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Abstract

In this paper we provide a FFT algorithm to compute the effective permeability of
doubly porous solids constituted of two populations of pores which are different in
size. The paper focuses on the resolution of the fluid flow at the intermediate scale,
that of the macropores, that requires the resolution of the coupled Darcy/Stokes
problem. The permeability associated with the first population of cavities is as-
sumed to be known. A two-field FFT based iterative scheme is derived to compute
the solution of the Darcy/Stokes problem. The principle is to reformulate the prob-
lem by considering a unique Brinkman equation with different coefficients for the
Darcy and the Stokes regions. As a first application, we determine the macroscopic
permeability of a porous solid containing circular macropores. The results are com-
pared to analytic expressions and simplified modeling which use an equivalent Darcy
medium in place of the macropores. Next, we apply the FFT method to a bi-porous
polymer. The computations are performed on 2D and 3D cells extracted from X-ray
computed microtomography.
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1 Introduction

The design, characterization and simulation in complex hierarchical porous
materials has received particular attention for various applications in science
and engineering. For instance, hierarchically structured porous media possess
large surface area for reaction active sites at different pore scales (see for
instance Sun et al. (69), Li et al. (34) and various references herein). Polymer-
based porous materials have particularly attracted much interest from the
research community (74; 59), as they can easily be functionalized by simple
organic reactions. The preparation and analysis of doubly porous materials
have particularly attracted the focus of researchers, such as for the design of
biocompatible scaffolds meant for biomedical applications (35). Complex mul-
tiporous microstructured media can be found in natural materials, biological
systems, living organism which are maintained by the mass and energy trans-
fer through the porous system (see (68)). Other applications is the modelling
of karstic aquifers that are sometimes represented as multiporosity systems
(27; 28). The characterization of flow in such complex microstructure is of
key importance for their understanding. The characterization, identification
of such microstructures could be also made with the development of homoge-
nization approaches and robust numerical methods to simulate the fluid flow
and to determine the mass transfer properties.
The development of homogenization techniques applied to fractured multi-
porous materials has been the subject of many works during the 90’s (see
Auriault and Boutin (2; 3; 4), Royer et al. (62), Boutin et al. (13), Olny and
Boutin (56)). The approach is based on the asymptotic expansion method first
introduced by Sanchez-Palencia (65; 66) and Bensoussan et al. (10). The reader
could also refer to the book of Hornung (25) for the application of the homoge-
nization approaches to multiporous solids. When the fractures are large behind
the micropores, a double upscaling approach is justified and the macroscopic
mass transfer properties are determined by solving the Darcy/Stokes coupled
problem at the intermediate scale. The Darcy equation is used to describe the
fluid flow in the initially porous structure, and the Stokes equations is related
to the fluid flow in the fractures. Numerous studies have concerned the resolu-
tion of coupled Darcy/Stokes with various practical applications such as frac-
tured reservoir (57), spontaneous ignition of coal stockpiles (64), modeling of
lung alveolar sheet (70), insulation by permeable materials (40), flow through
porous bearings or spheres (29; 26), packed bed of particles (37; 52; 53), con-
vection in porous materials (8; 9), modeling of liquid infusion into fibrous
media undergoing compaction (58), flow in porous media with cracks (11),
industrial filtration systems (24), etc.
Essentially, two strategies have been used considering the Beaver-Joseph-Saffman
(BJS) interfacial model (7; 63) or the Brinkman equation (15; 16). From a prac-
tical viewpoint, the Brinkman model can simply be regarded as a transmission
model, bridging the limits of open to very porous media, described by Stokes
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and Darcy’s law, respectively. Specifically, by considering the fluid as a porous
medium with very high permeability, the fluid/porous composite region can
be treated with only the Brinkman equation, which helps circumventing the
use of suitable conditions for the interface.
An analytic estimate of the macroscopic permeability has been provided by
Markov et al.(39) introducing the concept of equivalent permeability for the
macropore. The permeability is determined by solving the coupled Darcy/Stokes
equations with the BJS interface model for an isolated cavity embedded in an
infinite porous matrix, considering a cylindrical or spherical pore fulfilled by
a viscous fluid. The results have been extended to the case of a spheroidal
cavity by Rasoulzadeh et al. (61). Another analytic solutions has been de-
rived by Silva and Ginzburg (67) for a composite cylinder, i.e. two concentric
cylinders in which the flow obeys to the Brinkman equation but with different
coefficients in the core and in the coating.
The numerical resolution of the Darcy/Stokes coupled problem has been the
subject of intense research. Incompressible fluid flow problems generally con-
tain velocity and pressure as the unknown variables and fall in the category of
mixed formulations (77). It was recognized that the solutions strongly depend
upon the particular pair of velocity and pressure interpolations employed. The
spaces of discretization must satisfy the inf-sup condition or Ladyhenskaya-
Babuska-Brezzi (LBB condition). This has been discussed for the Stokes prob-
lem by Babuska (6), Brezzi (14) and later for the Darcy-Stokes coupled prob-
lem with two different strategies. The decoupled strategies use different dis-
cretization spaces in the Stokes and the Darcy region (see for instance Layton
et al. (33), Discacciati et al. (20), Celle et al. (18)). Unified finite element
approaches are based on the same finite element spaces for both regions by
considering robust elements or modified variational formulation (1; 19; 31).
Stable finite element formulation of coupled Darcy-Stokes-Brinkman problems
has been studied for instance by Xie et al. (75).
In the present paper, we provide a Fourier based numerical method for com-
puting the effective permeability of multiporous materials. The method use
Green operators and FFT algorithms and has been first introduced in the
context of elasticity (50) and has been later extended to the Stokes fluid flow
in a porous rigid medium (43). In each region, we assume that the flow is
described by the Brinkman equation. The advantage of using the Brinkman
equation is that the velocity and traction are continuous across the interface
which is compatible with the use of the Fourier series.
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2 Determination of the macroscopic permeability of doubly porous

media

2.1 The double homogenization problem

Considering a Representative Volume Element (RVE) of a doubly porous solid,
both the first and the second porosity are fulfilled by a newtonian viscous fluid
with the dynamic viscosity µ. The material contains two scales : l1 and l2 which
are characteristic of the first and the second porosity. The second porosity is
related to the smaller pores while the first porosity refers to the larger pores.
Due to the presence of three scales, that of the first and second porosity and
the macroscopic scale, a double homogenization approach could be used to
determine the filtration property (see Fig. 1). This double homogenization is
only possible if the hypothesis of scale separation is satisfied. Denoting by L
the characteristic length of the macroscopic scale, that is typically a dimension
of the macrostructure, the scale separation is verified if l2 << l1 and l1 << L.
The double homogenization procedure has been already depicted in a series of
papers by Auriault and Boutin (2; 3; 4).
The first homogenization procedure consists in determining the equivalent
Darcy solid in replacement of the second porosity. This problem has been well
documented in the literature, the reader could see for instance the book of
Auriault et al. (5) which contains herein various references about the numer-
ical determination of the permeability. In the present study, we suppose that
the permeability of the microporous solid is known (identified experimentally
or numerically), and we also assume that it is isotropic for simplicity, the ex-
tension to the case of an anisotropic microporous material is not a difficulty.
Note that the determination of permeability of monoporous solids with the
FFT method has been tackled in (43; 38).
At the intermediate scale, the macropores are embedded in the equivalent
Darcy solid. The fluid flow obeys to the Darcy equation in the microporous
solid and to the Stokes equation in the macropores. The macroscopic perme-
ability is then determined by solving at the intermediate scale the coupled
Darcy/Stokes equations that is detailed in the next section.
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Fig. 1. Three scales of the double homogenization problem of the biporous solid.

2.2 Coupled Darcy/Stokes problem

The determination of the macroscopic permeability of doubly porous media
involves the resolution of the coupled Darcy-Stokes equations at the interme-
diate scale. The macropores or fractures volume is denoted Ωp and the porous
solid volume is denoted Ωs. The fluid flow is generated by applying the con-
stant pressure gradient J . In the macropores, the Stokes equations are used:

µ∆v −∇p = J ∀x ∈ Ωp

div v = 0 ∀x ∈ Ωp

(1)

Within the porous solid, the fluid flow obeys to the Darcy law with the in-
compressibility condition:

v = −k

µ
(∇p+ J) ∀x ∈ Ωs

div v = 0 ∀x ∈ Ωs

(2)

In Eqs. (1) to (2), v denote the local velocity, p, the local pressure, µ is the dy-
namic viscosity and k is the permeability of the microporous solid. We assume
that the porous solid containing the micropores is isotropic, then the relation
giving the seepage velocity v as function of the pressure gradient only involves
the scalar k. It must be noted, that the use of a tensor in the FFT algorithm
described in the next of the paper is possible. The hypothesis of isotropy is
considered for simplicity.
Between the two regions, the porous solid and the fluid, appropriate inter-
regional conditions must be considered. For example, the Beavers-Joseph-
Saffman model (7; 63) is often considered. Another approach consists in using
the Brinkman equation with an effective viscosity in the Darcy medium. The
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question about the choice of the conditions is more discussed in the next sec-
tion.
At the boundary of the unit cell the periodicity is considered for the pressure
p and the velocity v.
The macroscopic velocity is computed by taking the average of the local ve-
locity (see for instance (60)):

V =< v >Ω=
1

|Ω|
∫

Ω
vdV (3)

Due to the linearity of the equations, the macroscopic permeability linearly
depends on the applied macroscopic pressure gradient J :

V = −1

µ
K.J (4)

where K is the macroscopic permeability which depends on the two popula-
tions of cavities.

2.3 Resolution with the Brinkman equation

The local problem at the intermediate scale uses two different equations: the
Stokes ones in the macropores and the Darcy ones in the microporous solid.
This constitutes a difficulty for the application of the FFT method because
it has been developed for the resolution of heterogeneous problems, i.e. the
problems which use the same equations for each phase but with different lo-
cal properties. For instance, in the problem of elastic composites, the elastic
coefficients differ from one phase to another but the elasticity equations are
used anywhere in the unit cell. By introducing the concept of polarization, it
is possible to use the Green operator in order to put the problem in an integral
form given by the Lippmann-Schwinger and to solve it by an iterative scheme.
By adopting the Brinkman equation, the coupled Darcy/Stokes equation can
be written as an heterogeneous problem:

ϕ(x)∆v − β(x)v −∇p = J ∀x ∈ Ω (5)

div v = 0 ∀x ∈ Ω (6)

where ϕ(x) and β(x) are defined by:

ϕ(x) =




µ x ∈ Ωp

µe x ∈ Ωs

, β(x) =




0 x ∈ Ωp

µk−1 x ∈ Ωs

(7)
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in which µe is the effective dynamic viscosity. The case of a coupled Darcy/Stokes
problem corresponds to µe = 0. In the exemples provided in this paper, we
put µe = 0, excepted for the validation with numerical solutions coming from
the literature and given in section 5.
A the boundary of the unit cell we assume the periodicity of the velocity v

and the antiperiodicity of the traction σ.n.
The conditions at the interface between the two phases (denoted by S) is the
continuity of the velocity field and the traction (see (75)):

v(s) = v(p), σ(s).ν = σ(p).ν ∀x ∈ S (8)

where ν is the normal unit vector taken on S, exponent (s) makes reference
to the microporous solid (Ωs) and exponent (p) to the fluid phase (Ωp). In Eq.
(8), σ is the local stress tensor given by:

σ = 2ϕ(x)d− pI (9)

and where d is the strain rate tensor defined by:

d = ∇sv =
1

2
(∇v +∇Tv) (10)

that is traceless due to incompressibility.
The interface conditions between the two regions play a key role in the deter-
mination of the mass transfer properties of the biporous solid. In the present
paper, we just consider the simplest conditions involving both the continuity
of the velocity and traction. Besides, such conditions are considered in many
works, for instance by Silva and Ginzburg (67) and by Xie et al. (75). The con-
sideration of more accurate description of the fluid transfer between the two
regions generally involves jump conditions for the velocity and/or the traction.
For instance, the Beaver-Joseph-Saffman model (7; 63) involves the jump of
the tangential component of the velocity while the normal component remains
continuous across the surface between the Darcy and the Stokes region. Al-
ternatively, other works add more terms in the momentum transport equation
(54; 55) (see also (23; 71; 72) for the determination of the stress jump coeffi-
cient). In these work, the jump condition is constructed to join Darcy region
with the Brinkman one and it involves a jump in the stress. Later, in (73),
both the jump of the velocity and stress was considered between a porous
medium and a fluid. Note also that the interface condition has been recently
treated in (36) with a penalization method.
The standard FFT method is better suited to problems with continuous fields
since it uses a discretization with Fourier series, both the continuity of the
velocity and traction is then considered in this paper. In order to obtain more
accurate description, jump conditions will be considered between the porous
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solid and the fluid and could be accounted with the extended FFT method
recently proposed by Monchiet (48).

2.4 Non dimensional problem

The calculations are performed for the non dimensional problem. The latter
is derived by considering the adapted variable change. Without macropores,
the solution in the unit cell is trivial, the velocity is constant in the unit cell
and given by:

v = −k

µ
J (11)

If the macropores are interconnected, we non-dimensionalize the velocity with
l1. In that case, the macroscopic velocity is of the order of the square of the
characteristic size of the macropore that is approximatively equal to the square
of l1 (if the size of the unit cell and the characteristic size of the macropores are
of the same order). In the paper, we only study the case of non-interconnected
macropores. This means that the macroscopic permeability is of the order of
k, the permeability of the porous matrix (with the micropores), that is also
of the same order that the square of l2. This suggests that the velocity at the
intermediate scale is:

v = O

(
k

µ
J

)
(12)

We then use the change of variables:

v =
k|J |
µ

v, p = |J |l1p, J = |J |j, x = l1x (13)

where it is recalled that l1 is the dimension of the unit cell at the intermedi-
ate scale. Vector j gives the direction of the prescribed macroscopic pressure
gradient, j = J/‖J‖. Introducing this change of variables in Eqs. (5) and (6)
leads to:

ϕ(x)∆v − β(x)v −∇p = j ∀x ∈ Ω (14)

divv = 0 ∀x ∈ Ω (15)

where ϕ(x) and β(x) are defined by:

ϕ(x) =





ε2 x ∈ Ωf

µe

µ
ε2 x ∈ Ωs

, β(x) =




0 x ∈ Ωf

1 x ∈ Ωs

(16)

in which we have introduced the non dimensional coefficient ε defined by:
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ε =

√
k

l1
(17)

The permeability k is associated with the second porosity and is k = O(l22)
where it is recalled that l2 is the characteristic dimension of the second poros-
ity. Assuming the scale separation between the first and the second porosity,
the coefficient ε must remain small behind 1. When ε tends to zero, that cor-
responds to a strong scale separation between the two populations of pores,
the dissipative term in Eq. (14) can be omitted and the problem reduces to
solve only the Darcy equation. In that case, the macropores are replaced by
an equivalent Darcy medium with a null hydraulic resistivity (an infinite per-
meability).
Introducing the change of variable (13) in equation (4) with the definition (3)
for the macroscopic velocity, we obtain:

V = −K .j (18)

in which K is given by:

K =
1

k
K (19)

K is a dimensionless permeability. It can be also interpreted as an ”amplifica-
tion factor” due to the presence of the macropores in the microporous matrix.
Indeed, if the microporous matrix has the permeability k, the macroscopic
permeability is K = kK. The macroscopic resistivity (the inverse of K) is

H = hH where h = k−1 and H = K
−1
.

3 Mathematic preliminaries

New FFT algorithms are derived in this paper to solve the Brinkman equation.
The cornerstone of the FFTmethod is the formulation of the local problem into
an integral equation called Lippmann-Schwinger equation which uses Green
operators. This integral equation is established by taking advantage of the
solution of an auxiliary problem: the inclusion problem in the sense of Eshelby
(21). In this section, we derive the close form solution of the inclusion problem
related to the Brinkman problem and we introduce the corresponding Green
operators.
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3.1 Reformulation of the Brinkman problem

Let us first introduce the vector ω defined by:

ω = β(x)v (20)

The Brinkman problem is rewritten into the following form:

div(σ) = ω −W (21)

σ = 2ϕ(x)d− pI (22)

ω = β(x)v (23)

d = ∇sv (24)

div(v) = 0 (25)

with W = −J and the periodicity condition at the boundary of the unit cell.
We observe that the set of equations is constituted of:

• Eq. (21): an equilibrium equation for the stress field σ and ω,
• Eqs. (22) and Eq. (23): an uncoupled local linear relation between the pair
of tensors (σ,ω) and the pair (d, v),

• Eq. (24): a compatibility relation between the strain rate tensor and the
velocity,

• Eq. (25): the incompressibility condition.

By taking the average of the first equation in (21) over the volume of the unit
cell Ω, we obtain:

< div(σ) >Ω=< ω >Ω −W (26)

By making use of the divergence theorem, the first term in the above equation
can be transformed into an integral over the boundary of the cell that is null
due to the antiperiodicity of the traction. We deduce that:

< ω >Ω= W (27)

Then, W represents the average of the quantity ω over the volume Ω. The
average of the local velocity reads:

V =< v >Ω=
1

µ
K.W (28)

where K is the macroscopic permeability, or equivalently:
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W = µH .V (29)

where H is the macroscopic resistivity (the inverse of K).
Let us introduce the deviatoric part of the stress tensor denoted by s:

s = σ + pI = 2ϕ(x)d (30)

The relation between the pair of tensors (s,ω) and (d, v) can be put into the
form:


 s

ω


 =




2ϕ(x) 0

0 β(x)





d

v


 (31)

3.2 Inclusion problem

3.2.1 Solution in Fourier space

Let us introduce the fictitious homogeneous Brinkman medium with the co-
efficients ϕ0 and β0 (the permeability is assumed to be isotropic). We are
interested in the following inclusion problem in the sense of Eshelby (21) (see
also the book of Mura (51)): the homogeneous porous solid is subjected to the
following pair of periodic eigenfields q (with tr(q) = 0) and f :





div(σ) = ω −W

σ = 2ϕ0d− pI + q

ω = β0v + f

d = ∇sv

div(v) = 0

(32)

The solution of this problem could be easily computed in the Fourier space.
All the details could be found in appendix A. By adopting the notations in-
troduced in Eq. (31), the solution of the inclusion problem can be read:


 d̂

v̂


 = −




Γ̂0 Ω̂0

−Ω̂0 Ĝ0





 q̂

f̂


 (33)

where the ”hat” over each variable represent the Fourier transform of the cor-
responding quantity.
In Eq. (33), we have introduced the following Green operators:
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Γ̂0
ijkl =

λ‖ξ‖2
4

(QipPjq +QiqPjp + PipQjq + PiqQjp), (34)

Ω̂0
ijk =

iλ‖ξ‖
2

(Qiknj +Qjkni), (35)

Ĝ0
ij = λQij (36)

where λ is defined by:

λ =
1

ϕ0‖ξ‖2 + β0
(37)

and P , Q, and n are defined by:

∀ξ 6= 0 : Q = I −P , P = n⊗ n, n =
ξ

‖ξ‖ ,

for ξ = 0 : P = 0, Q = 0, n = 0

(38)

Note that tensors P and Q are two projectors. They satisfy to (∀ξ 6= 0):

P .Q = Q.P = 0, P .P = P , Q.Q = Q, P +Q = I, (39)

P .n = n.P = n, n.Q = Q.n = 0 (40)

For ξ = 0, Γ̂0, Ω̂0 and Ĝ0 are null. In Eq. (33), Ω̂0 is the adjoint of Ω̂0 such

that d : Ω̂0.v = v.Ω̂0 : d.

3.2.2 Solution in real space

Let us come back to the real space. The solution of the inclusion problem is
derived by taking the inverse Fourier transform of Eq. (33). Let us recall that
the component of any quantity with ξ = 0 represents the volume average of
this quantity over the volume of the unit cell Ω. As a consequence, when a
Green operator is applied to any pair of tensors, it generates a pair of tensors
whose volume average is null. Therefore, the average of each corresponding
quantity must be added when coming back to the real space:


d

v


 =


 0

V


−




Γ0 Ω0

−Ω0 G0


 ∗


 q

f


 (41)

where ”∗” denotes the convolution product. The mean value of each corre-
sponding quantity has been added: V for the velocity field and zero for the
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strain rate tensor d (since the latter derivates from a periodic velocity field).
To simplify the notations, we put:

G0 =




Γ0 Ω0

−Ω0 G0


 (42)

such that the solution of the inclusion problem can be also read:


d

v


 =


 0

V


− G0 ∗


 q

f


 (43)

4 Resolution with a FFT based iterative scheme

4.1 Lippmann-Schwinger equation

The Brinkman problem (5), (6) can be put into the form (32) by considering
the following expression for the pair of eigentensors:

q = 2(ϕ(x)− ϕ0)d, f = (β(x)− β0)v (44)

By considering expressions (44) in relation (43), we deduce that:


d

v


 =


 0

V


− G0 ∗


 2(ϕ(x)− ϕ0)d

(β(x)− β0).v


 (45)

The latter equation is an integral equation, called Lippmann-Schwinger equa-
tion, for the variables v and d. The enforcing term is the macroscopic velocity
V .

4.2 Resolution with an iterative scheme: first form

The solution of the integral equation (45) can be expanded along Neumman se-
ries along the line of a method first introduced by Brown (17), Kroner (32) and
numerically computed with the FFT in the context of elasticity by Moulinec
and Suquet (50). Each term of the Neumann series can be computed with the
following iterative scheme:
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
di+1

vi+1


 =


 0

V


− G0 ∗


 2(ϕ(x)− ϕ0)di

(β(x)− β0)vi


 (46)

and which is initialized with:

d0 = 0, v0 = V (47)

Eq. (46) is the first form of the iterative scheme. A second form is provided in
the next section.

4.3 Second form of the iterative scheme

A simplification of the iterative scheme (46) is possible. To this purpose, let
us consider the following property of the Green operator G0: for any periodic
velocity field v which complies with the incompressibility, we have

G0 ∗


 2ϕ0d

β0v


 =


 d

v − V


 (48)

in which the strain rate field d derivates from v. The demonstration is pro-
vided in the appendix (see section B).
Since at each step of the iteration process we have di = ∇svi and vi is incom-
pressible, it is possible to simplify the iterative scheme (46) by:


di+1

vi+1


 =


di

vi


− G0 ∗


 2ϕ(x)di

β(x)vi


 (49)

that is the second form of the iterative scheme. The recurrence process is still
initialized by Eq. (47). Note that in Eq. (49), 2ϕ(x)di is the deviatoric part
of the stress field computed at iteration i and which can be denoted si. Also,
β(x)vi can be denoted ωi. When the convergence of the iterative scheme is
achieved, ωi = β(x)vi is equal to ω the solution of the Brinkman equation
(21)-(25). By taking the average of ω over the volume of the unit cell, we
determine the macroscopic resistivity (and then the macroscopic permeability)
following Eq. (29).
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4.4 Third form of the iterative scheme

The solution at convergence may comply with all the equations in (21)-(25).
Some equations are verified at each step of the iteration process, they are:
the local relations si = 2ϕ(x)di and ωi = β(x)vi, the compatibility equation
between the strain rate tensor and the velocity field, di = ∇svi and the in-
compressibility, tr(di) = div(vi) = 0.
Only the equilibrium div(σi) = ωi −W is not verified at each iteration but
only at the convergence.
When the convergence is achieved, that corresponds to di+1 = di and vi+1 =
vi, we have:

G0


 si

ωi


 = 0 (50)

The latter condition is a measurement of the distance from the equilibrium.
Let us give the proof. To this purpose, let us come back to the Fourier space.
Owing to Eq. (42) (with the definitions (34)-(36)), it is easy to show that:

Ĝ0


 ŝi

ω̂i


 = −λ


 iÊi ⊗s ξ

Êi


 (51)

where Êi is given by:

Êi = Q.(iŝi.ξ − ω̂i) (52)

It can be noted that the quantity Êi is null when the equilibrium is verified.
Indeed, the equilibrium is iσ̂i.ξ = ω̂i in the Fourier space. The projection of
this equation onto the plane normal to the wave vector ξ is iQ.ŝi.ξ = Q.ω̂i.
In this equation, the pressure vanished because its projection along Q implies
the product of Q by ξ that is null.
Owing to relation (51), we can simplify the iterative scheme as follows:

15



initialization: v0 = V , d0 = 0

iteration i : (a) ωi = β(x)vi, si = 2ϕ(x)di

(b) ω̂i = FFT (ωi), ŝi = FFT (si)

(c) Êi = Q.(iŝi.ξ − ω̂i)

(d) convergence criterion

(e) v̂i+1 = v̂i + λÊi

(f) d̂i+1 = iv̂i+1 ⊗s ξ

(g) vi+1 = FFT−1(v̂i+1), di+1 = FFT−1(d̂i+1)

In the third form, it is not necessary to compute and to store the components
of the Green tensor. This has the advantage to reduce the computer memory
because the total number of components is 45. Indeed, the Green tensors Γ0,
Ω0, G0 possess 21, 18, and 6 distinct components respectively. With the third
form, only the computation of λ and vector E (3 components) is required.
Note that the case of anisotropic porous solid could be considered by replac-
ing, in step ”a”, the scalar β(x) by a two order-tensor. If the porous solid is
anisotropic, the local permeability k is replaced by a two-order tensor k, and,
in the definition of β(x) given by (7), µk1 is replaced by µk−1 involving the
inverse of the two order permeability tensor k.

4.5 The choice of the reference material

The convergence of the iterative scheme drastically depends upon the choice
of the reference material. The latter is given by two coefficients ϕ0 and β0. The
coefficients of the reference material is just introduced in order to obtain the
convergence of the iterative scheme. In fact, ϕ0 and β0 could be interpreted as
two preconditioners which are adjusted in order to obtain the better rate of
convergence.
Following the methodology of Michel et al. (41) and Milton (42), the values of
ϕ0 and β0 could be determined by minimizing the spectral radius of the linear
operator involved by the Neumann series. In the context of elasticity, it has
been demonstrated that the optimal elastic coefficients of the reference ma-
terial are defined by the average of the local elastic coefficients of the phases
(for a two phase composite). Milton (42) obtain a similar result for the heat
problem.
It is possible to extend the demonstration in the case of the Brinkman equa-
tion. It is not provided here. In fact, we obtain an equivalent expression for
ϕ0 and β0:
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ϕ0 =
ϕp + ϕs

2
, β0 =

βp + βs

2
(53)

where the indices ”p” and ”s” make reference to the corresponding quantity
taken in Ωp and Ωs respectively.

4.6 The convergence criterion

The convergence is achieved when the local equilibrium is satisfied. The local
equilibrium is verified when the vector Ei, given by Eq. (52), is null. The
following convergence criterion is used to check the accuracy of our numerical
solution:

√∑

n

‖Ei(ξn)‖2

‖Wi‖
≤ η

(54)

where ‖ • ‖ is the L2-norm for a vector and η is the precision.
The convergence of the iterative scheme is illustrated by considering the case
of a circular macropore in a squared unit cell. The void radius is denoted by R.
For the non dimensional problem, we define by R = R/l1 the normalized radius
where it is recalled that l1 is the dimension of the unit cell. The calculations
are performed with R = 0.25, the diameter of the circular hole is then half the
dimension of the unit cell. The calculations are performed with 256×256 wave
vectors. The FFT solution for the permeability is computed with different
values of η and is compared with a solution computed with a precision of
η = 10−15. The relative error is reported in figure 2 for two values of ε. The
results show that a very good precision is obtained by considering η = 10−6.
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Fig. 2. Relative error for the permeability as function of the precision η. Case of a
circular hole with R = 0.25.

5 Application to a biporous solid with circular macropores

5.1 Validation and comparisons with analytic solutions

Analytic solutions have been provided by Markov et al. (39). The principle of
the approach consists in determining an equivalent permeability for a circular
hole embedded in an infinite porous medium. Next, by making use of the
analogy between the Darcy equation and that of the thermal conductivity, the
effective permeability is estimated by the Maxwell formula.
The equivalent permeability obtained by Markov et al. (39) for a circular
macropore is:

k′ =
R2

2

(
1− 3λ

√
k

R

)
(55)

in which λ is a coefficient of the Beaver-Joseph-Saffman (BJS) interface model.
Markov et al. (39) suggests that the term with the coefficient λ in Eq. (55) is
negligible and the permeability of the circular void could be approximated by
k′ = R2/2. The justification is that k = O(l22) where l2 is the characteristic
dimension of the second porosity and then

√
k/R = O(l2/R) which must

be a small parameter assuming the strict scale separation between the two
populations of cavities. Moreover, Markov et al. (39) suggest that coefficient
λ is comprised between 0 and 5. So, the term proportional to λ could be
neglected. Note that the effective permeability of doubly porous materials with
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cylindrical and spherical macropores has been recently provided by Monchiet
et al. (49). The determination of the permeability of the equivalent Darcy solid
has led to the following expression:

k′ =
R2

2

(
1 +

2
√
k

δR

)
(56)

where δ = 1/λ is the slip coefficient. It must be observed that, by neglecting
the term with δ, we obtain the same approximation: k′ = R2/2.
For the comparison with the FFT solutions based on the Brinkman equation,
it is important to recall that the conditions at the interface are the continuity
of the velocity and the traction and differ from the conditions given by the
BJS model. Particularly, the case λ = 0 in the BJS model corresponds to the
adherence, i.e. the tangential component of the velocity field is null at the
frontier of the Stokes region but its counterpart in the Darcy region is not
necessary null. Only the normal component of the velocity field is continuous
across the interface. With the Brinkman model, both the normal and tangen-
tial components of the velocity are continuous.
The macroscopic permeability K is given by the Maxwell formula for a dilute
suspension of conducting spheres in a conducting matrix (and by making the
analogy between conductivity and permeability):

K = k

(
1 + 2f

c− 1

1 + f + c(1− f)

)
(57)

where c denotes the phase contrast defined by c = k′/k that is, owing to eq.
(55) with λ = 0:

c =
R2

2k
(58)

Using the hypothesis of strong separation of scales, the contrast is very large,
c >> 1. The effective permeability can be approximated by taking the limit
c → +∞ in Eq. (57) and leads to:

K = k
1 + f

1− f
(59)

We aim now to provide comparisons between the Maxwell formula for c = +∞
and c = R2/(2k) with the FFT solution.
Note that the FFT method is implemented with the shape coefficient for the
circular inclusion. The shape function is the exact analytic expression of the
Fourier transform of the characteristic function of the phases which can be
determined analytically for particular simple geometries. The method has the
advantage to describe exactly the geometry of the microstructure and the de-
tails about its numerical integration can be found in the paper of Bonnet et
al. (12) (see also Monchiet (47) which provides some additional details about
the convolution product with the shape coefficients).
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As an application purpose, we provide in Figs. 3 and 4 the normalized per-
meability K/k as function of the radius of the macropore for ε = 10−2 and
ε = 10−1 respectively. The equivalent viscosity µe is null. In Fig. 3, we observe
that the estimates with c = +∞ or c = R2/(2k) leads to the same values for
the macroscopic permeability. The estimates coincide with the FFT solution
for f < 0.5 but a difference is noted for higher values of the volume fraction of
the porosity. Regarding Fig. 4, we observe a good agreement between the FFT
solution and the estimate with the infinite contrast. Moreover, the estimate
with c = R2/(2k) is not accurate. To summarize, the estimate with the infinite
contrast is the better approximation whatever the value of ε.
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Fig. 3. Normalized macroscopic permeability K/k as function of the radius of
the macropore. Comparison between the FFT solution and analytic estimates for
ε = 10−2.
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Fig. 4. Normalized macroscopic permeability K/k as function of the radius of
the macropore. Comparison between the FFT solution and analytic estimates for
ε = 10−1.

The relative error between the analytic estimates of the macroscopic perme-
ability and the FFT numerical solutions are provided on figure 5
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Fig. 5. Relative error (in percent) between the analytic solutions and the FFT
numerical one in the ε = 10−2 (at the left) and ε = 10−1 (at the right).

As a validation, we compare our results with that provided by Golfier et al.
(22) obtained with a commercial finite-element solver. The computations are
performed with the pore radii R = 0.1, R = 0.2, R = 0.3, R = 0.4 and
with an equivalent viscosity µe = µ/

√
3 (we consider the same value that in

(22)). The variations of the non-dimensional macroscopic permeability K/k as
function of the scale factor ε are shown in Fig. 6. We also represent the analytic
estimate given by Eq. (59) that is independent of ε. We observe a very good
agreement between the two numerical solutions in the case R = 0.1, R = 0.2,
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R = 0.3. Moreover, the analytic solution is in a good agreement with the
numerical solution at small values of ε. For the pore radius R = 0.4, we observe
differences between the two numerical solutions and the analytic solution. The
differences will probably be attributed to the boundary conditions.
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Fig. 6. Variations of the non-dimensional macroscopic permeability K/k as function
of the scale factor ε. Comparison with the numerical solutions of Golfier et al. (22)
and analytic estimate (59).

5.2 Simplification with an equivalent Darcy region

Knowing the equivalent permeability of the circular void, we can simulate the
flow through the bi-porous solid by considering only the Darcy equation. Note
that the Darcy equation is equivalent to the thermal conduction of composites
and are closed to that of elasticity. As a consequence, standard FFT methods
could be employed to solve the unit cell problem with two phases obeying to
the Darcy equation. Note that the resolution of the problem with two Darcy
regions could be also solved with the algorithm given in Table 4.4 by putting
ϕ(x) = 0 and by giving the corresponding expression for the resistivity β(x)
in each phase.
As an illustration purpose, the FFT solutions obtained with the Brinkman
equation and with the Darcy equation are provided in Figs. 8 and 9. In these
figures, we compare the effective permeability for ε = 10−2 and ε = 10−1.
For the simulation with two Darcy regions, we use the equivalent permeability
k′ = +∞ and k′ = R2/2 (that corresponding to the resistivities h′ = 0 and
h′ = 2/R2). In the case ε = 10−2, we observe a very good agreement between
the three results. For ε = 10−1, the results corresponding to c = +∞ is
in a good agreement with that obtained with the Brinkman equation when

22



the volume fraction is inferior to 0.5 but overestimates the permeability for
higher values of f . The results obtained with c = R2/(2k) underestimate the
macroscopic permeability. These results are quite equivalent to those observed
when making the comparison with the analytical estimates in the last section.
Now we aim at comparing the local velocity field. We compare the results
obtained with the Brinkman equation with that obtained with two Darcy
solids and the equivalent permeability k′ = +∞. In Fig. 10, we provide the
distribution of the velocity component v1 along the line x1 = 0 for the circular
pore radii R = 0.2 and R = 0.4 and for ε = 10−2, ε = 10−1. In Fig. 11, we
provide the same results for the velocity component v1 but along the line x2 = 0
(see Fig. 7). It is observed that the local solutions are very different especially
within the macropore. In Fig. 10 a,b,d and in Fig. 11 a,b,d, the solutions
out of the macropore are very closed but the solution within the macropore
is different. Note that the porosity associated with the radii R = 0.2 and
R = 0.4 is f = 0.126 and f = 0.504 respectively. For these porosity values, the
macroscopic permeability computed with the Brinkman equation of the Darcy
one are very closed (see Figs. 3 and 4) but the substitution with an equivalent
Darcy region cannot be used to determine accurately the local solution.

x1 = 0

x2 = 0

Fig. 7. Lines corresponding to x1 = 0 and x2 = 0.
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Fig. 8. Normalized macroscopic permeability K/k as function of the radius of
the macropore. Comparison between the FFT solution and analytic estimates for
ε = 10−2.
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Fig. 9. Normalized macroscopic permeability K/k as function of the radius of
the macropore. Comparison between the FFT solution and analytic estimates for
ε = 10−1.

24



-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

coordinate x2

-0.5

0

0.5

1

1.5

2

2.5

v
e

lo
ci

ty
 v

1

Darcy/Stokes

Darcy/Darcy

R = 0.2

ε = 10-2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

coordinate x2

0

0.5

1

1.5

v
e

lo
ci

ty
 v

1

Darcy/Stokes

Darcy/Darcy

R = 0.4

ε = 10-2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

coordinate x2

-0.5

0

0.5

1

1.5

2

2.5

v
e

lo
ci

ty
 v

1

Darcy/Stokes

Darcy/Darcy

R = 0.2

ε = 10-1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

coordinate x2

0

0.5

1

1.5

v
e

lo
ci

ty
 v

1

Darcy/Stokes

Darcy/Darcy

R = 0.4

ε = 10-1

Fig. 10. Local velocity component v1 along the line x1 = 0.
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6 Application to a biporous polymer

6.1 Elaboration of doubly porous polymeric materials

The doubly porous polymeric materials are elaborated via the double porogen
templating approach. A 3-D continuous NaCl particle-based template leads to
the first level of porosity, while the porogenic solvent ensures a lower poros-
ity level through a phase separation process during the polymerization step.
First, 2 g of NaCl particles having various sizes (from 50µm to 500µm) are
weighted in a glass vial and then gently stirred over an orbital shaking plate in
order to ensure homogeneous particle packing. 2-Hydroxyethyl methacrylate
(HEMA) is used as the functional monomer and ethylene glycol dimethacry-
late (EGDMA) as a crosslinking agent. In a second step, HEMA and EGDMA
are mixed in a 70/30 molar ratio in the presence of the polymerization initia-
tor, i.e. DMPA, and 80 vol. % of a porogenic solvent, i.e. propan-2-ol (with
respect to the total comonomers volume). The mixture is added to the NaCl
particle template, and the polymerization is conducted in a UV oven for 4 h
at 365nm. Once the polymerization completed, NaCl particles are removed
by extraction with deionized water for 3 days (water is changed once a day).
Upon porogen extraction, the samples are washed abundantly with water, and
dried at room temperature under vacuum.

6.2 Observation of doubly porous polymeric materials microstructure by means
of µCT

X-ray microtomography (µCT) is used to characterize the 3-D microstructure
of the doubly porous networks prepared via the double porogen templating
approach. The aim is to investigate the homogeneity of porosity as well as
the pore shape and interconnectivity. The experimental protocol consists in
sticking a cylindrical biporous polymer sample, about 1 cm in diameter, on
top of a thin cylindrical holder, which is mounted on the rotating stage of the
microtomograph. The imaging configuration is based on a Hamamatsu L10801
micro-focus reflection X-ray source (max. 230 kV and 200 W, min. spot size
5µm) combined with a Varian 2520 at panel detector (1920×1536 pixels, pixel
size: 127 µm, CSI scintillator). Table 1 shows the experimental conditions.
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Voxel size (m) 8.75

Tension (kV) 25

Intensity (A) 400

Number of radiographic projections 1440

Reconstructed Volume (voxels) 1840 × 1840 × 1270

Scanning time (h) 10

Table 1
Experimental conditions for the ţCT observation

The image of the microstructure shows a rather homogeneous pore distribution
and a porous network with large pore imprints of sizes similar to those of NaCl
particles. The exploration of the 3-D image of the sample confirmed that the
large pores are mostly isolated within the polymer matrix. The second porosity
level is not observed due to the insufficient resolution of the images.

Fig. 12. X-ray microtomography of biporous polymer sample.

It must be also noted that some macropores are very closed and are separated
by thin porous walls. It can be supposed that the walls are probably more
porous that in the microporous matrix bulk. A zoom is provided in figure 13.
The white circles show the walls between macropores in which the gray scale
is higher than in the surrounded matrix.

28



500 µm

Fig. 13. Selected image of 186×186 pixels which shows the thin porous walls between
the macropores

6.3 Thresholding of phases

In Fig. 14, at the right, we provide the distribution of pixels as a function of
the grayscale. In these figures, two peaks are evident. Let us denote by X the
value of the grayscale and by X1, X2 the values of X corresponding to the
peaks. Each peak is associated with a phase, the fluid phase for the higher
peak and the porous solid phase for the lower one. For FFT computations, we
need to determine the thresholds below which the pixels are deemed to belong
to the macropores and above which they are part of the porous solid phase. If
we consider that some pixels are ”mixed” or ”composite”, they are part of both
the macropores and the porous solid phase, the introduction of two thresholds
is then needed.
Let us then introduce two characteristic values X ′

1 and X ′

2. When the grayscale
X is inferior to X ′

1, then, the pixel belongs to the macropores. Alternatively,
when X > X ′

2, the pixel belongs to the porous phase. When X is comprised
between X ′

1 and X ′

2, the pixel is mixed. The following law is then used to
determine the volume fraction of the porous solid phase (cs) and of the fluid
phase (cf) in a mixed pixel:

29



cs(X) =





0 X < X ′

1

1 X > X ′

2

X −X ′

1

X ′

2 −X ′

1

X ′

1 ≤ X ≤ X ′

2

, cf(X) = 1− cs(X) (60)

The two thresholds X ′

1 and X ′

2 are determined as function of the two values
at the peak (X1 and X2) by the following relations:

X ′

1 = (1− α)X1 + αX2 (61)

X ′

2 = αX1 + (1− α)X2 (62)

in which α is a coefficient which must be taken in the range [0, 0.5]. The
value of α determines the number of mixed pixels. When α = 0.5, we have
X ′

1 = X ′

2 = (X1 + X2)/2. There is only one threshold which separates the
pixels which belong to the porous solid an fluid phases. In this case, there is
no mixed pixels. When α = 0, X1 = X ′

1 and X2 = X ′

2, the two thresholds are
taken at the peaks and all the pixels lying between the peaks are mixed.

macropores

mixed pixels

microporous matrix

X1 X ′

1 X ′

2 X2

number of pixels

X

Fig. 14. At the left : number of pixels as function of the gray value. At the right :
thresholding of the phases.

Some examples of slices from the data set at this level of thresholding are
illustrated in Fig. 15 for three values of α. The images give the distribution of
cs for a selected image. The dark blue pixels belong to the macropores (fluid
phase) in which cs is null, the yellow pixels belong to the microporous solid in
which cs is equal to 1, the light blue pixels are mixed. It can be observed that
all the mixed pixels are essentially located at the interface between the phases.
The number of mixed pixels is maximal for α = 0 and null when α = 0.5. The
value α = 0 seems to be not pertinent since we observe some mixed pixels
within the volume of the macropores while they should be confined next to
the interface. For α = 0.5, there is no pixels, this situation is not representative
of the real microstructure because the walls between the macropores are more
porous than in the bulk matrix. The intermediate value α = 0.25 appears to
lead to the more realistic distribution of cf and is used for the calculations.
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α=0 α=0.25 α=0.5

Fig. 15. Value of cs for three values of the thresholding coefficient α for a selected
slice of dimension 400 × 400.

6.4 Numerical results

We investigate the effect of the scale factor ε between the two population of
pores. The calculations are performed on a unit cell of dimension 2003 (see
Fig. 16). The permeability is computed by increasing the value of ε from 10−3

to 10−1, by doing so we gradually increase the smaller pores size while the size
of the macropores is fixed. Note that for ε > 10−1, the problem is not homog-
enizable because the sizes of the two populations are too close. For the values
inferior to 10−3, the time computations is prohibitive due to a lower rate of
convergence of the iterative scheme. The method could by surely improved by
considering accelerated schemes (see (44; 45; 46)) or the conjugate gradient
(76) but this is not investigated in the present study.
Fig. 17 provides the dimensionless resistivity as function of ε. It is observed
that the resistivity components increases with the scale factor. The macro-
scopic permeability then decreases with ε. This suggests that the larger the
size of the macropores (in comparison to that of the micropores), the higher
their influence on the macroscopic permeability. A physical meaning can be
found by considering the dimensionless problem (see Eq. (14) together with
(16)). The apparent viscosity in the macropores (that is ε2) decreases when
the scale factor also decreases and consequently, the velocity in the macropores
increases when the size of the micropores is reduced.
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Fig. 16. 3d unit cell of the biporous polymer
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Fig. 17. Variation of the components of the macroscopic resistivity as function of
the scale factor ε.

7 Conclusion

This paper proposes an efficient FFT-based iterative scheme to compute the
local fluid flow and the overall transport properties of a porous solid with two
populations of cavities. The fluid flow is described by the Darcy equation in
the porous solid containing the micropores and by the Stokes equation in the
macropores. The principle of the method is to use the Brinkmann equation
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for both phases and the associated Green operator. The method of resolution
uses an iterative scheme to solve the associated integral equation and the FFT
to make the convolution product with the Green operator. The method has
been first applied to the case of a porous solid containing a periodic distribu-
tion of circular macropores. The results are compared with analytic solutions
and numerical FFT solutions with using an equivalent Darcy solid in place of
the Stokes region. It has be found that the approximation with an equivalent
Darcy solid (with an infinite permeability) can reproduce the variations of
the effective permeability with the volume fraction of macropores. However,
the results show that the method could not be applied to compute accurately
the local velocity. Next, we apply the method to a biporous polymer. The
computations are performed on digital images obtained by microtomography.
The influence of the thresholding of the phases on the mass transport prop-
erties has been first studied. The proposed method consists in introducing
two thresholds to define the pixels which belongs to the microporous region,
the macropores or which are mixed. Depending on the thresholding coefficient
variations some macropores can be connected of separated by a thin porous
wall, leading to important variations on the macroscopic resistivity of the
porous polymer. Next, the macroscopic resistivity is computed by increasing
the size of the unit cell and making statistical averages for a finite number of
selected images. Finally, calculations are performed on a 3D unit cell of the
bi-porous polymer to analyze the effect of the scale factor between the pop-
ulations of cavities. Through these applications, the proposed FFT method
has proved to be an efficient approach to analyse the mass transfer properties
through complex bi-porous microstructures. The approach could be applied
to other problems such that fractured rocks or concrete. The approach could
be also improved by introducing a refine description of mass transfer through
the interface between the microporous matrix and the macropores adopting
for instance the Beavers-Joseph-Saffman condition (7; 63) or by adding more
terms in the momentum transport equation following (54; 55).
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A Derivation of the solution of the inclusion problem in Fourier

space

Applying the Fourier transform to Eqs. (32), we obtain ∀ξ 6= 0:





iσ̂.ξ = ω̂

σ̂ = 2ϕ0d̂− p̂I + q̂

ω̂ = β0v̂ + f̂

d̂ = iv̂ ⊗s ξ

iv̂.ξ = 0

(A.1)

where the notation v̂ ⊗s ξ represents the symmetrized tensorial product:

v̂ ⊗s ξ =
1

2
(v̂ ⊗ ξ + ξ ⊗ v̂) (A.2)

Owing to the incompressibility, v̂.ξ = 0, we deduce that the pressure reads:

p̂ = − i

‖ξ‖n.
[
iq̂.ξ − f̂

]
(A.3)

and for the velocity:

v̂ =
1

ϕ0‖ξ‖2 + β0

Q.
[
iq̂.ξ − f̂

]
(A.4)

in which n and Q are defined in Eq. .
The solution for the strain rate tensor is:

d̂ = iv̂ ⊗s ξ

= − 1

2(ϕ0‖ξ‖2 + β0)

{
‖ξ‖2(Q.q̂.P + P .q̂.Q) + 2i(Q.f̂)⊗s ξ

} (A.5)

B Property of Green operator

We aim to simplify the product:
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Ĝ0



2µ0d̂

γ0v̂


 (B.1)

for any pair of compatible field d and v, i.e. related in the Fourier space by:

d̂ = iv̂ ⊗s ξ (B.2)

To this purpose, we replace the green operator G0 by the expression given in
Eq. (42). It follows that:

Ĝ0



2µ0d̂

γ0v̂


 = Ĝ0



2µ0Γ̂

0 : (iv̂ ⊗s ξ) + γ0Ω̂
0.v̂

−Ω0 : (iv̂ ⊗s ξ) + γ0G
0.v̂


 (B.3)

Considering the definitions provided in Eqs. (34)-(36) and after various sim-
plifications, we obtain:

Ĝ0



2µ0d̂

γ0v̂


 =



i(Q.v̂)⊗s ξ

Q.v̂


 (B.4)

Considering additionally the incompressibility, v̂.ξ = 0, we deduce thatQ.v̂ =
v̂ and i(Q.v̂) ⊗s ξ = iv̂ ⊗s ξ = d̂. Coming back to the real space, we finally
obtain:

G0 ∗



2µ0d

γ0v


 =




d

v − V


 (B.5)

where the volume average of each quantity has been eliminated because the
Green operator is null for ξ = 0. Therefore, the macroscopic velocity V has
been subtracted to v. The strain rate tensor d has a null volume average since
it derivates from a periodic velocity field.
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