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A THERMODYNAMICALLY CONSISTENT MODEL OF A LIQUID-VAPOR
FLUID WITH A GAS

Hélène Mathis1,∗

Abstract. This work is devoted to the consistent modeling of a three-phase mixture of a gas, a liquid
and its vapor. Since the gas and the vapor are miscible, the mixture is subjected to a non-symmetric
constraint on the volume. Adopting the Gibbs formalism, the study of the extensive equilibrium en-
tropy of the system allows to recover the Dalton’s law between the two gaseous phases. In addition, we
distinguish whether phase transition occurs or not between the liquid and its vapor. The thermody-
namical equilibria are described both in extensive and intensive variables. In the latter case, we focus
on the geometrical properties of equilibrium entropy. The consistent characterization of the thermody-
namics of the three-phase mixture is used to introduce two Homogeneous Equilibrium Models (HEM)
depending on mass transfer is taking into account or not. Hyperbolicity is investigated while analyzing
the entropy structure of the systems. Finally we propose two Homogeneous Relaxation Models (HRM)
for the three-phase mixtures with and without phase transition. Supplementary equations on mass,
volume and energy fractions are considered with appropriate source terms which model the relaxation
towards the thermodynamical equilibrium, in agreement with entropy growth criterion.
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1. Introduction

The modelling of compressible multiphase flows is crucial for a wide range of applications, notably in the
nuclear framework, for instance in loss of coolant accident in pressurized water reactors or in vapor explosions
in steel industry [5, 45]. Erosion due to cavitation may also involve three-phase models. Indeed it has been
shown in [43] that the collapse and rebound of a cavitation bubble of vapor immersed in water are influenced by
the amount of non-condensable gas present inside the bubble before its collapse. Within the two last decades,
modelling compressible multiphase flows has resulted in an abundant literature especially about two-phase flows,
see for instance [3,12,13,16,17,33]. More recently attention has been paid to the simulation of three-phase flows
[20,25,26,39,41], by means of relaxation models in the spirit of the two-fluid Baer and Nunziato model [3]. In all
the latter references the mixture is assumed to be immiscible that is all the phases occupy different volumes. The
thermodynamical equilibrium of the mixture is then depicted by the equality of the pressures and temperatures
of the three phases (and also chemical potential as phase transition is considered). As the mixture dynamics is
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considered, each phase dynamic is depicted by an Euler type system which are coupled through non-conservative
interfacial terms, additional advection equations of volume fractions and relaxation terms. The overall system
enters the class of hyperbolic system of relaxation and admits good properties: hyperbolicity, well-understood
wave structure, entropy inequality, etc. For particular Equations of State (EoS), the Riemann problem is also
well understood and has led to the development of relevant numerical approximation (see again [20, 25, 26, 39]
for three-fluid (perfectly immiscible) models). As immiscible mixture are considered, that is when the phases
are intimate and share the same volume, one should refer to the works of Dellacherie and Rency [10,11]. Since
the phases are miscible, Dellacherie and coauthor state that the equilibrium mixture pressure is the sum of the
pressures of each phases. This expected result is known as the Dalton’s law, see [18] and [6] for fundamental
Thermodynamics. The dynamic of the multicomponent fluid is again described by a Baer and Nunziato type of
system, including relaxation terms and non-conservative interfacial terms. In [10,11], the authors also investigate
the impact of the closure law on the hyperbolicity of the associated Homogeneous Equilibrium Model (HEM).
These works complement the study proposed in [34] about the comparison of several closure laws applied to a
HEM model in the case of a multicomponent immiscible mixture.

The purpose of the present work is to investigate the thermodynamics of a mixture which is not merely
miscible or immiscible but of mix type. We focus on a three-phase compressible flows, composed of a liquid
phase, its associated vapor phase and a gas. The gas is miscible with the vapor phase but no mass transfer
can occur between either the gas and the vapor or the gas and the liquid. Besides phase transition can occur
between the vapor and the liquid; in the whole paper we will distinguish whether phase transition between the
liquid and the vapor occurs or not. The core of the paper is the modelling of a rigorous thermodynamical model.
It allows to construct a hyperbolic HEM model to depict the motion of the compressible three-phase mixture
which possesses a mathematical entropy structure in adequacy with the thermodynamics of the mixture. We do
not address numerical aspects and focus on the thermodynamical modelling and the entropy structure of the
HEM we built. The numerical approximation of the three-phase HEM and Homogeneous Relaxation Models
(HRM) is a huge topic in itself, in particular as regards the relaxation towards the thermodynamical equilibrium.
We refer to [30] for the approximation of (immiscible) three-phase HRM models and to [20, 25, 39, 41] for the
approximation of (immiscible) three-phase three-pressure models.

First we aim at precisely give an accurate description of the thermodynamical equilibrium of the system.
Adopting the Gibbs formalism, as done in [23, 24, 36], we intricate the extensive variables of the system. This
description relies on the definition of the extensive equilibrium entropy of the system. The second law of
Thermodynamics states that the thermodynamical equilibrium is attained as the mixture entropy reaches its
maximum under some constraints. Depending on wether phase transition occurs or not between the liquid and
its vapor, the set of constraints changes, leading to different properties on the entropy function. The core issue
is the volume constraint which reflects the non-symmetric immiscibility properties between the liquid and the
gaseous phases. Namely we consider that the vapor (occupying the volume Vv) and the gas (with volume Vg)
are perfectly intimate and behave like ideal gases while an interface separates the liquid (with volume Vl) and
these gaseous phases. The constraint reads {

V = Vl + Vg,

Vg = Vv.

This constraint makes the whole modeling difficult since it prevents from using convenient tools of convex analysis
such as sub-convolution and Legendre transform, see relative works in [23,36]. At this stage, the maximization
of the mixture entropy allows to recover a consistent characterization of the thermodynamical equilibrium: the
Dalton’s law for the gaseous phases and the equality of the temperatures apply. We recall that the Dalton’s law
states that the mixture pressure of two ideal gases has to be the sum of the partial pressures, see [38].

Actually we have used the same thermodynamical model in [2] to model the rebound and collapse of a
bubble of air and vapor surrounded by liquid. In this preliminary work, each phase follows a stiffened gas
law. Following [4], rather than maximizing the mixture entropy, one imposes directly the thermodynamical
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equilibrium. It allows to compute the mass fraction of the vapor and then deduces the other quantities, notably
the mixture pressure as a function of the mean specific volume, the mean internal energy and the mass fraction
of gas. Note that the mixture pressure is not analytical and the computation of the mass and volume fractions
require to solve nonlinear problems. Then the mixture pressure law is coupled to a HEM model for the fluid
dynamic. One provides numerical results obtained by a finite volume scheme with relaxation. The computational
effort due to the computation of the mixture pressure law is significantly reduced using local grid refinement and
parallelization. Numerical results present some pressure jumps in the cavitation region. Understanding these
phenomena has motivated the present work, which can be seen as an extension of [2]. In the sequel we do not
restrict ourselves to a particular equation of state but consider general equations satisfying classical assumptions
of smoothness and concavity, see [6]. In order to investigate the question of the origine of the pressure jumps
highlighted in [2], the idea is to analyze the specific equilibrium entropies in terms of optimization problems in
the spirit of [1,15,23,24,36]. We specially focus on the (strict) concavity property of the mixture entropy. This
study allows then to address the construction of three-phase Euler systems at thermodynamical equilibrium
with a coherent entropy structure. We focus on the stability of the systems and prove their hyperbolicity.

Section 3 addresses the construction of three-phase Euler systems at thermodynamical equilibrium called
HEM models. Following the works of Dellacherie and Rency [10,11], it consists in providing the correct closure
laws to the three-phase Euler system in agreement with the optimization constraints presented in Section 2.
We distinguish two cases depending on wether phase transition occurs or not between the vapor and the liquid
phases. When phase transition is omitted, we prove that the resulting system is hyperbolic using a modified
Godunov–Mock theorem in the spirit of [34]. When mass transfer is allowed, hyperbolicity is also proven. But
the extension of the Godunov–Mock theorem is obsolete and one has to go back to study the Jacobian matrix
of the flux.

One difficulty when approximating solutions of HEM models is that the mixture pressure is often difficult
to express analytically, even when the phases are depicted by simple EoS, see for instance the computations
detailled in [2] for a three-phase mixture (see also Rem. 2.10). Besides phase transition leads to a lack of convex-
ity of the isentropes or slope discontinuities of the entropy, which result in the appearance of composite waves,
see [37, 40, 44]. To overcome the problem, one could consider an approximate model by means of a relaxation
procedure. One obtains a Homogeneous Relaxation model (HRM) where the relaxation towards the thermo-
dynamical equilibrium is driven by source terms which comply with the entropy growth criterion. Section 4
presents two HRM models depending on whether phase transition occurs or not, following the construction
proposed in [4] (see also refer to [21,28,29] for computational aspects).

2. A consistent thermodynamical description of the three phase system

The purpose of this section is to give a proper description of the thermodynamical model. It begins by
the thermodynamical modelling of a single fluid. We assume that it is characterized by a set of extensive
variables, namely its mass, volume and energy and that its thermodynamical behaviour is entirely described by
its extensive entropy function. We make several classical assumptions about the smoothness of this entropy [6]:
strict concavity, upper semi-continuity and differentiability. Then we turn to the modelling of the three-phase
mixture. We assume that each phase is depicted by an extensive entropy function with similar properties. These
assumptions are mandatory to address the thermodynamical description of the mixture. Indeed, according to
the second principle, at thermodynamical equilibrium, the mixture entropy results from the maximization of
the sum of the phasic entropies. The existence of the maximum is ensured by the semi-continuity assumptions
on the phasic entropies. The key point of the modelling is the determination of the extensive constraints on the
state variables of the thermodynamical system.

Because the gaseous phases are miscible with one another and immiscible with the liquid, the volume con-
straint is non-symmetric. We characterize two possible equilibria depending on whether phase transition occurs
or not between the liquid and its vapor. One recovers the Dalton’s law satisfied by the gaseous phases. Then
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we introduce the intensive formulation and study the equilibrium specific entropies for the models without and
with phase transition. It turns out that they are concave, possibly with a saturation zone.

2.1. Single fluid thermodynamics: main definitions and assumptions

Consider a fluid of mass M ≥ 0 and internal energy E ≥ 0 occupying a volume V ≥ 0. As the fluid is
homogeneous and at rest, its thermodynamical behaviour is described by its entropy function

S: (R+)3 → R
(M,V,E) 7→ S(M,V,E).

This entropy function S is concave with respect to W = (M,V,E) ∈ (R+)3. Then it is classical to extend it by
−∞ outside the close convex cone (R+)3

S(W ) =

{
S(W ), W ∈ (R+)3,

−∞, elsewhere.

We adopt the assumptions stated in [6] and [14].

Assumption 2.1. Assume the entropy S : (R+)3 → R ∪ {−∞} is such that

(i) the set of admissible states C := {W ∈ (R+)3, S(W ) > −∞} is a non-empty close convex domain,
(ii) S is a concave function of W ,

(iii) S is extensive or Positively Homogeneous of degree 1 (PH1), that is

∀λ ∈ R+
∗ ,∀W ∈ C, S(λW ) = λS(W ),

(iv) S is upper semi-continuous that is

∀W0 ∈ C, lim
W→W0

supS(W ) ≤ S(W0),

(v) S is of class C2 on C and its partial derivative with respect to the internal energy is strictly positive

∀W ∈ C, ∂S

∂E
> 0.

Assumptions (ii) and (iii) are equivalent to assume (−S) sub-linear [42]. The existence and continuity assumption
on the derivatives of S is quite strong even if it is common in literature. Observe that the extensive entropy S
cannot be strictly concave since it is PH1.

The derivative of a PH1 function is PH0, said intensive. Therefore the smoothness Assumption (v) allows to
define intensive potentials:

• the temperature T
1
T

:=
∂S

∂E
,

• the pressure P

P := T
∂S

∂V
,

• the chemical potential µ

µ := −T ∂S

∂M
·
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Hence one can state the extensive Gibbs relation

TdS = dE + PdV − µdM.

It is also common to define the specific entropy s by

Ms = S(M,V,E).

The extensive entropy S being PH1, s is PH0 (intensive) such that

s = S(1, V/M,E/M). (2.1)

Hence s can be seen as a function of the specific volume V/M =: τ and the specific energy E/M =: e. Setting
M = 1 in the extensive Gibbs relation gives the analogous intensive form

Tds = de+ Pdτ. (2.2)

Since S is PH1, it satisfies the Euler’s relation ∇S · (M,V,E)T = S which leads to another characterization of
the chemical potential

µ = −Ts+ pτ + e. (2.3)

Since S is a PH1 concave function of class C2 on the convex domain C, one can prove that (τ, e) 7→ s(τ, e) is
strictly concave on the convex set {(τ, e), (1, τ, e) ∈ C}. This result, proven in [9] and [32], is based on the study
of the Hessian matrix of S and its signature on the interior of C.

2.2. Extensive description of the three-phase model

We now consider a fluid system of fixed mass M ≥ 0, volume V ≥ 0 and internal energy E ≥ 0, composed of a
gas (indicated by the index g) and a pure body present under its liquid phase (with index l) and its vapor phase
(with index v). We assume that no mass transfer arises between the gas and the others remaining phases but
only mechanical and thermal exchanges. We use the (abusive) appellation phase to indicate either the liquid,
the vapor or the gaseous component of the mixture.

We denote by Mk ≥ 0, Vk ≥ 0 and Ek ≥ 0 the mass, the volume and the internal energy of the phase k ∈
{l, g, v}. We assume that each phase is entirely described by its entropy function Sk satisfying Assumption 2.1 for
an extensive state vectorWk = (Mk, Vk, Ek) belonging to the close convex cone Ck defined in Assumption 2.1-(i).

We now state the constraints on the extensive variables. By the mass conservation, one has

M = Ml +Mg +Mv, (2.4)

and the internal energy conservation leads to

E = El + Ev + Eg. (2.5)

The vapor is miscible with the gas, that is these two phases form an intimate mixture occupying the same
volume. On the other hand, the liquid phase is immiscible with the gas and the vapor, that is it occupies a
different volume at a mesoscopic scale. One gets the following volume constraints{

V = Vl + Vv,

Vg = Vv.
(2.6)

Note that we assume that no vacuum can occur (otherwise, one should consider V ≥ Vl + Vv) and that the
vapor and the gas are perfectly intimate. Hence one assumes that the air and the vapor behave like ideal gases.
Unlike the mass or energy constraints, the volume constraint is not invariant under permutation of the indexes
k = l, g, v. This feature induces difficulties to properly characterize the mixture equilibrium and the mixture
entropy (both in extensive and intensive variables).
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Remark 2.2 (Absence of one phase). If the vapor phase (resp. the gas) is absent, the system is made of the
two remaining phases. To remove the vapor phase (resp. the gas), one has to impose Mv = 0 (resp. Mg = 0).
Indeed setting Vv = 0 (resp. Vg = 0) is meaningless because the volume constraint (2.6) would impose the
disappearance of both the vapor and the gas phases. On the other hand, if the liquid phase is absent, one has
to set both Ml = 0 and Vl = 0.

Let us address the definition of the extensive equilibrium entropy of the mixture. Out of equilibrium, the
entropy of the three-phase system is the sum of the phasic entropies. For (Wl,Wg,Wv) ∈ Cl×Cg×Cv, it reads

Σ(Wl,Wg,Wv) = Sl(Wl) + Sg(Wg) + Sv(Wv). (2.7)

The second principle of Thermodynamics states that the system will evolve until the entropy Σ reaches a
maximum. Depending on whether or not mass transfer arises between the vapor and the liquid phases, the
maximization process relies on different set of constraints, namely ΩNPT

ext (No Phase Transition) and ΩPT
ext

(Phase Transition), leading to two different mixture entropies. We recall that phase transition is not allowed
between the gas and the other phases since it has a different molecular structure. Hence Mg is fixed.

Definition 2.3. Fix Mg ≥ 0. Let W = (M,V,E) ∈ (R+)3 be the state vector of the three-phase system. The
equilibrium entropy of the mixture is:

• without phase transition: Ml and Mv are fixed satisfying the mass conservation (2.4) and

SNPT(M,V,E,Ml,Mg) = max
(Wl,Wg,Wv)∈ΩNPT

ext

Σ(Wl,Wg,Wv), (2.8)

where ΩNPT
ext := {Wk ∈ Ck, k = l, g, v |(2.5) and (2.6) hold}

• with phase transition:
SPT(M,V,E,Mg) = max

(Wl,Wg,Wv)∈ΩPT
ext

Σ(Wl,Wg,Wv), (2.9)

where ΩPT
ext := {Wk ∈ Ck, k = l, g, v |M −Mg = Ml +Mv, (2.5) and (2.6) hold}.

The existence of the mixture entropies SNPT and SPT is ensured as soon as the phasic entropies Sk, k = l, g, v,
satisfy Assumption 2.1. Indeed the constraint sets ΩNPT

ext and ΩextextbyΩ
PT
ext are non-empty closed bounded convex

sets (see Assumption 2.1-(i)). According to Assumption 2.1-(iv) the entropies Sk are upper semi-continuous
functions, therefore Σ is also upper semi-continuous. This semi-continuity assumption guarantees that the
maximum is reached [27, 42]. Note that the maximum may not be reached on a unique point but the maximal
value is unique.

Proposition 2.4. The extensive equilibrium entropy SNPT (resp. SPT) of the three-phase mixture defined either
by (2.8) (resp. (2.9)) is a PH1 concave function of its arguments.

Proof. The function Σ(Wl,Wg,Wv) is a concave function on Cl×Cg×Cv since it is a sum of concave functions.
We now focus on the optimization problem (2.8) over the set of constraintsΩNPT

ext that is without phase transition.
The mass of gas Mg is fixed and the maximization is performed on the volume and the energy only. Hence we
omit the dependency on Ml and Mg and get

S(M,V,E) = max




V = Vl + Vv

Vg = Vv

E = El + Eg + Ev

Σ(Wl,Wg,Wv),

= max



V = Vl + Vv

E = El + Eg + Ev

Σ(Wl, (Mg, Vv, Eg),Wv).
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Since the masses M and Mk, k ∈ {l, g, v}, are fixed, the problem can be written under the following form

S(W ) = (AH)(V,E)
= max{H(Vl, Vv, El, Eg, Ev)| A(Vl, Vv, El, Eg, Ev)t = (V,E)t},

where H(Vl, Vg, El, Eg, Ev) = Sl(Ml, Vl, El) + Sg(Mg, Vv, Eg) + Sv(Mv, Vv, Ev) and A =
(

1 1 0 0 0
0 0 1 1 1

)
is a linear

mapping from (R+)5 to (R+)2 defining the constraints V = Vl +Vv and E = El +Eg +Ev. Because the function
H is concave with respect to (Vl, Vv, El, Eg, Ev) ∈ (R+)5 (as the restriction of the concave function Σ) and A
is a linear transformation, the function AH is also concave with respect to (V,E) (see [42], Sect. 5). Then it
follows that S(W ) is concave with respect to W = (M,V,E) ∈ (R+)3. Similar arguments hold in the case of
phase transition between the liquid and its vapor. �

Remark 2.5. In [24] the authors provide a similar extensive definition of the mixture entropy for a two-phase
mixture when considering phase transition between the two phases, indexed by k = 1, 2. They consider the mass
and energy conservation that is M = M1 +M2 and E = E1 +E2. As the volume constraint is considered, they
distinguish the immiscible and the miscible mixtures. When considering an immiscible mixture, their volume
constraint is V = V1 +V2. Then the extensive entropy of the mixture satisfies an analogous formulation as (2.9),
which turns to be a sup-convolution operation, namely

S(W ) = S1�S2(W ) = max
W1∈C1

(S1(W1) + S2(W −W1)),

where the symbol � is a notation for sup-convolution in convex analysis. When considering a miscible approach,
their volume constraint is V = V1 = V2. Here again the extensive entropy of the mixture is a sup-convolution
operation. The sup-convolution operation turns to have many interesting properties (especially linked to the
Legendre transform). Such properties have been studied in [23] and [36], for the computation of admissible
pressure laws for immiscible and miscible binary mixture.

In the present case, because the volume constraint (2.6) is simultaneously immiscible (between the liquid and
the vapor and gas phases) and miscible (between the gas and the vapor), we cannot express the energy of the
mixture as a sup-convolution procedure.

When the equilibrium entropy without phase transition is differentiable with respect to the volume V and
the internal energy E, then one can define the temperature and the pressure of the mixture at equilibrium

1
T

=
∂SNPT

∂E
(M,V,E,Ml,Mg),

P

T
=
∂SNPT

∂V
(M,V,E,Ml,Mg). (2.10)

The chemical potential and the potentials linked to the masses Ml and Mg are

µ

T
= −∂SNPT

∂M
(M,V,E,Ml,Mg),

λk
T

=
∂SNPT

∂Mk
(M,V,E,Ml,Mg), k = l, g.

The notations λk may be also found in [32]. Hence one has the following relation

TdSNPT = dE + pdV − µdM + λldMl + λgdMg. (2.11)

When phase transition is considered, one gets

TdSPT = dE + pdV − µdM + λgdMg. (2.12)

When the maximum of the mixture entropy is reached in the interior of the set of constraints, the three
phases are present and at thermodynamical equilibrium [24,36].
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Proposition 2.6. The thermodynamical equilibrium corresponds to

• the equality of the temperatures
Tl = Tg = Tv, (2.13)

• the Dalton’s law on the pressures of the gas and the vapor phases

pl = pg + pv. (2.14)

Moreover if phase transition is allowed between the liquid and its vapor then the equilibrium is also characterized
by

µl = µv. (2.15)

Proof. The optimization with respect to the energy and the volume are the same on the two sets of constraints
ΩNPT

ext and ΩPT
ext . Let us fix the energy Ek of the phase k ∈ {l, g, v}. Then E − Ek = Ek′ + Ek′′ , with k′ 6=

k′′, k, k′ ∈ {l, g, v}. Thus

∂

∂Ek′
(Sk(Mk, Vk, Ek) + Sk′(Mk′ , Vk′ , Ek′) + Sk′′(Mk′′ , Vk′′ , Ek′′)) =

1
Tk′
− 1
Tk′′
·

Then the maximum is reached for Tk′ = Tk′′ for any k′ 6= k′′ ∈ {l, g, v}. Optimizing with respect to the volume
under the volume constraint (2.6) gives

∂

∂Vl
(Sl(Ml, Vl, El) + Sg(Mg, V − Vl, Eg) + Sv(Mv, V − Vl, Eg)) =

pl

Tl
−
(
pg

Tg
+
pv

Tv

)
.

Since the temperatures are equal, it yields the Dalton’s law on the pressures. We now focus on the case where
phase transition occurs. In the case of phase transition, we then optimize with respect to the mass in the set of
constraints ΩPT

ext . Since the mass of the gas Mg is fixed, one has M −Mg = Ml +Mv. It yields

∂

∂Ml
(Sl(Ml, Vl, El) + Sg(Mg, Vg, Eg) + Sv(M −Mg −Ml, Vv, Ev)) =

µl

Tl
− µv

Tv
·

Because Tl = Tv, the chemical potentials of the liquid and vapor phases are also equal, the chemical potential
of the gas µg being fixed. �

One observes that the pressure relation (2.14), which contains the Dalton’s law on the miscible vapor and
gaseous phases, is a direct consequence of the maximization process under the volumic constraint (2.6).

As a consequence, at equilibrium, one may define the mixture temperature T and pressure p by

T = Tl = Tg = Tv

p = pl = pg + pv.
(2.16)

Nevertheless it is not possible to define a mixture chemical potential.

2.3. Intensive characterization of the entropies

We now turn to the definition of intensive quantities. The system is now entirely described by its intensive
entropy s defined by (2.1) as a function of the specific volume τ = V/M > 0 and the specific internal energy
e = E/M > 0.

We introduce the mass fraction ϕk, the volume fraction αk and the energy fraction zk of the phase k ∈ {l, g, v}
defined respectively by

ϕk = Mk/M, αk = Vk/V, zk = Ek/E, (2.17)
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which belong to [0, 1]. Each phase k = l, g, v has a specific volume τk = Vk/Mk = αkτ/ϕk and a specific internal
energy ek = Ek/Mk = zke/εk. The specific entropy sk of the phase k ∈ {l, g, v} is defined by

sk(τk, ek) = Sk(1, τk, ek).

Moreover one can derive the intensive form of the Gibbs relation (2.2) for each phase k ∈ {l, g, v}

Tkdsk = dek + pkdτk. (2.18)

We now turn to the intensive formulation of the extensive constraints. The extensive volume constraint (2.6)
translates into {

1 = αl + αv,

αg = αv.
(2.19)

The mass and energy conservations (2.4) and (2.5) read

1 = ϕl + ϕg + ϕv, (2.20)
1 = zl + zg + zv. (2.21)

Out of equilibrium the intensive entropy of the three-phase system, expressed as a function of τ , e and the
fractions ϕk, αk, zk, k = l, g, v, reads

σ(τ, e, (ϕk)k, (αk)k, (zk)k)

= ϕlsl

(
αl

ϕl
τ,
zl

ϕl
e

)
+ ϕgsg

(
αg

ϕg
τ,
zg

ϕg
e

)
+ ϕvsv

(
αv

ϕv
τ,
zv

ϕv
e

)
.

(2.22)

At equilibrium and at fixed (τ, e), the intensive entropy reaches its maximum. As in the extensive formulation,
one has to define the set of constraints depending on whether phase transition occurs or not between the liquid
and the vapor phase. Moreover since the gaseous phase does not exchange mass with the others phases, its mass
fraction ϕg is fixed during the optimization process.

Proposition 2.7. Fix ϕg ∈ [0, 1]. Let (τ, e) ∈ (R+)2 be the specific state vector of the system. The equilibrium
intensive entropy s of the mixture is:

• without phase transition: ϕl, ϕg are fixed according to (2.20) and

sNPT(τ, e, ϕl, ϕg) = max
((αk)k,(zk)k)∈ΩNPT

int

σ(τ, e, (ϕk)k, (αk)k, (zk)k), (2.23)

where ΩNPT
int := {(αk, zk), k = l, g, v| (2.19) and (2.21) hold}

• with phase transition:

sPT(τ, e, ϕg) = max
((ϕk)k,(αk)k,(zk)k)∈ΩPT

int

σ(τ, e, (ϕk)k, (αk)k, (zk)k), (2.24)

where ΩPT
int := {(ϕk, αk, zk), k = l, g, v|1− ϕg = ϕl + ϕv, (2.19) and (2.21) hold}.

In both cases the equilibrium intensive entropy is a concave function of its arguments.

Proof. The characterization of the mixture intensive entropy is a direct consequence of the homogeneity of the
extensive mixture entropies defined in (2.8) and (2.9), see Proposition 2.4. The relation (2.23) (resp. (2.24)) is
achieved by dividing the optimization problem (2.8) on the set of constraints ΩNPT

ext (resp. (2.9) on the set of
constraints ΩPT

ext ) by the mass M . In the case without phase transition, the intensive entropy sNPT(τ, e, ϕl, ϕg) is
the restriction of the extensive entropy SNPT(M,V,E,Ml,Mg) on the affine convex subset {1}× (R+)2× [0, 1]2.
Since SNPT is a concave function of (M,V,E), sNPT is a concave function of (τ, e). The same holds in the case
of phase transition. �
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We now focus on the intensive equilibrium entropy without phase transition sNPT and prove that it is strictly
convex with respect to (τ, ε).

Proposition 2.8. Assume that the mass fractions ϕk are fixed (no phase transition is allowed). Then the
intensive equilibrium entropy (2.23)

• depends only on (τ, e)
• is a strictly concave function of (τ, e)
• satisfies the relation : TdsNPT = de + pdτ , where T and p are the mixture temperature and pressure at

equilibrium.

Proof. According to the definition (2.23), it is obvious that the equilibrium mixture entropy depends only on
(τ, e) at fixed mass fractions ϕk, k = l, g, v. Then for any equilibrium state (τ, e) ∈ (R+)2, it exists (τk, ek) such
that 

e = ϕlel + ϕgeg + ϕvev

τ = ϕlτl + ϕgτg
ϕvτv = ϕgτg.

(2.25)

We now prove the Gibbs relation
Tds = de+ pdτ,

at fixed ϕk. The phasic entropies satisfy

Tdsk = dek + pkdτk, k = l, g, v.

Multiplying by ϕk and summing over k = l, g, v, gives

Td

 ∑
k=l,g,v

ϕksk

 = d

 ∑
k=l,g,v

ϕkek

+
∑

k=l,g,v

ϕkpkdτk,

according to the equality of the temperatures. By (2.22) and (2.25) it yields

TdsNPT = de+ pld(ϕlτl) + pgd(ϕgτg) + pvd(ϕvτv).

We now use miscibility of the vapor and gas phases ϕgτg = ϕvτv to get

TdsNPT = de+ pld(ϕlτl) + (pg + pv)d(ϕgτg).

The characterization of the pressure equilibrium leads to the conclusion.
We turn to the strict concavity of the sNPT. Since the ϕk, k = l, g, v, are fixed, we denote sNPT(τ, e) =

sNPT(τ, e, (ϕk)k). In order to prove that the entropy is strictly concave, we show that for any equilibrium states
(τ, e) and (τ ′, e′) in (R+)2, one has

sNPT(τ, e) < sNPT(τ ′, e′) +∇(τ,e)sNPT(τ ′, e′) ·
(
τ − τ ′
e− e′

)
.

Using formulation (2.22) one has

sNPT(τ, e) = ϕlsl(τl, el) + ϕgsg(τg, eg) + ϕvsv(τv, ev).

Since the phasic entropies are strictly concave functions of (τk, ek) and differentiable, there exists (τ ′k, e
′
k) such

that

sNPT(τ, e) <
∑

k=l,g,v

ϕksk(τ ′k, e
′
k) + ϕk∇sk(τ ′k, e

′
k) ·

(
τk − τ ′k
ek − e′k

)
.
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Now one has ∇sk(τ ′k, e
′
k) =

(
1/Tk(τ ′k, e

′
k)

pk(τ ′k, e
′
k)/Tk(τ ′k, e

′
k)

)
with Tk(τ ′k, e

′
k) = T , ∀k = l, g, v, see Proposition 2.6. The

definition of the equilibrium entropy, the equality of the temperature, and the constraints (2.20) lead to

sNPT(τ, e) < sNPT(τ ′, e′) +
1
T

(e− e′)+

1
T

(
ϕlpl(τl − τ ′l ) + ϕgpg(τg − τ ′g) + ϕvpv(τv − τ ′v)

)
.

Using Dalton’s law (2.16), one can express the mixture pressure as pl = pv +pg = p. Then the volume constraints
τ = ϕlτl + ϕgτg and τ = ϕlτl + ϕvτv give

sNPT(τ, e) < sNPT(τ ′, e′) +
1
Tl

(e− e′) +
p

T
(τ − τ ′).

According to the Gibbs relation, one has ∇(τ,e)sNPT =
(

1/T,
p/T

)
which leads to the conclusion. �

As phase transition is considered between the liquid and its vapor, the mixture entropy is no longer strictly
concave with respect to (τ, e) as ϕg is fixed.

Proposition 2.9. Assume that the mass fraction ϕg is fixed. Then the intensive equilibrium entropy (2.24)

• depends only on (τ, e)
• satisfies the relation : TdsPT = de + pdτ , where T and p are the mixture temperature and pressure at

equilibrium.

The proof is similar to the proof of Proposition 2.8.

Remark 2.10. Note that we do not prove that the equilibrium entropy is a strictly concave function of (τ, e).
Actually this is not the case for binary (immiscible) mixture, see [23, 24, 31] for instance. As three-phase mix-
ture is considered, we refer to [2]. This work relies on the same extensive constraints as in the present model:
conservation of the mass (2.4), of the energy (2.5) and a mix-type constraint on the volume (2.6). The maximiza-
tion procedure of Section 2, leading to the characterization of the mixture entropy sPT (with phase transition),
actually coincides with the procedure given in [2] for stiffened gases. A stiffened gas is depicted by the specific
entropy:

sk(τk, ek) = Ck ln
(

(ek −Qk − πkτk)τγk−1
k

)
+ s0

k,

where γk is the polytropic coefficient, Ck is the specific heat at constant volume, Qk is the heat of formation,
πk is a reference pressure and s0

k a reference entropy. The phasic temperature, pressure and chemical potential
read:

CkTk = ek −Qk − πkτk,
pk + πk = (γk − 1)ρkCkTk,

µk = Qk + γkCkTk − Tk
(
Ck ln

(
CkTkτ

γk−1
k + S0

k

))
,

where the phasic specific volume and internal energy can be expressed as:

τk =
αk
ϕk
τ, ek =

zk
ϕk
e. (2.26)

In [2], one uses the characterization of the thermodynamical equilibrium given in Proposition 2.6 to express
the mixture pressure as a function of the mean specific volume τ , the mean internal energy e and the volume
fraction of gas ϕg. For sake of completness we recall the process of construction of the mixture pressure law for
a stiffened gas mixture.
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The determination of the mixture pressure law is a three-step process. First one imposes the equality of the
temperatures (2.13). Using the intensive volume constraint (2.19), one obtains

p =
∑

k=l,g,v

αkpk = (γ − 1)ρ(e−Q)− γπ, (2.27)

with

γ =

∑
k=l,g,v ϕkγkCk∑
k=l,g,v ϕkCk

, π =
∑

k=l,g,v

αkπk, Q =
∑

k=l,g,v

ϕkQk. (2.28)

Note that one gets rid of the energy fractions. At this stage the mixture pressure law writes again as a stiffened
gas law, this has been highlighted in [4]. Then setting the mechanical equilibrium (2.14) with (2.27) gives a
second order equation in αv. One can prove that it admits one single root αv in (0, 1). Thus αv can be written
as a function of the mass fraction ϕv. One may find the analytical expression of αv(ϕv) in formula (2.11) of [2].
At this stage all the fractions have been eliminated, except the mass fraction of vapor ϕv. If phase transition does
not occur between the liquid and the vapor, one can then determine the mixture pressure law p = p(τ, e, ϕl, ϕg).
This mixture pressure is thus explicit (but quite complicated, see again formula (2.11) of [2]). If phase transition
is allowed (like in [2]), then one eliminates ϕv by imposing the chemical equilibrium between the liquid and its
vapor:

µv(ϕv) = µl(ϕv).

Doing so fixes the mass fraction of vapor such that 0 < ϕv < 1 − ϕg. Note that this step requires to solve a
nonlinear equation.
Finally using ϕv in (2.28) and (2.27) gives the mixture pressure p = p(τ, e, ϕg).
The question of concavity of the mixture entropy is not adressed in [2]. However it is possible to couple the
mixture pressure law to a fluid model. Taking advantage of the stiffened gas law form of the mixture pressure,
one uses a finite volume scheme with relaxation method (as in [4]) with local grid refinement. The computational
results illustrate the existence of a saturation zone, that is the mixture entropy is not strictly concave.

Remark 2.11. (Saturation of a constraint and restriction to two-phase models). We focus in Proposition 2.6
on a maximum reached in the interior of the set of constraints ΩNPT

ext and ΩPT
ext . Of course it may be reached

on the boundary of the set of constraints, leading to saturation of (at least) one of the extensive constraints.
Then the equality of the temperatures and the partial Dalton’s law are not necessarily valid and the optimum
is characterized by inequalities. As an example, we study the saturation for the liquid phase.
Let W̄ = ((M̄, V̄ , Ē)l, (M̄, V̄ , Ē)g, (M̄, V̄ , Ē)v) be the maximizer of the mixture entropy Σ on the boundary of
the set of constraints ΩPT

ext . By concavity of Σ, for any state W = ((M,V,E)l, (M,V,E)g, (M,V,E)v) ∈ ΩPT
ext ,

one has
∇WΣ(W ) · (W − W̄ ) ≤ 0.

If the energy constraint is saturated, it reads(
1
Tl
− 1
Tk

)
· (El − Ēl) ≤ 0, k = g, v.

If Ēl = 0 then
1
Tl
− 1
Tg
≤ 0 and

1
Tl
− 1
Tv
≤ 0. Conversely Ēl = E leads to

1
Tl
− 1
Tg
≥ 0 and

1
Tl
− 1
Tv
≥ 0. The

saturation of the volume constraint yields(
pl

Tl
−
(
pg

Tg
+
pv

Tv

))
· (Vl − V̄l) ≤ 0.
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If V̄l = V
(
resp. V̄l = 0

)
then

pl

Tl
≥ pg

Tg
+
pv

Tv
(resp.

pl

Tl
≤ pg

Tg
+
pv

Tv
). Finally as phase transition occurs between

the liquid and the vapor, the mass constraint is saturated and gives(
µl

Tl
− µv

Tv

)
· (Ml − M̄l) ≤ 0.

If M̄l = M −Mg (since the mass of gas is fixed), it gives
µl

Tl
≥ µv

Tv
. Conversely M̄l = 0 yields

µl

Tl
≤ µv

Tv
.

Moroever the model is valid when only two phases are present but the set of constraints has to be modified.
• If the vapor phase is absent, there remains the liquid and the gas phases which form an immiscible mixture

without mass transfer. The set of extensive constraints is then (M,V,E) = (Ml, Vl, El)+(Mg, Vg, Eg), where
Mg is fixed. This two-phase model has been investigated by Jung in [22, 32] for stiffened gas laws. The
thermodynamical equilibrium (when it is reached in the interior of the set of constraints) is characterized
by the equality of the phasic temperatures and the equality of the phasic pressures.

• If the gas is absent, the mixture is immiscible, composed of the liquid and its vapor. The extensive constraints
are (M,V,E) = (Ml, Vl, El) + (Mv, Vv, Ev). If phase transition is not taking into account, one ends up with
the model of Jung [32]. Conversely, the case with phase transition has been widely studied, see for instance
[31] for perfect gas law and [15] for more general equations of state. One can prove that the corresponding
intensive mixture entropy is not strictly convex. Actually it corresponds to the concave hull of the maximum
of the phasic entropies (see [15] for a geometrical proof in [23] for a proof based on Legendre transform). The
thermodynamical equilibrium is characterized by the equality of the temperatures, pressures and chemical
potentials of both phases.

• If only the vapor and the gas are present, the extensive constraints are{
V = Vg = Vv,

(M,E) = (Mg, Eg) + (Mv, Ev).

This case has been studied in [23]. The intensive mixture entropy is strictly concave because (it is actually
a sub-convolution of the phasic entropies). The thermodynamical equilibrium is given by the equality of the
phasic temperatures and Dalton’s law on the phasic pressures.

3. Equilibrium three-component Euler systems

We now take into account the dynamic of the three-phase mixture, assuming that the three phases have the
same velocity. The aim of this section is to provide a homogeneous equilibrium multicomponent Euler’s system,
called HEM model, with appropriate closure laws in agreement with the thermodynamical equilibria studied in
Section 2.3. Two HEM models are presented corresponding to the cases with or without phase transition. The
models have good properties: entropy structure and hyperbolicity.

3.1. Three-phase model without phase transition

At thermodynamical equilibrium the three phase flow is depicted by the multicomponent Euler system

∂t(ϕlρ) + ∂x(ϕlρu) = 0,
∂t(ϕgρ) + ∂x(ϕgρu) = 0,
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x((ρE + p)u) = 0,

E =
1
2
u2 + e,

∀k ∈ {l, g, v} : pk = pk(τk, ek), τk = ρ−1
k ,

ϕl + ϕg + ϕv = 1,

(3.1)
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where the flow has a density ρ (we also define the specific volume τ = 1/ρ), a velocity u, a pressure p, and an
internal energy e, E being the total energy. The phase k = l, g, v is depicted by its mass fraction, its pressure
pk, its specific volume τk and its specific internal energy ek, see Section 2.3. All the phases evolve at the same
velocity u and we recall that 

e = ϕlel + ϕvev + ϕgeg,

τ = ϕlτl + ϕgτg,

ϕvτv = ϕgτg.

(3.2)

The multicomponent Euler system consists of ten equations and has seventeen unknowns which are

(ρ, u,E, p, e, (ϕk)k∈{l,g,v}, (τk)k∈{l,g,v}, (ek)k∈{l,g,v}, (pk)k∈{l,g,v}).

Thus one has to provide seven closure laws. The first three closure laws are given by the constraints (3.2).
The 4 remaining closure laws are given by Proposition 2.6, that is{

T = Tl = Tg = Tv,

p = pl = pg + pv,
(3.3)

where T and p are the thermodynamical temperature and pressure of the three phase flow and p =
p(1/ρ, e, ϕl, ϕg).

We recall that the computation of the mixture pressure p = p(1/ρ, e, ϕl, ϕg) may be not explicit depending
on the phasic equation of states. In order to determine the mixture pressure, one should impose the thermody-
namical equilibrium characterized by the temperature equilibrium (2.13), the partial Dalton’s law (2.14) and
the chemical equilibrium (2.15) (when mass transfer occurs). Remark 2.10 contains some hints of computations
in the case of a stiffened gas law. In that case, without phase transition, the mixture pressure is explicit.

Proposition 3.1. The intensive entropy sNPT(τ, e, ϕl, ϕg) defined by (2.23) satisfies

∂ts+ u∂xsNPT = 0. (3.4)

Proof. Let U = (ρ, ρu, ρE , ϕgρ, ϕlρ) is a smooth solution of the system (3.1), then one has

∂tτ + u∂xτ − τ∂xu = 0,
∂tu+ u∂xu+ τ∂xp = 0,
∂te+ u∂xe+ pτ∂xu = 0,

∂tϕk + u∂xϕk = 0, k = l, g.

Since sNPT is a function of (τ, e, ϕl, ϕg), it follows

∂tsNPT =
∂sNPT

∂τ
∂tτ +

∂sNPT

∂e
∂te+

∂sNPT

∂ϕlτ
∂tϕl +

∂sNPT

∂ϕg
∂tϕg

= ∂xu

(
τ
∂sNPT

∂τ
− τp∂sNPT

∂e

)
− u∂xsNPT.

Because the entropy sNPT satisfies the relation TdsNPT = de + pdτ (see Prop. 2.8), the first term of the right
hand side is zero. Hence the entropy sNPT satisfies the transport equation (3.4). �

In order to study the hyperbolicity of the model (3.1), we adapt a result given in [34] which extends the
Godunov–Mock theorem.
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Lemma 3.2. Let w : R+ × R→ Rn and f : Rn → Rn defining the system of conservation laws

∂tw(t, x) + ∂xf(w)(t, x) = 0,

where w = (w1, w2)t with w1 ∈ Rl and w2 ∈ Rn−l and f = (0, f2)t with f2 ∈ Rn−l. Assume that η(w) is a
strictly convex function with respect to w2 at fixed w1 such that

∂tη(w) = 0,

and that ∇w1f2(w) = 0. Then the system is hyperbolic.

Proof. To prove the hyperbolicity we show that the system is symmetrizable that is there exists a symmetric
positive-definite matrix P and a symmetric matrix Q such that

P (w)∂tw +Q(w)∂xw = 0.

We define the n× n symmetrization matrix P (w) by

P (w) =
(

Il 0
0 ∇2

w2
η

)
.

The entropy η being strictly convex with respect to w2, the matrix P (w) is symmetric positive-definite. The
associated convection matrix is Q(w) = P (w)∇wf(w). Since ∇w1f2(w) = 0, the matrix Q is symmetric so that
the system is symmetrizable. As a consequence the system is hyperbolic. �

This lemma holds for any variables (t, x) as soon as the system is conservative. Besides we use it in Lagrangian
coordinates to prove the following result.

Theorem 3.3. The system (3.1) is hyperbolic.

Proof. First the system (3.1) can be written in Lagrangian coordinates

Dtϕl = 0,
Dtϕg = 0,
Dtτ −Dmu = 0,
Dtu+Dmp = 0,
DtE +Dm(pu) = 0,

where Dtv = ∂tv + u∂xv and Dmv = τ∂xv. The associated flux reads f = (0, 0,−u, p, pu). We introduce the
function η

η : (ϕl, ϕg, τ, u, E)→ −sNPT(τ, E − u2/2, ϕl, ϕg).

According to Proposition 2.8, the function sNPT is strictly concave with respect to (τ, e) and depends only on
(τ, e). Then η is strictly convex with respect to (τ, u, E), see [9, 19]. Moreover sNPT is solely advected by the
system, since it satisfies (3.4), see Proposition 3.1. Hence it yields

Dtη(w) = ∂τDtτ + ∂uDtu+ ∂EDtE
= −∂τsNPT(τ, E − u2/2, ϕl, ϕg)Dtτ+

(uDtu+DtE)∂esNPT(τ, E − u2/2, ϕl, ϕg)

= − p
T
Dtτ + ∂esNPT(uDtu−DtE) = − p

T
Dmu−

u

T
Dmp+

1
T
Dmp = 0.

In addition the mixture pressure p, being a partial derivative of the entropy mixture sNPT, does not depend on
the fractions ϕl and ϕg. It implies that ∇ϕl,ϕgf = 0. Now Lemma 3.2 leads to the conclusion. �
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3.2. Three-phase model with phase transition

When phase transition occurs, the equilibrium multicomponent Euler system reads

∂t(ϕgρ) + ∂x(ϕgρu) = 0,
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x((ρE + p)u) = 0,

E =
1
2
u2 + e,

∀k ∈ {l, g, v} : pk = pk(τk, ek), τk = ρ−1
k ,

ϕl + ϕg + ϕv = 1.

(3.5)

The system consists of nine equations and seventeen unknowns which are

(ρ, u, E , p, e, (ϕk)k∈{l,g,v}, (τk)k∈{l,g,v}, (ek)k∈{l,g,v}, (pk)k∈{l,g,v}).

Thus one has to provide eight closure laws.
As in the previous case, three closure laws are given by the three intensive constraints (3.2)

e = ϕlel + ϕvev + ϕgeg,

τ = ϕlτl + ϕgτg,

ϕvτv = ϕgτg.

The five remaining closures are given by Proposition 2.6
T = Tl = Tg = Tv,

p = pl = pg + pv,

µl = µv,

(3.6)

where T and p are the thermodynamical temperature and pressure of the three phase flow and p = p(1/ρ, e, ϕg).
Since the equilibrium entropy is not a strictly concave function of its arguments (see Rem. 2.10), it is not

possible to invocate the Godunov–Mock theorem or its extension Lemma 3.2 to prove the hyperbolicity of the
system. However it is possible to check the hyperbolicity by studying the eigenvalues of the system and proving
that the mixture speed of sound is real. The proof mimics the one provided in [15] Theorem 5.1 and (see [1]
Thm. 2.4 for a shortened version).

Theorem 3.4. The system (3.5) is hyperbolic.

Proof. The quasilinear form of the system (3.5) reads

∂t

ϕg

ρ
u
e

+


u 0 0 0
0 u ρ 0

1
ρ

∂p

∂ϕg

1
ρ

∂p

∂ρ
u

1
ρ

∂p

∂e
0 0 p/ρ u

 ∂x

ϕg

ρ
u
e

 = 0.

The Jacobian matrix of the flux has four eigenvalues u − c, u (double), u + c, where c is the speed of sound
given by

c2/τ2 = p∂ep− ∂τp
= −T (p2∂eesPT − 2p∂τesPT + ∂ττsPT).

(3.7)
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According to Proposition 2.9 and Remark 2.10, the entropy (sPT) is a concave but not strictly concave function of
(τ, e) at fixed ϕg. Then the Hessian matrix of sPT is not negative definite such that c2 ≥ 0. One has to prove that
c2 > 0. Since sPT is not strictly concave, in the non-strict concave region, one has ∂ττsPT∂eesPT = (∂τesPT)2.
Hence after factorization, the speed of sound identity (3.7) becomes

c2/τ2 = −T ∂τesPT

∂ττsPT

(
p− ∂ττsPT

∂τesPT

)2

. (3.8)

According to [1] Theorem 2.4, one verifies that ∂ττsPT < 0 (for a detailed proof, see Appendix A in [15]).
Moreover for any point o = (τ̂ , ê, sPT(τ̂ , ê)) belonging to the non-strict concavity region, there exists a single
couple of points o1 = (τ1, e1, sPT(τ1, e1)) and o2 = (τ2, e2, sPT(τ2, e2)) such that o belongs to the segment
(o1, o2) = {yo1 + (1− y)o2| y ∈ [0, 1]}. For every point belonging to the line segment (o1, o2), the authors prove
that

∂τesPT(e1 − e2) + ∂ττsPT(τ1 − τ2) = 0, (3.9)

and
p > −e1 − e2

τ1 − τ2
, (3.10)

see Appendix A for details. Coupling (3.9) and (3.10) to (3.8) gives that c2 > 0 as soon as the temperature
T > 0. This concludes the proof. �

4. Homogeneous relaxation models for the three-phase flow

The equilibrium multicomponent Euler systems, presented in the previous section, are difficult to use for
practical computations. Although they are proved to be hyperbolic, their pressure laws are not necessarily
explicit. Moreover it is well known, see for instance [4, 31, 37], that such pressure laws may present slope
discontinuities or lack of convexity of the isentropes, leading to composite waves in the Riemann problem. These
properties actually correspond to physical phenomena and are present for instance in BZT-fluids, see [40,44]. In
order to avoid the resolution of the Riemann problem with a complicated pressure law, one may approximate
the equilibrium Euler system by a homogeneous relaxation model, as it is proposed in [4, 21,24,28,29].

It consists in adding convection equations on the fractions and to modify the pressure to make it depend on the
fractions. In order to achieve the thermodynamical equilibrium, appropriate relaxation source terms complete
the equations on the fractions. The numerical approximation of the relaxed model is easier. Traditionally it
consists on a splitting approach. In a first step the convective part is treated with an approximate Riemann
solver. During the second step the conservative variables are stored and the pressure is updated from the physical
entropy maximization. By construction both steps are entropy satisfying.

We propose in this section to construct the HRM models associated to the HEM three-phase models studied
in Section 3 while distinguishing the cases where phase transition occurs or not. First we focus on the model
without phase transition and adapt the construction of the HRM model introduced in [4]. The case with phase
transition is treated as corollary.

4.1. HRM model without phase transition

Starting from the equilibrium three-phase model (3.1), we propose a non-homogeneous model in which the
three phases are no longer at thermal and mechanical equilibrium (still without phase transition). To do so one
introduces supplementary variables that are the volume fraction of liquid αl and the energy fractions zl and
zg defined in (2.17). Hence the pressure depends not only on ρ, e, ϕl, ϕg but also on Y = (αl, zl, zg). Note that
one may choose another set of variables to relax the mixture pressure. The choice of the fractions is actually
motivated by several references, see for instance [21,24,29]. The key point is to respect the entropy production
criterion, see below.
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When no mass transfer occurs between the liquid and the gas, the fractions should be perfectly convected
i.e.

∂tY + u∂xY = 0. (4.1)

The mass conservation allows to write (4.1) in conservative form

∂t(ρY ) + ∂x(ρuY ) = 0. (4.2)

Thus the resulting HRM model reads

∂t(ϕkρ) + ∂x(ϕkρu) = 0, k = l, g,
∂t(zkρ) + ∂x(zkρu) = 0, k = l, g,
∂t(αlρ) + ∂x(αlρu) = 0,
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x((ρE + p)u) = 0,

(4.3)

with the closure pressure law
p = p(1/ρ, e, ϕl, ϕg, αl, zl, zg). (4.4)

The mixture pressure (4.4) is computed using

p(1/ρ, e, ϕl, ϕg, αl, zl, zg)
T (1/ρ, e, ϕl, ϕg, αl, zl, zg)

=
∑

k=l,g,v

αk

pk

(
αk
ϕk
τ,
zk
ϕk
e

)
Tk

(
αk
ϕk
τ,
zk
ϕk
e

) ,
1

T (1/ρ, e, ϕl, ϕg, αl, zl, zg)
=

∑
k=l,g,v

zk

Tk

(
αk
ϕk
τ,
zk
ϕk
e

) ,
(4.5)

and the constraints on the fractions (2.19), (2.20) and (2.21).
One should add an entropy criterion to the model. With ρ = 1/τ the concave function σ(τ, e, ϕl, ϕg, αl, zl, zg)

defined in (2.22) would be an entropy function if it satisfies the first order PDE

∂τσ − p(1/τ, e, ϕl, ϕg, αl, zl, zg)∂eσ = 0. (4.6)

Setting T = 1/∂eσ, one recovers the relation

Tdσ = de+ pdτ +
∑
k=l,g

∂ϕk
sdϕk + ∂αlsdαl +

∑
k=l,g

∂zk
sdzk.

Weak solutions of (4.3)–(4.4) satisfy
∂t(ρσ) + ∂x(ρuσ) ≥ 0, (4.7)

which becomes an equality as regular solutions are concerned. The concavity of σ with respect to
(τ, e, ϕl, ϕg, αl, zl, zg) is equivalent to the convexity of H = −ρσ with respect to the conservative variables
(ρ, ρu, ρE , ϕlρ, ϕgρ, zlρ, zgρ, αlρ), following [9, 19]. Hence H = −ρσ is a Lax entropy for (4.3).

In order to bring the system to thermodynamical equilibrium described in Proposition 2.7-(2.23), a source
term has to be added to the fraction equations

∂tY + u∂xY = Q.
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As relaxation towards the equilibrium is infinitely fast, one recovers the equilibrium fractions which satisfy

Y := Y NPT
eq (τ, e, ϕl, ϕg)

:= argmax
(αl,zl,zg)

σ(τ, e, ϕl, ϕg, αl, zl, zg). (4.8)

As a result the equilibrium pressure law is

pNPT
eq (τ, e, ϕl, ϕg) := p(τ, e, ϕl, ϕg, Y

NPT
eq (τ, e, ϕl, ϕg)), (4.9)

defined by Dalton’s law (2.16). Following [4, 7, 8, 15,29], a natural source term is

Q = λ(Y NPT
eq (τ, e, ϕl, ϕg)− Y ) (4.10)

where the parameter λ goes to +∞ to achieve the thermodynamical equilibrium.
Moreover the source term Q complies with the entropy production criterion since

∂tσ + u∂xσ = ∇Y σ · (∂tY + u∂xY )

= λ∇Y σ · (Y NPT
eq (τ, e, ϕl, ϕg)− Y )

≥ λ(σ(τ, e, ϕl, ϕg, Y
NPT
eq )− σ(τ, e, ϕl, ϕg, αl, zl, zg))

≥ 0,

(4.11)

by concavity of the entropy σ.
The drawback of the source term (4.10) is that the relaxation parameter λ is identical for all the fractions.

Hence the relaxation times towards the mechanical and thermal equilibrium are the same, which has no particular
physical meaning. An alternative which guarantees the entropy production is

Q = ∇Y σ(τ, e, ϕl, ϕg, Y ),

=


τ

(
pl

Tl
−
(
pg

Tg
+
pv

Tv

))
e

(
1
Tl
− 1
Tv

)
e

(
1
Tg
− 1
Tv

)

 ,
(4.12)

since ∂tσ + u∂xσ = |∇Y σ|2 ≥ 0. This choice of source term enables to use different relaxation scales for
mechanical and thermal equilibria.

4.2. HRM model with phase transition

Following the same methodology explained in Section 4.1, one obtains the HRM model taking into account
phase transition between the liquid and the vapor. It reads

∂tY + u∂xY = Q,

∂t(ϕgρ) + ∂x(ϕgρu) = 0,
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x((ρE + p)u) = 0,

(4.13)

where the fraction vector is Y = (ϕl, αl, zl, zg) and the closure pressure law

p = p(1/ρ, e, ϕg, ϕl, αl, zl, zg). (4.14)
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Again the entropy σ(τ, e, ϕg, ϕl, αl, zl, zg) defined in (2.22) satisfies the entropy inequality (4.7) as soon as it
complies with (4.6). The source term Q has to be chosen to recover the thermodynamical equilibrium described
by the fractions

Y = Y PT
eq (τ, e, ϕg)

= argmax
(ϕl,αl,zl,zg)

σ(τ, e, ϕl, ϕg, αl, zl, zg), (4.15)

leading to the equilibrium pressure law

pPT
eq (τ, e, ϕg) := p(τ, e, ϕg, Y

PT
eq (τ, e, ϕg)). (4.16)

Again the source term Q could be either

Q = λ(Y PT
eq (τ, e, ϕg)− Y ), (4.17)

or
Q = λ∇Y σ(τ, e, ϕg, Y

PT
eq (τ, e, ϕg))

=



sl − τl
pl

Tl
− el

Tl
− sv + τv

pv

Tv
+
ev

Tv

τ

(
pl

Tl
−
(
pg

Tg
+
pv

Tv

))
e

(
1
Tl
− 1
Tv

)
e

(
1
Tg
− 1
Tv

)
.


(4.18)

Using the characterization (2.3) of the chemical potential, the first component of Q boils down to

∂ϕlσ = −µl

Tl
+
µv

Tv
, (4.19)

which reflects the mass transfer between the liquid and its vapor.

5. Conclusion

We address in this paper the modelling of a three-phase mixture composed of a gas, a liquid and its vapor.
We adopt the Gibbs formalism and describe the system in terms of extensive constraints. We assume that
the vapor and the gas are perfectly intimate (like ideal gases) and that they share a sharp interface with the
liquid phase. No restriction is given on the phasic equations of state as soon as they fulfill classical smoothness
assumptions. According to the entropy maximization criterion, we are able to depict the thermodynamical
equilibrium that corresponds notably to a partial Dalton’s law on the phasic pressures. We study the mixture
entropies in terms of optimization problems and focus on their (strict) concavity. The equations of state obtained
are then introduced in two HEM models depending on whether phase transition occurs or not between the liquid
and its vapor. Hyperbolicity of the systems is investigated, taking advantage of the entropy structure studied
in the previous section. To finish the paper we propose a HRM model, which may be easier to approximate
than the HEM model. Indeed the numerical approximation of the HEM model with the mixture pressure law
is doable but is time-consuming because of the computation of the mixture pressure (see [2]). It would be very
interesting to provide a three-pressure three-velocity model in agreement with the intensive volume constraint
(2.19), which relaxes toward the thermodynamical equilibrium given by the equality of the temperature (2.13)
and the mechanical equilibrium with the Dalton law (2.14). The difficulty would come from the determination
of proper closure conditions which define interfacial pressures and velocity as well as relaxation terms while
ensuring the entropy growth criterion. This derivation is in progress and one may find some valuable hints in
[35,39].
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and Applications]. Ellipses, Paris (1991).

[20] E. Han, M. Hantke and S. Müller, Efficient and robust relaxation procedures for multi-component mixtures including phase
transition. J. Comput. Phys. 338 (2017) 217–239.

[21] P. Helluy, O. Hurisse and E. Le Coupanec, Verification of a two-phase flow code based on an homogeneous model. Int. J.
Finite. In: EDF Special Workshop (2015). Preprint https://hal.archives-ouvertes.fr/hal-01396200

[22] P. Helluy and J. Jung. Interpolated pressure laws in two-fluid simulations and hyperbolicity. In Finite Volumes for Complex
Applications. VII. Methods and Theoretical Aspects. Vol. 77 of Springer Proceedings in Mathematics & Statistics. Springer,
Cham (2014) 37–53.

[23] P. Helluy and H. Mathis, Pressure laws and fast Legendre transform. Math. Models Methods Appl. Sci. 21 (2011) 745–775.

[24] P. Helluy and N. Seguin. Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352.

[25] J.-M. Hérard. A three-phase flow model. Math. Comput. Modelling 45 (2007) 732–755.

[26] J.-M. Hérard, A class of compressible multiphase flow models. C. R. Math. Acad. Sci. Paris 354 (2016) 954–959.
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