

Encyclopedia of Reagents for Organic Synthesis

Vincent Bizet, Dominique Cahard

To cite this version:

Vincent Bizet, Dominique Cahard. Encyclopedia of Reagents for Organic Synthesis. 2020, $10.1002/047084289X.rn00413.pub2$. hal-02922790

HAL Id: hal-02922790 <https://hal.science/hal-02922790v1>

Submitted on 8 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRONIC ENCYCLOPEDIA OF REAGENTS FOR ORGANIC SYNTHESIS

Pentafluorosulfanyl chloride (13780-57-9)

(First Update)

Vincent Bizet & Dominique Cahard

Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse

Normandie Université, CNRS, UMR 6014 COBRA, Mont Saint Aignan, France

CONTACT DETAILS:

Compounds featuring the SF₅ motif stand out through their remarkable chemical properties that include outstanding chemical and thermal stability, hydrolytic stability, high lipophilicity and hydrophobicity, low polarizability, high-density, low boiling point, and low surface tension as well as potentially great biological activity.^{17,18,19} Before 2002, the production of pentafluorosulfanyl compounds with the aid of $SF₅Cl$ relied on the use of excessive temperatures, high-pressure autoclaves, photochemical procedures, hazardous reactants to end up with low or variable yields together with the generation of toxic side-products. In 2002, the use of triethylborane (Et_3B) as a catalytic initiator for the free radical chain addition of $SF₅Cl$ to alkenes and alkynes provided a major breakthrough.^{11, 20} This is currently the method of choice for pentafluorosulfanylation serving as starting point for several synthetic applications.

Preparative Methods

A method of producing $SF₅Cl$ without the use of $SF₄$ includes admixing potassium fluoride, sulfur powder, chlorine and bromine (possibly acting as a solvent) at room temperature for two weeks $\left(\text{eq } 14\right).^{21}$

$$
5 KF + S + 3 Cl2 + (Br2) \xrightarrow{\pi, 2 weeks} SF5Cl + 5 KCl + (Br2)
$$
 (14)

Reactions with C=C bonds

Addition to Unfunctionalized Alkenes.

Transannular cyclization of 3,7-dimethylenebicyclo[3.3.1]nonane has been developed for the synthesis of SF₅-substituted noradamantane. The reaction proceeds without initiation in low yield, but light irradiation improves greatly the yield and selectivity (eq 15). Transannular cyclization of norbornadiene works equally well and $SF₅$ -nortricyclanes were obtained as a 2.7:1 isomeric product ratio (eq 16). In contrast, reaction of $SF₅Cl$ with *cis,cis*-1,5-cyclooctadiene didn't yield transannulation, but gave as major product the addition of $SF₅Cl$ to only one double bond of the diene. Use of triethylborane as radical initiator improved slightly the yield, but no transannulation was observed (eq 17). 22

The addition of $SF₅Cl$ to benzobarralene followed by a sequence of base-promoted HCl elimination / naphthalene formation gave access to 2-pentafluorosulfanylnaphthalene (eq 18).²³

A route to pentafluorosulfanylbenzene ($C_6H_5SF_5$) was developed through addition of SF₅Cl to cyclohexene, followed by HCl elimination, dibromination with *N*-bromosuccinimide and dehydrobromination under basic conditions to afford the desired $C_6H_5SF_5$ in 68% overall yield (eq 19).²⁴ The two halogen atoms required for the dehydrohalogenation step can be initially present on the cyclohexene (eq 20).²⁵

The synthesis of conjugated 1,3-dienes substituted with a terminal $SF₅$ was performed from terminal olefins. Comparative radical addition of SF₅Cl to olefins under UV irradiation or with a catalytic amount of triethylborane showed that the second method gave higher yields. Elimination of HCl under basic conditions afforded the SF5-substituted mono-olefins. Then, reaction with bromine led selectively to allylic bromination and consecutive elimination of HBr under basic conditions provided access to SF₅-substituted 1,3-dienes (eq 21).²⁶

Using the Et₃B-initiation approach, SF_5Cl was added to ethylene and 1,1-difluoroethylene for the preparation of monomers intended for radical polymerization and production of original SF₅containing copolymers (eq 22).²⁷

$$
= / \sum_{F}^{F} \underbrace{\xrightarrow[60 to -30 °C, 3 h}^{i) SF5Cl, Et3B, CH2Cl2}{\xrightarrow[60 to -30 °C, 3 h}^{60 to -30 °C, 3 h} F5S} / \underbrace{F}_{5S}
$$
 (22)
51% 28%

Unactivated alkenes with a distant functional group react almost identically to simple olefins; however, the distant function could participate in a subsequent reaction. The Et₃B-mediated addition of $SF₅Cl$ to mono-substituted alkenes proved to be tolerant to the presence of an ω - carboxylic acid function, which then served for the cyclization into γ -butyrolactone in the presence of silver triflate and triethylamine (eq 23).²⁸

Addition to Allylic Alcohols and derivatives.

Primary allylic and homoallylic alcohols were subjected to the photo-induced radical addition of SF₅Cl to the C=C bond followed by dehydrochlorination with potassium hydroxide (eq 24).^{29, 30} The resulting primary alcohols were further transformed $(Cl, N₃, SCN)$ or oxidized to higher oxidation state functional groups (aldehyde, acid, ester, nitrile) and engaged, for example, as dienophiles in Diels–Alder cycloadditions.

$$
\bigotimes A_{n} \qquad \text{OH} \quad \xrightarrow{\text{i) SF}_{5}Cl, \text{ hn, rt, 2 h}} F_{5}S \qquad \qquad H_{n} \qquad \text{OH} \quad \xrightarrow{\text{F}_{5}S} \qquad \qquad H_{n}R \qquad (24)
$$
\n
$$
\text{R=CHO, CO}_{2}H, CO_{2}Me, CN, Cl, N_{3}, \text{SCN} \qquad (25)
$$

Secondary allylic alcohols reacted similarly and afforded β -SF₅ enones after an oxidation step (eq 25).³¹ The same intermediate treated with KOH and then dehydrated gave 1pentafluorosulfanylbuta-1,3-diene. 32

$$
\bigodot H \xrightarrow[\pi, 2 h]{SF5Cl, hn} F5S
$$
\n
$$
\bigodot H \xrightarrow[\pi, 2 h]{\text{S}} \bigodot H \xrightarrow[\text{ii}) K2Cr2O7, H2SO4-H2O, Et2O, rt}{F5S}
$$
\n
$$
\bigodot \qquad (25)
$$

Allyl ethers are also suitable substrates for SF₅Cl addition. The *trans* addition of SF₅Cl to 7oxanorbornene derivatives afforded exclusively the *endo* addition of the SF₅ moiety caused by the steric bulk of $SF₅$ (eq 26). The elimination step mediated by lithium hydroxide proceeded smoothly but depends on the lateral substituents.³³

Using the low temperature Et_3B initiated free radical chain procedure, SF_5Cl underwent addition to 7-oxabicyclo[2.2.1]hept-5-ene-2-carbonitrile to give two regioisomeric adducts as precursor of the pentafluorosulfanylfurans via a retro-Diels-Alder approach (eq 27).³⁴

$$
\begin{array}{c}\n0 \\
\hline\n\end{array}\n\longrightarrow\n\begin{array}{c}\n\text{CF}_{5}Cl, \text{Et}_{3}B (0.1 \text{ equiv}) \\
\hline\n\text{CH}_{2}Cl_{2} - 30 \text{ to } -40 \text{ }^{\circ}\text{C}18 \text{ h} \\
\end{array}\n\begin{array}{c}\n0 \\
F_{5}S \longrightarrow\n\end{array}\n\begin{array}{c}\n\text{CN} \\
+ \\
\text{C1}\n\end{array}\n\begin{array}{c}\n\text{F}_{5}S \longrightarrow\n\end{array}\n\begin{array}{c}\n\text{C}N \\
\hline\n\text{ii) 150–160 \text{ }^{\circ}\text{C, 30 min}}\n\end{array}\n\begin{array}{c}\n\text{SF}_{5} \\
\hline\n\text{iii) 150–160 \text{ }^{\circ}\text{C, 30 min}}\n\end{array}\n\end{array} (27)
$$

The Et₃B-mediated radical addition of $SF₅Cl$ was initially reported in hexane and latter in dichloromethane at –40 °C. It was later showed that the chloropentafluorosulfanylation of ((allyloxy)methyl)benzene tolerated many solvents such as toluene, ethyl acetate, THF, acetone, methanol, acetonitrile, acetic acid or even water . In contrast, DMF and DMSO completely inhibit the SF⁵ addition. Noteworthy, the temperature seems to remain the main limitation since the highest yields were obtained at -40 °C (eq 28).³⁵

Similarly to (homo)allylic alcohols and allyl ethers, the addition of $SF₅Cl$ to allylic esters under standard radical conditions worked efficiently (eq 29). SF₅-Containing allylic alcohols can then be obtained by elimination/deprotection with KOH. Consecutive oxidation with CrO₃ affords β-SF₅ acrylic acid (eq 29),³⁶ while oxidation with PCC yields β -SF₅ enal.^{37,38}

Addition to *N-Allylamides*. The addition of SF₅Cl to *N*-allylbenzamides under standard conditions was employed in the first step towards 5-[(pentafluorosulfanyl)methyl]-2-oxazolines (eq 30). The subsequent cyclization in the presence of silver triflate proceeded through chlorine substitution rather than leading to elimination products typically obtained with the aid of various bases.³⁹

Additions to Enol Ethers.

 α -SF₅ Substituted aldehydes can be synthesized by radical addition of SF₅Cl to enol ethers in the presence of Et3B followed by acidic hydrolysis. The chloropentafluorosulfanyl intermediates were typically 9:1 diastereomeric mixtures (eq 31).⁴⁰ High purity of enol ethers proved to be crucial to reach satisfactory yields. α -SF₅ Aldehydes were further transformed into α -SF₅-substituted aldimines and used in cycloaddition reactions.

$$
\text{EtO} \underbrace{\qquad \qquad}_{\text{Pertane, -40 °C to rt, 2 h}} \underbrace{\xrightarrow{\text{SF}_5Cl (1.3 \text{ equiv})}_{\text{Dettane, -40 °C to rt, 2 h}} \text{EtO} \qquad \qquad}_{\text{CI}} \underbrace{\qquad \qquad}_{\text{SF}_5} \underbrace{\xrightarrow{\text{HCVACOH}}_{\text{50 °C, 16 h}} \text{H} \qquad \qquad}_{\text{O}} \qquad \qquad}_{\text{96\%}} \qquad (31)
$$

Addition of $SF₅Cl$ to phenyl trifluorovinyl ether was performed in the presence of a catalytic amount of benzoyl peroxide (BPO) at 110 °C; then, treatment with sulfuric acid at the same temperature afforded the pentafluorosulfanyldifluoroacetic acid (eq 32). The latter can be converted to the corresponding acyl chloride in reaction with PCl₅ for reactions with various nucleophiles (alcohols, amines, Grignard reagents).⁴¹

\n
$$
PhO \underbrace{\left\{\n \begin{array}{ccc}\n F & \text{SF}_5 \text{Cl (1.1 equity)} \\
 \text{BPO (2 mol %)} \\
 \text{rt to 110 °C, 8 h}\n \end{array}\n \right.\n \right.
$$
\n

\n\n $PhO \underbrace{\left\{\n \begin{array}{ccc}\n F & F \\
 \text{BPO (2 mol %)} \\
 \text{Cl} & F\n \end{array}\n \right.\n \right.$ \n

\n\n $PhO \underbrace{\left\{\n \begin{array}{ccc}\n F & F \\
 \text{BPO (2 mol %)} \\
 \text{Cl} & F\n \end{array}\n \right.\n \right\}.$ \n

\n\n $PhO \underbrace{\left\{\n \begin{array}{ccc}\n F & F \\
 \text{BPO (2 mol %)} \\
 \text{Cl} & F\n \end{array}\n \right.\n \right\}.$ \n

\n\n $PhO \underbrace{\left\{\n \begin{array}{ccc}\n F & F \\
 \text{BPO (2 mol %)} \\
 \text{Cl} & F\n \end{array}\n \right.\n \right\}.$ \n

\n\n $PhO \underbrace{\left\{\n \begin{array}{ccc}\n F & F \\
 \text{BPO (2 mol %)} \\
 \text{Cl} & F\n \end{array}\n \right.\n \right\}.$ \n

\n\n $PhO \underbrace{\left\{\n \begin{array}{ccc}\n F & F \\
 \text{BPO (2 mol %)} \\
 \text{Cl} & F\n \end{array}\n \right.\n \right\}.$ \n

Additions to Enol Acetates.

The first addition of $SF₅Cl$ to vinyl acetate was performed under thermal conditions in an ironnickel-molybdenum pressure reactor (eq 33).⁴² The resulting adduct was used to access α -SF₅ methyl ester by forming an acetal in hot methanol and then oxidation with *m*-CPBA (eq 33).⁴³ The SF⁵ addition was improved thanks to the use of triethylborane as radical initiator (eq 34) whereas the conversion into methyl ester followed basically the same process.⁴⁴ A modified strategy was later proposed that include a reduction into primary alcohol, oxidation to the acid and esterification. 45

The preparation of α -SF₅ ketones was achieved by reaction of SF₅Cl with enol acetates such as isopropenyl acetate at 100 °C for 1 h in a Ni-Fe-Mo alloy at autogenous pressure.^{[42](#page-8-0)} More conveniently, the enol acetate of acetophenone reacts with SF_5Cl and Et_3B in hexane at –30 °C (eq. 35).⁴⁶

Additions to α *,* β *-Unsaturated Esters.*

Methyl acrylate (also methyl methacrylate) reacted with the $SF₅$ radical generated from $SF₅Cl$ under thermal conditions in an autoclave at 120 °C (Eq 36).^{47, 48}

Addition to Allyl Silanes.

Addition of $SF₅$ to allyl silanes required 4 to 7 equivalents of $SF₅Cl$ to reach full conversions; then, HCl elimination with the aid of KOH gave the corresponding (E) -3-SF₅ allyl silanes in high yields, except in the case of the volatile trimethylallylsilane (eq 37).³⁶

Addition to Allene.

A single case of addition of $SF₅Cl$ to allene mediated by triethylborane gave access to (2-chloro-2-propen-1-yl) pentafluorosulfur (eq 38).^{[44](#page-8-1)}

Additions to Alkynes

Aryl-, hetaryl-, and alkyl-acetylenes react with $SF₅Cl$ in the presence of triethylborane at -40 °C to give regioselectively the corresponding pentafluorosulfanyl alkenyl chlorides. Aryls featuring electron-donating substituents afforded higher yields. Dehydrochlorination was then achieved with lithium hydroxide in DMSO to produce the $SF₅$ -substituted alkynes, which utility as building blocks was demonstrated in many 1,3-dipolar cycloadditions for the synthesis of $SF₅$ -isoxazole and -isoxazolines (eq 39),⁴⁹ with azomethine ylides generated in situ from aziridine esters for the synthesis of SF₅-dihydropyrroles and SF₅-pyrroles (eq 40),⁵⁰ with azomethine ylides generated in situ from *N*-benzyl-*N*-(methoxymethyl)-*N*-[(trimethylsilyl)-methyl]amine for the preparation of

 SF_5 -pyrroles (eq 41)⁵¹, and with thiocarbonyl ylide obtained from chloromethyl trimethylsilylmethyl sulfide to provide 3-pentafluorosulfanyl-4-(3'-thienyl)thiophene (eq 41).⁵²

SF5-Substituted alkynes were also subjected to Diels–Alder reactions or a sequence Diels–Alder / retro-Diels–Alder reactions for the synthesis of $SF₅$ -bicyclo[2.2.1]hepta-2,5-diene derivatives and SF₅-furans, respectively (eq 42).^{53, 34}

Hydration of $SF₅$ -alkynes has been delineated. The study revealed that $SF₅$ acts as an efficient directing group in gold-catalyzed regioselective hydration of SF₅-alkynes with the aid of $(JohnPhos)AuCl$ (eq 43).⁵⁴

Toward the synthesis of liquid crystals, the radical addition of $SF₅Cl$ onto alkynes (alkenes also reacted but less efficiently) followed by standard elimination with LiOH/DMSO combination gave SF₅-acetylene structures (eq 44). The compounds showed low birefringences (Δn) , but high dielectric anisotropies ($\Delta \varepsilon$) wich are interesting properties for polar liquid crystals.⁵⁵

Vincent Bizet & Dominique Cahard

CNRS-Institut de Chimie, France

References

- 17. Winter, R. W.; Dodean, R. A.; Gard, G. L., *ACS Symp. Ser.* **2005**, *911*, 87.
- 18. Savoie, P. R.; Welch, J. T., *Chem. Rev.* **2015**, *115*, 1130.
- 19. Altomonte, S.; Zanda, M., *J. Fluorine Chem.* **2012**, *143*, 57.
- 20. Dolbier, W. R., Jr.; Ait-Mohand, S., University of Florida, USA. **2004**, WO2004011422A1.
- 21. Winter, R., Avantbio Corporation, USA. **2009**, WO2009152385A2.
- 22 . Ponomarenko, M. V.; Serguchev, Y. A.; Roeschenthaler, G.-V., *J. Fluorine Chem.* **2010**, *131*, 270.
- 23. Dolbier, W. R.; Mitani, A.; Warren, R. D., *Tetrahedron Lett*. **2007**, *48*, 1325.
- 24. Winter, R. W.; Gard, G. L., *J. Fluorine Chem.* **2004**, *125*, 549.
- 25. Sergeeva, T. A.; Dolbier, W. R., Jr., *Org. Lett.* **2004**, *6*, 2417.
- 26. Ponomarenko, M. V.; Serguchev, Y. A.; Roschenthaler, G.-V., *Synthesis* **2010**, 3906. Erratum in *Synthesis* **2011**, 827.
- 27. Kostov, G.; Ameduri, B.; Sergeeva, T.; Dolbier, W. R., Jr.; Winter, R.; Gard, G. L., *Macromolecules* **2005**, *38*, 8316.
- 28. Roudias, M.; Gilbert, A. ; Paquin, J.-F. *Eur. J. Org. Chem.* **2019**, 6655.
- 29. Brel, V. K., *Phosphorus, Sulfur Silicon Relat. Elem*. **2011**, *186*, 1284.
- 30. Trushkov, I. V.; Brel, V. K., *Tetrahedron Lett.* **2005**, *46*, 4777.
- 31. Brel, V. K., *Synthesis* **2006**, 339.
- 32. Brel, V. K., *Synthesis* **2005**, 1245.
- 33. Ponomarenko, M. V.; Lummer, K.; Fokin, A. A.; Serguchev, Y. A.; Bassil, B. S.; Roeschenthaler, G.-V., *Org. Biomol. Chem.* **2013**, *11*, 8103.
- 34. Dolbier, W. R., Jr.; Mitani, A.; Xu, W.; Ghiviriga, I., *Org. Lett.* **2006**, *8*, 5573.
- 35. Gilbert, A.; Paquin, J.-F., *J. Fluorine Chem.* **2019**, *221*, 70.
- 36. Falkowska, E.; Suzenet, F.; Jubault, P.; Bouillon, J.-P.; Pannecoucke, X., *Tetrahedron Lett.* **2014**, *55*, 4833.
- 37. Dreier, A.-L.; Matsnev, A. V.; Thrasher, J. S.; Haufe, G., *J. Fluorine Chem.* **2014**, *167*, 84.
- 38. Husstedt, W. S.; Thrasher, J. S.; Haufe, G., *Synlett* **2011**, 1683.
- 39. Gilbert, A.; Bertrand, X.; Paquin, J.-F., *Org. Lett.* **2018**, *20*, 7257.
- 40. Penger, A.; von Hahmann, C. N.; Filatov, A. S.; Welch, J. T., *Beilstein J. Org. Chem.* **2013**, *9*, 2675.
- 41. Matsnev, A. V.; Qing, S.-Y.; Stanton, M. A.; Berger, K. A.; Haufe, G.; Thrasher, J. S., *Org. Lett.* **2014**, *16*, 2402.
- 42. Coffman, D. D.; Tullock, C. W., E. I. du Pont de Nemours & Co., 1963, US3102903.
- 43. Winter, R.; Gard, G. L. *J. Fluorine Chem.* **1994**, *66*, 109.
- 44. Dolbier, W. R.; Ait-Mohand, S.; Schertz, T. D.; Sergeeva, T. A.; Cradlebaugh, J. A.; Mitani, A.; Gard, G. L.; Winter, R. W.; Thrasher, J. S., *J. Fluorine Chem.* **2006**, *127*, 1302.
- 45. Joliton, A.; Plancher, J.-M.; Carreira, E. M., *Angew. Chem. Int. Ed.* **2016**, *55*, 2113.
- 46. Welch, J.; Ngo, S.; Lim, D., The Research Foundation of State University of New York, USA . **2009**, WO2009026191A1.
- 47. Studnev, Y. N.; Stolyarov, V. P.; Prigorelov, G. A.; Fokin, A. V., *Izv. Akad. Nauk SSSR, Ser. Khim.* **1989**, 197.
- 48. Fokin, A. V.; Studnev, Y. N.; Stolyarov, V. P.; Chilikin, V. G.; Prigorelov, G. A., *Izv. Akad. Nauk, Ser. Khim.* **1996**, 2952 & *Russ. Chem. Bull.* **1997**, *45*, 2804.
- 49. Lopez, S. E.; Mitani, A.; Pena, P.; Ghiviriga, I.; Dolbier, W. R., *J. Fluorine Chem*. **2015**, *176*, 121.
- 50. Dolbier, W. R., Jr.; Zheng, Z., *J. Org. Chem*. **2009**, *74*, 5626.
- 51. Dolbier, W. R., Jr.; Zheng, Z.-Y., *J. Fluorine Chem.* **2011**, *132*, 389.
- 52. Zheng, Z.; Dolbier, J. W. R., University of Florida Research Foundation Inc., **2010**, US2011040103 (A1).
- 53. Mitani, A.; Dolbier, W. R., University of Florida Research Foundation, Inc., USA . **2007**, WO2007106818A1.
- 54. Cloutier, M.; Roudias, M.; Paquin, J.-F., *Org. Lett.* **2019**, *21*, 3866.
- 55. Ponomarenko, M. V.; Kalinovich, N.; Serguchev, Y. A.; Bremer, M.; Roeschenthaler, G.- V., *J. Fluorine Chem.* **2012**, *135*, 68.