=1

∑
i,j

(
σrij(0)− σrij(t)

)
N(r, i), (2.6)

defined in terms of man×day units.
The range of policies examined below lead to different outcomes in terms of fatalities

Dtmax(u) and social cost J(u). A policy v dominates (or improves upon) a policy u if it
leads to a similar or better health outcome at an equal or lower cost:

J(v) ≤ J(u) and Dtmax(v) ≤ Dtmax(u),
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with at least one inequality being strict. A policy u is efficient among a class of policies
U if it cannot be improved upon by any policy in this class. Given a set of policies U , the
subset of efficient policies forms the efficient frontier of U .

Some recent economic models [1, 42, 49] formulate the trade-off in different terms,
by introducing a concept of monetary value of human life in order to build a (monetary)
welfare function combining both terms. Aside from ethical issues linked to the very concept
of monetisation of human life, there is no consensus on its actual value, which is a key
determinant of the trade-off in this approach. Our approach avoids specifying such a value
and aims at identifying the range of efficient policies, leaving the final choice of the trade-off
to policymakers.

In what follows, the goal is to determine the efficient frontier and describe the char-
acteristics and outcomes of such efficient policies. Pre-planned policies are discussed in
Sections 6.1 and 6.2, while adaptive policies are discussed in Section 7.

3 Data sources and parameter estimation

3.1 Data sources

The basic inputs of the model are panel data on number of cases and fatalities reported
at the level of Upper Tier Local Authorities (UTLA) level in England1. This defines the
granularity of the model: we partition the population of England into 133 regions as defined
by the Nomenclature of Territorial Units for Statistics at level 3 (NUTS-3)2. Demographic
data for NUTS-3 regions, is available from Eurostat3. For the purpose of our study we
distinguish four age groups, as shown in Table 1. We perform mapping from UTLA to
NUTS-3 regions to ensure consistency across data sources4.

Age group [0,20) [20,60) [60,70) [70, 100)
Size 13.21 M 29.43 M 5.86 M 7.40 M

23.6% 52.6% 10.5% 13.3%

Table 1: Age group distribution for England, 2019.

Appendix A provides the list of UK regions used in this study. The size N(r, a) of
age group a in region r is obtained using the 2018 dataset from the Office for National
Statistics5.

1See https://coronavirus.data.gov.uk/. Data retrieved on June 29, 2020.
2See https://ec.europa.eu/eurostat/web/nuts/background.
3See https://ec.europa.eu/eurostat/product?code=demo_r_pjangrp3&mode=view
4See https://geoportal.statistics.gov.uk/datasets/c893dfece45f465f857ac34641041863_0

for a lookup table used in the process of mapping. If more than one UTLA region falls within the
boundary of a single NUTS-3 region, the data is then aggregated. On the other hand, if a single UTLA
region lies within more than one NUTS-3 region, the data is distributed among NUTS-3 regions in
proportion to the total number of people living in each region.

5https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/
populationprojections/datasets/tablea21principalprojectionukpopulationinagegroups
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3.2 Modeling of inter-regional mobility

For our baseline estimate of inter-regional mobility we use the data on location of usual
residence and place of work, provided by the UK Office for National Statistics 2011 Census
data6. The dataset classifies people aged 16 and over in employment during March 2011
and shows the movement between their area of residence and workplace, defined in Local
Administrative Units at level 1 (LAU-1) terms. We then map this data onto NUTS-3
regions using the lookup table between LAU-1 and NUTS-3 areas provided by the Office
for National Statistics7.

The data is then represented in the model through the inter-regional mobility matrix
M , whose elements Mr,j represent the fraction of population in region r whose habitual
residence is in region j. Denote by Π(r, j) the population with residence registered in region
j and workplace registered in region r for r 6= j. In addition, we denote Π(r, r) = N(2, r)
the population at location i in the age category 20 − 60 years. Then we estimate the
coefficients Mr,j by

M̂r,j =
Π(r, j)∑K
i=1 Π(r, i)

. (3.1)

3.3 Epidemiological dynamics

Epidemiological parameters were either estimated from publicly available sources [2, 39]
or set to values consistent with recent clinical and epidemiological studies in COVID-19
[18, 27, 53].

Social contact rates Contact rates across age classes have been estimated in studies
by Mossong et al. [38, 39] and Béraud et al. [9]. We follow the approach of Mossong et al.
[38] to estimate the following baseline social contact rates across our four age groups (see
Table 1):

σ =


7.88 5.3 0.44 0.37
2.40 7.52 0.84 0.58
1.12 4.72 1.17 1
0.80 2.75 0.83 1.34

 . (3.2)

Using the PyRoss methodology of Adhikari et al. [2], we further decompose the contact
matrix, as in (2.4), into four components representing contacts at home (σH), work (σW ),
school (σS) and other locations (σO). Estimation methods and parameter values for these
matrices are discussed in Appendix B.

However, contact rates vary across different regions due to the heterogeneity in socio-
economic composition structure and specific regional characteristics, such as population
density and level of urbanisation. To account for this heterogeneity, we parameterise the
(pre-lockdown) contact matrix in region r as σr(0) = drσ where the regional adjustment

6See https://www.nomisweb.co.uk/census/2011/wu01ew. Data retrieved on January 2020.
7See https://geoportal.statistics.gov.uk/datasets/c893dfece45f465f857ac34641041863_0.
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factors {dr, r = 1, . . . , 133} are estimated to reproduce the regional growth rate of reported
cases before the lockdown period. The results are displayed in Figure 2.

As seen in Figure 2, our findings imply substantial heterogeneity of social contact rates
across regions. Average contact rates in some regions (in particular in southern regions) are
much lower than the national average, while in other regions (in particular the North-East
and North-West) they are 20% to 30% higher. As we will observe below, these differences
have a considerable impact on regional epidemic dynamics.

Figure 2: Regional multiplier dr for social contact matrix, implied by epidemic dynamics
pre-lockdown (before March 23, 2020).

Incubation rate, β Following the study of Ferguson et al. [20], we use the incubation
rate β = 0.2, which corresponds to an incubation period of approximately 5 days. This is
further supported by several empirical studies on diagnosed cases in China outside Hubei
province. An early study of Backer et al. [7] based on 88 confirmed cases, which uses data
on known travel to and from Wuhan to estimate the exposure interval, indicates a mean
incubation period of 6.4 days with a 95% confidence interval (CI) of 5.6-7.7 days. Linton
et al. [32], based on 158 confirmed cases, estimate a median incubation period of 5.0 days
with 95% CI of 4.4-5.6 days and estimate the incubation period to have a mean of around
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Age group 0-19 20-59 60-69 ≥ 70
p1 p2 p3 p4

Low estimate 0.055 0.25 0.375 0.375
High estimate 0.11 0.5 0.75 0.75

Table 2: Age-dependent symptomatic ratios. Source: the ONS [41].

5 days with 95% CI of 4.2-6.0 days. Lauer et al. [30] estimates a median of incubation
period to be 5.1 days with 95% CI of 4.5-5.8 days, based on 181 cases over the period of 4
January 2020 to 24 February 2020.

Proportion of symptomatic and asymptomatic infections The probability p that
an infected individual develops symptoms is an important parameter for epidemic dynam-
ics, yet subject to a high degree of uncertainty: studies on various data sets [13, 16, 37,
21, 41] are based on small samples and yield a wide range of estimates. In particular, an
early estimates from the Diamond Princess cruise ship [37] and Japanese evacuation flights
from Wuhan yielded estimates as high as p ' 0.7−0.8 [40], while a July 2020 study by the
ONS [41], based on a much larger sample, showed that p can be as low as 0.23. However,
clinical studies [16] indicate that this probability may strongly depend on the age group
considered.

In this study, we use a range of values for the age-dependent probability pa whose upper
bound is consistent with Davies et al. [16] and whose lower bound is consistent with the
estimates provided by the ONS [41]. These values are displayed in Table 2. Given the much
larger sample size used in the study of the ONS [41], we use the corresponding estimates
(‘low values’ in Table 2) as benchmark unless stated otherwise.

Recovery rate γ In line with Cao et al. [14], Li et al. [31] and Rocklöv et al. [46], we
use a recovery rate γ = 0.1, which corresponds to an average infectious period of 10 days.

Infection fatality rates We denote by fa the (infection) fatality rate for age group a.
In practice, these parameters are difficult to estimate during outbreaks and estimates may
be subject to various biases [33]. Note that the infection fatality rate (IFR) is different
from (and generally much smaller than) the case fatality rate.

Fatality rates for COVID-19 have been observed to be highly variable across age groups
[27, 50, 53]. Based on the infection fatality rates provided in Verity et al. [53] for different
age groups and the UK population distribution, we derive the following aggregated IFR for
the respective four age groups of interest: f1 = 0.01% (CI: 0.0008 − 0.037%), f2 = 0.25%
(CI: 0.120 − 0.475%), f3 = 2.1% (CI: 1.11 − 3.89%), and f4 = 6.5% (CI: 2.96 − 10.25%).
These estimates are consistent with data obtained from other countries; see for example
Salje et al. [50].
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Parameter Values Source
Infection rate α = 0.055 Consistent with [17, 18]
Incubation rate β = 0.2 [20, 30, 32]
Recovery rate γ = 0.1 [14, 31, 46]
Fatality rate f1 = 0.01, f2 = 0.25, f3 = 2.1, f4 = 6.5 [53]

Table 3: Clinical parameters for COVID-19 model.

3.4 Estimation of infection rate α

We use a simulation-based indirect inference method of Gourieroux et al. [22] for estimating
the parameter α. We simulate the stochastic model (2.3) for a range of values 0.03 ≤ α ≤
0.15 and compare the logarithmic growth rates of the simulated reported cases Ĉt(α) with
the one estimated from reported cases Ct in England.

For the simulation we use parameters specified in Table 3 and the following initial
conditions for t0 = March 10, 2020: Et0(r, 2) = C15(r)

p2 π
, Et0(r, 1) = Et0(r, 3) = Et0(r, 4) =

0, At0(r, a) = 0, Dt0(r, a) = 0, It0(r, a) = 0. These initial conditions ensure that the
simulations agree on average with regional case numbers on March 15, 2020, for all values
of α.

This procedure yields an estimated value of α̂ = 0.055 and a confidence interval
[0.051, 0.062] (see Figure 3a). As shown in Figure 3b, this value of α̂, together with the
model parameters in Table 3, yields a good fit of the pre-lockdown evolution of case num-
bers.

These results are also consistent with estimates obtained in Donnat and Holmes [17]
and Dorigatti et al. [18] using data from other countries.

(a) Confidence interval for α. (b) Cumulative reported cases: model simula-
tion versus data.

Figure 3: Estimation of infection rate α using pre-lockdown growth rate of reported cases.
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3.5 Inter-regional mobility and social contact during confinement

Confinement measures were implemented across the United Kingdom starting March 23,
2020 via the Coronavirus Act8. During this ‘lockdown’ period schools and workplaces were
closed and social contact was reduced, as evidenced by mobility data9. However mobility
data also reveal regional differences in the impact of the lockdown.

We model the reduction in inter-regional mobility through an adjusted mobility matrix

M̂r,r′(t) = q M̂r,r′ + (1− q)I, where 0 < q < 1, (3.3)

and M̂r,r′ is the inter-regional mobility matrix defined in (3.1). According to the Labor
Force Survey data from 2018/19 [19], 7.1 million adults across the UK are considered as ‘key
workers’. We set q = 20% to take into account the fact that these key workers continued
to access their workplace during the lockdown period. This is also consistent with the
methodology in Rawson et al. [45] and empirical studies of Santana et al. [51] on mobility
changes before and after lockdown in the UK. Figure 4 shows the submatrix corresponding
to daily mobility across London boroughs, and illustrates the observed dramatic drop in
commute patterns.

(a) Pre-lockdown: before March 23, 2020. (b) During lockdown: 23/03-10/06/2020.

Figure 4: Inter-regional mobility across London boroughs.

We model the impact of confinement on the social contact matrix through a regional
multiplier lr,

σr(t) = lr × σ(0), (3.4)

where lr ≤ dr represents the reduction in social contacts during the lockdown period; lr = dr
corresponds to the pre-lockdown level of social contact. The value of lr is estimated from

8https://www.legislation.gov.uk/ukpga/2020/7/contents/enacted
9https://www.oxford-covid-19.com/

16



panel data on regional epidemic dynamics during the period from March 23 to June 1, 2020,
using a least-squares logarithmic regression on the number of observed regional cases.

The average value of this reduction factor is found to be∑133
r=1N(r)lr∑133
r=1N(r)

= 0.12,

that is an average reduction of 88% in social contacts, an order magnitude corroborated
by mobility data [51], showing that lockdown was very effective in reducing social contact.
As shown in Figure 5 and Table 4, the estimated value of lr shows some variation across
regions, ranging from 7% to 18%, implying varying levels of compliance with confinement
measures across regions in England.

NUTS-1 Region Pre-lockdown (dr) Lockdown (lr)
South West (UKK) 0.742 0.099
East Midlands (UKF) 0.972 0.134
London (UKI) 1.166 0.100
West Midlands (UKG) 1.044 0.126
Yorkshire and Humber (UKE) 1.106 0.137
South East (UKJ) 0.923 0.115
North East (UKC) 1.284 0.131
North West (UKD) 1.154 0.133
East of England (UKH) 1.018 0.128

Table 4: Estimated values for regional adjustments dr and lr in NUTS-1 regions.
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Figure 5: Reduction in social contact during lockdown across different regions. Values
correspond to factor lr in Eq. (3.4).

3.6 Goodness-of-fit

Having estimated the model parameters using data on reported cases between March 10 and
May 20, 2020 we assess the goodness-of-fit and out-of-sample performance using reported
cases and fatalities between May 21 and June 22, 2020. The results, shown in Figures 6
and 7, show that the model is able to reproduce well both the in-sample and out-of-sample
evolution of number of cases and fatalities, at national level as well as regional level (see
Figure 8).
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(a) Cumulative reported cases. (b) Daily reported cases.

Figure 6: Reported cases in England. Grey dashed line: separation between estimation
sample and test data; orange line: model simulation; blue dot: in-sample data; green
triangle: out-of-sample data.

Figure 7: Fatalities in England: comparison of model with data. Grey dashed line: sepa-
ration between estimation sample and test data; orange line: model simulation; blue dot:
in-sample data; green triangle: out-of-sample data.
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(a) Birmingham. (b) Westminster.

(c) Oxfordshire. (d) West Essex.

Figure 8: Cumulative reported cases in selected regions. Grey dashed line: separation
between estimation sample and test data; orange line: average of 50 simulated scenarios;
blue dot: in-sample data; green triangle: out-of-sample data.

4 Observable quantities and uncertainty
When applying such models to epidemic data, a key point is to realize that the state
variables S,E, I, A,R are not directly observed (and certainly not in real time) but need
to be inferred from other observable quantities.

4.1 Observable quantities

The two main observables in COVID-19 data are

• The cumulative number of reported cases; and

• The cumulative number of COVID-19 fatalities Dt;

broken down by region and age group.
Of the two, fatalities are generally considered more reliable, as deaths are nearly always

reported, while identification of cases requires testing or self-reporting. We thus identify
the observed number of fatalities with the state variable Dt.

In absence of widespread testing, as has been the case with COVID-19, only a fraction
π of cases are reported. This fraction may change with time due to testing campaigns10.

10https://ourworldindata.org/coronavirus-testing
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We therefore cannot assume the number of infectious cases to be directly observed: rather,
we estimate it from the death count Dt (see also Jombart et al. [26]).

Figure 9: Left: correlation between daily fatalities count and lagged number of new re-
ported cases (England). A maximum correlation ρmax = 95% is observed for a lag of T = 8
days between reporting and death. Right: daily fatalities count against lagged number of
new cases (with a 8 day lag) for England.

Let Ct be the cumulative number of (symptomatic) infectious cases. Assuming that

• The daily number r(t) of reported cases is a fraction π(t) of new cases, that is

r(t) = π(t) (Ct+1 − Ct) ; (4.1)

• Deaths occur on average T days after detection;

we obtain that the daily death count is proportional to the lagged number of new infectious
cases,

Dt+T+1 −Dt ' f (Ct+1 − Ct) =
f

π(t)
r(t), (4.2)

where f is the (average) infection fatality rate. We use these relations to obtain an estimate
for the cumulative number Ct of symptomatic infections and the reporting ratio π(t).

First, using (4.2) we estimate the average delay T between case reporting and death by
identifying the lag T which maximizes the correlation between the Dt+T+1 −Dt and r(t).
As shown in Figure 9, using aggregate fatality counts for England, a maximum correlation
ρmax=95% is observed for a lag of T = 8 days between reporting and death. Note that this
delay is shorter than the typical recovery period, implying that reporting typically does not
occur at the onset of the infection but after a delay of a few days, which is consistent with
other studies (see for example Harris [24]). Using an average fatality rate of f = 0.9% for
the UK as in Ferguson et al. [20] (see discussion in Section 3.3), we estimate the reporting
probability to be

π̂(t) =
f r(t)

Dt+T+1 −Dt

' 4.5%, (4.3)
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which implies that the total number of cases in England is more than 20 times the reported
number. This ratio fluctuates between 0.04 and 0.06 during the observation period, as
shown in Figure 10.

Figure 10: Estimate of the case reporting ratio π(t) based on fatalities and reported cases.
Sample average is 4.5% .

4.2 Reliability of reported cases as indicator

A key issue in epidemic control is the availability of reliable indicators for the intensity of
an ongoing epidemic. Public health authorities have communicated the daily number of
reported cases and fatalities, and these have served as the main inputs for policy planning.

An important corollary of the above discussion is that, given the combination of random
factors affecting dynamics and the considerable uncertainty on the actual number of new
infections, it is perfectly possible to observe a run of many consecutive days without new
reported cases while in fact the actual number of infections is on the rise.
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(a) It and At . (b) Reported cases.

Figure 11: Example of latent progression of the epidemic with zero reported case for 100
consecutive days (green shaded area). On the last day of this period, we have Et = 0 It = 0
and At = 1. Reporting probability is π = 4.5%.)

Figure 11 shows an example of scenario in our model where, for 100 consecutive days,
although a small number of (symptomatic and asymptomatic) cases appear, due to the
low detection probability (π = 4.5%), none of them is reported. Nevertheless, after a run
of 100 days without any reported cases (green shaded area in Figure 11), which would
have prompted most public health authorities to lower their guard, the epidemic takes off
again. This scenario is not unlike what occurred in South Korea and several other locations
in 2020.

Figure 12 shows the probability of observing a subsequent (second) peak in infections
if social distancing measures are lifted after no reported cases for L consecutive days. This
probability is estimated using 500 simulated paths from the model (2.3). It is striking to
observe that, even after 100 days with no reported cases, the probability of observing a
resurgence of the epidemic is around 40%. Figure 12 (blue dashed line) shows the same
probability conditional on observing no fatalities for L consecutive days.
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(a) Low symptomatic ratios. (b) High symptomatic ratios.

Figure 12: Probability of having a second peak in infections after no reported cases (solid
line) and no fatalities (dashed line) for L consecutive days. Estimates based on 500 simu-
lated scenarios.

These observations point to the importance of broader testing: as shown in Figure 13,
an increase in the probability π of detecting new cases leads to a strong decrease in the
probability of misdiagnosing the end of the epidemic, as in the scenario described above.
In absence of widespread testing, policymakers are faced with the problem of controlling a
system under partial observation.

Figure 13: Probability of having a second peak in infections following 60 consecutive days
with no reported cases, as a function of reporting probability π (after July 1st); solid line
for high symptomatic ratios and dashed line for low symptomatic ratios. Estimates based
on average of 500 simulated scenarios.

5 Counterfactual scenario: no intervention
A much debated issue has been whether the lockdown and subsequent social distancing
restrictions were necessary or whether health outcomes would have been comparable in
absence of any restrictions, eventually leading to herd immunity. To examine this question
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we consider the counterfactual scenario of no intervention and estimate the fatalities and
peak number of infections under such a scenario.

5.1 Magnitude and heterogeneity of outcomes

Our counterfactual simulations show that, in absence of social distancing and confinement
measures, the number of fatalities in England may have exceeded 216,000 by August 1,
2020. This is 174,000 more than the outcome actually observed on this date following the
lockdown.

Figure 14 displays the evolution of number of symptomatic infections and fatalities in
absence of restrictions, under two different assumptions on symptomatic ratios (see Table
2). Under the assumption of low symptomatic ratios, the total fatalities in absence of
any mitigation policy are estimated to be 216, 000 on average across 100 scenarios, with
12.8 million (more than 20% of England’s population) being infected and symptomatic. A
peak number of 3, 720, 000 symptomatic individuals in England would have been reached
on April 30th.

Figure 15 decompose these results across different age groups.

(a) It. (b) Dt (green: actual reported fatalities un-
der lockdown policy in England).

Figure 14: Comparison of different quantities in England with no intervention: high symp-
tomatic ratios (blue dashed line) versus low symptomatic ratios (orange solid line), av-
eraged across 100 simulated scenarios.

The low and high estimates for symptomatic ratios lead to very different simulation
outcomes in terms of peak It values and total death numbers, which illustrates the huge
impact of parameter uncertainty on model projections.
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(a) Age group [0,20). (b) Age group [20,60).

(c) Age group [60, 70). (d) Age group [70, 100).

Figure 15: Fatalities by age group under no interventionm averaged across 100 scenarios:
high symptomatic ratios (blue dashed line) versus low symptomatic ratios (orange solid
line). Green dots: actual reported fatalities in England under lockdown policy.)

Heterogeneity of regional outcomes As shown in Figure 16, regions exhibit heteroge-
neous outcomes in terms of peak time, peak value, and fatalities (per 100,000 inhabitants).
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(a) Time of the infection peak (in days) across
different regions.

(b) Peak value of infections per 100,000 inhabi-
tants across different regions.

(c) Infections per 100,000 inhabitants for three
selected regions: South Teesside (UKC12), Som-
erset (UKK23), Croydon (UKI62).

(d) Fatalities per 100,000 inhabitants.

Figure 16: Heterogeneity of outcomes across different regions, in absence of intervention.
Outcomes are averaged over 100 simulated scenarios.

5.2 Impact of demographic and spatial heterogeneity

Homogeneous SIR models [3, 36, 17, 29, 42, 48, 45, 49] or age-stratified versions of such
models [1, 15, 16, 44, 52] have been used in many recent studies on COVID-19 in the UK
and other countries.
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The heterogeneity of outcomes observed in our simulation suggests that homogeneous
epidemic models may fail to capture some important features of COVID-19 dynamics
which are relevant for public health policy. We investigate this point further by comparing
our simulations with two homogeneous benchmark: a country-level SEIAR compartmental
model and an age-stratified version of it.

Homogeneous SEIAR model The homogeneous SEIAR model corresponds to the case
where the country is considered as a single region, assuming away geographic heterogeneity:

Ṡt = −ασ At+κIt
N

St,

Ėt = ασ At+κIt
N

St − βEt,
Ȧt = (1− p)βEt − γAt, İt = pβEt − γIt
Ḋt = fγIt, Ṙt = (1− f)γIt + γAt,

N = St + Et + At + It +Rt +Dt.

(5.1)

where σ is the average contact rate in the population and N is the total population.
We use the values of α, β and γ as specified in Table 3 and population-averaged versions

of low symptomatic ratios in Table 2. We aggregate the POLYMOD age-stratified contact
matrix (3.2) from POLYMOD, the probability of developing symptom, and fatality rate
using the England population age distribution (Table 1) leading to an aggregate fatality
rate of 1.1%, probability of developing symptoms of 45.4%, and contact number of 4.157. As
in Sections 3.3 and 3.5, we use an indirect inference method [22] to estimate the implied
scaling parameters for social contact rates by matching daily case dynamics before and
during lockdown, leading to d = 2.909 and l = 0.115.

We also consider an age-stratified (A) version of this model with 4 age groups. The
rate of exposure for age group a is given by

λt(a) = α
∑
a′

σ(a′)
κIt(a

′) + At(a
′)

N(a′)
. (5.2)

For the age-stratified model, we use α, β and γ as in Table 3. We estimate the scaling
parameters for social contact rates before and during lockdown as above, yielding d = 1.07
and l = 0.112.
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(a) Homogeneous model. (b) Age-stratified model with 4 age
groups.

Figure 17: Homogeneous and age-stratified country-level models: goodness of fit. Grey
dashed line: separation of estimation sample from test data; orange line: model; blue
dots: data; and green triangles: out-of-sample data.

As shown in Figure 17, these country-level models actually yield reasonable fits to
aggregate dynamics of cases and fatalities.

However, the inability of these country-level models to capture regional heterogeneity
and inter-regional exchanges leads to regional outcomes which are very different from our
model with spatial heterogeneity (F). Figures 19-22 compare simulation results for the
homogeneous model (H), the age-stratified model (A) and our spatial heterogeneous model
(F) in two regions: Torbay (UKK42) and Birmingham (UKG31). The homogeneous model
is observed to over-estimate fatalities in age groups 1 and 2 and underestimates fatalities
in age groups 3 and 4. The age-stratified model and the heterogeneous model agree on
fatalities across age groups but, as shown in Figures 19-22, neither the age-stratified model
nor the homogeneous model can capture the regional features of epidemic dynamics, such
as the difference in peak time and peak value of infections across regions.

We therefore conclude such country-level models should not be used in the context of
policy discussions which target regional measures or regional outcomes.
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(a) Reported cases in Torbay. (b) Reported cases in Birmingham.

Figure 18: Dynamics of reported cases before lockdown in Torbay and Birmingham: data
compared with heterogeneous model (F). Orange line: average of 1000 simulated scenarios;
pink shade: lockdown period.

(a) It in group 1. (b) It in group 2.

(c) It in group 3. (d) Age group 70+.

Figure 19: Dynamics of infections It in Torbay (UKK42): impact of model granularity.
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(a) Age group [0, 20). (b) Age group [20, 60).

(c) Age group [60, 70). (d) Age group [70, 100).

Figure 20: Dynamics of fatalities It in Torbay (UKK42): impact of model granularity.

(a) Age group [0, 20). (b) Age group [20, 60).

(c) Age group [60, 70). (d) Age group [70, 100).

Figure 21: Dynamics of symptomatic infections (It) in Birmingham (UKG31): impact of
model granularity.
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(a) Age group [0, 20). (b) Age group [20, 60).

(c) Age group [60, 70). (d) Age group [70, 100).

Figure 22: Cumulative fatalities for Birmingham (UKG31): impact of model granularity.

5.3 Variability of outcomes

Given a set of initial conditions, the stochastic model (2.3) may lead to a range of outcomes
due to the randomness present in the dynamics. Figures 23-24 show an example of variabil-
ity of outcomes across different scenarios. As expected from asymptotic analysis of large
population limits [12], the relative variability across scenarios is of order ∼ 1/

√
N(r, a) for

a sub-population of size N(r, a). Although not negligible, especially at the onset of the
epidemic, this variability remains small at the regional level given the granularity used in
our model. In the sequel we have thus reported the average outcomes across 100 or 1000
simulated scenarios for each case examined.
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(a) Fatalities Dt. (b) Reported daily cases ∆Ct.

Figure 23: Effect of randomness: variability of outcomes across 50 sample paths for
Kingston upon Hull (UKE11). (Results for low symptomatic ratios.)

(a) Fatalities Dt. (b) Reported daily cases ∆Ct.

Figure 24: Effect of randomness: variability of outcomes across 50 sample paths for Birm-
ingham (UKG31). (Results for low symptomatic ratios.)

6 Comparative analysis of epidemic control policies

6.1 Confinement followed by social distancing

We first consider the impact of a ‘lockdown’ followed by social distancing, which reflects
the situation in the UK since end March 2020. We examine in particular the impact of a
lockdown duration T and the level of social distancing after lockdown on the number of
fatalities and the associated social cost. To do so, we parameterize the contact matrix as

σr(t) =

{
lr σ for t0 ≤ t ≤ t0 + T (lockdown),

((1−m)lr +mdr) σ for t > t0 + T (after lockdown),
(6.1)

where lr measures the level of social distancing under lockdown, as estimated from obser-
vations for the period from Mar 23 to May 31, and the parameter m ∈ [0, 1] measures the
level of compliance with social distancing measures. A value of m close to zero indicates
a level of social contact similar to lockdown, while m = 1 corresponds to normal levels of
social contact.
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t = 0 corresponds to March 1, 2020. All scenario simulations correspond to a lockdown
starting at t0 = March 23, 2020. We consider a range 105 ≤ T ≤ 335 for the lockdown
duration and 0.2 ≤ m ≤ 1 for post-lockdown compliance levels. Note that the actual
lockdown duration in England corresponds to T = 105.

As shown in Figure 25a, the level of social distancing after the confinement period is
observed to be more effective in controlling the epidemic (Figure 25b), than extending the
period (Figure 25a). This is consistent with the findings in Lipton and Lopez de Prado [34].
Smaller values of m, associated with stricter social distancing, lead to a lower of fatalities
but for at an increased social cost (Figure 25b). On the other hand, the lengthening of
the lockdown duration T , while significantly increasing the associated social cost, does not
result in a significant reduction in the number of fatalities, especially if social distancing
after lockdown is relaxed.

(a) Impact of lockdown duration T . (b) Impact of compliance level m.

Figure 25: Fatalities against social cost for different T and m values. (Results for low
symptomatic ratios).

Figure 25 also shows that some of these policies are inefficient, in the sense that we can
reduce fatalities and the social cost simultaneously by shortening the lockdown period or
by relaxing social distancing constraints, as shown in Figure 26.
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(a) Cumulative fatalities in England. (b) Dynamics of It in England.

Figure 26: Comparison of three policies: blue dotted line: m = 0.5 and T = 335; orange
dashed line: m = 0.5 and T = 105; green solid line: m = 0.4 and T2 = 105. (Results for
50 simulated scenarios.)

Policy Blue dotted: Orange dash: Green solid
m = 0.5, T = 335 m = 0.5, T = 105 m = 0.4, T = 105

Social cost (×1011) 3.6 3.0 3.5
Projected fatalities 164,300 165,500 143,400

Table 5: Outcomes for policies represented in Figure 26.

By comparing the orange and blue plots, which represent the same post-lockdown
compliance level (m = 0.5), we observe that extending the lockdown duration increases
social cost without reducing the total number of fatalities. On the other hand, comparing
the orange and green plots, which correspond to the same lockdown duration of T = 105
days, shows that moving the compliance level from m = 0.5 to m = 0.4 reduces the second
peak amplitude by 35% and fatalities by 12.5%.

Impact of parameter uncertainty The above results are highly sensitive to the value
of the symptomatic ratios which, as noted in Section 3, are highly uncertain (see Table
2). Figure 27 shows the policy outcomes for low versus high symptomatic ratios across
different compliance levels and lockdown duration. As observed in this figure, while the
overall pattern of the efficiency diagram is similar, the projected fatality levels shift con-
siderably depending on the assumption on the symptomatic ratio: from 70,000-200,000 for
low symptomatic ratios to 170,000-430,000 for high symptomatic ratios.
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Figure 27: Trade-off between fatalities and social cost for a T -day lockdown followed by
social distancing (0.2 ≤ m ≤ 1, 105 ≤ T ≤ 335): low symptomatic ratio (orange) and
high symptomatic ratio (blue).

Regional heterogeneity While the policies discussed here are applied uniformly across
all regions, we observe a significant heterogeneity in mortality levels across regions, as well
in terms of the timing and amplitude of a second peak tin infections. As shown in 28,
some regions exhibit mortality levels up to 4 times higher than others. This huge disparity
in mortality rates cannot be explained by demographic differences alone, which are much
less pronounced: more important seem to be the differences in social contact patterns,
as illustrated in Figure 2. Indeed, as shown in Figure 29a, there is a positive correlation
(above 40%) between regional COVID-19 mortality and the intensity of social contact as
measured by the parameter dr defined in Sec. 3.3.

Figure 29b shows that this heterogeneity is also reflected in the timing and amplitude
of second peaks. We observe that East Cumbria has a small second peak compared to its
first one, Birmingham and Berkshire experience a second peak with a similar size compared
to the first one, while North Northamptonshire suffers from a much more severe second
peak. The second peak in North Northamptonshire and Berkshire occur around t = 175
and t = 231, respectively.
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Figure 28: Lockdown of 105 days followed by social distancing (m = 0.5): regional mor-
tality per 100,00 inhabitants.

(a) Level of social contact (dr) against COVID-19
mortality (per 100,000 inhabitants).

(b) Regional dynamics of symptomatic
infections (It): North Northampton-
shire (UKF25), Birmingham (UKG31),
Berkshire (UKJ11) and East Cumbria
(UKD12). Dotted lines denote the second-
peak times.

Figure 29: Regional outcomes for lockdown of 105 days followed by social distancing (m =
0.5).
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6.2 Targeted policies

We now consider the impact of social distancing measures targeting particular age groups
or environments (school, work, etc.) following a lockdown of duration T , by setting

σrij(t) =

{
lr σ for t0 ≤ t ≤ t0 + T (lockdown)

σr,Hij + uSijσ
r,S
ij + uWij σ

r,W
ij + uOijσ

r,O
ij for t > t0 + T.

(6.2)

We consider different targeted measures after a lockdown period of T = 105 days (the actual
duration of the lockdown in England): school closure, shielding of elderly populations and
workplace restrictions, restrictions on social gatherings and combinations thereof. Note
that there is no control over the social contacts at home.

Closure of schools Although most of the infected population in age group 1 is asymp-
tomatic, they may in turn infect the population in age groups 3 and 4 who are more likely
to develop symptoms. School closure corresponds to uS = 0, school reopening with so-
cial distancing correspond to uS = 0.5, and school reopening without social distancing
correspond to uS = 1.

Shielding The high infection fatality rates among elderly populations (age groups 3 and
4) have naturally lead to consider shielding policies for these populations. We model this as
a reduction in social contacts of age groups 3 and 4 to the level observed under lockdown:

σri,j(t) = lr
(
σHi,j + σSi,j + σWi,j + σOi,j

)
if i ∈ {3, 4} or j ∈ {3, 4}.

Workplace restrictions We model the impact of a restricted return to work after con-
finement by assuming different proportion of workforce return after the lockdown period
by choosing

0.2 < uW < 1 for t > t0 + T, (6.3)

the lower bound uW = 0.2 corresponding to restricting workplace return to ‘essential work-
ers’, as discussed in Section 3.5. Since workplace restrictions have an effect on commuting,
such measures also have an impact on the inter-regional mobility matrix

Ct = uW (t)C0 + (1− uW (t))I, (6.4)

where C0(r, r
′) is the baseline mobility matrix defined in (3.1).

Restrictions on social gatherings Although social activities, such as gatherings at
pubs or sports events, may aggravate the contagion of COVID-19, keeping certain levels
of social activities is important to the economic recovery and the well-being of individuals.
The parameter uO measures the fraction of social gatherings: during the lockdown this
fraction was estimated to be as low as 20% (see Section 3.5). In what follows, we consider
uO ∈ [0.3, 1.0] after the period of lockdown.
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(a) Impact of the shielding measure for se-
nior citizens.

(b) Social distancing outside work and
school: impact of the parameter uO.

(c) Social distancing at work: impact of the
parameter uW .

(d) Social distancing at school: impact of
the parameter uS .

Figure 30: Efficiency plot of social cost against projected fatalities for the shielding measure
and various values of uS, uW , and uO (uH = 1 and T = 105).

6.2.1 Pubs and schools

School Social distancing Normal
closure at school school regime
uS = 0 uS = 0.5 uS = 1.0

Social cost (1011) 2.3 2.0 1.6
Projected fatalities 163849.0 166319.3 168380.2

Table 6: Impact of school closures and social distancing at schools: outcomes averaged
across 50 simulated scenarios, uH = uW = 1, uO = 0.5.

Table 6 show the impact of school closures and social distancing at schools on projected
fatalities and social contacts. Reopening of schools, while reducing significantly the social
cost, does not seem to lead to a significant increase in fatalities.
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(a) Infections in England. (b) Fatalities in England. (c) Infections: Oxfordshire
(UKJ14).

Figure 31: ‘Open pubs’ versus ‘open schools’ policy.

We now compare two post-confinement policies, one (labeled ‘Schools’) consisting in
leaving schools open while social gatherings (‘pubs’) are restricted (uS = 1, uO = 0.2),
and the other (labeled ‘Pubs’) consisting in closing schools while not restricting social
gatherings (uS = 0, uO = 1). The social cost for the ‘Pubs’ policy is 2.4, while the cost for
the ‘Schools’ policy is 3.1. However, as shown in Figure 31, the ‘open school’ policy leads
to 35% fewer fatalities 35% compared to the ‘open pubs’ policy.

6.2.2 Shielding of senior citizens

We have examined the impact of shielding in isolation and also in combination with other
measures such as school closure and social distancing.

As shown in Figure 30a, whether applied in isolation or in combination with other
measures, shielding of elderly populations is by far the most effective measure for reducing
the number of fatalities. As clearly shown in Figure 30a, regardless of the trade-off between
social cost and health outcome, a policy which neglects shielding of the elderly is not
efficient and its outcomes can always be improved through shielding measures.

(a) Symptomatic infections in England. (b) Fatalities in England.

Figure 32: Comparison of policies with and without shielding in place, u = (1, 0.0, 1.0, 0.5).
Blue: no shielding; orange: shielding in place.
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Impact of shielding on policy efficiency For policies without shielding, the level of
social gatherings, uO, is the leading factor to determine the efficiency frontier. In Fig-
ures 33a, the efficiency frontier contains two classes of policies: ‘School and Work’ and ‘No
Pubs’.

• ‘School and Work’ policies, which do not include any restrictions on school or work
(uS = 1, uW = 1) but varying level of restrictions on social gatherings (0.3 ≤ uO ≤ 1).
Within this class of policies, different level of social gatherings lead to very different
outcome of fatalities, as illustrated in Figure 33a.

• ‘No Pubs’ policies, where social gatherings outside school and work are restricted
(uO = 0.3), with different levels of social distancing uS ∈ {0, 0.5, 1} uW ∈ [0.2, 1] at
school and work.

However, as observed in Figure 33b, these policies are not efficient when shielding measures
are put in place for the elderly.

Under shielding, the spectrum of efficient policies is parameterised by the fraction uW
of the workforce returning to work. As shown in Figure 33c, we can distinguish two classes
of efficient policies under shielding:

• ‘School and Pubs’, consisting of policies without restrictions on schools or social
gatherings (uS = 1, uO = 1) and different levels uW of restrictions on workplace
gatherings.

• ‘Restricted Work’ policies, under which only ‘essential’ workers are allowed on-site
work (uW = 0.2), with either
(i) no school restrictions (uS = 1) and different levels of restrictions on social gath-
erings (0.2 ≤ uO ≤ 1) or
(ii) restrictions on social gatherings (uO = 0.3, that is ‘no pubs’) and different levels
of social distancing in school (0 ≤ uS ≤ 1).

As Figure 33d illustrates, ‘School and Pubs’ and ‘Restricted Work’ policies are not efficient
without shielding.

In absence of shielding, social gatherings seem to be the main vector for contagion.
When shielding measures are put in place, the social contacts associated with the elderly
are reduced to the same level as under lockdown; in this case, contacts at work become the
main vector of contagion.
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(a) Efficient policies without shielding:
‘School and Work’ and ‘No Pubs’.

(b) Policies ‘School and Work’ and ‘No
Pubs’ are not efficient when shielding is ap-
plied.

(c) Efficient policies with shielding: ‘School
and Work’ and ‘No work’.

(d) Policies ‘School and Pubs’ and ‘No work’
are not efficient when shielding is removed.

Figure 33: Impact of shielding on the efficiency frontier.

7 Adaptive mitigation policies
We now consider adaptive mitigation policies, in which the daily number of (national or
regional) reported cases is used as a trigger for social distancing measures. Such policies
have been recently implemented, in the U.K. and elsewhere, at a local or national level
with various degrees of success. We distinguish centralised policies, based on monitoring of
national case numbers, from decentralised policies where monitoring and implementation
of measures are done at the level of (NUTS-3) regions.

7.1 Centralised policies

We consider centralised policies which monitor the number of daily reported cases at
country level. Whenever the whenever the number of daily reported cases (per 100,000)
exceeds a threshold Ron, confinement measures are imposed for a minimum of L days,
until the number of daily reported cases falls below the threshold Roff < Ron. Outside
these lockdown periods we assume social distancing is in place with a compliance level m
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is the social compliance; we use a default value of m = 0.5.
This policy is implemented after the initial lockdown (i.e after July 4, 2020). In terms

of the social contact matrix, we have, for t > t0 + T ,
σr(t) = ((1−m)lr +mdr)σ, and is = 0, if (Ct ≤ N

100,000
Roff andΠt−1

s=t−Lis = 1);

or (Ct ≤ N
100,000

Ron and it−1 = 0);

σr(t) = lr × σ, and it = 1, if Ct > N
100,000

Ron or Πt−1
s=t−Lis = 1.

(7.1)

Here T = 105, it is the indicator of whether lockdown is applied on day t and Ct is the
daily reported cases in England on day t. Πt−1

s=t−Lis = 1 if lockdown has been applied for L
consecutive days during the period [t− L, t− 1].

We simulate the dynamics with various choices of Roff and Ron:

• Ron ∈ {2, 4, 6, 8, 10} (daily reported cases per 100,000 inhabitants); and

• Roff = 0.2 Ron, Roff = 0.4 Ron or Roff = 0.8 Ron.

We assume that once a lockdown is triggered it lasts a minimum of L = 7 days and that,
once lockdown is removed, individuals continue to observe social distancing as measured
by the parameter m ∈ [0, 1]. Data on real-time mobility monitoring in the UK11, indicate
mobility to be at 50% of normal level during the post-lockdown period, and thus we use
m = 0.5 as a default value.

(a) Influence of the threshold Ron to resume
lockdown.

(b) Influence of the threshold Roff to lift lock-
down.

Figure 34: Social cost against fatalities when m = 0.5.

Example Figure 35 shows an example of such an adaptive policy, where lockdown is
triggered when daily cases exceeds 2240 nationally, and maintained until the count of new
daily cases drops to 896. In the scenario shown in Fig. 35a, this results in four short
lockdowns, totaling 34 days in all, which bring under control the national progression of
the epidemic and avoid a ’second peak’ at national level. However, as shown in Figure 35b,
this policy is less successful at regional level, resulting in a regional outbreak in Leicester.

11https://www.oxford-covid-19.com/
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(a) Daily reported cases in England. (b) Daily reported cases in Leicester.

Figure 35: Simulation of reported cases in England and Leicester under a centralised
triggering policy with Ron = 4, Roff = 0.4×Ron, m = 0.5 and no shielding.

Impact of the triggering threshold Ron The trigger threshold Ron has a significant
impact on the efficiency of the policy. Smaller Ron values correspond to more frequent
lockdowns, leading to a larger social cost and fewer fatalities. Here we compare the impact
of the triggering threshold Ron when m = 0.5 and Roff = 0.4×Ron.

(a) Dynamics of It in England. (b) Cumulative fatalities in
England.

(c) It in Oxfordshire (UKJ14).

Figure 36: Comparison between triggering thresholds Ron = 10 and Ron = 2.

We observe in our simulations a second peak in It for England when Ron = 10, while
we observe no second peak when Ron = 2. When Ron = 2, It remains at level 2× 105 with
frequent interventions for 200 days and then decreases to zero. The social cost for policy
Ron = 10 and policy Ron = 2 are 2.9 and 3.2, respectively. Policy Ron = 2 have 20% fewer
fatalities compared to policy Ron = 10. Oxfordshire exhibits the same profile as England
when Ron = 10. However, the shape of It is different for Ron = 2 where Oxfordshire
experiences a small outbreak around day 400.

In summary, smaller Ron values correspond to more frequent lockdowns and result in
damping or elimination of the ’second peak’.

Increasing testing capacity To study the effect of an increased testing capacity, we
assume wide testing is adopted such that the reporting probability is increased from 4.5%
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to a significantly higher level (20%, 50%) on July 4th (see Figure 37).

(a) Dynamics of It in England. (b) Cumulative fatalities in England.

Figure 37: Reporting probabilities π = 4.5% (blue line) versus π = 20% (orange line) and
π = 50% (green line). Policy: Ron = 6, Roff = 0.2Ron, and m = 0.5.

Reporting prob. π 4.5% 20% 50%

Social Cost (1011) 3.0 3.4 4.0
Fatalities 141,700 120,400 92,300

Table 7: Average social cost and fatalities for a given policy with different testing capacities
(50 paths). Policy: Ron = 6, Roff = 0.4Ron, and m = 0.5.

By increasing the testing capacity, the observable quantity of daily reported cases be-
comes more consistent with the underlying dynamics of It. Compared to the policy with a
reporting probability π = 4.5% throughout the reference period, we see that the dynamics
of It when π = 50% decrease to a small value rapidly. Increasing the testing capacity also
implies a more efficient control and as a result leads to fewer fatalities.

7.2 Decentralised policies

We now consider a decentralised version of the above policies, based on monitoring of
regional number of cases as triggers for regional confinement measures. In terms of the
social contact matrices, we have, for t > t0 + T ,
σr(t) = ((1−m)lr +mdr)σ, and irt = 0, if (Ct(r) ≤ N(r)

100,000
Roff and Πt−1

s=t−Li
r
s = 1)

or (Ct(r) ≤ N(r)
100,000

Ron and irt−1 = 0);

σr(t) = lr × σ, and irt = 1, if Ct(r) > N(r)
100000

Ron or Πt−1
s=t−Li

r
s = 1.

Here irt is the indicator of whether lockdown is applied in region r on day t and Ct(r) is the
daily number of cases reported in region r on day t. The term Πt−1

s=t−Li
r
s is used to track if

lockdown has been applied in region r for L consecutive days during [t−L, t− 1]. We use
the same values of Ron and Roff as in Section 7.1.
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(a) Influence of the threshold Ron for trig-
gering lockdown.

(b) Influence of the threshold Roff for lifting
lockdown.

Figure 38: Decentralised confinement triggered by regional daily case numbers: social cost
versus fatalities (m = 0.5).

(a) Low symptomatic ratios. (b) High symptomatic ratios.

Figure 39: Efficiency analysis for centralised (blue) and decentralised (orange) adaptive
mitigation policies. Outcomes are averaged across 100 simulated scenarios.

Figure 39 compares the outcomes of centralised and decentralised triggering policies.
Decentralised policies are observed to always improve over centralised policies.

As an example, for Ron = 4 and Roff = 0.4Ron fatalities in England are 137, 700 under
the centralised policy and 126, 300 under the decentralised policy, that is 8% lower.

Figure 41 compares regional fatalities per 100,000 habitants for these policies. For more
than 90% of the regions, decentralised measures lead to fewer fatalities. The most effective
reductions are in Dorset, South West England (UKK22) with 23% fewer fatalities and in
Portsmouth (UKJ31) with 22% fewer fatalities. There are a few exceptions (see regions in
light blue in Figure 41c). These regions are already under control before adaptive policies
are applied. Therefore the improvement of moving from centralised policy to decentralised
policy is limited.

Figure 42a compares the dynamics of symptomatic infections (It) for the same example.
There is a reduction of 100,000 in the amplitude of the second peak value when moving from
the centralised policy to decentralised one. Decentralised policy also damps the second-
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peak values in most of the regions. Similar effects are observed for York (Figure 42c) and
Leicester (Figure 42b).

On June 29, 2020, Leicester became the first city in Britain to be placed in a local
lockdown, after public health officials voiced concern at the city’s alarming rise in COVID-
19 cases. Earlier in June, the Government announced that parts of the city would be
released from lockdown, while a “targeted” approach will see pockets remain under tighter
restrictions. Our simulations indicate a 60% reduction of the second-peak value in Leicester
when a decentralised policy is implemented (Figure 42b).

Example Figure 40 shows an example of such a decentralised triggering policy, with the
same triggering thresholds as in the centralised example in Fig. 35. At regional level, we
see in Figure 40a that this policy is more successful than the centralised policy in taming
the local outbreaks in Leicester, substantially reducing the second peak through 8 one-week
regional lockdowns. At the national level this results in a strong damping of ’second wave’
infections, as shown in Fig. 40b (compare with Fig. 35a).

(a) Daily reported cases in Leicester. (b) Daily reported cases in England.

Figure 40: Reported cases in England and Leicester under a decentralised triggering policy:
average of 50 simulated scenarios with Ron = 4, Roff = 0.4×Ron, m = 0.5, no shielding.
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(a) Centralised (country-level) adaptive policy. (b) Decentralised (regional) adaptive policy.

(c) Increase in fatalities (per 100,000 inhabitants) when moving from regional
to centralised policy.

Figure 41: Fatalities per 100,000 inhabitants for centralised (left) verus regional (right)
adaptive mitigation policies. Same triggering thresholds are used in both cases: Ron = 4
and Roff = 0.4Ron.
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(a) Number of symptomatic individuals (It) in England under cen-
tralised and decentralised policies.

(b) Number of symptomatic individuals (It) in
Leicester (UKF21).

(c) Number of symptomatic individuals (It) in
York (UKE21).

Figure 42: Number of infected individuals under under centralised (blue dashed line)
and decentralised (orange solid line) policies. Same triggering thresholds are used in
both cases: Ron = 4 and Roff = 0.4Ron.
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7.3 Adaptive versus pre-planned policies

(a) No Shielding.

(b) Shielding.

Figure 43: Efficiency plot: pre-planned versus adaptive mitigation policies.

Figure 43 compares the health outcome and social cost of the efficient policies considered
in Sections 6.2, 7.1 and 7.2. The efficient frontier of pre-planned policies are among policies
with uS ∈ {0, 0.5, 1}, 0.2 ≤ uW ≤ 1.0 and 0.3 ≤ uO ≤ 1.0. For centralised and decentralised
policies, m = 0.25, 0.5, 0.75, 1; Ron = 2, 4, 6, 8, 10; and Roff = p×Ron with p = 0.2, 0.4, 0.8.

We observe that

• Adaptive policies, in which measures are triggered when the number of daily new
cases exceeds a threshold, are more efficient than pre-planned policies; and

• As shown in Figures 43a and 43b, a decentralised policy is more efficient than both
centralised policy and pre-planned policy.

In Table 8, we provide a summary of outcomes for five different types of policies.
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• Confinement followed by social distancing: T = 105 and m = 0.5 and no shielding.

• Pre-planned policy: social distancing at work and school (uH = 1, uS = 0.5,uW =
0.5), restrictions on social gatherings (uO = 0.3) and no shielding.

• Centralised and decentralised triggering policies (Sec. 7.1 and Sec. 7.2) withm = 0.5,
Ron = 4, Roff = 0.4Ron and no shielding;

• Decentralised triggering combined with shielding of elderly populations: m = 0.5,
Ron = 4, Roff = 0.4Ron;

• ’Protect Lives’ policy: in the range of efficient policies, the one which results in the
fewest fatalities is a decentralised triggering policy with Ron = 2, Roff = 0.2Ron (
so more frequent triggering of confinement measures than the above), high degree
of social distancing (m = 0.25) and shielding of elderly populations. This policy
corresponds to the point in the lower right corner of Figure 43b. The social cost is
4.52, much higher than the other policies considered.

Policy It At Fatalities max It Social Total
(Aug 1) (Aug 1) (Aug 1) (2nd peak) cost fatalities

Confinement followed
by social distancing

124,400 462,000 42,000 960,700 3.0 165,700

Pre-planned 112,000 436,000 43,800 819,300 3.1 138,700
Centralised triggering 102,000 378,500 39,400 430,800 3.11 137,700
Decentralised trigger-
ing

97,200 379,800 38,500 309,400 3.14 126,300

Decentralised trigger-
ing + shielding

70,700 309,000 38,291 295,500 3.65 67,900

’Protect Lives’ 32,000 132,500 37,400 81,700 4.50 53,000

Table 8: Summary of outcomes for different policies, starting from the same initial condi-
tons on July 4, 2020.

Outcomes are averaged across 50 scenarios, starting from the same initial conditions on
July 4 (end of the national UK lockdown).

Regional outcomes Comparing the regional outcomes of the centralised, decentralised
and pre-planned policies displayed in Table 8 shows that the decentralised triggering poli-
cies are able in many cases to considerably damp the ‘second wave’ of infections. Figure 44
illustrates this in the case of Leicester and Birmingham: the decentralised triggering policy
reduces the second peak amplitude by more than two-thirds compared to the pre-planned
policy.
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(a) It in Leicester. (b) It in Birmingham.

Figure 44: Regional comparison of pre-planned and adaptive mitigation policies.
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A Demographic regions
Table 9 details the used mapping between Upper Tier Local Authority (UTLA) region
codes and the Nomenclature of Territorial Units for Statistics at level 3 (NUTS-3) codes.
If a single UTLA region falls within multiple NUTS-3 regions, the data is distributed
proportionally to the population size in each of these regions. On the other hand if multiple
UTLA regions are contained within a single NUTS-3 region, the data is simply aggregated.

UTLA Code UTLA Region Name NUTS-3 Code Mapping
E06000001 Hartlepool UKC11
E06000002 Middlesbrough UKC12
E06000003 Redcar and Cleveland UKC12
E06000004 Stockton-on-Tees UKC11
E06000005 Darlington UKC13
E06000006 Halton UKD71
E06000007 Warrington UKD61
E06000008 Blackburn with Darwen UKD41
E06000009 Blackpool UKD42
E06000010 Kingston upon Hull, City of UKE11
E06000011 East Riding of Yorkshire UKE12
E06000012 North East Lincolnshire UKE13
E06000013 North Lincolnshire UKE13
E06000014 York UKE21
E06000015 Derby UKF11
E06000016 Leicester UKF21
E06000017 Rutland UKF22
E06000018 Nottingham UKF14
E06000019 Herefordshire, County of UKG11
E06000020 Telford and Wrekin UKG21
E06000021 Stoke-on-Trent UKG23
E06000022 Bath and North East Somerset UKK12
E06000023 Bristol, City of UKK11
E06000024 North Somerset UKK12
E06000025 South Gloucestershire UKK12
E06000026 Plymouth UKK41
E06000027 Torbay UKK42
E06000030 Swindon UKK14
E06000031 Peterborough UKH11
E06000032 Luton UKH21
E06000033 Southend-on-Sea UKH31
E06000034 Thurrock UKH32
E06000035 Medway UKJ41
E06000036 Bracknell Forest UKJ11
E06000037 West Berkshire UKJ11
E06000038 Reading UKJ11
E06000039 Slough UKJ11
E06000040 Windsor and Maidenhead UKJ11
E06000041 Wokingham UKJ11
E06000042 Milton Keynes UKJ12
E06000043 Brighton and Hove UKJ21
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E06000044 Portsmouth UKJ31
E06000045 Southampton UKJ32
E06000046 Isle of Wight UKJ34
E06000047 County Durham UKC14
E06000049 Cheshire East UKD62
E06000050 Cheshire West and Chester UKD63
E06000051 Shropshire UKG22
E06000052 Cornwall and Isles of Scilly UKK30
E06000054 Wiltshire UKK15
E06000055 Bedford UKH24
E06000056 Central Bedfordshire UKH25
E06000057 Northumberland UKC21
E06000058 Bournemouth and Poole UKK21
E06000059 Dorset UKK22
E08000001 Bolton UKD36
E08000002 Bury UKD37
E08000003 Manchester UKD33
E08000004 Oldham UKD37
E08000005 Rochdale UKD37
E08000006 Salford UKD34
E08000007 Stockport UKD35
E08000008 Tameside UKD35
E08000009 Trafford UKD34
E08000010 Wigan UKD36
E08000011 Knowsley UKD71
E08000012 Liverpool UKD72
E08000013 St. Helens UKD71
E08000014 Sefton UKD73
E08000015 Wirral UKD74
E08000016 Barnsley UKE31
E08000017 Doncaster UKE31
E08000018 Rotherham UKE31
E08000019 Sheffield UKE32
E08000021 Newcastle upon Tyne UKC22
E08000022 North Tyneside UKC22
E08000023 South Tyneside UKC22
E08000024 Sunderland UKC23
E08000025 Birmingham UKG31
E08000026 Coventry UKG33
E08000027 Dudley UKG36
E08000028 Sandwell UKG37
E08000029 Solihull UKG32
E08000030 Walsall UKG38
E08000031 Wolverhampton UKG39
E08000032 Bradford UKE41
E08000033 Calderdale UKE44
E08000034 Kirklees UKE44
E08000035 Leeds UKE42
E08000036 Wakefield UKE45
E08000037 Gateshead UKC22
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E09000001 City of London UKI31
E09000002 Barking and Dagenham UKI52
E09000003 Barnet UKI71
E09000004 Bexley UKI51
E09000005 Brent UKI72
E09000006 Bromley UKI61
E09000007 Camden UKI31
E09000008 Croydon UKI62
E09000009 Ealing UKI73
E09000010 Enfield UKI54
E09000011 Greenwich UKI51
E09000012 Hackney UKI41
E09000013 Hammersmith and Fulham UKI33
E09000014 Haringey UKI43
E09000015 Harrow UKI74
E09000016 Havering UKI52
E09000017 Hillingdon UKI74
E09000018 Hounslow UKI75
E09000019 Islington UKI43
E09000020 Kensington and Chelsea UKI33
E09000021 Kingston upon Thames UKI63
E09000022 Lambeth UKI45
E09000023 Lewisham UKI44
E09000024 Merton UKI63
E09000025 Newham UKI41
E09000026 Redbridge UKI53
E09000027 Richmond upon Thames UKI75
E09000028 Southwark UKI44
E09000029 Sutton UKI63
E09000030 Tower Hamlets UKI42
E09000031 Waltham Forest UKI53
E09000032 Wandsworth UKI34
E09000033 Westminster UKI32
E10000002 Buckinghamshire UKJ13
E10000003 Cambridgeshire UKH12
E10000006 Cumbria UKD11, UKD12
E10000007 Derbyshire UKF13, UKF12
E10000008 Devon UKK43
E10000011 East Sussex UKJ22
E10000012 Essex UKH37, UKH34, UKH35, UKH36
E10000013 Gloucestershire UKK13, UKK12
E10000014 Hampshire UKJ36, UKJ37, UKJ35
E10000015 Hertfordshire UKH23
E10000016 Kent UKJ43, UKJ44, UKJ45, UKJ46
E10000017 Lancashire UKD45, UKD46, UKD47, UKD44
E10000018 Leicestershire UKF22
E10000019 Lincolnshire UKE13, UKF30
E10000020 Norfolk UKH15, UKH17, UKH16
E10000021 Northamptonshire UKF24, UKF25
E10000023 North Yorkshire UKE22
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E10000024 Nottinghamshire UKF15, UKF16
E10000025 Oxfordshire UKJ14
E10000027 Somerset UKK12, UKK23
E10000028 Staffordshire UKG24
E10000029 Suffolk UKH14
E10000030 Surrey UKJ25, UKJ26
E10000031 Warwickshire UKG13
E10000032 West Sussex UKJ28, UKJ27
E10000034 Worcestershire UKG12

Table 9: Mapping between the Upper Tier Local Authority (UTLA) regions and the
Nomenclature of Territorial Units for Statistics at level 3 codes (NUTS-3).
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B Baseline parameters for social contact rates
This appendix provides a description of sources used for baseline social contact rate pa-
rameters. Two sources have been used: the POLYMOD study [39], processed using PyRoss
[52], and the BBC Pandemic study [28]. These parameters are used as a baseline and a
further detailed calibration is carried out region by region to account for heterogeneity of
social contact patterns across UK regions.

The PyRoss library [2] uses a Bayesian Hierarchical framework to decompose contact
rates into ‘work’, ‘home’, ‘school’, and ‘other’ [43]. Using this approach we estimate a con-
tact matrix for four age groups [0, 20), [20, 60), [60, 70) and [70, 100) using UK demographic
data12. This leads to the following baseline contact matrices, visualized in Figure 45:

σH =


2.23 1.85 0.01 0.0015
1.17 1.20 0.03 0.0035
0.34 0.80 0.82 0.05
0.24 0.41 0.08 0.44

 , σS =


4.16 0.53 0.01 0.00
0.22 0.23 0.004 0.00
0.17 0.27 0.004 0.00
0.05 0.00 0.00 0.00

 ,

σW =


0.37 0.89 0.006 0.00
0.30 4.28 0.02 0.00
0.00 0.35 0.002 0.00
0.00 0.00 0.00 0.00

 , σO =


1.93 1.79 0.13 0.06
0.60 2.90 0.26 0.11
0.32 3.97 0.62 0.28
0.32 2.53 0.86 0.79

 .

(a) Home. (b) School. (c) Work.

(d) Others. (e) Total.

Figure 45: Baseline social contact matrices.

These baseline values are modulated to reflect regional differences, using the approach
described in Section 3.

12https://www.statista.com/statistics/281174/uk-population-by-age/
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