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OPTIMAL PARTIAL TRANSPORT PROBLEM WITH LAGRANGIAN

COSTS

Noureddine Igbida1,* and Van Thanh Nguyen1,2

Abstract. We introduce a dual dynamical formulation for the optimal partial transport problem
with Lagrangian costs

cL(x, y) := inf
ξ∈Lip([0,1];RN )

{∫ 1

0

L(ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y

}
based on a constrained Hamilton–Jacobi equation. Optimality condition is given that takes the form of
a system of PDEs in some way similar to constrained mean field games. The equivalent formulations are
then used to give numerical approximations to the optimal partial transport problem via augmented
Lagrangian methods. One of advantages is that the approach requires only values of L and does not need
to evaluate cL(x, y), for each pair of endpoints x and y, which comes from a variational problem. This
method also provides at the same time active submeasures and the associated optimal transportation.

Received June 16, 2017. Accepted January 7, 2018.

1. Introduction

Optimal transport deals with the problem to find the optimal way to move materials from a given source to
a desired target in such a way to minimize the work. The problem was first proposed and studied by G. Monge
in 1781 and then L. Kantorovich made fundamental contributions to the problem in the 1940s by relaxing
the problem into a linear one. Since the end of the eighties, this subject has been investigated under various
viewpoints with many surprising applications in partial differential equations (PDEs), differential geometry,
image processing and many other areas. These cultivate a huge study with the development of intuitions and
concepts for the problem from both theoretical and numerical aspects. The problem has got a lot of attention
and has also been generalized in different directions. For more details on the optimal transport problem, we
refer to the pedagogical books [1, 41–43].

Among generalizations of the optimal transport problem, we are interested in the so-called optimal partial
transport which aims to study the case where only a part of the commodity (respectively, consumer demand)
of total mass m needs to be transported (respectively, fulfilled). More precisely, let µ, ν ∈ M+

b (RN ) be finite
Radon measures and c : RN × RN −→ [0,+∞) be a measurable cost function. For a prescribed total mass
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m ∈ [0,mmax] with mmax := min
{
µ(RN ), ν(RN )

}
, the optimal partial transport problem (or partial Monge–

Kantorovich problem, PMK for short) reads as follows

min

{
K(γ) :=

∫
RN×RN

c(x, y)dγ : γ ∈ πm(µ, ν)

}
, (1.1)

where

πm(µ, ν) :=
{
γ ∈M+

b (RN × RN ) : πx#γ ≤ µ, πy#γ ≤ ν, γ(RN × RN ) = m
}
.

Here, πx#γ and πy#γ are marginals of γ. This generalized problem brings out new unknown quantities ρ0 :=
πx#γ, ρ1 := πy#γ. Here ρ0 and ρ1 are the sites where the commodity is taken and the consumer demand is
fulfilled, respectively. In the case where µ and ν have the same mass (i.e., µ(RN ) = ν(RN )) and the desired
total mass m := µ(RN ) = ν(RN ), the problem (1.1) is nothing else the standard optimal transport problem.

The optimal partial transport problem (1.1) was first studied theoretically by Caffarelli and McCann [11]
(see also Figalli [23]) with results on the existence, uniqueness and regularity of active submeasures for the
case where c(x, y) = |x − y|2. We also refer to the papers [17, 19, 30] for the regularity. On the other hand,
concerning numerical approximations, the authors in [2] studied numerically the case c(x, y) = |x − y| via an
approximated PDE and Raviart–Thomas finite elements. Recently, Benamou et al. [5] introduced a general
numerical framework to approximate solutions of linear programs related to optimal transport such as barycen-
ters in Wasserstein space, multi-marginal optimal transport, optimal partial transport and optimal transport
with capacity constraints. Their idea is based on an entropic regularization of the initial linear programs and
Bregman–Dykstra iterations. This is a static approach to optimal transport-type problems. In this direction,
we also refer to the very recent paper of Chizat et al. [18]. These approaches need to use (approximated) values
of the ground cost function cL(x, y) in the definition (1.2) below.

In this paper, we are interested in the optimal partial transport problem with Lagrangian costs c(x, y) :=
cL(x, y), where

cL(x, y) := inf
ξ

{∫ 1

0

L(ξ(t), ξ̇(t))dt : ξ(0) = x, ξ(1) = y, ξ ∈ Lip([0, 1]; Ω)

}
(1.2)

with a connected Lipschitz domain Ω ⊂ RN . The case where L(x, .) is convex, 1-homogeneous with a linear
growth was treated in the recent paper [29]. In this case, cL turns out to be a distance which allows to reduce the
dimension of the Kantorovich-type dual problem (by ignoring the time variable). The present article concerns
the situation where L(x, .) has a superlinear growth. Our main aim is to develop rigorously the variational
approach to provide equivalent dynamical formulations and use them to supply numerical approximations via
augmented Lagrangian methods. For the uniqueness, using basically the idea of [38], we establish the uniqueness
of active submeasures in the case where the source and target are absolutely continuous.

To introduce and comment our main results, let us take a while to focus on the typical situation where the
cost is given by

L(x, z) := k(x)
|z|q

q
for any (x, z) ∈ RN × RN (1.3)

with q > 1 and k being a (positive) continuous function. Recall here that if k ≡ 1 and q = 2, the cost function
cL corresponds to the quadratic case:

cL(x, y) = |y − x|2 for any x, y ∈ RN . (1.4)
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This is more or less the most studied case in the literature (cf. [11, 17, 19, 23, 30]). However, let us mention
here that our approach is variational and goes after our program of studying the optimal partial transportation
from the theoretical and numerical points of view (cf. [28, 29]). To begin with, it is not difficult to see that,
by using standard results concerning the Eulerian formulation of the optimal mass transport problem in the
balanced case, an Eulerian formulation associated with the problem (1.1)–(1.3) can be given by minimizing

∫∫
Q

k(x)
|υ(t, x)|q

q
dρ(t, x) (1.5)

among all the couples (ρ, υ) ∈M+
b (Q)× L1

ρ(Q)N satisfying the continuity equation

∂tρ+∇ · (υρ) = 0 in Q := [0, 1]× RN (1.6)

in a weak sense with ρ(0) ≤ µ and ρ(1) ≤ ν and ρ(0)(RN ) = m. However, to solve numerically (1.1) via
augmented Lagrangian methods, we will prove rigorously that in fact the minimization problem of the type
(1.5)–(1.6) is the Fenchel–Rockafellar dual of a new dual problem to (1.1). Indeed, using the general duality
result on the optimal partial transportation of [28], we prove that a dynamical formulation of the dual problem
of (1.1) consists in maximizing

∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) (1.7)

among the couples (λ, u) ∈ [0,∞) × Lip(Q), where u satisfies the following constrained Hamilton–Jacobi
equation


∂tu(t, x) + k−α(x) |∇xu(t,x)|q

′

q′ ≤ 0 for a.e. (t, x) ∈ Q

−λ ≤ u(0, x), u(1, x) ≤ 0 ∀x ∈ RN .
(1.8)

Here q′ := q
q−1 denotes the usual conjugate of q and α = q′

q . Then, we will prove that the minimization prob-

lem (1.5) remains to be the Fenchel–Rockafellar dual of the maximization problem (1.7)–(1.8). Using these
equivalents, we overbalance the problem into the scope of augmented Lagrangian methods and give numerical
approximations to the optimal partial transport problem. In particular, we will see that this approach does not
need to evaluate cL(x, y), for each pair of endpoints x and y, but requires only some values of L. Also, the
method provides at the same time active submeasures and the associated optimal transportation.

In addition, the Fenchel–Rockafellar duality between the maximization problem (1.7) and the minimization
problem (1.5) brings up (as optimality condition) a system reminiscent of Mean Field Games (MFG) introduced
by Lasry and Lions [32–34] and Huang et al. [27]. For the particular case (1.3), this system aims to find
(ρ, υ) ∈M+

b (Q)× L1
ρ(Q)N satisfying both the usual MFG system associated with the cost (1.1)–(1.3):


∂tu(t, x) + k−α(x) |∇xu(t,x)|q

′

q′ ≤ 0 for a.e. (t, x) in Q

∂tρ+∇ · (υρ) = 0 in (0, 1)× RN

υ(t, x) = k(x)−α|∇xu(t, x)|q′−2∇xu(t, x) ρ-a.e. (t, x) in Q

(1.9)
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and the following non-standard initial boundary values:

ρ(0)− µ ∈ ∂I[−λ,+∞)(u(0, .)) and ν − ρ(1) ∈ ∂I(−∞,0](u(1, .)). (1.10)

In other words, these initial boundary values may be written as: −λ ≤ u(0, .), u(1, .) ≤ 0, ρ(0) ≤ µ, ρ(1) ≤ ν,
ρ(0) = µ in the set [u(0, .) > −λ] and ρ(1) = ν in the set [u(1, .) < 0]. In the system (1.9), λ is an arbitrary
non-negative parameter and the couple (ρ(0), ρ(1)) ∈ M+

b (RN ) ×M+
b (RN ) is unknown. Once the system is

solved with the optimal λ for (1.5), the couple (ρ(0), ρ(1)) gives the active submeasures and ρ gives the optimal
transportation.

Actually, for a given λ ≥ 0, (1.9)–(1.10) is a new type of constrained MFG system. In this direction, one can
see some variant of constrained MFG systems and their connection with MFGs under congestion effects in the
paper [40] (see also [7, 13–16, 36, 37] for recent progress on this very active research topic). However, let us
mention that (1.9)–(1.10) is different from the class of MFG systems introduced in [40]. In particular, one sees
that the constraints in (1.10) focus only the state at time t = 0 and t = 1. As to the constraints in [40], they
are maintained on all the trajectory for every time t ∈ [0, 1] to handle some kind of congestion.

On the other hand, one sees that taking m = µ(RN ), the optimal partial transportation problem (1.1) can
be interpreted as the projection with respect to WL-Wasserstein distance associated with cL onto the set of
non-negative measures less than or equal to ν. Recall here that the case where k ≡ 1 and q = 2, this problem
appears in the study of the congestion in the modeling of crowd motion (cf. [35]). So, it is possible to merge
our numerical approximation algorithm into the splitting process of [35] for the study of the crowd motion with
congestion.

At last, the main difficulty in the study of the above variational approach of the problem (1.1) for general
Lagrangian L remains in the regularity of the solutions of the optimization problems like (1.5)–(1.8). To handle
this difficulty we prove some new results concerning the approximation of the solutions of general constrained
Hamilton–Jacobi equation like (1.8) by regular function. Moreover, we show how to use the notion of tangential
gradient to study MFG system like (1.9)–(1.10) in the general case. In particular, when m = µ(RN ) = ν(RN )
and L(x, v) = L(v) is independent of x, this MFG system reduces to the PDE as in the work of Jimenez [31].

The remainder of the article is organized as follows: In the next section, we begin with the notations and
assumptions. Section 3 concerns the uniqueness of active submeasures. Section 4 is devoted to the rigorously
theoretical study of the problem with equivalent dual formulations that would be used later for numerical
approximation. Besides these, an optimality condition is also given which recovers the Monge–Kantorovich
equation as a particular case. The details of our numerical approximation are discussed in Section 5. The paper
ends by some numerical examples.

2. Notations and assumptions

Let X be a topological vector space and X∗ be its dual. We use 〈x∗, x〉 or 〈x, x∗〉 to indicate the value
x∗(x) for x ∈ X and x∗ ∈ X∗. The scalar product in RN is denoted by x · y or 〈x, y〉 for x, y ∈ RN . We denote
by IK the indicator function of K and by ∂G the subdifferential of convex function G : X −→ R ∪ {+∞} in
the sense of convex analysis. Given a measure γ, by γ A we mean the restricted measure of γ on A, that is,
γ A(B) := γ(B ∩A) for measurable sets B.

To avoid unnecessary difficulties, in our theoretical study, we will work with Ω = RN in the definition (1.2)
of cL . Throughout this article, we drop the subscript L and write simply c instead of cL.

Assumption (A): Assume that the Lagrangian L : RN × RN → [0,+∞) is continuous and satisfies:

• L(x, .) is convex and L(x, 0) = 0 for each fixed x ∈ RN ;
• (Superlinearity) for any R > 0, there exists a function θR : R+ → R+ such that

θR(t)

t
→ +∞ as t→ +∞ and L(x, v) ≥ θR(|v|) ∀x ∈ B(0, R).
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For example, the function L(x, v) := k(x) |v|
q

q , q > 1 satisfies the above assumption whenever k is (positive)
continuous.

The convex conjugate H of L is, as usual, defined by

H(x, p) := sup
v∈RN

{〈p, v〉 − L(x, v)} for any x ∈ RN , p ∈ RN .

Note that, under the assumption (A) on L, the function H(., .) is continuous in both variables and that c(., .)
is locally Lipschitz.

We set Q := [0, 1]× RN . The usual derivatives of u are denoted by ∂tu,∇xu, and ∇t,xu := (∂tu,∇xu). The
continuity equation ∂tρ+∇ · (υρ) = 0, ρ(0) = µ, ρ(1) = ν is understood in the sense of distribution, i.e.,∫∫

Q

∂tφdρ+

∫∫
Q

∇xφ · υdρ =

∫
RN

φ(1, .)dρ(1)−
∫
RN

φ(0, .)dρ(0)

=

∫
RN

φ(1, .)dν −
∫
RN

φ(0, .)dµ (2.1)

for any compactly supported smooth function φ ∈ C∞c (Q). For short, we denote (2.1) by

− divt,x (ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ. (2.2)

We say that (ρ0, ρ1) is a couple of active submeasures if ρ0 = πx#γ and ρ1 = πy#γ for some optimal plan γ of
the PMK problem (1.1).

3. Uniqueness of active submeasures

The existence of active submeasures follows easily from the direct method (see e.g. [11, 28]). The present
section concerns the uniqueness.

Theorem 3.1 (Uniqueness). Assume moreover that L(x, v) = L(v) is independent of x and that L(v) = 0 if and
only if v = 0. If µ, ν ∈ L1 and m ∈ [µ ∧ ν(RN ),mmax] then there is at most one couple of active submeasures.

The idea of the proof is based on the recent paper ([38], Prop. 5.2). For completeness, we give here an
adaptation to our case.

Lemma 3.2. Assume that L satisfies the assumption (A). Let (ρ0, ρ1) be a couple of active submeasures and
γ ∈ π(ρ0, ρ1) be an optimal plan. If (x∗, y∗) ∈ supp(γ) then ρ0 = µ a.e. on Bc(y

∗, R) := {t ∈ RN : c(t, y∗) < R}
and ρ1 = ν a.e. on Bc(x

∗, R) := {w ∈ RN : c(x∗, w) < R)}, where R := c(x∗, y∗) = cL(x∗, y∗).

Proof. We prove that ρ1 = ν a.e. on Bc(x
∗, R). If the conclusion is not true then there exists a compact

set K b Bc(x
∗, R) with a positive Lebesgue measure such that ρ1 < ν a.e. on K. The proof consists in the

construction of a better plan γ̃. Since (x∗, y∗) ∈ supp(γ), we have

0 < γ(B(x∗, r)×B(y∗, r)) ≤
∫
B(y∗,r)

νdx→ 0 as r → 0, (3.1)

where B(x, r) is the ball w.r.t. the Euclidean norm. Now, geometrically speaking, instead of transporting mass
from x∗ to around y∗, we can give more mass on K. To be more precise, we construct a new plan γ̃ as follows

γ̃ := γ − γ B(x∗,r)×B(y∗,r) +η (3.2)
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with

η :=
πx#(γ B(x∗,r)×B(y∗,r))⊗ (ν − ρ1) K∫

K
(ν − ρ1)dx

. (3.3)

Then πx#γ̃ = ρ0 and

πy#γ̃ ≤ πy#γ +
γ(B(x∗, r)×B(y∗, r))∫

K
(ν − ρ1)dx

(ν − ρ1) K ≤ ρ1 + (ν − ρ1) K ≤ ν (3.4)

for all sufficiently small r. It follows that γ̃ ∈ πm(µ, ν). Furthermore, we have∫
c(x, y)dγ̃ =

∫
c(x, y)dγ −

∫
B(x∗,r)×B(y∗,r)

c(x, y)dγ +

∫
B(x∗,r)×K

c(x, y)dη

≤
∫
c(x, y)dγ −

(
inf

(x,y)∈B(x∗,r)×B(y∗,r)
c(x, y)− sup

(x,y)∈B(x∗,r)×K
c(x, y)

)
γ(B(x∗, r)×B(y∗, r))

<

∫
c(x, y)dγ for small r, (3.5)

where we used the fact that(
inf

(x,y)∈B(x∗,r)×B(y∗,r)
c(x, y)− sup

(x,y)∈B(x∗,r)×K
c(x, y)

)
> 0 for small r.

This holds because of the definition of K and the continuity of c.

The next lemma provides an expression for active submeasures.1

Lemma 3.3. Under the assumptions of Theorem 3.1, let (ρ0, ρ1) be couple of active submeasures. Then

ρ0 = χBc
0
µ, ρ1 = χBc

1
ν (3.6)

for some measurable sets B0, B1.

Proof. Since L(x, v) = L(v), we get c(x, y) := cL(x, y) = L(y − x). Thus c(x, y) = 0 if and only if x = y. This
implies that the common mass µ ∧ ν must belong to active submeasures, i.e., µ ∧ ν ≤ ρ0 and µ ∧ ν ≤ ρ1. So
without loss of generality, we can assume that the initial measures µ and ν are disjoint, i.e., µ ∧ ν = 0. Now,
let us define

B0 := Leb(µ) ∩ Leb(ν) ∩ Leb(ρ0) ∩ {ρ0 < µ}(1) and B1 := Leb(µ) ∩ Leb(ν) ∩ Leb(ρ1) ∩ {ρ1 < ν}(1). (3.7)

Here, Leb(g) is the set of Lebesgue points of g and A(1) is the set of points of density 1 w.r.t. A. We see that

Bc0 = (Leb(µ) ∩ Leb(ν) ∩ Leb(ρ0))c ∪ ({ρ0 < µ}(1))c = Z ∪ {ρ0 = µ},

with LN (Z) = 0. So ρ0 = µ a.e. on Bc0. Next, we show that ρ0 = 0 on B0. Indeed, if ρ0(x) > 0 for some
x ∈ B0 then x ∈ supp(ρ0). Hence there exists y ∈ supp(ρ1) such that (x, y) ∈ supp(γ) for some optimal plan

1Thanks to this expression, active submeasures are completely determined by their supports, called active regions as used in
[11, 23].
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γ ∈ π(ρ0, ρ1). Since µ ∧ ν = 0, we can take y 6= x and thus R := c(x, y) = L(y − x) > 0. Since Bc(y,R) is
convex, it has the cone property, i.e. there is a finite cone with vertex at x contained in Bc(y,R). It follows that
there exists a sequence of subsets of Bc(y,R) shrinking to x nicely (see e.g. [39], Thm. 7.10). Using Lemma 3.2,
ρ0 = µ a.e. on Bc(y,R), we obtain ρ0(x) = µ(x), which is impossible. Consequently, the proof of the expression
ρ0 = χBc

0
µ is completed. In much the same way, we get ρ1 = χBc

1
ν.

Proof of Theorem 3.1. Let (ρ0, ρ1) and (ρ̃0, ρ̃1) be couples of active submeasures. By Lemma 3.3, we have ρ0 =
χBc

0
µ, ρ1 = χBc

1
ν, ρ̃0 = χB̃c

0
µ and ρ̃1 = χB̃c

1
ν. By the convexity of the total cost, we see that 1

2 (ρ0, ρ1) + 1
2 (ρ̃0, ρ̃1)

is also an optimal couple. If (ρ0, ρ1) 6= (ρ̃0, ρ̃1) then 1
2 (ρ0, ρ1) + 1

2 (ρ̃0, ρ̃1) does not admit any expression as in
Lemma 3.3, a contradiction.

Remark 3.4.

(i) Following the proof, Theorem 3.1 is still true for any general cost c (not necessary to be of the form cL)
if we have the following properties:
◦ c is continuous.
◦ c(x, y) = 0 if and only if x = y.
◦ The balls w.r.t. c defined by Bc(y,R) := {t ∈ RN : c(t, y) < R} and Bc(x,R) := {w ∈ RN : c(x,w) <
R)} are regular in the sense that given any point on the boundary of a ball, there exists a sequence of
subsets of the ball which shrinks nicely to that point.

(ii) In the case where L(x, v) = L(v) is strictly convex, Figalli [23] studied the strict convexity of the function
that associates to each m ∈ (µ∧ν(RN ),mmax] the total Monge–Kantorovich cost to deduce the uniqueness.

(iii) When L(x, .) is positively 1-homogeneous, i.e., L(x, tξ) = tL(x, ξ) ∀x ∈ RN , ξ ∈ RN , t > 0, the uniqueness
can be obtained via PDE techniques applied to the so-called obstacle Monge–Kantorovich equation (see
[28]).

4. Equivalent formulations

In the present section, under the general assumptions of Section 2, we introduce and study the equivalent
formulations for the PMK problem of the type (1.5)–(1.8).

4.1. Dual formulation

We start with the following Kantorovich-type dual formulation.

Theorem 4.1. Let µ, ν ∈M+
b (RN ) be compactly supported and m ∈

[
0,min

{
µ(RN ), ν(RN )

}]
. Suppose that L

satisfies the assumption (A). Then

min
γ∈πm(µ,ν)

{
K(γ) :=

∫
RN×RN

c(x, y)dγ

}
= max

(λ,u)

{∫
RN

u(1, .)dν

−
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : λ ∈ R+, u ∈ Kλc
}
, (4.1)

where

Kλc :=
{
u ∈ Lip(Q) : ∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 for a.e. (t, x) ∈ Q,

−λ ≤ u(0, x) and u(1, x) ≤ 0 ∀x ∈ RN
}
. (4.2)

To prove Theorem 4.1, we recall below the Kantorovich duality for the PMK problem. This can be found in
[28].
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Theorem 4.2 (cf. [28]). Let µ, ν ∈M+
b (RN ) be compactly supported Radon measures and m ∈ [0,mmax]. The

PMK problem has a solution σ∗ ∈ πm(µ, ν) and the Kantorovich duality turns into

K(σ∗) = max
(λ,φ,ψ)

{∫
φ dµ+

∫
ψ dν + λm : λ ∈ R+, (φ, ψ) ∈ Sλc (µ, ν)

}
, (4.3)

where

Sλc (µ, ν) :=
{

(φ, ψ) ∈ L1
µ(RN )× L1

ν(RN ) : φ ≤ 0, ψ ≤ 0, φ(x) + ψ(y) + λ ≤ c(x, y) ∀x, y ∈ RN
}
.

Moreover, σ ∈ πm(µ, ν) and (λ, φ, ψ) ∈ R+ × Sλc (µ, ν) are primal-dual solutions, respectively, if and only if

φ(x) = 0 for (µ− πx#σ)-a.e. x ∈ RN , ψ(y) = 0 for (ν − πy#σ)-a.e. y ∈ RN

and φ(x) + ψ(y) + λ = c(x, y) for σ-a.e. (x, y) ∈ RN × RN .

Remark 4.3. The duality (4.3) can be rewritten as

K(σ∗) = max
(λ,φ,ψ)

{∫
ψ dν −

∫
φdµ+ λ(m− µ(RN )) : λ ∈ R+, (φ, ψ) ∈ Φλc (µ, ν)

}
, (4.4)

where

Φλc (µ, ν) :=
{

(φ, ψ) ∈ L1
µ(RN )× L1

ν(RN ) : −λ ≤ φ, ψ ≤ 0, ψ(y)− φ(x) ≤ c(x, y) ∀x, y ∈ RN
}
.

The maximization problem is called the dual partial Monge–Kantorovich (DPMK) problem.

Coming back to our analysis, we note that if u ∈ Kλc and u is smooth then, using the definition of the convex
conjugate function H, we get

∂tu(t, x) + 〈∇xu(t, x), v〉 ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN . (4.5)

In general, for any u ∈ Kλc , we can approximate u by smooth functions satisfying a similar estimate for (4.5).
This is the content of the following lemma. Although we obtain here only the estimate at the limit, this is
enough for later use.

Lemma 4.4. Fix any u ∈ Kλc . There exists a sequence of smooth functions uε such that uε converges uniformly
to u on Q and

lim sup
ε→0

(∂tuε(t, x) + 〈∇xuε(t, x), v〉) ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN (4.6)

and, for all ξ ∈ Lip([0, 1];RN ),

lim sup
ε→0

∫ 1

0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt ≤

∫ 1

0

L(ξ(t), ξ̇(t))dt. (4.7)

Proof. Let αε, βε be standard mollifiers on R and RN , respectively, such that

supp(αε) ⊂ [−ε, ε]. (4.8)
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Set ηε(t, x) := αε(t)βε(x). Let ũ be a Lipschitz extension of u on R×RN . By means of convolution in both time
and spacial variables, let us define

ũε := ηε ? ũ,

and

uε(t, x) := ũε(ε+ (1− 2ε)t, (1− 2ε)x) for any (t, x) ∈ R× RN .

Let us show that uε satisfies all the requirements. First, since ũ is Lipschitz, uε converges uniformly to u on Q.
It remains to check the two inequalities (4.6) and (4.7). For all t ∈ [0, 1], using (4.8), we have

uε(t, x) =

∫
R

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)ũ(s, y)dy ds

=

∫ 1

0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)u(s, y)dy ds.

Fix any v ∈ RN , for all t ∈ [0, 1], we have

∂tuε(t, x) + 〈v,∇uε(t, x)〉 = (1− 2ε)

∫ 1

0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)∂su(s, y) dy ds

+(1− 2ε)

〈
v,

∫ 1

0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)∇yu(s, y) dy ds

〉
= (1− 2ε)

∫ 1

0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y) (∂su(s, y)

+〈v,∇yu(s, y)〉) dy ds

≤ (1− 2ε)

∫ 1

0

∫
RN

αε(ε+ (1− 2ε)t− s)βε((1− 2ε)x− y)L(y, v) dy ds

= (1− 2ε)

∫
RN

βε((1− 2ε)x− y)L(y, v) dy. (4.9)

Letting ε → 0, we obtain (4.6). Finally, let us fix any ξ ∈ Lip([0, 1];RN ). Using (4.6) with x = ξ(t), v = ξ̇(t),
we have

lim sup
ε→0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
≤ L(ξ(t), ξ̇(t)) for a.e. t ∈ [0, 1]. (4.10)

Recall that (the Reverse Fatou’s Lemma) if there exists an integrable function g on a measure space (X, η) such
that gε ≤ g for all ε, then

lim sup
ε

∫
gεdη ≤

∫
lim sup

ε
gεdη. (4.11)

In our case, on X := [0, 1] with the Lebesgue measure, the functions gε(t) := ∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉
for a.e. t ∈ [0, 1] are bounded by a common constant depending Lipschitz constants of u and of ξ. Applying the
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Reverse Fatou’s Lemma and (4.10), we deduce that

lim sup
ε→0

∫ 1

0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt ≤

∫ 1

0

lim sup
ε→0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt

≤
∫ 1

0

L(ξ(t), ξ̇(t))dt. (4.12)

Note that we can do even better in the case where L(x, v) = L(v) is independent of x. Indeed, from our
argument (4.9), we can choose uε such that

∂tuε(t, x) + 〈∇xuε(t, x), v〉 ≤ L(x, v) ∀(t, x) ∈ Q, v ∈ RN (4.13)

without passing ε to 0.
Now, we are ready to prove the duality (4.1). We check directly that the maximization is less than the

minimum in (4.1) with the help of Lemma 4.4. For the converse inequality, we make use of the theory of
Hamilton–Jacobi equations.

Proof of Theorem 4.1. Fix any u ∈ Kλc . Let uε be the sequence of smooth functions given in Lemma 4.4. Fix
any ξ ∈ Lip([0, 1];RN ) such that ξ(0) = x, ξ(1) = y. By (4.7), we have

u(1, y)− u(0, x) = lim
ε→0

(uε(1, ξ(1))− uε(0, ξ(0)))

= lim
ε→0

∫ 1

0

(
∂tuε(t, ξ(t)) + 〈∇xuε(t, ξ(t)), ξ̇(t)〉

)
dt

≤
∫ 1

0

L(ξ(t), ξ̇(t))dt. (4.14)

Since ξ is arbitrary, we get

u(1, y)− u(0, x) ≤ c(x, y) ∀x, y ∈ RN .

Thanks to Remark 4.3, we deduce that

K(σ∗) ≥ sup
(λ,u)

{∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : λ ∈ R+, u ∈ Kλc
}
. (4.15)

Conversely, let (φ, ψ) ∈ Φλc (µ, ν) be a maximizer in (4.4). Set

φ1(x) := sup
y∈supp(ν)

(ψ(y)− c(x, y)) and φ∗(x) := max{φ1(x),−λ} for x ∈ supp(µ).

Since c(., y) is locally Lipschitz w.r.t. the variable x, φ∗ is Lipschitz on the compact set supp(µ). Moreover, φ∗

is non-positive (since ψ ≤ 0 and c ≥ 0) and (φ∗, ψ) is also a maximizer of the DPMK problem. By extension,
we can assume that φ∗ is non-positive and Lipschitz on RN . Now, we set

u∗(t, x) := inf
ξ

{∫ t

0

L(ξ(s), ξ̇(s))ds+ φ∗(ξ(0)) : ξ ∈ Lip([0, t];RN ), ξ(t) = x

}
.
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Then (see e.g. [22], Chap. 10 or [12], Chap. 6) u∗ is Lipschitz on Q and u∗ is a viscosity solution of the
Hamilton–Jacobi equation

∂tu(t, x) +H(x,∇xu(t, x)) = 0

with u∗(0, x) = φ∗(x). It is not difficult to see that u∗(1, y) ≤ φ∗(y) ≤ 0, u∗(0, x) = φ∗(x) ≥ −λ ∀x, y ∈ RN
and that

u∗(1, y) = inf
ξ

{∫ 1

0

L(ξ(s), ξ̇(s))ds+ φ∗(ξ(0)) : ξ ∈ Lip([0, 1];RN ), ξ(1) = y

}
≥ inf

x∈RN
{c(x, y) + φ∗(x)}

≥ ψ(y) ∀y ∈ RN . (4.16)

These imply that u∗ ∈ Kλc and that

u∗(1, y)− u∗(0, x) ≥ ψ(y)− φ∗(x) ∀x, y ∈ RN . (4.17)

Thus ∫
RN

u∗(1, .)dν −
∫
RN

u∗(0, .)dµ+ λ(m− µ(RN )) ≥
∫
ψdν −

∫
φ∗dµ+ λ(m− µ(RN ))

= K(σ∗). (4.18)

Combing this with (4.15), the duality (4.1) holds and u∗ is a solution of the maximization problem on the right
hand side of (4.1).

4.2. Eulerian formulation by Fenchel–Rockafellar duality

As we said in the introduction, the Fenchel–Rockafellar duality is an important ingredient of our analysis,
especially for the numerical analysis by augmented Lagrangian methods.

Theorem 4.5. Under the assumptions of Theorem 4.1, we have

max

{∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc
}

= min

{∫∫
Q

L(x, υ(t, x))dρ(t, x) : (ρ, υ, θ0, θ1) ∈ Bc
}
, (4.19)

where

Bc :=
{

(ρ, υ, θ0, θ1) ∈M+
b (Q)× L1

ρ(Q)N ×M+
b (RN )×M+

b (RN ) : θ0(RN ) = µ(RN )−m,

−divt,x (ρ, υρ) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0)
}
. (4.20)

Roughly speaking, the minimization in (4.19) is the Fenchel–Rockafellar dual of the maximization problem.
However, the interesting point to note here is that the maximization problem in (4.19) does not satisfy the
sufficient conditions to use directly the dual theory of Fenchel–Rockafellar. To overcome this difficulty, we
approximate the maximization problem by a suitable supremum problem. To this end, for general Lagrangian
L, we make use of the smooth approximations given in Lemma 4.4.
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Proof of Theorem 4.5. Let us first show that

max

{∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc
}

≤ inf

{∫∫
Q

L(x, υ)dρ : (ρ, υ, θ0, θ1) ∈ Bc
}
. (4.21)

Fix any u ∈ Kλc and (ρ, υ, θ0, θ1) ∈ Bc. Let uε be the sequence of smooth functions given in Lemma 4.4. Taking
uε as a test function in the continuity equation

− divt,x (ρ, υρ) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0), (4.22)

we have

∫∫
Q

∂tuεdρ+

∫∫
Q

∇xuε(t, x) · υ(t, x)dρ =

∫
RN

uε(1, .)d(ν − θ1)−
∫
RN

uε(0, .)d(µ− θ0). (4.23)

Since θ0(RN ) = µ(RN )−m, we get

∫
RN

uε(1, .)dν −
∫
RN

uε(0, .)dµ+ λ(m− µ(RN )) =

∫
RN

uε(1, .)dν −
∫
RN

uε(0, .)dµ− λ
∫
RN

dθ0

=

∫
RN

uε(1, .)d(ν − θ1)−
∫
RN

uε(0, .)d(µ− θ0)

+

∫
RN

uε(1, .)dθ
1 −

∫
(uε(0, .) + λ) dθ0

=

∫∫
Q

(∂tuε +∇xuε · υ) dρ+

∫
RN

uε(1, .)dθ
1

−
∫

(uε(0, .) + λ) dθ0. (4.24)

Letting ε→ 0, using Lemma 4.4 and the fact that u(1, .) ≤ 0, u(0, .) + λ ≥ 0, we have

∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) ≤
∫∫

Q

L(x, υ(t, x))dρ+

∫
RN

u(1, .)dθ1 −
∫
RN

(u0, .) + λ) dθ0

≤
∫∫

Q

L(x, υ(t, x))dρ(t, x). (4.25)

This implies the desired inequality (4.21). Let us now prove the converse inequality. Obviously, we have

max

{∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc
}

≥ sup

{∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc , u ∈ C1,1(Q)

}
. (4.26)
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It is sufficient to show that

sup

{∫
RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN )) : (λ, u) ∈ R+ ×Kλc , u ∈ C1,1(Q)

}
= min

{∫∫
Q

L(x, υ(t, x))dρ : (ρ, υ, θ0, θ1) ∈ Bc
}
. (4.27)

This will be proved by using the Fenchel–Rockafellar dual theory. Indeed, the supremum problem in (4.27) can
be written as

− inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u)), (4.28)

where

F(λ, u) := −
(∫

RN

u(1, .)dν −
∫
RN

u(0, .)dµ+ λ(m− µ(RN ))

)
for any (λ, u) ∈ V := R× C1,1(Q),

Λ(λ, u) := (∇t,xu, −λ− u(0, .), u(1, .)) ∈ Z := Cb(Q)N+1 × Cb(RN )× Cb(RN ),

G(q, z, w) :=

{
0 if z(x) ≤ 0, w(x) ≤ 0 and q1(t, x) +H(x, qN (t, x)) ≤ 0 ∀(t, x) ∈ Q
+∞ otherwise

with q := (q1, qN ) ∈ Cb(Q) × Cb(Q)N for all (q, z, w) ∈ Z. Now, using the Fenchel–Rockafellar dual theory to
the problem (4.28) (see e.g. [21], Chap. III), we have

inf
(λ,u)∈V

F(λ, u) + G(Λ(λ, u))

= max
(Φ,θ0,θ1)∈Mb(Q)N+1×Mb(RN )×Mb(RN )

(
−F∗(−Λ∗(Φ, θ0, θ1))− G∗(Φ, θ0, θ1)

)
. (4.29)

The proof is completed by computing explicitly the quantities in this maximization problem.
• Let us compute F∗(−Λ∗(Φ, θ0, θ1)). Since F is linear, F∗(−Λ∗(Φ, θ0, θ1)) is finite (and is equal to 0

whenever finite) if and only if

〈−Λ∗(Φ, θ0, θ1), (λ, u)〉 = F(λ, u) = −
(∫

u(1, .) dν −
∫
u(0, .) dµ+ λ(m− µ(RN ))

)
∀(λ, u) ∈ V,

or

−〈∇t,xu,Φ〉 − 〈θ0,−λ− u(0, .)〉 − 〈θ1, u(1, .)〉 = −〈u(1, .), ν〉+ 〈u(0, .), µ〉 − λ(m− µ(RN )) ∀(λ, u) ∈ V.

This implies that

−〈∇t,xu,Φ〉 = 〈u(0, .), µ− θ0〉 − 〈u(1, .), ν − θ1〉 for all test functions u ∈ C1,1(Q)

and that

θ0(RN ) = µ(RN )−m.
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Recall that Φ ∈Mb(Q)N+1, writing Φ = (ρ,E), the above computation gives

− divt,x (ρ,E) = δ1 ⊗ (ν − θ1)− δ0 ⊗ (µ− θ0), (4.30)

and

θ0(RN ) = µ(RN )−m.

• For G∗(Φ, θ0, θ1), since H(., .) is continuous, using the same arguments as in Proposition 5.18 of [41], we
have

G∗(Φ, θ0, θ1) =

{∫∫
Q
L(x, υ(t, x))dρ if θ0 ≥ 0, θ1 ≥ 0, Φ = (ρ,E), and ρ ≥ 0, E � ρ, E = υρ

+∞ otherwise,

where E � ρ means that E is absolutely continuous w.r.t. ρ. Substituting F∗ and G∗ into (4.29), we obtain the
needed equality (4.27).

4.3. Optimality condition and constrained MFG system

To write down the optimality condition for the duality (4.19), we need to use the notion of tangential gradient
to a measure. This notion is an adaptation of the usual gradient (for Lebesgue measure) to any finite Radon
measure. Recall that the tangential gradient ∇ηu is well-defined for any Lipschitz function u and any finite
Radon measure η (see e.g. [8, 9, 31]).

Optimality condition for the duality (4.19) is related to the following PDE system:

− divt,x(ρ, υρ) = δ1 ⊗
(
ν − θ1

)
− δ0 ⊗

(
µ− θ0

)
L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. (t, x) in Q

∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) in Q

−θ0 ∈ ∂I[−λ,+∞)(u(0, .))

θ1 ∈ ∂I(−∞,0](u(1, .))

(ρ, υ, θ0, θ1) ∈M+
b (Q)× L1

ρ(Q)N ×M+
b (RN )×M+

b (RN ),

(PDEλ)

where the condition θ1 ∈ ∂I(−∞,0](u(1, .)) means that

u(1, .) ≤ 0 and 〈θ1, φ− u(1, .)〉 ≤ 0 ∀φ ∈ Cb(RN ), φ ≤ 0,

or equivalently

u(1, .) ≤ 0, θ1 ≥ 0 and

∫
RN

u(1, .)dθ1 = 0.

Similarly, the condition −θ0 ∈ ∂I[−λ,+∞)(u(0, .)) reads as

u(0, .) ≥ −λ, θ0 ≥ 0 and

∫
RN

(u(0, .) + λ) dθ0 = 0.
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Theorem 4.6. Assume that (ρ, υ, θ0, θ1) ∈ Bc and (λ, u) ∈ R+ × Kλc are optimal for the two problems in the
duality (4.19). Then (ρ, υ, θ0, θ1, u) satisfies the system (PDEλ). Conversely, if (ρ, υ, θ0, θ1, u) is a solution of
(PDEλ), then (ρ, υ, θ0, θ1) and (λ, u) are solutions to the duality (4.19) w.r.t. m = µ(RN )− θ0(RN ).

Remark 4.7. For the standard optimal transport problem, i.e., m = µ(RN ) = ν(RN ) (in this case θ0 = θ1 = 0),
the optimality conditions (PDEλ) can be reduced to the following system:

−divt,x(ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ
L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. in Q

∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. in Q.

(4.31)

In particular, if L(x, v) = L(v) is independent of the variable x then the system (4.31) recovers the same PDE,
called Monge–Kantorovich equation, as in the work of Jimenez [31].

Remark 4.8. If m = µ(RN ) = ν(RN ) and assume moreover that ρ� LN+1, then the conditions (4.31) can be
rewritten as 

−divt,x(ρ, υρ) = δ1 ⊗ ν − δ0 ⊗ µ
∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) in Q

∂tu(t, x) +H(x,∇xu(t, x)) = 0 ρ-a.e. (t, x) in Q

υ(t, x) ∈ ∂H(x,∇xu(t, x)) ρ-a.e. (t, x) in Q,

(4.32)

where ∂H is the subdifferential of H w.r.t. the second variable. Indeed, the condition L (x, υ(t, x)) = ∇ρu(t, x) ·
(1, υ(t, x)) ρ-a.e. implies that

L (x, υ(t, x)) = ∇t,xu(t, x) · (1, υ(t, x)) ρLN+1-a.e. in Q

= ∂tu(t, x) + υ(t, x) · ∇xu(t, x) ρLN+1-a.e. in Q.

This implies that

L (x, υ(t, x)) ≤ ∂tu+H(x,∇xu(t, x)) + L(x, υ(t, x)) ≤ L (x, υ(t, x)) ρLN+1-a.e. in Q.

Hence ∂tu(t, x) +H(x,∇xu(t, x)) = 0 ρ-a.e. in Q and υ(t, x) ∈ ∂H(x,∇xu(t, x)) ρ-a.e. in Q.

To prove Theorem 4.6, we need a similar estimate for (4.5) for any u ∈ Kλ
c . Since u is not smooth in general,

we will characterize the estimate (4.5) via the tangential gradient instead of the usual one.

Lemma 4.9. Let u be a Lipschitz function on Q and ∂tu(t, x) +H(x,∇xu(t, x)) ≤ 0 a.e. (t, x) ∈ Q. For any
(ρ, υ) ∈M+

b (Q)× L1
ρ(Q)N satisfying the continuity equation

−divt,x (ρ, υρ) = δ1 ⊗ ρ1 − δ0 ⊗ ρ0,

we have

∇ρu(t, x) · (1, υ(t, x)) ≤ L(x, υ(t, x)) ρ-a.e. (t, x) in Q.

Proof. Let uε be the sequence as in Lemma 4.4. Since −divt,x (ρ, υρ) = δ1⊗ρ1− δ0⊗ρ0, we see that (1, υ(t, x)) ∈
Tρ(t, x) for ρ-a.e. (t, x), where Tρ(t, x) is the tangential space w.r.t. ρ (see [8, 9, 31]). Using Lemma 4.4 and the
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continuity of the tangential gradient (see e.g. [31], Prop. 4.5), we have∫∫
Q

∇ρu · (1, υ)ξ dρ = lim
ε→0

∫∫
Q

∇ρuε · (1, υ)ξ dρ

= lim
ε→0

∫∫
Q

∇t,xuε · (1, υ)ξ dρ

≤
∫∫

Q

L(x, υ(t, x))ξ dρ ∀ξ ∈ D(RN+1), ξ ≥ 0. (4.33)

Thus the result of the lemma follows.

Proof of Theorem 4.6. Let (ρ, υ, θ0, θ1) ∈ Bc and (λ, u) ∈ R+ ×Kλc be admissible elements, respectively. Let uε
be the sequence given by Lemma 4.4. By (4.24) and Lemma 4.9, we have∫

u(1, .) dν −
∫
u(0, .) dµ+ λ(m− µ(RN )) = lim

ε→0

∫
uε dν −

∫
uε dµ+ λ(m− µ(RN ))

= lim
ε→0

(∫∫
Q

(∂tuε +∇xuε · υ) dρ+

∫
RN

uε(1, .)dθ
1

−
∫
RN

(uε(0, .) + λ) dθ0

)
= lim

ε→0

∫∫
Q

(∂tuε +∇xuε · υ) dρ+

∫
RN

u(1, .)dθ1

−
∫
RN

(u(0, .) + λ) dθ0

≤ lim
ε→0

∫∫
Q

∇t,xuε · (1, υ)dρ

=

∫∫
Q

∇ρu · (1, υ)dρ

≤
∫∫

Q

L(x, υ(t, x))dρ. (4.34)

1. From the assumptions on optimalities and the duality (4.19), the inequalities in (4.34) become equalities.
These imply that ∫∫

Q

∇ρu · (1, υ)dρ =

∫∫
Q

L(x, υ(t, x))dρ, (4.35)

or equivalently

L(x, υ(t, x)) = ∇ρu(t, x) · (1, υ(t, x)) ρ-a.e. in Q (by Lem. 4.9); (4.36)

and that
∫
RN u(1, .)dθ1 = 0,

∫
RN (u(0, .) + λ)dθ0 = 0. These show that (ρ, υ, θ0, θ1, u) satisfies the system

(PDEλ).
2. Conversely, if (ρ, υ, θ0, θ1, u) satisfies the system (PDEλ), the inequalities in (4.34) are equalities. Using

the duality (4.19), we obtain the desired optimalities.
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Remark 4.10. A solution (Φ∗, θ0∗, θ1∗) of the Fenchel–Rockafellar dual formulation (4.29) gives inactive
submeasures and therefore active submeasures ρ∗0 = µ− θ0∗ and ρ∗1 = ν − θ1∗.

This remark allows us to solve the PMK problem by using numerical methods for approximation of the
Fenchel–Rockafellar dual problem.

5. Numerical approximation

We will apply the ALG2 algorithm to the dual formulation on the right hand side of (4.1) in order to
give numerical approximations for the optimal partial transport problem. We will solve for active submeasures
ρ0 = µ− θ0, ρ1 = ν − θ1 and the optimal movement of density ρt from ρ0 to ρ1.

5.1. ALG2 method

The method is to solve numerically the minimization of the form

inf
u∈V
{F(u) + G(Λu)} , (5.1)

where F ,G are l.s.c. convex functionals on Hilbert spaces V et Z; and Λ ∈ L(V,Z) is a linear operator. The
Fenchel–Rockafellar dual problem of (5.1) reads as

sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) . (5.2)

By introducing a new variable q ∈ Z to the primal problem (5.1), we can rewrite it in the form

inf
(u,q)∈V×Z : Λu=q

F(u) + G(q). (5.3)

ALG2 is a primal-dual method (i.e. it provides numerical solutions of both primal and dual problems) consisting
of 3 steps. Known σi, qi, the next step (ui+1, σi+1, qi+1) is computed as follows. Fix any parameter r > 0 (in
practice r = 1, 2):

• Step 1: Compute ui+1

min
u∈V

{
F(u) + 〈σi,Λu〉+

r

2
|Λu− qi|2

}
. (5.4)

• Step 2: Compute qi+1

min
q∈Z

{
G(q)− 〈σi, q〉+

r

2
|Λui+1 − q|2

}
. (5.5)

• Step 3: Update σi+1

σi+1 = σi + r (Λui+1 − qi+1) .

For the theory of this method, its interpretation, we refer the reader to [20, 24, 25]. Let us recall below its
convergence which is enough for our discretized problems later.

Theorem 5.1 (cf. [20], Thm. 8). Fixed r > 0, assuming that V = Rn, Z = Rm and that Λ has full
column rank (i.e., Λ is injective). If the primal problem (5.1) and the Fenchel–Rockafellar dual problem
sup
σ∈Z∗

(−F∗(−Λ∗σ)− G∗(σ)) have solutions, then {ui} converges to a solution of the primal problem (5.1) and
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Figure 1. Active submeasures and their displacement.

{σi} converges to a solution of the Fenchel–Rockafellar dual problem. Moreover, {qi} converges to Λu∗, where
u∗ is the limit of {ui}.

5.2. Applying ALG2 for the optimal partial transport problem

Recall that the dual maximization formulation in (4.1) can be rewritten into the form

inf {F(λ, u) + G(Λ(λ, u)) : (λ, u) ∈ V } , (5.6)

where

F(λ, u) := −
(∫

u(1, .) dν −
∫
u(0, .) dµ+ λ(m− µ(RN ))

)
for any (λ, u) ∈ V := R× C1,1(Q),

Λ(λ, u) := (∇t,xu, −λ− u(0, .), u(1, .)) ∈ Z := Cb(Q)N+1 × Cb(RN )× Cb(RN )

and, for all (q, z, w) ∈ Z,
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Figure 2. Active submeasures and their displacement.

G(q, z, w) :=

{
0 if z(x) ≤ 0, w(x) ≤ 0 and q(t, x) = (q1(t, x), qN (t, x)) ∈ Kx ∀(t, x) ∈ Q,
+∞ otherwise,

with Kx :=
{

(a, b) ∈ R× RN : a+H(x, b) ≤ 0
}
, x ∈ RN .

Let us discuss the details of computation. Actually, in computation, we replace V,Z by finite-dimensional
spaces using finite element methods. We denote by Pi, i = 1, 2 the spaces of piecewise polynomials of degree i.

We will use V = (R, P2) and Z = (PN+1
1 , P2, P2), where PN1 := (

N times︷ ︸︸ ︷
P1, . . . , P1). We use L2-norm for P1, P2, P

N+1
1 .

• Step 1: We split into two steps: First using λi to compute ui+1 and then using ui+1 to calculate λi+1. 1.
For ui+1, we solve

min
u

{
− (〈u(1, .), ν〉 − 〈u(0, .), µ〉) + 〈(σi, θ0

i , θ
1
i ), (∇t,xu,−u(0, .), u(1, .))〉

+
r

2
|(∇t,xu,−λi − u(0, .), u(1, .))− (qi, zi, wi)|2

}
. (5.7)
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Figure 3. Active submeasures and their displacement.

This is a quadratic problem which is equivalent to a linear equation with a positive-definite coefficient matrix.
So this step can be solved effectively by many solvers. The linear equation is detailed as (by taking derivative
w.r.t. u)

− (〈φ(1, .), ν〉 − 〈φ(0, .), µ〉) + 〈(σi, θ0,i, θ1,i), (∇t,xφ,−φ(0, .), φ(1, .))〉
+r〈(∇t,xui+1,−λi − ui+1(0, .), ui+1(1, .))− (qi, zi, wi) , (∇t,xφ,−φ(0, .), φ(1, .))〉 = 0, ∀(t, φ) ∈ V,(5.8)

or

r〈∇t,xui+1,∇t,xφ〉+ r〈ui+1(1, .), φ(1, .)〉+ r〈ui+1(0, .), φ(0, .)〉
= 〈φ(1, .), ν〉 − 〈φ(0, .), µ〉 − 〈(σi, θ0

i , θ
1
i ), (∇t,xφ,−φ(0, .), φ(1, .))〉

+r〈(qi, zi, wi) , (∇t,xφ,−φ(0, .), φ(1, .))〉 − r〈λi, φ(0, .)〉 for all (t, φ) ∈ V. (5.9)
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2. For λi+1,

min
λ∈R

{
−λ(m− µ(Ω)) + 〈(σi, θ0

i , θ
1
i ), (0,−λ, 0)〉+

r

2
| − λ− ui+1(0, .)− zi|2

}
, (5.10)

which is equivalent to

λi+1 =
m− µ(Ω) +

∫
Ω
θ0
i − r

∫
Ω

(zi + ui+1(0, .))

r
∫

Ω
1

. (5.11)

• Step 2: Since the function G(q, z, w) has the form of G1(q) + G2(z) + G3(w), we solve separately for the
variables q, z, w.

1. For zi+1,

zi+1 ∈ arg min
z∈P2

{
I[z≤0] − 〈θ0

i , z〉+
r

2
| − λi+1 − ui+1(0, .)− z|2

}
= Proj{[z∈P2:z≤0]}

(
−λi+1 − ui+1(0, .) +

θ0
i

r

)
. (5.12)

This is computed in pointwise, i.e., given a grid with vertices xj , then

zi+1(xj) = Proj{[s∈R:s≤0]}

(
−λi+1 − ui+1(0, .)(xj) +

θ0
i (xj)

r

)
= min

{
−λi+1 − ui+1(0, .)(xj) +

θ0
i (xj)

r
, 0

}
. (5.13)

2. For wi+1, similarly,

wi+1 = Proj{[w∈P2:w≤0]}

(
ui+1(1, .) +

θ1
i

r

)
. (5.14)

3. For qi+1, similarly,

qi+1 = ProjKx

(
∇t,xui+1 +

σi
r

)
. (5.15)

• Step 3: Update Lagrangian multipliers,

(σi+1, θ
0
i+1, θ

1
i+1) = (σi, θ

0
i , θ

1
i ) + ((∇t,xui+1,−λi+1 − ui+1(0, .), ui+1(1, .))− (qi+1, zi+1, wi+1)).

Since we are interested in active submeasures and the associated transportation, we can use the following
stopping criterium∣∣∣∣∫ (µ− θ0

i+1)dx−m

∣∣∣∣ ≤ ε, ∣∣∣∣∫ (ν − θ1
i+1)dx−m

∣∣∣∣ ≤ ε, ‖θ0
i+1 − θ0

i ‖L2 ≤ ε,

‖θ1
i+1 − θ1

i ‖L2 ≤ ε, ‖σi+1 − σi‖L2 ≤ ε, with ε = 10−4.

Remark 5.2. We see that Λ is injective, which guarantees the convergence of the ALG2 method. Indeed,
Λ(λ1, u1) = Λ(λ2, u2) implies that (λ1, u1) = (λ2, u2) by using u(t, x) =

∫ t
1
∂su(s, x)ds+ u(1, x).
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Remark 5.3. There are other first-order splitting methods for solving the minimization of F + G ◦ Λ as
implemented and compared in [10] for the context of mean field games.

This projection is also done in pointwise. Given a grid with vertices xk,

qi+1(xk) = ProjKxk

(
∇t,xui+1(xk) +

σi(xk)

r

)
= min

(a,b)

{∣∣∣∣(a, b)− (∇t,xui+1(xk) +
σi(xk)

r

)∣∣∣∣2 : (a, b) ∈ Kxk

}

= min
(a,b)

{∣∣∣∣(a, b)− (∇t,xui+1(xk) +
σi(xk)

r

)∣∣∣∣2 : a+H(xk, b) = 0

}
(5.16)

6. Some examples

Using the FreeFem++ software [26], we test some numerical examples. In all the examples below, we work
on the square Ω = [0, 1] × [0, 1] in R2 and use the discretization size 36 × 36 × 9 for the spatial-time variable.
We test the examples for costs of the form

c(x, y) = inf
ξ

{∫ 1

0

L(ξ(t), ξ̇(t)dt : ξ ∈ Lip([0, 1]; Ω), ξ(0) = x, ξ(1) = y

}
,

with L(x, v) = k(x)|v|2, k ∈ C(Ω), k(x) > 0 for all x ∈ Ω, v ∈ R2. For this cost, the last projection in the Step 2
(the projection on Kx) is converted to a problem on R and the latter is computed easily by the bisection method.

Example 6.1. The source and the target are Gaussian distributions of the same mass for the Lagrangian
L(x, v) = |v|2. We want to transport optimally a half of the mass. More details,

µ = 10 exp(−40(x1 − 0.25)2 − 40(x2 − 0.75)2),

ν = 10 exp(−40(x1 − 0.75)2 − 40(x2 − 0.25)2).

The active submeasures and the optimal displacement are given in Figure 1. Timestep 0 and timestep 9 (ρ0

and ρ1) are active submeasures of the source and the target, respectively. The intermediate timesteps show the
optimal movement of density from ρ0 to ρ1.

Example 6.2. We take the similar data to the previous example but the source and the target are taken as
the sums of two distributions,

µ = 10 exp(−40(x1 − 0.25)2 − 40(x2 − 0.25)2) + 10 exp(−40(x1 − 0.75)2 − 40(x2 − 0.75)2),

ν = 10 exp(−40(x1 − 0.75)2 − 40(x2 − 0.25)2) + 10 exp(−40(x1 − 0.25)2 − 40(x2 − 0.75)2).

The result is given in Figure 2.

Example 6.3. In this example, we take L(x, v) = k(x)|v|2 with

k(x1, x2) = 1 + 15 exp(−45(x1 − 0.5)2 − 45(x2 − 0.5)2),

µ = 20 exp(−60(x1 − 0.2)2 − 60(x2 − 0.8)2),

ν = 20 exp(−60(x1 − 0.8)2 − 60(x2 − 0.2)2),
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and

m =
mmax

2
.

This cost means that we have to pay much if we transport through around (0.5, 0.5) (where k(x) is big). The
numerical result is illustrated in Figure 3.
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