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Abstract—Malicious jamming launched by smart jammer,
which attacks legitimate transmissions has been regarded as one
of the critical security challenges in wireless communications.
Thus, this paper exploits intelligent reflecting surface (IRS) to
enhance anti-jamming communication performance and mitigate
jamming interference by adjusting the surface reflecting elements
at the IRS. Aiming to enhance the communication performance
against smart jammer, an optimization problem for jointly
optimizing power allocation at the base station (BS) and reflecting
beamforming at the IRS is formulated. As the jamming model
and jamming behavior are dynamic and unknown, a win or
learn fast policy hill-climbing (WoLFCPHC) learning approach
is proposed to jointly optimize the anti-jamming power allocation
and reflecting beamforming strategy without the knowledge of
the jamming model. Simulation results demonstrate that the
proposed anti-jamming based-learning approach can efficiently
improve both the the IRS-assisted system rate and transmission
protection level compared with existing solutions.

Index Terms—Anti-jamming, intelligent reflecting surface,
power allocation, beamforming, reinforcement learning.

I. INTRODUCTION

DUE to the inherent broadcast and openness nature of
wireless channels [1], [2], wireless transmissions can be

easily vulnerable to jamming attacks. In particular, malicious
jammers can intentionally send jamming signals over the
legitimate channels to degrade communication performance
[1]-[3], which has been considered as one of the serious threats
in wireless communications. In this regard, lots of jamming-
related studies have been recently presented to defend jamming
attacks, including frequency hopping, power control, relay
assistance, beamforming, and so on.

Frequency-hopping (FH) is one of the powerful techniques
which has been widely adopted to allow a wireless user to
quickly switch its current operating frequency to other fre-
quency spectrum, thereby avoiding potential jamming attacks
[4]-[6]. In [4] and [5], a mode-FH approach was presented to
jointly utilize conventional FH to further improve the com-
munication performance in the presence of jammers. In [6],
Hanawal et al. proposed a joint FH and rate adaptation scheme
to avoid jamming attacks in the presence of a jammer. Besides
FH, power control is another commonly used technique, e.g.,
[3], [7]-[9]. As an example, [7] and [8] investigated a jammed
wireless system where the system operator tries to control
the transmit power to maximize system rate. The authors in
[3] and [9] studied the anti-jamming problem with power
control strategies, by leveraging the game theory to optimize
the power control policy of the transmitter against jammers.

Moreover, cooperative communication using trusted relays has
been proposed as one promising anti-jamming technique for
improving the physical layer security [10]-[12], and robust
joint cooperative beamforming and jamming designs were
proposed to maximize the achievable rate under the imperfect
channel state information (CSI) of a jammer.

To deal with uncertain and/or unknown jamming attack
models, such as jamming policies and jamming power levels,
some existing studies utilized reinforcement learning (RL)
algorithms have been applied in some existing studies to
optimize the jamming resistance policy in dynamic wireless
communication systems [13]-[15]. In [13], a policy hill climb-
ing (PHC)-based Q-Learning approach was studied to improve
the communication performance against jamming without
knowing the jamming model. In [14] and [15], the authors
adopted deep reinforcement learning (DRL) algorithms that
enable transmitters to quickly obtain an optimal policy to
guarantee security performance against jamming.

However, despite the effectiveness of the above mentioned
anti-jamming schemes [3]-[15], employing a number of active
relays incurs an excessive hardware cost, and anti-jamming
beamforming and power control in communication systems is
generally energy-consuming. To tackle these shortcomings, a
new paradigm, called intelligent reflecting surface (IRS) [16],
[17], has been recently proposed as a promising technique to
enhance the secrecy performance. In particular, IRS comprises
of a large number of low-cost passive reflecting elements,
where each of the elements adaptively adjusts its reflection
amplitude and/or phase to control the strength and direction
of the reflected electromagnetic wave [16], [17]. As a result,
IRS has been employed in wireless commutation systems
to devote to security performance optimization [18]-[22]. In
[18]-[21], the authors investigated the physical layer security
enhancement of IRS-assisted communications systems, where
both the BS¡s beamforming and the IRS¡s phase shifts were
jointly optimized to improve secrecy rate in the presence of an
eavesdropper. Furthermore, Yang et al. in [22] applied DRL
to learn the secure beamforming policy in multi-user IRS-
aided secure systems, in order to maximize the system secrecy
rate in the presence of multiple eavesdroppers. To the best of
our knowledge, IRS has not been explored yet in the existing
works [3]-[22] to enhance the anti-jamming strategy against
smart jamming.

In this paper, we propose an IRS-assisted anti-jamming so-
lution for securing wireless communications. In particular, we
aim to maximize the system rate of multiple legitimate users in
the presence of a smart multi-antenna jammer. As the jamming



Fig. 1. Illustration of an IRS-assisted communication system against a multi-
antenna jammer.

model and jamming behavior are dynamic and unknown, a win
or learn fast policy hill-climbing (WoLFCPHC) anti-jamming
approach is proposed to achieve the optimal anti-jamming
policy, where WoLFCPHC is capable of quickly achieving
the optimal policy without knowing the jamming model.
Simulation results verify the effectiveness of the proposed
learning approach in terms of improving the system rate,
compared with the existing approaches.

The remainder of this paper is organized as follows. Sec-
tion II provides the system model and problem formulation.
Section III proposes the WoLFCPHC-based learning approach.
Simulation results are provided in Section IV, and the paper
is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
As shown in Fig. 1, this paper considers an IRS-assisted

communication system, which consists of one BS with N
antennas and K single-antenna legitimate user equipments
(UEs) located at the cell-edge. The IRS comprised of M
reflecting elements is deployed to provide additional com-
munication links so as to improve the performance for the
UEs over a given frequency band. The direct communication
links of cell-edge UEs may suffer high signal attenuation and
these links are severely blocked by obstacles when these UEs
located in dead zones. In addition, as illustrated in Fig. 1, a
malicious multi-antenna jammer is located near the legitimate
UEs who attempts to interfere the legitimate transmissions by
sending faked or replayed jamming signal for the UEs via NJ

antennas, in order to degrade the legitimate communication
performance. In this case, deploying the IRS can effectively
enhance the desired signal power and mitigate the jamming
interference generated from the jammer by designing the
reflecting beamforming at the IRS.

Let K = {1, 2, ...,K} and M = {1, 2, ...,M} represent
the UE set and the IRS reflecting element set, respectively.
Let G ∈ CM×N , gHbu,k ∈ C1×N , gHru,k ∈ C1×M , and
hHJ,k ∈ C1×NJ denote the channel coefficients between the
BS and the IRS, between the BS and the k-th UE, between
the IRS and the k-th UE, and between the jammer and the k-th
UE, respectively. The quasi-static flat-fading model is assumed
for all the above channels. Let Φ = diag(Φ1,Φ2, ....,ΦM ) ∈
CM×M denotes the reflection coefficient matrix associated
with effective phase shifts at the IRS, where Φm = ωme

jθm

comprises both an reflection amplitude ωm ∈ [0, 1] and a
phase shift coefficient θm ∈ [0, 2π] on the combined received
signal. Since each phase shift is favorable to be designed to

achieve maximum signal reflection, we consider that ωm = 1,
∀m ∈M in this paper [16]-[22].

The transmitted signal at the BS can be expressed as

x =
∑K

k=1

√
Pkwksk (1)

where Pk stands for the transmit power allocated for the k-th
UE and we have the power constraint:

∑K
k=1 Pk ≤ Pmax with

Pmax being the maximum transmit power of the BS, sk is
the transmitted symbol for the k-th UE, sk ∈ C, E{sk} = 0
and E{|sk|2} = 1 which denotes the unit power information
symbol, and wk ∈ CN×1 is the beamforming vector for the
k-th UE with ‖wk‖2 = 1, respectively.

This paper considers the case that the smart jammer attempts
to disturb the BS’s transmitted signal by emitting jamming
signal zk ∈ CNJ×1 to attack the k-th UE. In addition, the
transmit power of the faked jamming signal for the k-th UE
is denoted as PJ,k = ‖zk‖2 = Tr(zkz

H
k ). In this case, for

UE k, the received signal consists of the signal coming from
its associated BS, the reflected signal from the IRS and the
jamming signal from the jammer, which is written by

yk =
(
gHru,kΦG+ gHbu,k

)√
Pkwksk︸ ︷︷ ︸

desired signal

+

∑
i∈K,i6=k

(
gHru,kΦG+ gHbu,k

)√
Piwisi︸ ︷︷ ︸

inter−userinterference

+
√
PJ,kh

H
J,kzk︸ ︷︷ ︸

jamming signal

+nk

(2)
where nk denotes the additive complex Gaussian noise with

the zero mean and variance δ2k at the k-th UE. In (2), in
addition to the received desired signal, each UE also suffers
inter-user interference (IUI) and the jamming interference
signal in the system. According to (2), the received signal-
to-interference-plus-noise-ratio (SINR) at the k-th UE can be
expressed as

SINRk =
Pk

∣∣∣(gH
ru,kΦG + gH

bu,k

)
wk

∣∣∣2∑
i∈K,i6=k

Pi

∣∣∣(gH
ru,kΦG + gH

bu,k

)
wi

∣∣∣2 + PJ,k

∣∣∣hH
J,kzk

∣∣∣2 + δ2k

.

(3)

B. Problem Formulation

In this paper, we aim to jointly optimize the transmit power
allocation {Pk}k∈K at the BS and the reflecting beamforming
matrix Φ at the IRS to maximize the system achievable rate
of all UEs against smart jamming, subject to the transmit
power constraint. Accordingly, the optimization problem can
be formulated as

max
{Pk}k∈K,Φ

∑
k∈K

log2 (1 + SINRk)

s.t. (a) :
∑K
k=1 Pk ≤ Pmax,

(b) : |Φm| = 1, 0 ≤ θm ≤ 2π, ∀m ∈M
(4)

Note that problem (4) is a non-convex optimization prob-
lem, where the objective function is non-concave over the
reflecting beamforming matrix Φ; furthermore, the transmit
power allocation variables {Pk}k∈K and Φ are intricately
coupled in the objective function, thus rendering the joint
optimization problem difficult to be solved optimally. So far,
many optimization algorithms [16]-[21] have been proposed to
obtain an approximate solution to problem (4), by iteratively
updating either {Pk}k∈K or Φ with the other fixed at each



iteration. Hence, this paper proposes an effective solution to
address such kind of the optimization problem, which will be
provided in the next section. In addition, it is worth noting that
this paper mainly pays attention to jointly optimize the power
allocation and the reflecting beamforming, so the transmit
beamforming vector wk is set by maximizing the received
signal power at the IRS as the directin link from the BS to
the UEs suffer high signal attenuation by obstacles [16], [17].

III. JOINT POWER ALLOCATION AND REFLECTING
BEAMFORMING BASED ON RL

The problem formulated in (4) is difficult to be solved
as mentioned at the end of the last section. Model-free RL
is one of the dynamic programming tools which has the
ability to address the decision-making problem by achieving
an optimal policy in dynamic uncertain environments [33].
Thus, this paper models the optimization problem as an RL,
and a WoLF-PHC-based joint power allocation and reflecting
beamforming approach is proposed to learn the optimal anti-
jamming strategy.

A. Optimization Problem Transformation Based on RL
In RL, the IRS-assisted communication system is acted as

an environment and the central controller at the BS is regarded
as a learning agent. In addition to the environment and the
agent, an RL also includes a set of possible system states
S, a set of available actions A, and a reward function r,
where the learning agent continually learns by interacting with
the environment. The main elements of RL are introduced as
follows:

States: The system state st ∈ S is the discretization of
the observed information from the environment at the current
time slot t. The system state st includes the previous jamming
power, i.e., {P t−1J,k }k∈K according the channel quality, the
previous UEs’ SINR values {SINRt−1k }k∈K, as well as
the current estimated channel coefficients {gtk}k∈K, which is
defined as

st =
{
{P t−1J,k }k∈K, {g

t
k}k∈K, {SINR

t−1
k }

k∈K

}
. (5)

Actions: The action at ∈ A is one of the valid selections
that the learning agent chooses at the time slot t, which
includes the transmit power {Pk}k∈K and the reflecting beam-
forming coefficient (phase shift) {θm}m∈M. Hence, the action
at is given by

at =
{
{P tk}k∈K, {θ

t
m}m∈M

}
. (6)

Transition probability: P(·) is a transition model which
represents the probability of taking an action a at a current
state s and then ending up in the next state s′, i.e., P(s′|s, a).

Policy: Let π(·) denotes a policy and it maps the current
system state to a probability distribution over the available
actions which is taken by the agent, i.e., π(a, s) : S → A.

Reward function: The reward function design plays an
important role in the policy learning in RL, where the reward
signal correlates with the desired goal of the system perfor-
mance. In the optimization problem considered in Section II.B,
our objectives are twofold: maximizing the UEs’ achievable
rate while decreasing the power consumption at the BS as
much as possible.

Fig. 2. WoLF-PHC-based anti-jamming policy for IRS-assisted systems.

Based on the above analysis, the reward function is set as

r =
∑
k∈K

log2 (1 + SINRk)︸ ︷︷ ︸
part 1

−λ1
∑
k∈K

Pk︸ ︷︷ ︸
part 2

(7)

In (7), the part 1 represents the immediate utility (system
achievable rate), the part 2 is the cost functions which is
defined as the transmission cost of the power consumption
at the BS, with λ1 being the corresponding coefficient.

B. WoLF-PHC-Based Joint Power Allocation and Reflecting
Beamforming

Most of existing RL algorithms are value-based RL, such as
Q-Learning, Deep Q-Network (DQN) and double DQN. These
RL algorithms can estimate the Q-function with low variance
as well as adequate exploration of action space, which can
be ensured by using the greedy scheme. In addition, policy
gradient based RL algorithm has the ability to tackle the
continuous action space optimization problems, but it may
converge to suboptimal solutions [22].

In order to obtain the optimal anti-jamming policy against
smart jamming, we propose a fast WoLF-PHC-based joint
power allocation and reflecting beamforming for IRS-assisted
communication systems, as shown in Fig. 2, where WoLF-
PHC is utilized to enable the learning agent to learn and adapt
faster in dynamic uncertain environments. In the IRS-assisted
system, the learning agent observes a system state and receives
an instantaneous reward by interacting with the environment.
Then, such information is leveraged to train the learning model
to choose the anti-jamming policy with the maximum Q-
function value. After that, according to the selected policy, the
action is chosen to make decision in terms of power allocation
and reflecting beamforming.

The objective of the learning agent is to obtain an optimal
policy that optimizes the long-term cumulative discounted re-
ward instead of its immediate reward, which can be expressed
as Rt =

∑∞
j=0 γ

jr(t+j+1), where γ ∈ (0, 1] denotes the
discount factor. Adopting Qπ(st, at) as the state-action value
function, which represents the value of executing an action a
in a state s under a policy π, it can be expressed as

Qπ(st, at) = Eπ

 ∞∑
j=0

γjr(t+j+1)|st = s, at = a

 . (8)



Similar to [23], the state-action Q-function Qπ(st, at) sat-
isfies the Bellman equation which is expressed as

Qπ(st, at) = Eπ

[
rt+1 + γ

∑
st+1∈S

P (st+1|st, at)

∑
at+1∈A

π(st+1, at+1)Qπ(st+1, at+1)

] (9)

The conventional Q-Learning algorithm is widely utilzied
to search the optimal policy π∗. From (9), the optimal Q-
function (Bellman optimality equation) associated with the
optimal policy has the following form

Q∗(st, at) = rt+1 + γ
∑

st+1∈S

P(st+1|st, at) max
at+1∈A

Q∗(st+1, at+1).

(10)

It is worth noting that the Bellman optimality equation
generally does not have any closed-form solution. Thus, the
optimal Q-function (10) can be solved recursively to achieve
the optimal Q∗(st, at) by using an iterative method. Accord-
ingly, the updating on the state-action value function Q(st, at)
is expressed as

Q(st, at)← (1− α)Q(st, at)

+α

(
rt + γ max

at∈A
Q∗(st+1, at)

)
(11)

where α ∈ (0, 1] stands for the learning rate for the update of
Q-function.

The ε−greedy policy is capable of balancing the tradeoff
between an exploitation and an exploration in an RL, in order
to avoid converging to local optimal power allocation and
reflecting beamforming strategy. In the ε−greedy policy, the
agent selects the action with the maximum Q-table value with
probability 1 − ε, whereas a random action is picked with
probability ε to avoid achieving stuck at non-optimal policies
[23]. Hence, the action selection probability of the learning
agent is expressed as

Pr(a = ã) =

{
1− ε, ã = arg max

a∈A
Q(s, a),

ε
|A|−1 , ã 6= arg max

a∈A
Q(s, a).

(12)

As the WoLF-PHC algorithm is capable of not only keeping
the Q-function but also quickly learning the decision-making
policy under uncertain characteristics [24], so this paper adopts
it to derive the optical power allocation and reflecting beam-
forming strategy with the unknown jamming model.

In WoLF-PHC, the mixed policy π(s, a) is updated by
increasing the probability that it selects the most valuable
action with the highest Q-function value by a learning rate
ξ ∈ (0, 1], and reducing other probabilities by −ξ/(|A| − 1),
i.e.,

π(s, a)← π(s, a) +

{
ξ, if a = arg maxa′Q(s, a′),

− ξ
|A|−1 , otherwise.

(13)

The WoLF-PHC-based joint power allocation and reflecting
beamforming approach for the IRS-assisted communication
system against smart jamming is summarized in Algorithm
1. At each episode training step, the learning agent observes
its system state st (i.e., the estimated jamming power, SINR
values, and channel coefficients) by interacting with the en-

Algorithm 1 WoLF-PHC-Based Joint Power Allocation and
Reflecting Beamforming
1: Input: WoLF-PHC learning structure and IRS-assisted
system with a jammer.
2: Initialize: Q(s, a) = 0, π(s, a) = 1/|A|, ξ, γ, and α.
3: for each episode j = 1, 2, . . . , N epi do
4: for each time step t = 0, 1, 2, . . . , T do
5: Observe an initial system state st;
6: Select an action at based on the ε-greedy policy:

at = arg max
at∈A

Q(st, at), with probability 1-ε;

at = random{ai}ai∈A, with probability ε;
7: Execute the exploration action at, receive a reward
r(st, at) and the next state st+1;
8: Update Q(st, at) by via (11);
8: Update the current policy π(st, at);
9: end for
10: end for
11: Return: WoLF-PHC-based learning model;
12: Output: Load the learning model to achieve the joint
power allocation and reflecting beamforming matrix strategy.

Fig. 3. Simulation setup.

vironment. At each learning time slot t, the joint action at

(i.e., power allocation and reflecting beamforming) is selected
by using the probability distribution π(st, at). The ε-greedy
policy method is employed to balance the exploration and
the exploitation, for example, the action with the maximum
Q-function value is chosen with probability 1 − ε according
to the known knowledge, while a random action is chosen
with probability ε based on the unknown knowledge. After
executing the selected action at, the environment will feed-
back a reward r(st, at) and a new system state st+1 to the
learning agent. Then, the WoLF-PHC algorithm updates both
the current policy π(st, at) and updates the variable learning
rate ξ to improve the learning rate. Finally, the learning model
is trained successfully, and it can be loaded to search the joint
power allocation {Pk}k∈K and reflecting beamforming matrix
Φ strategies according to the selected action.

IV. SIMULATION RESULTS AND ANALYSIS

This section evaluates the performance of the IRS-assisted
communication system against smart jamming shown in Fig.
3, where a number of single-antenna UEs are randomly located
in the 100 m × 100 m right-hand side rectangular area (light
blue area). The locations of the BS, the IRS, and the jammer
are (0, 0), (75, 100), and (0, 0) in meter (m), respectively.
There exists obstacles which block the direct communication
links from the BS to the UEs, so the obstacles cause the large-
scale pathloss for the communication links.



As for the communication channel coefficients, the path loss
in dB is expressed as

PL = (PL0 − 10β log10(d/d0)) (14)

where PL0 denotes the path loss at the reference distance
d0, β is the path loss exponent, and d is the distance from
the transmitter to the receiver, respectively. Here, we use βbu,
βbr, βru, and βju to denote the path loss exponents of the
channel links between the BS and the UEs, between the BS
and the IRS, between the IRS and the UEs, and between
the jammer and the UEs, respectively. According to [18]-
[22], we set PL0 = 30 dB, d0 = 1 m, βbu = 3.75,
βbr = βru = 2.2 and βju = 2.5. We set that the background
noise at all UEs is equal to δ2 = −100 dBm. The number of
antennas at the BS and the jammer are set to N = NJ = 8.
The maximum transmit power Pmax at the BS varies from
15 dBm to 40 dBm, and the number of IRS elements M
varies from 20 to 100 for different simulation settings. In
addition, the jamming power of the smart jammer ranges from
15 dBm to 40 dBm according to its jamming behavior, and
the BS cannot know the current jamming power levels, but
it can estimate the previous jamming power levels according
to the historical channel quality. The learning rate is set to
α = 0.5 × 10−2, the discount factor is set to γ = 0.9 and
the final exploration rate is set to ε = 0.1. The cost parameter
λ1 in (7) is set to λ1 = 1. We set ξ = 0.04 [23], [24]. In
addition, we compare the proposed WoLF-PHC-based joint
power allocation and reflecting beamforming approach with
the following approaches:

• The popular fast Q-Learning approach [13], which is
adopted to optimize the transmit power allocation and
reflecting beamforming in IRS-assisted communication
systems (denoted as fast Q-Learning [13]).

• The greedy approach which jointly optimizes the BS’s
transmit power allocation and the IRS’s reflect beamform-
ing (denoted as Greedy).

• The optimal transmit power allocation at the BS without
IRS assistance (denoted as Optimal PA without IRS).

We first compare the convergence performance of all ap-
proaches when Pmax = 30 dBm, K = 4, and M = 60. It
is observed that the system rate of all approaches (except the
optimal PA approach) increases with the number of iterations,
and the proposed WoLF-PHC learning approach accelerates
the convergence rate and enhances the system rate compared
with both the fast Q-Learning approach and the greedy ap-
proach. Because the proposed leaning approach adopts WoLF-
PHC to increase the learning rate and enhance the learning
efficiency against smart jamming, yielding a faster learning
rate under the dynamic environment. Among all approaches,
the fast Q-Learning requires the largest number of convergence
iterations to optimize the Q-function estimator, where the slow
convergence may fail to protect anti-jamming performance
against smart jamming in real-time systems. Moreover, the
optimal PA approach without IRS has the fastest convergence
speed, but it obtains the worst performance among all ap-
proaches, because it does not employ an IRS for system
performance improvement and jamming resistance.

The average system rate versus the maximum transmit
power Pmax for various approaches are shown in Fig. 5
when K = 4, and M = 60, which demonstrates that the

Fig. 4. Convergence behaviors of the various approaches.

Fig. 5. Performance comparisons versus the maximum transmit power Pmax.

achieved system rate improve as Pmax increases. We can
also observe that both the proposed learning approach and
the fast Q-Learning approach have good system rate value
under different values of Pmax, and both of them greatly
outperform other approaches. Additionally, the performance
improvement achieved by using IRS versus without IRS in-
creases with Pmax, which indicates the advantage of deploying
the IRS against smart jamming. In addition, the performance
of both the system rate of the proposed WoLF-PHC-based
learning approach is higher than that of the fast Q-Learning
approach, which is due to the fact that WoLF-PHC is adopted
to effectively search the optimal joint power allocation and
reflecting beamforming strategy against smart jamming in
dynamic uncertain environments.

Fig. 6 compares the performance of the four approaches
with the different reflecting elements number M when Pmax =
30 dBm and K = 4. It can be seen that except the optimal
PA approach without IRS, the performance of all IRS-based
approaches increases with M , and greatly outperforms the
optimal PA approach without IRS. This is that the IRS has the
ability to support higher degrees of freedom for performance
optimization, resulting in the great performance gains obtained
by employing the IRS against smart jamming over the tradi-
tional system without IRS. Specifically, when M = 20, the
system achievable rate gain of the proposed learning approach
over the optimal PA approach without IRS is only about 4.21
bits/s/Hz, while this value is improved to 15.47 bits/s/Hz when



Fig. 6. Performance comparisons versus the number of IRS elements.

M = 100. Such performance improvement results from the
facts that the more power can be achieved at the IRS by
increasing M , and the higher reflecting beamforming gain is
achieved to design the IRS phase shifts to improve the received
desired signal as well as mitigate the jamming interference
from the smart jammer by increasing M .

V. CONCLUSIONS

This paper proposed to improve the anti-jamming perfor-
mance of wireless communication systems by employing an
IRS. Specifically, we formulated an optimization problem by
joint optimizing both the transmit power allocation at the BS
and the reflecting beamforming at the IRS. A WoLF-PHC
learning approach was proposed to achieve the optimal anti-
jamming strategy, where WoLF-PHC is capable of quickly
achieving the optimal policy without knowing the jamming
model. Simulation results confirmed that the IRS-assisted
system significantly improves the anti-jamming performance
compared with other approaches. We will pay attention to
apply IRS in visible light communication systems in the future
[25], [26].
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